WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / sis / sis900.c
blob620c26f71be89c1003149494da42e05455abc5de
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <linux/uaccess.h> /* User space memory access functions */
79 #include "sis900.h"
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
84 static const char version[] =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
101 enum {
102 SIS_900 = 0,
103 SIS_7016
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
110 static const struct pci_device_id sis900_pci_tbl[] = {
111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
113 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
115 {0,}
117 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
119 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
121 static const struct mii_chip_info {
122 const char * name;
123 u16 phy_id0;
124 u16 phy_id1;
125 u8 phy_types;
126 #define HOME 0x0001
127 #define LAN 0x0002
128 #define MIX 0x0003
129 #define UNKNOWN 0x0
130 } mii_chip_table[] = {
131 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
132 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
133 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
134 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
135 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
136 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
137 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
138 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
139 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
140 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
141 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
142 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
143 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
144 {NULL,},
147 struct mii_phy {
148 struct mii_phy * next;
149 int phy_addr;
150 u16 phy_id0;
151 u16 phy_id1;
152 u16 status;
153 u8 phy_types;
156 typedef struct _BufferDesc {
157 u32 link;
158 u32 cmdsts;
159 u32 bufptr;
160 } BufferDesc;
162 struct sis900_private {
163 struct pci_dev * pci_dev;
165 spinlock_t lock;
167 struct mii_phy * mii;
168 struct mii_phy * first_mii; /* record the first mii structure */
169 unsigned int cur_phy;
170 struct mii_if_info mii_info;
172 void __iomem *ioaddr;
174 struct timer_list timer; /* Link status detection timer. */
175 u8 autong_complete; /* 1: auto-negotiate complete */
177 u32 msg_enable;
179 unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
180 unsigned int cur_tx, dirty_tx;
182 /* The saved address of a sent/receive-in-place packet buffer */
183 struct sk_buff *tx_skbuff[NUM_TX_DESC];
184 struct sk_buff *rx_skbuff[NUM_RX_DESC];
185 BufferDesc *tx_ring;
186 BufferDesc *rx_ring;
188 dma_addr_t tx_ring_dma;
189 dma_addr_t rx_ring_dma;
191 unsigned int tx_full; /* The Tx queue is full. */
192 u8 host_bridge_rev;
193 u8 chipset_rev;
194 /* EEPROM data */
195 int eeprom_size;
198 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
199 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
200 MODULE_LICENSE("GPL");
202 module_param(multicast_filter_limit, int, 0444);
203 module_param(max_interrupt_work, int, 0444);
204 module_param(sis900_debug, int, 0444);
205 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
206 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
207 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
209 #define sw32(reg, val) iowrite32(val, ioaddr + (reg))
210 #define sw8(reg, val) iowrite8(val, ioaddr + (reg))
211 #define sr32(reg) ioread32(ioaddr + (reg))
212 #define sr16(reg) ioread16(ioaddr + (reg))
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 static void sis900_poll(struct net_device *dev);
216 #endif
217 static int sis900_open(struct net_device *net_dev);
218 static int sis900_mii_probe (struct net_device * net_dev);
219 static void sis900_init_rxfilter (struct net_device * net_dev);
220 static u16 read_eeprom(void __iomem *ioaddr, int location);
221 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
222 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
223 static void sis900_timer(struct timer_list *t);
224 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
225 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue);
226 static void sis900_init_tx_ring(struct net_device *net_dev);
227 static void sis900_init_rx_ring(struct net_device *net_dev);
228 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
229 struct net_device *net_dev);
230 static int sis900_rx(struct net_device *net_dev);
231 static void sis900_finish_xmit (struct net_device *net_dev);
232 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
233 static int sis900_close(struct net_device *net_dev);
234 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
235 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
236 static void set_rx_mode(struct net_device *net_dev);
237 static void sis900_reset(struct net_device *net_dev);
238 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
239 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
240 static u16 sis900_default_phy(struct net_device * net_dev);
241 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
242 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
243 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
244 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
245 static const struct ethtool_ops sis900_ethtool_ops;
248 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
249 * @pci_dev: the sis900 pci device
250 * @net_dev: the net device to get address for
252 * Older SiS900 and friends, use EEPROM to store MAC address.
253 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
256 static int sis900_get_mac_addr(struct pci_dev *pci_dev,
257 struct net_device *net_dev)
259 struct sis900_private *sis_priv = netdev_priv(net_dev);
260 void __iomem *ioaddr = sis_priv->ioaddr;
261 u16 signature;
262 int i;
264 /* check to see if we have sane EEPROM */
265 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
266 if (signature == 0xffff || signature == 0x0000) {
267 printk (KERN_WARNING "%s: Error EEPROM read %x\n",
268 pci_name(pci_dev), signature);
269 return 0;
272 /* get MAC address from EEPROM */
273 for (i = 0; i < 3; i++)
274 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
276 return 1;
280 * sis630e_get_mac_addr - Get MAC address for SiS630E model
281 * @pci_dev: the sis900 pci device
282 * @net_dev: the net device to get address for
284 * SiS630E model, use APC CMOS RAM to store MAC address.
285 * APC CMOS RAM is accessed through ISA bridge.
286 * MAC address is read into @net_dev->dev_addr.
289 static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
290 struct net_device *net_dev)
292 struct pci_dev *isa_bridge = NULL;
293 u8 reg;
294 int i;
296 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
297 if (!isa_bridge)
298 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
299 if (!isa_bridge) {
300 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
301 pci_name(pci_dev));
302 return 0;
304 pci_read_config_byte(isa_bridge, 0x48, &reg);
305 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
307 for (i = 0; i < 6; i++) {
308 outb(0x09 + i, 0x70);
309 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
312 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
313 pci_dev_put(isa_bridge);
315 return 1;
320 * sis635_get_mac_addr - Get MAC address for SIS635 model
321 * @pci_dev: the sis900 pci device
322 * @net_dev: the net device to get address for
324 * SiS635 model, set MAC Reload Bit to load Mac address from APC
325 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
326 * @net_dev->dev_addr.
329 static int sis635_get_mac_addr(struct pci_dev *pci_dev,
330 struct net_device *net_dev)
332 struct sis900_private *sis_priv = netdev_priv(net_dev);
333 void __iomem *ioaddr = sis_priv->ioaddr;
334 u32 rfcrSave;
335 u32 i;
337 rfcrSave = sr32(rfcr);
339 sw32(cr, rfcrSave | RELOAD);
340 sw32(cr, 0);
342 /* disable packet filtering before setting filter */
343 sw32(rfcr, rfcrSave & ~RFEN);
345 /* load MAC addr to filter data register */
346 for (i = 0 ; i < 3 ; i++) {
347 sw32(rfcr, (i << RFADDR_shift));
348 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
351 /* enable packet filtering */
352 sw32(rfcr, rfcrSave | RFEN);
354 return 1;
358 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
359 * @pci_dev: the sis900 pci device
360 * @net_dev: the net device to get address for
362 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
363 * is shared by
364 * LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
365 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
366 * by LAN, otherwise it is not. After MAC address is read from EEPROM, send
367 * EEDONE signal to refuse EEPROM access by LAN.
368 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
369 * The signature field in SiS962 or SiS963 spec is meaningless.
370 * MAC address is read into @net_dev->dev_addr.
373 static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
374 struct net_device *net_dev)
376 struct sis900_private *sis_priv = netdev_priv(net_dev);
377 void __iomem *ioaddr = sis_priv->ioaddr;
378 int wait, rc = 0;
380 sw32(mear, EEREQ);
381 for (wait = 0; wait < 2000; wait++) {
382 if (sr32(mear) & EEGNT) {
383 u16 *mac = (u16 *)net_dev->dev_addr;
384 int i;
386 /* get MAC address from EEPROM */
387 for (i = 0; i < 3; i++)
388 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
390 rc = 1;
391 break;
393 udelay(1);
395 sw32(mear, EEDONE);
396 return rc;
399 static const struct net_device_ops sis900_netdev_ops = {
400 .ndo_open = sis900_open,
401 .ndo_stop = sis900_close,
402 .ndo_start_xmit = sis900_start_xmit,
403 .ndo_set_config = sis900_set_config,
404 .ndo_set_rx_mode = set_rx_mode,
405 .ndo_validate_addr = eth_validate_addr,
406 .ndo_set_mac_address = eth_mac_addr,
407 .ndo_do_ioctl = mii_ioctl,
408 .ndo_tx_timeout = sis900_tx_timeout,
409 #ifdef CONFIG_NET_POLL_CONTROLLER
410 .ndo_poll_controller = sis900_poll,
411 #endif
415 * sis900_probe - Probe for sis900 device
416 * @pci_dev: the sis900 pci device
417 * @pci_id: the pci device ID
419 * Check and probe sis900 net device for @pci_dev.
420 * Get mac address according to the chip revision,
421 * and assign SiS900-specific entries in the device structure.
422 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
425 static int sis900_probe(struct pci_dev *pci_dev,
426 const struct pci_device_id *pci_id)
428 struct sis900_private *sis_priv;
429 struct net_device *net_dev;
430 struct pci_dev *dev;
431 dma_addr_t ring_dma;
432 void *ring_space;
433 void __iomem *ioaddr;
434 int i, ret;
435 const char *card_name = card_names[pci_id->driver_data];
436 const char *dev_name = pci_name(pci_dev);
438 /* when built into the kernel, we only print version if device is found */
439 #ifndef MODULE
440 static int printed_version;
441 if (!printed_version++)
442 printk(version);
443 #endif
445 /* setup various bits in PCI command register */
446 ret = pci_enable_device(pci_dev);
447 if(ret) return ret;
449 i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
450 if(i){
451 printk(KERN_ERR "sis900.c: architecture does not support "
452 "32bit PCI busmaster DMA\n");
453 return i;
456 pci_set_master(pci_dev);
458 net_dev = alloc_etherdev(sizeof(struct sis900_private));
459 if (!net_dev)
460 return -ENOMEM;
461 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
463 /* We do a request_region() to register /proc/ioports info. */
464 ret = pci_request_regions(pci_dev, "sis900");
465 if (ret)
466 goto err_out;
468 /* IO region. */
469 ioaddr = pci_iomap(pci_dev, 0, 0);
470 if (!ioaddr) {
471 ret = -ENOMEM;
472 goto err_out_cleardev;
475 sis_priv = netdev_priv(net_dev);
476 sis_priv->ioaddr = ioaddr;
477 sis_priv->pci_dev = pci_dev;
478 spin_lock_init(&sis_priv->lock);
480 sis_priv->eeprom_size = 24;
482 pci_set_drvdata(pci_dev, net_dev);
484 ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE,
485 &ring_dma, GFP_KERNEL);
486 if (!ring_space) {
487 ret = -ENOMEM;
488 goto err_out_unmap;
490 sis_priv->tx_ring = ring_space;
491 sis_priv->tx_ring_dma = ring_dma;
493 ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE,
494 &ring_dma, GFP_KERNEL);
495 if (!ring_space) {
496 ret = -ENOMEM;
497 goto err_unmap_tx;
499 sis_priv->rx_ring = ring_space;
500 sis_priv->rx_ring_dma = ring_dma;
502 /* The SiS900-specific entries in the device structure. */
503 net_dev->netdev_ops = &sis900_netdev_ops;
504 net_dev->watchdog_timeo = TX_TIMEOUT;
505 net_dev->ethtool_ops = &sis900_ethtool_ops;
507 if (sis900_debug > 0)
508 sis_priv->msg_enable = sis900_debug;
509 else
510 sis_priv->msg_enable = SIS900_DEF_MSG;
512 sis_priv->mii_info.dev = net_dev;
513 sis_priv->mii_info.mdio_read = mdio_read;
514 sis_priv->mii_info.mdio_write = mdio_write;
515 sis_priv->mii_info.phy_id_mask = 0x1f;
516 sis_priv->mii_info.reg_num_mask = 0x1f;
518 /* Get Mac address according to the chip revision */
519 sis_priv->chipset_rev = pci_dev->revision;
520 if(netif_msg_probe(sis_priv))
521 printk(KERN_DEBUG "%s: detected revision %2.2x, "
522 "trying to get MAC address...\n",
523 dev_name, sis_priv->chipset_rev);
525 ret = 0;
526 if (sis_priv->chipset_rev == SIS630E_900_REV)
527 ret = sis630e_get_mac_addr(pci_dev, net_dev);
528 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
529 ret = sis635_get_mac_addr(pci_dev, net_dev);
530 else if (sis_priv->chipset_rev == SIS96x_900_REV)
531 ret = sis96x_get_mac_addr(pci_dev, net_dev);
532 else
533 ret = sis900_get_mac_addr(pci_dev, net_dev);
535 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
536 eth_hw_addr_random(net_dev);
537 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
538 "using random generated one\n", dev_name);
541 /* 630ET : set the mii access mode as software-mode */
542 if (sis_priv->chipset_rev == SIS630ET_900_REV)
543 sw32(cr, ACCESSMODE | sr32(cr));
545 /* probe for mii transceiver */
546 if (sis900_mii_probe(net_dev) == 0) {
547 printk(KERN_WARNING "%s: Error probing MII device.\n",
548 dev_name);
549 ret = -ENODEV;
550 goto err_unmap_rx;
553 /* save our host bridge revision */
554 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
555 if (dev) {
556 sis_priv->host_bridge_rev = dev->revision;
557 pci_dev_put(dev);
560 ret = register_netdev(net_dev);
561 if (ret)
562 goto err_unmap_rx;
564 /* print some information about our NIC */
565 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
566 net_dev->name, card_name, ioaddr, pci_dev->irq,
567 net_dev->dev_addr);
569 /* Detect Wake on Lan support */
570 ret = (sr32(CFGPMC) & PMESP) >> 27;
571 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
572 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
574 return 0;
576 err_unmap_rx:
577 dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
578 sis_priv->rx_ring_dma);
579 err_unmap_tx:
580 dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
581 sis_priv->tx_ring_dma);
582 err_out_unmap:
583 pci_iounmap(pci_dev, ioaddr);
584 err_out_cleardev:
585 pci_release_regions(pci_dev);
586 err_out:
587 free_netdev(net_dev);
588 return ret;
592 * sis900_mii_probe - Probe MII PHY for sis900
593 * @net_dev: the net device to probe for
595 * Search for total of 32 possible mii phy addresses.
596 * Identify and set current phy if found one,
597 * return error if it failed to found.
600 static int sis900_mii_probe(struct net_device *net_dev)
602 struct sis900_private *sis_priv = netdev_priv(net_dev);
603 const char *dev_name = pci_name(sis_priv->pci_dev);
604 u16 poll_bit = MII_STAT_LINK, status = 0;
605 unsigned long timeout = jiffies + 5 * HZ;
606 int phy_addr;
608 sis_priv->mii = NULL;
610 /* search for total of 32 possible mii phy addresses */
611 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
612 struct mii_phy * mii_phy = NULL;
613 u16 mii_status;
614 int i;
616 mii_phy = NULL;
617 for(i = 0; i < 2; i++)
618 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
620 if (mii_status == 0xffff || mii_status == 0x0000) {
621 if (netif_msg_probe(sis_priv))
622 printk(KERN_DEBUG "%s: MII at address %d"
623 " not accessible\n",
624 dev_name, phy_addr);
625 continue;
628 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
629 mii_phy = sis_priv->first_mii;
630 while (mii_phy) {
631 struct mii_phy *phy;
632 phy = mii_phy;
633 mii_phy = mii_phy->next;
634 kfree(phy);
636 return 0;
639 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
640 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
641 mii_phy->phy_addr = phy_addr;
642 mii_phy->status = mii_status;
643 mii_phy->next = sis_priv->mii;
644 sis_priv->mii = mii_phy;
645 sis_priv->first_mii = mii_phy;
647 for (i = 0; mii_chip_table[i].phy_id1; i++)
648 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
649 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
650 mii_phy->phy_types = mii_chip_table[i].phy_types;
651 if (mii_chip_table[i].phy_types == MIX)
652 mii_phy->phy_types =
653 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
654 printk(KERN_INFO "%s: %s transceiver found "
655 "at address %d.\n",
656 dev_name,
657 mii_chip_table[i].name,
658 phy_addr);
659 break;
662 if( !mii_chip_table[i].phy_id1 ) {
663 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
664 dev_name, phy_addr);
665 mii_phy->phy_types = UNKNOWN;
669 if (sis_priv->mii == NULL) {
670 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
671 return 0;
674 /* select default PHY for mac */
675 sis_priv->mii = NULL;
676 sis900_default_phy( net_dev );
678 /* Reset phy if default phy is internal sis900 */
679 if ((sis_priv->mii->phy_id0 == 0x001D) &&
680 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
681 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
683 /* workaround for ICS1893 PHY */
684 if ((sis_priv->mii->phy_id0 == 0x0015) &&
685 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
686 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
688 if(status & MII_STAT_LINK){
689 while (poll_bit) {
690 yield();
692 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
693 if (time_after_eq(jiffies, timeout)) {
694 printk(KERN_WARNING "%s: reset phy and link down now\n",
695 dev_name);
696 return -ETIME;
701 if (sis_priv->chipset_rev == SIS630E_900_REV) {
702 /* SiS 630E has some bugs on default value of PHY registers */
703 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
704 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
705 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
706 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
707 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
710 if (sis_priv->mii->status & MII_STAT_LINK)
711 netif_carrier_on(net_dev);
712 else
713 netif_carrier_off(net_dev);
715 return 1;
719 * sis900_default_phy - Select default PHY for sis900 mac.
720 * @net_dev: the net device to probe for
722 * Select first detected PHY with link as default.
723 * If no one is link on, select PHY whose types is HOME as default.
724 * If HOME doesn't exist, select LAN.
727 static u16 sis900_default_phy(struct net_device * net_dev)
729 struct sis900_private *sis_priv = netdev_priv(net_dev);
730 struct mii_phy *phy = NULL, *phy_home = NULL,
731 *default_phy = NULL, *phy_lan = NULL;
732 u16 status;
734 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
735 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
736 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
738 /* Link ON & Not select default PHY & not ghost PHY */
739 if ((status & MII_STAT_LINK) && !default_phy &&
740 (phy->phy_types != UNKNOWN)) {
741 default_phy = phy;
742 } else {
743 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
744 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
745 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
746 if (phy->phy_types == HOME)
747 phy_home = phy;
748 else if(phy->phy_types == LAN)
749 phy_lan = phy;
753 if (!default_phy && phy_home)
754 default_phy = phy_home;
755 else if (!default_phy && phy_lan)
756 default_phy = phy_lan;
757 else if (!default_phy)
758 default_phy = sis_priv->first_mii;
760 if (sis_priv->mii != default_phy) {
761 sis_priv->mii = default_phy;
762 sis_priv->cur_phy = default_phy->phy_addr;
763 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
764 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
767 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
769 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
770 status &= (~MII_CNTL_ISOLATE);
772 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
773 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
774 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
776 return status;
781 * sis900_set_capability - set the media capability of network adapter.
782 * @net_dev : the net device to probe for
783 * @phy : default PHY
785 * Set the media capability of network adapter according to
786 * mii status register. It's necessary before auto-negotiate.
789 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
791 u16 cap;
793 mdio_read(net_dev, phy->phy_addr, MII_STATUS);
794 mdio_read(net_dev, phy->phy_addr, MII_STATUS);
796 cap = MII_NWAY_CSMA_CD |
797 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
798 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
799 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
800 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
802 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
806 /* Delay between EEPROM clock transitions. */
807 #define eeprom_delay() sr32(mear)
810 * read_eeprom - Read Serial EEPROM
811 * @ioaddr: base i/o address
812 * @location: the EEPROM location to read
814 * Read Serial EEPROM through EEPROM Access Register.
815 * Note that location is in word (16 bits) unit
818 static u16 read_eeprom(void __iomem *ioaddr, int location)
820 u32 read_cmd = location | EEread;
821 int i;
822 u16 retval = 0;
824 sw32(mear, 0);
825 eeprom_delay();
826 sw32(mear, EECS);
827 eeprom_delay();
829 /* Shift the read command (9) bits out. */
830 for (i = 8; i >= 0; i--) {
831 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
833 sw32(mear, dataval);
834 eeprom_delay();
835 sw32(mear, dataval | EECLK);
836 eeprom_delay();
838 sw32(mear, EECS);
839 eeprom_delay();
841 /* read the 16-bits data in */
842 for (i = 16; i > 0; i--) {
843 sw32(mear, EECS);
844 eeprom_delay();
845 sw32(mear, EECS | EECLK);
846 eeprom_delay();
847 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
848 eeprom_delay();
851 /* Terminate the EEPROM access. */
852 sw32(mear, 0);
853 eeprom_delay();
855 return retval;
858 /* Read and write the MII management registers using software-generated
859 serial MDIO protocol. Note that the command bits and data bits are
860 send out separately */
861 #define mdio_delay() sr32(mear)
863 static void mdio_idle(struct sis900_private *sp)
865 void __iomem *ioaddr = sp->ioaddr;
867 sw32(mear, MDIO | MDDIR);
868 mdio_delay();
869 sw32(mear, MDIO | MDDIR | MDC);
872 /* Synchronize the MII management interface by shifting 32 one bits out. */
873 static void mdio_reset(struct sis900_private *sp)
875 void __iomem *ioaddr = sp->ioaddr;
876 int i;
878 for (i = 31; i >= 0; i--) {
879 sw32(mear, MDDIR | MDIO);
880 mdio_delay();
881 sw32(mear, MDDIR | MDIO | MDC);
882 mdio_delay();
887 * mdio_read - read MII PHY register
888 * @net_dev: the net device to read
889 * @phy_id: the phy address to read
890 * @location: the phy register id to read
892 * Read MII registers through MDIO and MDC
893 * using MDIO management frame structure and protocol(defined by ISO/IEC).
894 * Please see SiS7014 or ICS spec
897 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
899 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
900 struct sis900_private *sp = netdev_priv(net_dev);
901 void __iomem *ioaddr = sp->ioaddr;
902 u16 retval = 0;
903 int i;
905 mdio_reset(sp);
906 mdio_idle(sp);
908 for (i = 15; i >= 0; i--) {
909 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
911 sw32(mear, dataval);
912 mdio_delay();
913 sw32(mear, dataval | MDC);
914 mdio_delay();
917 /* Read the 16 data bits. */
918 for (i = 16; i > 0; i--) {
919 sw32(mear, 0);
920 mdio_delay();
921 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
922 sw32(mear, MDC);
923 mdio_delay();
925 sw32(mear, 0x00);
927 return retval;
931 * mdio_write - write MII PHY register
932 * @net_dev: the net device to write
933 * @phy_id: the phy address to write
934 * @location: the phy register id to write
935 * @value: the register value to write with
937 * Write MII registers with @value through MDIO and MDC
938 * using MDIO management frame structure and protocol(defined by ISO/IEC)
939 * please see SiS7014 or ICS spec
942 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
943 int value)
945 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
946 struct sis900_private *sp = netdev_priv(net_dev);
947 void __iomem *ioaddr = sp->ioaddr;
948 int i;
950 mdio_reset(sp);
951 mdio_idle(sp);
953 /* Shift the command bits out. */
954 for (i = 15; i >= 0; i--) {
955 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
957 sw8(mear, dataval);
958 mdio_delay();
959 sw8(mear, dataval | MDC);
960 mdio_delay();
962 mdio_delay();
964 /* Shift the value bits out. */
965 for (i = 15; i >= 0; i--) {
966 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
968 sw32(mear, dataval);
969 mdio_delay();
970 sw32(mear, dataval | MDC);
971 mdio_delay();
973 mdio_delay();
975 /* Clear out extra bits. */
976 for (i = 2; i > 0; i--) {
977 sw8(mear, 0);
978 mdio_delay();
979 sw8(mear, MDC);
980 mdio_delay();
982 sw32(mear, 0x00);
987 * sis900_reset_phy - reset sis900 mii phy.
988 * @net_dev: the net device to write
989 * @phy_addr: default phy address
991 * Some specific phy can't work properly without reset.
992 * This function will be called during initialization and
993 * link status change from ON to DOWN.
996 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
998 int i;
999 u16 status;
1001 for (i = 0; i < 2; i++)
1002 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1004 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1006 return status;
1009 #ifdef CONFIG_NET_POLL_CONTROLLER
1011 * Polling 'interrupt' - used by things like netconsole to send skbs
1012 * without having to re-enable interrupts. It's not called while
1013 * the interrupt routine is executing.
1015 static void sis900_poll(struct net_device *dev)
1017 struct sis900_private *sp = netdev_priv(dev);
1018 const int irq = sp->pci_dev->irq;
1020 disable_irq(irq);
1021 sis900_interrupt(irq, dev);
1022 enable_irq(irq);
1024 #endif
1027 * sis900_open - open sis900 device
1028 * @net_dev: the net device to open
1030 * Do some initialization and start net interface.
1031 * enable interrupts and set sis900 timer.
1034 static int
1035 sis900_open(struct net_device *net_dev)
1037 struct sis900_private *sis_priv = netdev_priv(net_dev);
1038 void __iomem *ioaddr = sis_priv->ioaddr;
1039 int ret;
1041 /* Soft reset the chip. */
1042 sis900_reset(net_dev);
1044 /* Equalizer workaround Rule */
1045 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1047 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1048 net_dev->name, net_dev);
1049 if (ret)
1050 return ret;
1052 sis900_init_rxfilter(net_dev);
1054 sis900_init_tx_ring(net_dev);
1055 sis900_init_rx_ring(net_dev);
1057 set_rx_mode(net_dev);
1059 netif_start_queue(net_dev);
1061 /* Workaround for EDB */
1062 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1064 /* Enable all known interrupts by setting the interrupt mask. */
1065 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1066 sw32(cr, RxENA | sr32(cr));
1067 sw32(ier, IE);
1069 sis900_check_mode(net_dev, sis_priv->mii);
1071 /* Set the timer to switch to check for link beat and perhaps switch
1072 to an alternate media type. */
1073 timer_setup(&sis_priv->timer, sis900_timer, 0);
1074 sis_priv->timer.expires = jiffies + HZ;
1075 add_timer(&sis_priv->timer);
1077 return 0;
1081 * sis900_init_rxfilter - Initialize the Rx filter
1082 * @net_dev: the net device to initialize for
1084 * Set receive filter address to our MAC address
1085 * and enable packet filtering.
1088 static void
1089 sis900_init_rxfilter (struct net_device * net_dev)
1091 struct sis900_private *sis_priv = netdev_priv(net_dev);
1092 void __iomem *ioaddr = sis_priv->ioaddr;
1093 u32 rfcrSave;
1094 u32 i;
1096 rfcrSave = sr32(rfcr);
1098 /* disable packet filtering before setting filter */
1099 sw32(rfcr, rfcrSave & ~RFEN);
1101 /* load MAC addr to filter data register */
1102 for (i = 0 ; i < 3 ; i++) {
1103 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1105 sw32(rfcr, i << RFADDR_shift);
1106 sw32(rfdr, w);
1108 if (netif_msg_hw(sis_priv)) {
1109 printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1110 net_dev->name, i, sr32(rfdr));
1114 /* enable packet filtering */
1115 sw32(rfcr, rfcrSave | RFEN);
1119 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1120 * @net_dev: the net device to initialize for
1122 * Initialize the Tx descriptor ring,
1125 static void
1126 sis900_init_tx_ring(struct net_device *net_dev)
1128 struct sis900_private *sis_priv = netdev_priv(net_dev);
1129 void __iomem *ioaddr = sis_priv->ioaddr;
1130 int i;
1132 sis_priv->tx_full = 0;
1133 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1135 for (i = 0; i < NUM_TX_DESC; i++) {
1136 sis_priv->tx_skbuff[i] = NULL;
1138 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1139 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1140 sis_priv->tx_ring[i].cmdsts = 0;
1141 sis_priv->tx_ring[i].bufptr = 0;
1144 /* load Transmit Descriptor Register */
1145 sw32(txdp, sis_priv->tx_ring_dma);
1146 if (netif_msg_hw(sis_priv))
1147 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1148 net_dev->name, sr32(txdp));
1152 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1153 * @net_dev: the net device to initialize for
1155 * Initialize the Rx descriptor ring,
1156 * and pre-allocate receive buffers (socket buffer)
1159 static void
1160 sis900_init_rx_ring(struct net_device *net_dev)
1162 struct sis900_private *sis_priv = netdev_priv(net_dev);
1163 void __iomem *ioaddr = sis_priv->ioaddr;
1164 int i;
1166 sis_priv->cur_rx = 0;
1167 sis_priv->dirty_rx = 0;
1169 /* init RX descriptor */
1170 for (i = 0; i < NUM_RX_DESC; i++) {
1171 sis_priv->rx_skbuff[i] = NULL;
1173 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1174 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1175 sis_priv->rx_ring[i].cmdsts = 0;
1176 sis_priv->rx_ring[i].bufptr = 0;
1179 /* allocate sock buffers */
1180 for (i = 0; i < NUM_RX_DESC; i++) {
1181 struct sk_buff *skb;
1183 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1184 /* not enough memory for skbuff, this makes a "hole"
1185 on the buffer ring, it is not clear how the
1186 hardware will react to this kind of degenerated
1187 buffer */
1188 break;
1190 sis_priv->rx_skbuff[i] = skb;
1191 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1192 sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1193 skb->data,
1194 RX_BUF_SIZE,
1195 DMA_FROM_DEVICE);
1196 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1197 sis_priv->rx_ring[i].bufptr))) {
1198 dev_kfree_skb(skb);
1199 sis_priv->rx_skbuff[i] = NULL;
1200 break;
1203 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1205 /* load Receive Descriptor Register */
1206 sw32(rxdp, sis_priv->rx_ring_dma);
1207 if (netif_msg_hw(sis_priv))
1208 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1209 net_dev->name, sr32(rxdp));
1213 * sis630_set_eq - set phy equalizer value for 630 LAN
1214 * @net_dev: the net device to set equalizer value
1215 * @revision: 630 LAN revision number
1217 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1218 * PHY register 14h(Test)
1219 * Bit 14: 0 -- Automatically detect (default)
1220 * 1 -- Manually set Equalizer filter
1221 * Bit 13: 0 -- (Default)
1222 * 1 -- Speed up convergence of equalizer setting
1223 * Bit 9 : 0 -- (Default)
1224 * 1 -- Disable Baseline Wander
1225 * Bit 3~7 -- Equalizer filter setting
1226 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1227 * Then calculate equalizer value
1228 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1229 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1230 * Calculate Equalizer value:
1231 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1232 * When the equalizer is stable, this value is not a fixed value. It will be within
1233 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1234 * 0 <= max <= 4 --> set equalizer to max
1235 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1236 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1239 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1241 struct sis900_private *sis_priv = netdev_priv(net_dev);
1242 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1243 int i, maxcount=10;
1245 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1246 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1247 return;
1249 if (netif_carrier_ok(net_dev)) {
1250 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1251 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1252 (0x2200 | reg14h) & 0xBFFF);
1253 for (i=0; i < maxcount; i++) {
1254 eq_value = (0x00F8 & mdio_read(net_dev,
1255 sis_priv->cur_phy, MII_RESV)) >> 3;
1256 if (i == 0)
1257 max_value=min_value=eq_value;
1258 max_value = (eq_value > max_value) ?
1259 eq_value : max_value;
1260 min_value = (eq_value < min_value) ?
1261 eq_value : min_value;
1263 /* 630E rule to determine the equalizer value */
1264 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1265 revision == SIS630ET_900_REV) {
1266 if (max_value < 5)
1267 eq_value = max_value;
1268 else if (max_value >= 5 && max_value < 15)
1269 eq_value = (max_value == min_value) ?
1270 max_value+2 : max_value+1;
1271 else if (max_value >= 15)
1272 eq_value=(max_value == min_value) ?
1273 max_value+6 : max_value+5;
1275 /* 630B0&B1 rule to determine the equalizer value */
1276 if (revision == SIS630A_900_REV &&
1277 (sis_priv->host_bridge_rev == SIS630B0 ||
1278 sis_priv->host_bridge_rev == SIS630B1)) {
1279 if (max_value == 0)
1280 eq_value = 3;
1281 else
1282 eq_value = (max_value + min_value + 1)/2;
1284 /* write equalizer value and setting */
1285 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1286 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1287 reg14h = (reg14h | 0x6000) & 0xFDFF;
1288 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1289 } else {
1290 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1291 if (revision == SIS630A_900_REV &&
1292 (sis_priv->host_bridge_rev == SIS630B0 ||
1293 sis_priv->host_bridge_rev == SIS630B1))
1294 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1295 (reg14h | 0x2200) & 0xBFFF);
1296 else
1297 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1298 (reg14h | 0x2000) & 0xBFFF);
1303 * sis900_timer - sis900 timer routine
1304 * @t: timer list containing a pointer to sis900 net device
1306 * On each timer ticks we check two things,
1307 * link status (ON/OFF) and link mode (10/100/Full/Half)
1310 static void sis900_timer(struct timer_list *t)
1312 struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1313 struct net_device *net_dev = sis_priv->mii_info.dev;
1314 struct mii_phy *mii_phy = sis_priv->mii;
1315 static const int next_tick = 5*HZ;
1316 int speed = 0, duplex = 0;
1317 u16 status;
1319 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1320 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1322 /* Link OFF -> ON */
1323 if (!netif_carrier_ok(net_dev)) {
1324 LookForLink:
1325 /* Search for new PHY */
1326 status = sis900_default_phy(net_dev);
1327 mii_phy = sis_priv->mii;
1329 if (status & MII_STAT_LINK) {
1330 WARN_ON(!(status & MII_STAT_AUTO_DONE));
1332 sis900_read_mode(net_dev, &speed, &duplex);
1333 if (duplex) {
1334 sis900_set_mode(sis_priv, speed, duplex);
1335 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1336 netif_carrier_on(net_dev);
1339 } else {
1340 /* Link ON -> OFF */
1341 if (!(status & MII_STAT_LINK)){
1342 netif_carrier_off(net_dev);
1343 if(netif_msg_link(sis_priv))
1344 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1346 /* Change mode issue */
1347 if ((mii_phy->phy_id0 == 0x001D) &&
1348 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1349 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1351 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1353 goto LookForLink;
1357 sis_priv->timer.expires = jiffies + next_tick;
1358 add_timer(&sis_priv->timer);
1362 * sis900_check_mode - check the media mode for sis900
1363 * @net_dev: the net device to be checked
1364 * @mii_phy: the mii phy
1366 * Older driver gets the media mode from mii status output
1367 * register. Now we set our media capability and auto-negotiate
1368 * to get the upper bound of speed and duplex between two ends.
1369 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1370 * and autong_complete should be set to 1.
1373 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1375 struct sis900_private *sis_priv = netdev_priv(net_dev);
1376 void __iomem *ioaddr = sis_priv->ioaddr;
1377 int speed, duplex;
1379 if (mii_phy->phy_types == LAN) {
1380 sw32(cfg, ~EXD & sr32(cfg));
1381 sis900_set_capability(net_dev , mii_phy);
1382 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1383 } else {
1384 sw32(cfg, EXD | sr32(cfg));
1385 speed = HW_SPEED_HOME;
1386 duplex = FDX_CAPABLE_HALF_SELECTED;
1387 sis900_set_mode(sis_priv, speed, duplex);
1388 sis_priv->autong_complete = 1;
1393 * sis900_set_mode - Set the media mode of mac register.
1394 * @sp: the device private data
1395 * @speed : the transmit speed to be determined
1396 * @duplex: the duplex mode to be determined
1398 * Set the media mode of mac register txcfg/rxcfg according to
1399 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1400 * bus is used instead of PCI bus. When this bit is set 1, the
1401 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1402 * double words.
1405 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1407 void __iomem *ioaddr = sp->ioaddr;
1408 u32 tx_flags = 0, rx_flags = 0;
1410 if (sr32( cfg) & EDB_MASTER_EN) {
1411 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1412 (TX_FILL_THRESH << TxFILLT_shift);
1413 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1414 } else {
1415 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1416 (TX_FILL_THRESH << TxFILLT_shift);
1417 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1420 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1421 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1422 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1423 } else {
1424 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1425 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1428 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1429 tx_flags |= (TxCSI | TxHBI);
1430 rx_flags |= RxATX;
1433 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1434 /* Can accept Jumbo packet */
1435 rx_flags |= RxAJAB;
1436 #endif
1438 sw32(txcfg, tx_flags);
1439 sw32(rxcfg, rx_flags);
1443 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1444 * @net_dev: the net device to read mode for
1445 * @phy_addr: mii phy address
1447 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1448 * autong_complete should be set to 0 when starting auto-negotiation.
1449 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1450 * sis900_timer will wait for link on again if autong_complete = 0.
1453 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1455 struct sis900_private *sis_priv = netdev_priv(net_dev);
1456 int i = 0;
1457 u32 status;
1459 for (i = 0; i < 2; i++)
1460 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1462 if (!(status & MII_STAT_LINK)){
1463 if(netif_msg_link(sis_priv))
1464 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1465 sis_priv->autong_complete = 1;
1466 netif_carrier_off(net_dev);
1467 return;
1470 /* (Re)start AutoNegotiate */
1471 mdio_write(net_dev, phy_addr, MII_CONTROL,
1472 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1473 sis_priv->autong_complete = 0;
1478 * sis900_read_mode - read media mode for sis900 internal phy
1479 * @net_dev: the net device to read mode for
1480 * @speed : the transmit speed to be determined
1481 * @duplex : the duplex mode to be determined
1483 * The capability of remote end will be put in mii register autorec
1484 * after auto-negotiation. Use AND operation to get the upper bound
1485 * of speed and duplex between two ends.
1488 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1490 struct sis900_private *sis_priv = netdev_priv(net_dev);
1491 struct mii_phy *phy = sis_priv->mii;
1492 int phy_addr = sis_priv->cur_phy;
1493 u32 status;
1494 u16 autoadv, autorec;
1495 int i;
1497 for (i = 0; i < 2; i++)
1498 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1500 if (!(status & MII_STAT_LINK))
1501 return;
1503 /* AutoNegotiate completed */
1504 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1505 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1506 status = autoadv & autorec;
1508 *speed = HW_SPEED_10_MBPS;
1509 *duplex = FDX_CAPABLE_HALF_SELECTED;
1511 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1512 *speed = HW_SPEED_100_MBPS;
1513 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1514 *duplex = FDX_CAPABLE_FULL_SELECTED;
1516 sis_priv->autong_complete = 1;
1518 /* Workaround for Realtek RTL8201 PHY issue */
1519 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1520 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1521 *duplex = FDX_CAPABLE_FULL_SELECTED;
1522 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1523 *speed = HW_SPEED_100_MBPS;
1526 if(netif_msg_link(sis_priv))
1527 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1528 net_dev->name,
1529 *speed == HW_SPEED_100_MBPS ?
1530 "100mbps" : "10mbps",
1531 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1532 "full" : "half");
1536 * sis900_tx_timeout - sis900 transmit timeout routine
1537 * @net_dev: the net device to transmit
1538 * @txqueue: index of hanging queue
1540 * print transmit timeout status
1541 * disable interrupts and do some tasks
1544 static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
1546 struct sis900_private *sis_priv = netdev_priv(net_dev);
1547 void __iomem *ioaddr = sis_priv->ioaddr;
1548 unsigned long flags;
1549 int i;
1551 if (netif_msg_tx_err(sis_priv)) {
1552 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1553 net_dev->name, sr32(cr), sr32(isr));
1556 /* Disable interrupts by clearing the interrupt mask. */
1557 sw32(imr, 0x0000);
1559 /* use spinlock to prevent interrupt handler accessing buffer ring */
1560 spin_lock_irqsave(&sis_priv->lock, flags);
1562 /* discard unsent packets */
1563 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1564 for (i = 0; i < NUM_TX_DESC; i++) {
1565 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1567 if (skb) {
1568 dma_unmap_single(&sis_priv->pci_dev->dev,
1569 sis_priv->tx_ring[i].bufptr,
1570 skb->len, DMA_TO_DEVICE);
1571 dev_kfree_skb_irq(skb);
1572 sis_priv->tx_skbuff[i] = NULL;
1573 sis_priv->tx_ring[i].cmdsts = 0;
1574 sis_priv->tx_ring[i].bufptr = 0;
1575 net_dev->stats.tx_dropped++;
1578 sis_priv->tx_full = 0;
1579 netif_wake_queue(net_dev);
1581 spin_unlock_irqrestore(&sis_priv->lock, flags);
1583 netif_trans_update(net_dev); /* prevent tx timeout */
1585 /* load Transmit Descriptor Register */
1586 sw32(txdp, sis_priv->tx_ring_dma);
1588 /* Enable all known interrupts by setting the interrupt mask. */
1589 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1593 * sis900_start_xmit - sis900 start transmit routine
1594 * @skb: socket buffer pointer to put the data being transmitted
1595 * @net_dev: the net device to transmit with
1597 * Set the transmit buffer descriptor,
1598 * and write TxENA to enable transmit state machine.
1599 * tell upper layer if the buffer is full
1602 static netdev_tx_t
1603 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1605 struct sis900_private *sis_priv = netdev_priv(net_dev);
1606 void __iomem *ioaddr = sis_priv->ioaddr;
1607 unsigned int entry;
1608 unsigned long flags;
1609 unsigned int index_cur_tx, index_dirty_tx;
1610 unsigned int count_dirty_tx;
1612 spin_lock_irqsave(&sis_priv->lock, flags);
1614 /* Calculate the next Tx descriptor entry. */
1615 entry = sis_priv->cur_tx % NUM_TX_DESC;
1616 sis_priv->tx_skbuff[entry] = skb;
1618 /* set the transmit buffer descriptor and enable Transmit State Machine */
1619 sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1620 skb->data, skb->len,
1621 DMA_TO_DEVICE);
1622 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1623 sis_priv->tx_ring[entry].bufptr))) {
1624 dev_kfree_skb_any(skb);
1625 sis_priv->tx_skbuff[entry] = NULL;
1626 net_dev->stats.tx_dropped++;
1627 spin_unlock_irqrestore(&sis_priv->lock, flags);
1628 return NETDEV_TX_OK;
1630 sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1631 sw32(cr, TxENA | sr32(cr));
1633 sis_priv->cur_tx ++;
1634 index_cur_tx = sis_priv->cur_tx;
1635 index_dirty_tx = sis_priv->dirty_tx;
1637 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1638 count_dirty_tx ++;
1640 if (index_cur_tx == index_dirty_tx) {
1641 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1642 sis_priv->tx_full = 1;
1643 netif_stop_queue(net_dev);
1644 } else if (count_dirty_tx < NUM_TX_DESC) {
1645 /* Typical path, tell upper layer that more transmission is possible */
1646 netif_start_queue(net_dev);
1647 } else {
1648 /* buffer full, tell upper layer no more transmission */
1649 sis_priv->tx_full = 1;
1650 netif_stop_queue(net_dev);
1653 spin_unlock_irqrestore(&sis_priv->lock, flags);
1655 if (netif_msg_tx_queued(sis_priv))
1656 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1657 "to slot %d.\n",
1658 net_dev->name, skb->data, (int)skb->len, entry);
1660 return NETDEV_TX_OK;
1664 * sis900_interrupt - sis900 interrupt handler
1665 * @irq: the irq number
1666 * @dev_instance: the client data object
1668 * The interrupt handler does all of the Rx thread work,
1669 * and cleans up after the Tx thread
1672 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1674 struct net_device *net_dev = dev_instance;
1675 struct sis900_private *sis_priv = netdev_priv(net_dev);
1676 int boguscnt = max_interrupt_work;
1677 void __iomem *ioaddr = sis_priv->ioaddr;
1678 u32 status;
1679 unsigned int handled = 0;
1681 spin_lock (&sis_priv->lock);
1683 do {
1684 status = sr32(isr);
1686 if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1687 /* nothing interesting happened */
1688 break;
1689 handled = 1;
1691 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1692 if (status & (RxORN | RxERR | RxOK))
1693 /* Rx interrupt */
1694 sis900_rx(net_dev);
1696 if (status & (TxURN | TxERR | TxDESC))
1697 /* Tx interrupt */
1698 sis900_finish_xmit(net_dev);
1700 /* something strange happened !!! */
1701 if (status & HIBERR) {
1702 if(netif_msg_intr(sis_priv))
1703 printk(KERN_INFO "%s: Abnormal interrupt, "
1704 "status %#8.8x.\n", net_dev->name, status);
1705 break;
1707 if (--boguscnt < 0) {
1708 if(netif_msg_intr(sis_priv))
1709 printk(KERN_INFO "%s: Too much work at interrupt, "
1710 "interrupt status = %#8.8x.\n",
1711 net_dev->name, status);
1712 break;
1714 } while (1);
1716 if(netif_msg_intr(sis_priv))
1717 printk(KERN_DEBUG "%s: exiting interrupt, "
1718 "interrupt status = %#8.8x\n",
1719 net_dev->name, sr32(isr));
1721 spin_unlock (&sis_priv->lock);
1722 return IRQ_RETVAL(handled);
1726 * sis900_rx - sis900 receive routine
1727 * @net_dev: the net device which receives data
1729 * Process receive interrupt events,
1730 * put buffer to higher layer and refill buffer pool
1731 * Note: This function is called by interrupt handler,
1732 * don't do "too much" work here
1735 static int sis900_rx(struct net_device *net_dev)
1737 struct sis900_private *sis_priv = netdev_priv(net_dev);
1738 void __iomem *ioaddr = sis_priv->ioaddr;
1739 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1740 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1741 int rx_work_limit;
1743 if (netif_msg_rx_status(sis_priv))
1744 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1745 "status:0x%8.8x\n",
1746 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1747 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1749 while (rx_status & OWN) {
1750 unsigned int rx_size;
1751 unsigned int data_size;
1753 if (--rx_work_limit < 0)
1754 break;
1756 data_size = rx_status & DSIZE;
1757 rx_size = data_size - CRC_SIZE;
1759 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1760 /* ``TOOLONG'' flag means jumbo packet received. */
1761 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1762 rx_status &= (~ ((unsigned int)TOOLONG));
1763 #endif
1765 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1766 /* corrupted packet received */
1767 if (netif_msg_rx_err(sis_priv))
1768 printk(KERN_DEBUG "%s: Corrupted packet "
1769 "received, buffer status = 0x%8.8x/%d.\n",
1770 net_dev->name, rx_status, data_size);
1771 net_dev->stats.rx_errors++;
1772 if (rx_status & OVERRUN)
1773 net_dev->stats.rx_over_errors++;
1774 if (rx_status & (TOOLONG|RUNT))
1775 net_dev->stats.rx_length_errors++;
1776 if (rx_status & (RXISERR | FAERR))
1777 net_dev->stats.rx_frame_errors++;
1778 if (rx_status & CRCERR)
1779 net_dev->stats.rx_crc_errors++;
1780 /* reset buffer descriptor state */
1781 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1782 } else {
1783 struct sk_buff * skb;
1784 struct sk_buff * rx_skb;
1786 dma_unmap_single(&sis_priv->pci_dev->dev,
1787 sis_priv->rx_ring[entry].bufptr,
1788 RX_BUF_SIZE, DMA_FROM_DEVICE);
1790 /* refill the Rx buffer, what if there is not enough
1791 * memory for new socket buffer ?? */
1792 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1794 * Not enough memory to refill the buffer
1795 * so we need to recycle the old one so
1796 * as to avoid creating a memory hole
1797 * in the rx ring
1799 skb = sis_priv->rx_skbuff[entry];
1800 net_dev->stats.rx_dropped++;
1801 goto refill_rx_ring;
1804 /* This situation should never happen, but due to
1805 some unknown bugs, it is possible that
1806 we are working on NULL sk_buff :-( */
1807 if (sis_priv->rx_skbuff[entry] == NULL) {
1808 if (netif_msg_rx_err(sis_priv))
1809 printk(KERN_WARNING "%s: NULL pointer "
1810 "encountered in Rx ring\n"
1811 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1812 net_dev->name, sis_priv->cur_rx,
1813 sis_priv->dirty_rx);
1814 dev_kfree_skb(skb);
1815 break;
1818 /* give the socket buffer to upper layers */
1819 rx_skb = sis_priv->rx_skbuff[entry];
1820 skb_put(rx_skb, rx_size);
1821 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1822 netif_rx(rx_skb);
1824 /* some network statistics */
1825 if ((rx_status & BCAST) == MCAST)
1826 net_dev->stats.multicast++;
1827 net_dev->stats.rx_bytes += rx_size;
1828 net_dev->stats.rx_packets++;
1829 sis_priv->dirty_rx++;
1830 refill_rx_ring:
1831 sis_priv->rx_skbuff[entry] = skb;
1832 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1833 sis_priv->rx_ring[entry].bufptr =
1834 dma_map_single(&sis_priv->pci_dev->dev,
1835 skb->data, RX_BUF_SIZE,
1836 DMA_FROM_DEVICE);
1837 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1838 sis_priv->rx_ring[entry].bufptr))) {
1839 dev_kfree_skb_irq(skb);
1840 sis_priv->rx_skbuff[entry] = NULL;
1841 break;
1844 sis_priv->cur_rx++;
1845 entry = sis_priv->cur_rx % NUM_RX_DESC;
1846 rx_status = sis_priv->rx_ring[entry].cmdsts;
1847 } // while
1849 /* refill the Rx buffer, what if the rate of refilling is slower
1850 * than consuming ?? */
1851 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1852 struct sk_buff *skb;
1854 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1856 if (sis_priv->rx_skbuff[entry] == NULL) {
1857 skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1858 if (skb == NULL) {
1859 /* not enough memory for skbuff, this makes a
1860 * "hole" on the buffer ring, it is not clear
1861 * how the hardware will react to this kind
1862 * of degenerated buffer */
1863 net_dev->stats.rx_dropped++;
1864 break;
1866 sis_priv->rx_skbuff[entry] = skb;
1867 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1868 sis_priv->rx_ring[entry].bufptr =
1869 dma_map_single(&sis_priv->pci_dev->dev,
1870 skb->data, RX_BUF_SIZE,
1871 DMA_FROM_DEVICE);
1872 if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1873 sis_priv->rx_ring[entry].bufptr))) {
1874 dev_kfree_skb_irq(skb);
1875 sis_priv->rx_skbuff[entry] = NULL;
1876 break;
1880 /* re-enable the potentially idle receive state matchine */
1881 sw32(cr , RxENA | sr32(cr));
1883 return 0;
1887 * sis900_finish_xmit - finish up transmission of packets
1888 * @net_dev: the net device to be transmitted on
1890 * Check for error condition and free socket buffer etc
1891 * schedule for more transmission as needed
1892 * Note: This function is called by interrupt handler,
1893 * don't do "too much" work here
1896 static void sis900_finish_xmit (struct net_device *net_dev)
1898 struct sis900_private *sis_priv = netdev_priv(net_dev);
1900 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1901 struct sk_buff *skb;
1902 unsigned int entry;
1903 u32 tx_status;
1905 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1906 tx_status = sis_priv->tx_ring[entry].cmdsts;
1908 if (tx_status & OWN) {
1909 /* The packet is not transmitted yet (owned by hardware) !
1910 * Note: this is an almost impossible condition
1911 * on TxDESC interrupt ('descriptor interrupt') */
1912 break;
1915 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1916 /* packet unsuccessfully transmitted */
1917 if (netif_msg_tx_err(sis_priv))
1918 printk(KERN_DEBUG "%s: Transmit "
1919 "error, Tx status %8.8x.\n",
1920 net_dev->name, tx_status);
1921 net_dev->stats.tx_errors++;
1922 if (tx_status & UNDERRUN)
1923 net_dev->stats.tx_fifo_errors++;
1924 if (tx_status & ABORT)
1925 net_dev->stats.tx_aborted_errors++;
1926 if (tx_status & NOCARRIER)
1927 net_dev->stats.tx_carrier_errors++;
1928 if (tx_status & OWCOLL)
1929 net_dev->stats.tx_window_errors++;
1930 } else {
1931 /* packet successfully transmitted */
1932 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1933 net_dev->stats.tx_bytes += tx_status & DSIZE;
1934 net_dev->stats.tx_packets++;
1936 /* Free the original skb. */
1937 skb = sis_priv->tx_skbuff[entry];
1938 dma_unmap_single(&sis_priv->pci_dev->dev,
1939 sis_priv->tx_ring[entry].bufptr, skb->len,
1940 DMA_TO_DEVICE);
1941 dev_consume_skb_irq(skb);
1942 sis_priv->tx_skbuff[entry] = NULL;
1943 sis_priv->tx_ring[entry].bufptr = 0;
1944 sis_priv->tx_ring[entry].cmdsts = 0;
1947 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1948 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1949 /* The ring is no longer full, clear tx_full and schedule
1950 * more transmission by netif_wake_queue(net_dev) */
1951 sis_priv->tx_full = 0;
1952 netif_wake_queue (net_dev);
1957 * sis900_close - close sis900 device
1958 * @net_dev: the net device to be closed
1960 * Disable interrupts, stop the Tx and Rx Status Machine
1961 * free Tx and RX socket buffer
1964 static int sis900_close(struct net_device *net_dev)
1966 struct sis900_private *sis_priv = netdev_priv(net_dev);
1967 struct pci_dev *pdev = sis_priv->pci_dev;
1968 void __iomem *ioaddr = sis_priv->ioaddr;
1969 struct sk_buff *skb;
1970 int i;
1972 netif_stop_queue(net_dev);
1974 /* Disable interrupts by clearing the interrupt mask. */
1975 sw32(imr, 0x0000);
1976 sw32(ier, 0x0000);
1978 /* Stop the chip's Tx and Rx Status Machine */
1979 sw32(cr, RxDIS | TxDIS | sr32(cr));
1981 del_timer(&sis_priv->timer);
1983 free_irq(pdev->irq, net_dev);
1985 /* Free Tx and RX skbuff */
1986 for (i = 0; i < NUM_RX_DESC; i++) {
1987 skb = sis_priv->rx_skbuff[i];
1988 if (skb) {
1989 dma_unmap_single(&pdev->dev,
1990 sis_priv->rx_ring[i].bufptr,
1991 RX_BUF_SIZE, DMA_FROM_DEVICE);
1992 dev_kfree_skb(skb);
1993 sis_priv->rx_skbuff[i] = NULL;
1996 for (i = 0; i < NUM_TX_DESC; i++) {
1997 skb = sis_priv->tx_skbuff[i];
1998 if (skb) {
1999 dma_unmap_single(&pdev->dev,
2000 sis_priv->tx_ring[i].bufptr,
2001 skb->len, DMA_TO_DEVICE);
2002 dev_kfree_skb(skb);
2003 sis_priv->tx_skbuff[i] = NULL;
2007 /* Green! Put the chip in low-power mode. */
2009 return 0;
2013 * sis900_get_drvinfo - Return information about driver
2014 * @net_dev: the net device to probe
2015 * @info: container for info returned
2017 * Process ethtool command such as "ehtool -i" to show information
2020 static void sis900_get_drvinfo(struct net_device *net_dev,
2021 struct ethtool_drvinfo *info)
2023 struct sis900_private *sis_priv = netdev_priv(net_dev);
2025 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2026 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2027 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2028 sizeof(info->bus_info));
2031 static u32 sis900_get_msglevel(struct net_device *net_dev)
2033 struct sis900_private *sis_priv = netdev_priv(net_dev);
2034 return sis_priv->msg_enable;
2037 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2039 struct sis900_private *sis_priv = netdev_priv(net_dev);
2040 sis_priv->msg_enable = value;
2043 static u32 sis900_get_link(struct net_device *net_dev)
2045 struct sis900_private *sis_priv = netdev_priv(net_dev);
2046 return mii_link_ok(&sis_priv->mii_info);
2049 static int sis900_get_link_ksettings(struct net_device *net_dev,
2050 struct ethtool_link_ksettings *cmd)
2052 struct sis900_private *sis_priv = netdev_priv(net_dev);
2053 spin_lock_irq(&sis_priv->lock);
2054 mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2055 spin_unlock_irq(&sis_priv->lock);
2056 return 0;
2059 static int sis900_set_link_ksettings(struct net_device *net_dev,
2060 const struct ethtool_link_ksettings *cmd)
2062 struct sis900_private *sis_priv = netdev_priv(net_dev);
2063 int rt;
2064 spin_lock_irq(&sis_priv->lock);
2065 rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2066 spin_unlock_irq(&sis_priv->lock);
2067 return rt;
2070 static int sis900_nway_reset(struct net_device *net_dev)
2072 struct sis900_private *sis_priv = netdev_priv(net_dev);
2073 return mii_nway_restart(&sis_priv->mii_info);
2077 * sis900_set_wol - Set up Wake on Lan registers
2078 * @net_dev: the net device to probe
2079 * @wol: container for info passed to the driver
2081 * Process ethtool command "wol" to setup wake on lan features.
2082 * SiS900 supports sending WoL events if a correct packet is received,
2083 * but there is no simple way to filter them to only a subset (broadcast,
2084 * multicast, unicast or arp).
2087 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2089 struct sis900_private *sis_priv = netdev_priv(net_dev);
2090 void __iomem *ioaddr = sis_priv->ioaddr;
2091 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2093 if (wol->wolopts == 0) {
2094 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2095 cfgpmcsr &= ~PME_EN;
2096 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2097 sw32(pmctrl, pmctrl_bits);
2098 if (netif_msg_wol(sis_priv))
2099 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2100 return 0;
2103 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2104 | WAKE_BCAST | WAKE_ARP))
2105 return -EINVAL;
2107 if (wol->wolopts & WAKE_MAGIC)
2108 pmctrl_bits |= MAGICPKT;
2109 if (wol->wolopts & WAKE_PHY)
2110 pmctrl_bits |= LINKON;
2112 sw32(pmctrl, pmctrl_bits);
2114 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2115 cfgpmcsr |= PME_EN;
2116 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2117 if (netif_msg_wol(sis_priv))
2118 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2120 return 0;
2123 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2125 struct sis900_private *sp = netdev_priv(net_dev);
2126 void __iomem *ioaddr = sp->ioaddr;
2127 u32 pmctrl_bits;
2129 pmctrl_bits = sr32(pmctrl);
2130 if (pmctrl_bits & MAGICPKT)
2131 wol->wolopts |= WAKE_MAGIC;
2132 if (pmctrl_bits & LINKON)
2133 wol->wolopts |= WAKE_PHY;
2135 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2138 static int sis900_get_eeprom_len(struct net_device *dev)
2140 struct sis900_private *sis_priv = netdev_priv(dev);
2142 return sis_priv->eeprom_size;
2145 static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2147 struct sis900_private *sis_priv = netdev_priv(net_dev);
2148 void __iomem *ioaddr = sis_priv->ioaddr;
2149 int wait, ret = -EAGAIN;
2150 u16 signature;
2151 u16 *ebuf = (u16 *)buf;
2152 int i;
2154 if (sis_priv->chipset_rev == SIS96x_900_REV) {
2155 sw32(mear, EEREQ);
2156 for (wait = 0; wait < 2000; wait++) {
2157 if (sr32(mear) & EEGNT) {
2158 /* read 16 bits, and index by 16 bits */
2159 for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2160 ebuf[i] = (u16)read_eeprom(ioaddr, i);
2161 ret = 0;
2162 break;
2164 udelay(1);
2166 sw32(mear, EEDONE);
2167 } else {
2168 signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2169 if (signature != 0xffff && signature != 0x0000) {
2170 /* read 16 bits, and index by 16 bits */
2171 for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2172 ebuf[i] = (u16)read_eeprom(ioaddr, i);
2173 ret = 0;
2176 return ret;
2179 #define SIS900_EEPROM_MAGIC 0xBABE
2180 static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2182 struct sis900_private *sis_priv = netdev_priv(dev);
2183 u8 *eebuf;
2184 int res;
2186 eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2187 if (!eebuf)
2188 return -ENOMEM;
2190 eeprom->magic = SIS900_EEPROM_MAGIC;
2191 spin_lock_irq(&sis_priv->lock);
2192 res = sis900_read_eeprom(dev, eebuf);
2193 spin_unlock_irq(&sis_priv->lock);
2194 if (!res)
2195 memcpy(data, eebuf + eeprom->offset, eeprom->len);
2196 kfree(eebuf);
2197 return res;
2200 static const struct ethtool_ops sis900_ethtool_ops = {
2201 .get_drvinfo = sis900_get_drvinfo,
2202 .get_msglevel = sis900_get_msglevel,
2203 .set_msglevel = sis900_set_msglevel,
2204 .get_link = sis900_get_link,
2205 .nway_reset = sis900_nway_reset,
2206 .get_wol = sis900_get_wol,
2207 .set_wol = sis900_set_wol,
2208 .get_link_ksettings = sis900_get_link_ksettings,
2209 .set_link_ksettings = sis900_set_link_ksettings,
2210 .get_eeprom_len = sis900_get_eeprom_len,
2211 .get_eeprom = sis900_get_eeprom,
2215 * mii_ioctl - process MII i/o control command
2216 * @net_dev: the net device to command for
2217 * @rq: parameter for command
2218 * @cmd: the i/o command
2220 * Process MII command like read/write MII register
2223 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2225 struct sis900_private *sis_priv = netdev_priv(net_dev);
2226 struct mii_ioctl_data *data = if_mii(rq);
2228 switch(cmd) {
2229 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2230 data->phy_id = sis_priv->mii->phy_addr;
2231 fallthrough;
2233 case SIOCGMIIREG: /* Read MII PHY register. */
2234 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2235 return 0;
2237 case SIOCSMIIREG: /* Write MII PHY register. */
2238 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2239 return 0;
2240 default:
2241 return -EOPNOTSUPP;
2246 * sis900_set_config - Set media type by net_device.set_config
2247 * @dev: the net device for media type change
2248 * @map: ifmap passed by ifconfig
2250 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2251 * we support only port changes. All other runtime configuration
2252 * changes will be ignored
2255 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2257 struct sis900_private *sis_priv = netdev_priv(dev);
2258 struct mii_phy *mii_phy = sis_priv->mii;
2260 u16 status;
2262 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2263 /* we switch on the ifmap->port field. I couldn't find anything
2264 * like a definition or standard for the values of that field.
2265 * I think the meaning of those values is device specific. But
2266 * since I would like to change the media type via the ifconfig
2267 * command I use the definition from linux/netdevice.h
2268 * (which seems to be different from the ifport(pcmcia) definition) */
2269 switch(map->port){
2270 case IF_PORT_UNKNOWN: /* use auto here */
2271 dev->if_port = map->port;
2272 /* we are going to change the media type, so the Link
2273 * will be temporary down and we need to reflect that
2274 * here. When the Link comes up again, it will be
2275 * sensed by the sis_timer procedure, which also does
2276 * all the rest for us */
2277 netif_carrier_off(dev);
2279 /* read current state */
2280 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2282 /* enable auto negotiation and reset the negotioation
2283 * (I don't really know what the auto negatiotiation
2284 * reset really means, but it sounds for me right to
2285 * do one here) */
2286 mdio_write(dev, mii_phy->phy_addr,
2287 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2289 break;
2291 case IF_PORT_10BASET: /* 10BaseT */
2292 dev->if_port = map->port;
2294 /* we are going to change the media type, so the Link
2295 * will be temporary down and we need to reflect that
2296 * here. When the Link comes up again, it will be
2297 * sensed by the sis_timer procedure, which also does
2298 * all the rest for us */
2299 netif_carrier_off(dev);
2301 /* set Speed to 10Mbps */
2302 /* read current state */
2303 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2305 /* disable auto negotiation and force 10MBit mode*/
2306 mdio_write(dev, mii_phy->phy_addr,
2307 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2308 MII_CNTL_AUTO));
2309 break;
2311 case IF_PORT_100BASET: /* 100BaseT */
2312 case IF_PORT_100BASETX: /* 100BaseTx */
2313 dev->if_port = map->port;
2315 /* we are going to change the media type, so the Link
2316 * will be temporary down and we need to reflect that
2317 * here. When the Link comes up again, it will be
2318 * sensed by the sis_timer procedure, which also does
2319 * all the rest for us */
2320 netif_carrier_off(dev);
2322 /* set Speed to 100Mbps */
2323 /* disable auto negotiation and enable 100MBit Mode */
2324 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2325 mdio_write(dev, mii_phy->phy_addr,
2326 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2327 MII_CNTL_SPEED);
2329 break;
2331 case IF_PORT_10BASE2: /* 10Base2 */
2332 case IF_PORT_AUI: /* AUI */
2333 case IF_PORT_100BASEFX: /* 100BaseFx */
2334 /* These Modes are not supported (are they?)*/
2335 return -EOPNOTSUPP;
2337 default:
2338 return -EINVAL;
2341 return 0;
2345 * sis900_mcast_bitnr - compute hashtable index
2346 * @addr: multicast address
2347 * @revision: revision id of chip
2349 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2350 * hash table, which makes this function a little bit different from other drivers
2351 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2352 * multicast hash table.
2355 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2358 u32 crc = ether_crc(6, addr);
2360 /* leave 8 or 7 most siginifant bits */
2361 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2362 return (int)(crc >> 24);
2363 else
2364 return (int)(crc >> 25);
2368 * set_rx_mode - Set SiS900 receive mode
2369 * @net_dev: the net device to be set
2371 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2372 * And set the appropriate multicast filter.
2373 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2376 static void set_rx_mode(struct net_device *net_dev)
2378 struct sis900_private *sis_priv = netdev_priv(net_dev);
2379 void __iomem *ioaddr = sis_priv->ioaddr;
2380 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2381 int i, table_entries;
2382 u32 rx_mode;
2384 /* 635 Hash Table entries = 256(2^16) */
2385 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2386 (sis_priv->chipset_rev == SIS900B_900_REV))
2387 table_entries = 16;
2388 else
2389 table_entries = 8;
2391 if (net_dev->flags & IFF_PROMISC) {
2392 /* Accept any kinds of packets */
2393 rx_mode = RFPromiscuous;
2394 for (i = 0; i < table_entries; i++)
2395 mc_filter[i] = 0xffff;
2396 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2397 (net_dev->flags & IFF_ALLMULTI)) {
2398 /* too many multicast addresses or accept all multicast packet */
2399 rx_mode = RFAAB | RFAAM;
2400 for (i = 0; i < table_entries; i++)
2401 mc_filter[i] = 0xffff;
2402 } else {
2403 /* Accept Broadcast packet, destination address matchs our
2404 * MAC address, use Receive Filter to reject unwanted MCAST
2405 * packets */
2406 struct netdev_hw_addr *ha;
2407 rx_mode = RFAAB;
2409 netdev_for_each_mc_addr(ha, net_dev) {
2410 unsigned int bit_nr;
2412 bit_nr = sis900_mcast_bitnr(ha->addr,
2413 sis_priv->chipset_rev);
2414 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2418 /* update Multicast Hash Table in Receive Filter */
2419 for (i = 0; i < table_entries; i++) {
2420 /* why plus 0x04 ??, That makes the correct value for hash table. */
2421 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2422 sw32(rfdr, mc_filter[i]);
2425 sw32(rfcr, RFEN | rx_mode);
2427 /* sis900 is capable of looping back packets at MAC level for
2428 * debugging purpose */
2429 if (net_dev->flags & IFF_LOOPBACK) {
2430 u32 cr_saved;
2431 /* We must disable Tx/Rx before setting loopback mode */
2432 cr_saved = sr32(cr);
2433 sw32(cr, cr_saved | TxDIS | RxDIS);
2434 /* enable loopback */
2435 sw32(txcfg, sr32(txcfg) | TxMLB);
2436 sw32(rxcfg, sr32(rxcfg) | RxATX);
2437 /* restore cr */
2438 sw32(cr, cr_saved);
2443 * sis900_reset - Reset sis900 MAC
2444 * @net_dev: the net device to reset
2446 * reset sis900 MAC and wait until finished
2447 * reset through command register
2448 * change backoff algorithm for 900B0 & 635 M/B
2451 static void sis900_reset(struct net_device *net_dev)
2453 struct sis900_private *sis_priv = netdev_priv(net_dev);
2454 void __iomem *ioaddr = sis_priv->ioaddr;
2455 u32 status = TxRCMP | RxRCMP;
2456 int i;
2458 sw32(ier, 0);
2459 sw32(imr, 0);
2460 sw32(rfcr, 0);
2462 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2464 /* Check that the chip has finished the reset. */
2465 for (i = 0; status && (i < 1000); i++)
2466 status ^= sr32(isr) & status;
2468 if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2469 sis_priv->chipset_rev == SIS900B_900_REV)
2470 sw32(cfg, PESEL | RND_CNT);
2471 else
2472 sw32(cfg, PESEL);
2476 * sis900_remove - Remove sis900 device
2477 * @pci_dev: the pci device to be removed
2479 * remove and release SiS900 net device
2482 static void sis900_remove(struct pci_dev *pci_dev)
2484 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2485 struct sis900_private *sis_priv = netdev_priv(net_dev);
2487 unregister_netdev(net_dev);
2489 while (sis_priv->first_mii) {
2490 struct mii_phy *phy = sis_priv->first_mii;
2492 sis_priv->first_mii = phy->next;
2493 kfree(phy);
2496 dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2497 sis_priv->rx_ring_dma);
2498 dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2499 sis_priv->tx_ring_dma);
2500 pci_iounmap(pci_dev, sis_priv->ioaddr);
2501 free_netdev(net_dev);
2502 pci_release_regions(pci_dev);
2505 static int __maybe_unused sis900_suspend(struct device *dev)
2507 struct net_device *net_dev = dev_get_drvdata(dev);
2508 struct sis900_private *sis_priv = netdev_priv(net_dev);
2509 void __iomem *ioaddr = sis_priv->ioaddr;
2511 if(!netif_running(net_dev))
2512 return 0;
2514 netif_stop_queue(net_dev);
2515 netif_device_detach(net_dev);
2517 /* Stop the chip's Tx and Rx Status Machine */
2518 sw32(cr, RxDIS | TxDIS | sr32(cr));
2520 return 0;
2523 static int __maybe_unused sis900_resume(struct device *dev)
2525 struct net_device *net_dev = dev_get_drvdata(dev);
2526 struct sis900_private *sis_priv = netdev_priv(net_dev);
2527 void __iomem *ioaddr = sis_priv->ioaddr;
2529 if(!netif_running(net_dev))
2530 return 0;
2532 sis900_init_rxfilter(net_dev);
2534 sis900_init_tx_ring(net_dev);
2535 sis900_init_rx_ring(net_dev);
2537 set_rx_mode(net_dev);
2539 netif_device_attach(net_dev);
2540 netif_start_queue(net_dev);
2542 /* Workaround for EDB */
2543 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2545 /* Enable all known interrupts by setting the interrupt mask. */
2546 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2547 sw32(cr, RxENA | sr32(cr));
2548 sw32(ier, IE);
2550 sis900_check_mode(net_dev, sis_priv->mii);
2552 return 0;
2555 static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume);
2557 static struct pci_driver sis900_pci_driver = {
2558 .name = SIS900_MODULE_NAME,
2559 .id_table = sis900_pci_tbl,
2560 .probe = sis900_probe,
2561 .remove = sis900_remove,
2562 .driver.pm = &sis900_pm_ops,
2565 static int __init sis900_init_module(void)
2567 /* when a module, this is printed whether or not devices are found in probe */
2568 #ifdef MODULE
2569 printk(version);
2570 #endif
2572 return pci_register_driver(&sis900_pci_driver);
2575 static void __exit sis900_cleanup_module(void)
2577 pci_unregister_driver(&sis900_pci_driver);
2580 module_init(sis900_init_module);
2581 module_exit(sis900_cleanup_module);