1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3 * auto carrier detecting ethernet driver. Also known as the
4 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7 * 2006, 2008 David S. Miller (davem@davemloft.net)
10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11 * - port to non-sparc architectures. Tested only on x86 and
12 * only currently works with QFE PCI cards.
13 * - ability to specify the MAC address at module load time by passing this
14 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
42 #include <asm/byteorder.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
51 #include <asm/auxio.h>
53 #include <linux/uaccess.h>
58 #include <linux/pci.h>
63 #define DRV_NAME "sunhme"
64 #define DRV_VERSION "3.10"
65 #define DRV_RELDATE "August 26, 2008"
66 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
68 static char version
[] =
69 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
71 MODULE_VERSION(DRV_VERSION
);
72 MODULE_AUTHOR(DRV_AUTHOR
);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
76 static int macaddr
[6];
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr
, int, NULL
, 0);
80 MODULE_PARM_DESC(macaddr
, "Happy Meal MAC address to set");
83 static struct quattro
*qfe_sbus_list
;
87 static struct quattro
*qfe_pci_list
;
97 struct hme_tx_logent
{
101 #define TXLOG_ACTION_IRQ 0x01
102 #define TXLOG_ACTION_TXMIT 0x02
103 #define TXLOG_ACTION_TBUSY 0x04
104 #define TXLOG_ACTION_NBUFS 0x08
107 #define TX_LOG_LEN 128
108 static struct hme_tx_logent tx_log
[TX_LOG_LEN
];
109 static int txlog_cur_entry
;
110 static __inline__
void tx_add_log(struct happy_meal
*hp
, unsigned int a
, unsigned int s
)
112 struct hme_tx_logent
*tlp
;
115 local_irq_save(flags
);
116 tlp
= &tx_log
[txlog_cur_entry
];
117 tlp
->tstamp
= (unsigned int)jiffies
;
118 tlp
->tx_new
= hp
->tx_new
;
119 tlp
->tx_old
= hp
->tx_old
;
122 txlog_cur_entry
= (txlog_cur_entry
+ 1) & (TX_LOG_LEN
- 1);
123 local_irq_restore(flags
);
125 static __inline__
void tx_dump_log(void)
129 this = txlog_cur_entry
;
130 for (i
= 0; i
< TX_LOG_LEN
; i
++) {
131 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i
,
133 tx_log
[this].tx_new
, tx_log
[this].tx_old
,
134 tx_log
[this].action
, tx_log
[this].status
);
135 this = (this + 1) & (TX_LOG_LEN
- 1);
138 static __inline__
void tx_dump_ring(struct happy_meal
*hp
)
140 struct hmeal_init_block
*hb
= hp
->happy_block
;
141 struct happy_meal_txd
*tp
= &hb
->happy_meal_txd
[0];
144 for (i
= 0; i
< TX_RING_SIZE
; i
+=4) {
145 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 le32_to_cpu(tp
[i
].tx_flags
), le32_to_cpu(tp
[i
].tx_addr
),
148 le32_to_cpu(tp
[i
+ 1].tx_flags
), le32_to_cpu(tp
[i
+ 1].tx_addr
),
149 le32_to_cpu(tp
[i
+ 2].tx_flags
), le32_to_cpu(tp
[i
+ 2].tx_addr
),
150 le32_to_cpu(tp
[i
+ 3].tx_flags
), le32_to_cpu(tp
[i
+ 3].tx_addr
));
154 #define tx_add_log(hp, a, s) do { } while(0)
155 #define tx_dump_log() do { } while(0)
156 #define tx_dump_ring(hp) do { } while(0)
160 #define HMD(x) printk x
165 /* #define AUTO_SWITCH_DEBUG */
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x) printk x
173 #define DEFAULT_IPG0 16 /* For lance-mode only */
174 #define DEFAULT_IPG1 8 /* For all modes */
175 #define DEFAULT_IPG2 4 /* For all modes */
176 #define DEFAULT_JAMSIZE 4 /* Toe jam */
178 /* NOTE: In the descriptor writes one _must_ write the address
179 * member _first_. The card must not be allowed to see
180 * the updated descriptor flags until the address is
181 * correct. I've added a write memory barrier between
182 * the two stores so that I can sleep well at night... -DaveM
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem
*reg
, u32 val
)
188 sbus_writel(val
, reg
);
191 static u32
sbus_hme_read32(void __iomem
*reg
)
193 return sbus_readl(reg
);
196 static void sbus_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
198 rxd
->rx_addr
= (__force hme32
)addr
;
200 rxd
->rx_flags
= (__force hme32
)flags
;
203 static void sbus_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
205 txd
->tx_addr
= (__force hme32
)addr
;
207 txd
->tx_flags
= (__force hme32
)flags
;
210 static u32
sbus_hme_read_desc32(hme32
*p
)
212 return (__force u32
)*p
;
215 static void pci_hme_write32(void __iomem
*reg
, u32 val
)
220 static u32
pci_hme_read32(void __iomem
*reg
)
225 static void pci_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
227 rxd
->rx_addr
= (__force hme32
)cpu_to_le32(addr
);
229 rxd
->rx_flags
= (__force hme32
)cpu_to_le32(flags
);
232 static void pci_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
234 txd
->tx_addr
= (__force hme32
)cpu_to_le32(addr
);
236 txd
->tx_flags
= (__force hme32
)cpu_to_le32(flags
);
239 static u32
pci_hme_read_desc32(hme32
*p
)
241 return le32_to_cpup((__le32
*)p
);
244 #define hme_write32(__hp, __reg, __val) \
245 ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266 sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291 writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304 static inline u32
hme_read_desc32(struct happy_meal
*hp
, hme32
*p
)
306 return le32_to_cpup((__le32
*)p
);
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
320 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int bit
)
323 hme_write32(hp
, tregs
+ TCVR_BBDATA
, bit
);
324 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
325 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
329 static u32
BB_GET_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
333 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
334 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
335 ret
= hme_read32(hp
, tregs
+ TCVR_CFG
);
337 ret
&= TCV_CFG_MDIO0
;
339 ret
&= TCV_CFG_MDIO1
;
345 static u32
BB_GET_BIT2(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
349 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
351 retval
= hme_read32(hp
, tregs
+ TCVR_CFG
);
353 retval
&= TCV_CFG_MDIO0
;
355 retval
&= TCV_CFG_MDIO1
;
356 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
361 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
363 static int happy_meal_bb_read(struct happy_meal
*hp
,
364 void __iomem
*tregs
, int reg
)
370 ASD(("happy_meal_bb_read: reg=%d ", reg
));
372 /* Enable the MIF BitBang outputs. */
373 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
375 /* Force BitBang into the idle state. */
376 for (i
= 0; i
< 32; i
++)
377 BB_PUT_BIT(hp
, tregs
, 1);
379 /* Give it the read sequence. */
380 BB_PUT_BIT(hp
, tregs
, 0);
381 BB_PUT_BIT(hp
, tregs
, 1);
382 BB_PUT_BIT(hp
, tregs
, 1);
383 BB_PUT_BIT(hp
, tregs
, 0);
385 /* Give it the PHY address. */
386 tmp
= hp
->paddr
& 0xff;
387 for (i
= 4; i
>= 0; i
--)
388 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
390 /* Tell it what register we want to read. */
392 for (i
= 4; i
>= 0; i
--)
393 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
395 /* Close down the MIF BitBang outputs. */
396 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
398 /* Now read in the value. */
399 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
400 for (i
= 15; i
>= 0; i
--)
401 retval
|= BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
402 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
403 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
404 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
405 ASD(("value=%x\n", retval
));
409 static void happy_meal_bb_write(struct happy_meal
*hp
,
410 void __iomem
*tregs
, int reg
,
411 unsigned short value
)
416 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg
, value
));
418 /* Enable the MIF BitBang outputs. */
419 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
421 /* Force BitBang into the idle state. */
422 for (i
= 0; i
< 32; i
++)
423 BB_PUT_BIT(hp
, tregs
, 1);
425 /* Give it write sequence. */
426 BB_PUT_BIT(hp
, tregs
, 0);
427 BB_PUT_BIT(hp
, tregs
, 1);
428 BB_PUT_BIT(hp
, tregs
, 0);
429 BB_PUT_BIT(hp
, tregs
, 1);
431 /* Give it the PHY address. */
432 tmp
= (hp
->paddr
& 0xff);
433 for (i
= 4; i
>= 0; i
--)
434 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
436 /* Tell it what register we will be writing. */
438 for (i
= 4; i
>= 0; i
--)
439 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
441 /* Tell it to become ready for the bits. */
442 BB_PUT_BIT(hp
, tregs
, 1);
443 BB_PUT_BIT(hp
, tregs
, 0);
445 for (i
= 15; i
>= 0; i
--)
446 BB_PUT_BIT(hp
, tregs
, ((value
>> i
) & 1));
448 /* Close down the MIF BitBang outputs. */
449 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
452 #define TCVR_READ_TRIES 16
454 static int happy_meal_tcvr_read(struct happy_meal
*hp
,
455 void __iomem
*tregs
, int reg
)
457 int tries
= TCVR_READ_TRIES
;
460 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg
));
461 if (hp
->tcvr_type
== none
) {
462 ASD(("no transceiver, value=TCVR_FAILURE\n"));
466 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
467 ASD(("doing bit bang\n"));
468 return happy_meal_bb_read(hp
, tregs
, reg
);
471 hme_write32(hp
, tregs
+ TCVR_FRAME
,
472 (FRAME_READ
| (hp
->paddr
<< 23) | ((reg
& 0xff) << 18)));
473 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
476 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF read bolixed\n");
479 retval
= hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0xffff;
480 ASD(("value=%04x\n", retval
));
484 #define TCVR_WRITE_TRIES 16
486 static void happy_meal_tcvr_write(struct happy_meal
*hp
,
487 void __iomem
*tregs
, int reg
,
488 unsigned short value
)
490 int tries
= TCVR_WRITE_TRIES
;
492 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg
, value
));
494 /* Welcome to Sun Microsystems, can I take your order please? */
495 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
496 happy_meal_bb_write(hp
, tregs
, reg
, value
);
500 /* Would you like fries with that? */
501 hme_write32(hp
, tregs
+ TCVR_FRAME
,
502 (FRAME_WRITE
| (hp
->paddr
<< 23) |
503 ((reg
& 0xff) << 18) | (value
& 0xffff)));
504 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
509 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF write bolixed\n");
511 /* Fifty-two cents is your change, have a nice day. */
514 /* Auto negotiation. The scheme is very simple. We have a timer routine
515 * that keeps watching the auto negotiation process as it progresses.
516 * The DP83840 is first told to start doing it's thing, we set up the time
517 * and place the timer state machine in it's initial state.
519 * Here the timer peeks at the DP83840 status registers at each click to see
520 * if the auto negotiation has completed, we assume here that the DP83840 PHY
521 * will time out at some point and just tell us what (didn't) happen. For
522 * complete coverage we only allow so many of the ticks at this level to run,
523 * when this has expired we print a warning message and try another strategy.
524 * This "other" strategy is to force the interface into various speed/duplex
525 * configurations and we stop when we see a link-up condition before the
526 * maximum number of "peek" ticks have occurred.
528 * Once a valid link status has been detected we configure the BigMAC and
529 * the rest of the Happy Meal to speak the most efficient protocol we could
530 * get a clean link for. The priority for link configurations, highest first
532 * 100 Base-T Full Duplex
533 * 100 Base-T Half Duplex
534 * 10 Base-T Full Duplex
535 * 10 Base-T Half Duplex
537 * We start a new timer now, after a successful auto negotiation status has
538 * been detected. This timer just waits for the link-up bit to get set in
539 * the BMCR of the DP83840. When this occurs we print a kernel log message
540 * describing the link type in use and the fact that it is up.
542 * If a fatal error of some sort is signalled and detected in the interrupt
543 * service routine, and the chip is reset, or the link is ifconfig'd down
544 * and then back up, this entire process repeats itself all over again.
546 static int try_next_permutation(struct happy_meal
*hp
, void __iomem
*tregs
)
548 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
550 /* Downgrade from full to half duplex. Only possible
553 if (hp
->sw_bmcr
& BMCR_FULLDPLX
) {
554 hp
->sw_bmcr
&= ~(BMCR_FULLDPLX
);
555 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
559 /* Downgrade from 100 to 10. */
560 if (hp
->sw_bmcr
& BMCR_SPEED100
) {
561 hp
->sw_bmcr
&= ~(BMCR_SPEED100
);
562 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
566 /* We've tried everything. */
570 static void display_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
572 printk(KERN_INFO
"%s: Link is up using ", hp
->dev
->name
);
573 if (hp
->tcvr_type
== external
)
577 printk("transceiver at ");
578 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
579 if (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) {
580 if (hp
->sw_lpa
& LPA_100FULL
)
581 printk("100Mb/s, Full Duplex.\n");
583 printk("100Mb/s, Half Duplex.\n");
585 if (hp
->sw_lpa
& LPA_10FULL
)
586 printk("10Mb/s, Full Duplex.\n");
588 printk("10Mb/s, Half Duplex.\n");
592 static void display_forced_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
594 printk(KERN_INFO
"%s: Link has been forced up using ", hp
->dev
->name
);
595 if (hp
->tcvr_type
== external
)
599 printk("transceiver at ");
600 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
601 if (hp
->sw_bmcr
& BMCR_SPEED100
)
605 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
606 printk("Full Duplex.\n");
608 printk("Half Duplex.\n");
611 static int set_happy_link_modes(struct happy_meal
*hp
, void __iomem
*tregs
)
615 /* All we care about is making sure the bigmac tx_cfg has a
616 * proper duplex setting.
618 if (hp
->timer_state
== arbwait
) {
619 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
620 if (!(hp
->sw_lpa
& (LPA_10HALF
| LPA_10FULL
| LPA_100HALF
| LPA_100FULL
)))
622 if (hp
->sw_lpa
& LPA_100FULL
)
624 else if (hp
->sw_lpa
& LPA_100HALF
)
626 else if (hp
->sw_lpa
& LPA_10FULL
)
631 /* Forcing a link mode. */
632 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
633 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
639 /* Before changing other bits in the tx_cfg register, and in
640 * general any of other the TX config registers too, you
643 * 2) Poll with reads until that bit reads back as zero
644 * 3) Make TX configuration changes
645 * 4) Set Enable once more
647 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
648 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
649 ~(BIGMAC_TXCFG_ENABLE
));
650 while (hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) & BIGMAC_TXCFG_ENABLE
)
653 hp
->happy_flags
|= HFLAG_FULL
;
654 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
655 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
656 BIGMAC_TXCFG_FULLDPLX
);
658 hp
->happy_flags
&= ~(HFLAG_FULL
);
659 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
660 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
661 ~(BIGMAC_TXCFG_FULLDPLX
));
663 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
664 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
665 BIGMAC_TXCFG_ENABLE
);
671 static int happy_meal_init(struct happy_meal
*hp
);
673 static int is_lucent_phy(struct happy_meal
*hp
)
675 void __iomem
*tregs
= hp
->tcvregs
;
676 unsigned short mr2
, mr3
;
679 mr2
= happy_meal_tcvr_read(hp
, tregs
, 2);
680 mr3
= happy_meal_tcvr_read(hp
, tregs
, 3);
681 if ((mr2
& 0xffff) == 0x0180 &&
682 ((mr3
& 0xffff) >> 10) == 0x1d)
688 static void happy_meal_timer(struct timer_list
*t
)
690 struct happy_meal
*hp
= from_timer(hp
, t
, happy_timer
);
691 void __iomem
*tregs
= hp
->tcvregs
;
692 int restart_timer
= 0;
694 spin_lock_irq(&hp
->happy_lock
);
697 switch(hp
->timer_state
) {
699 /* Only allow for 5 ticks, thats 10 seconds and much too
700 * long to wait for arbitration to complete.
702 if (hp
->timer_ticks
>= 10) {
703 /* Enter force mode. */
705 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
706 printk(KERN_NOTICE
"%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 hp
->sw_bmcr
= BMCR_SPEED100
;
709 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
711 if (!is_lucent_phy(hp
)) {
712 /* OK, seems we need do disable the transceiver for the first
713 * tick to make sure we get an accurate link state at the
716 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
717 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
718 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
, hp
->sw_csconfig
);
720 hp
->timer_state
= ltrywait
;
724 /* Anything interesting happen? */
725 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
726 if (hp
->sw_bmsr
& BMSR_ANEGCOMPLETE
) {
729 /* Just what we've been waiting for... */
730 ret
= set_happy_link_modes(hp
, tregs
);
732 /* Ooops, something bad happened, go to force
735 * XXX Broken hubs which don't support 802.3u
736 * XXX auto-negotiation make this happen as well.
741 /* Success, at least so far, advance our state engine. */
742 hp
->timer_state
= lupwait
;
751 /* Auto negotiation was successful and we are awaiting a
752 * link up status. I have decided to let this timer run
753 * forever until some sort of error is signalled, reporting
754 * a message to the user at 10 second intervals.
756 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
757 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
758 /* Wheee, it's up, display the link mode in use and put
759 * the timer to sleep.
761 display_link_mode(hp
, tregs
);
762 hp
->timer_state
= asleep
;
765 if (hp
->timer_ticks
>= 10) {
766 printk(KERN_NOTICE
"%s: Auto negotiation successful, link still "
767 "not completely up.\n", hp
->dev
->name
);
777 /* Making the timeout here too long can make it take
778 * annoyingly long to attempt all of the link mode
779 * permutations, but then again this is essentially
780 * error recovery code for the most part.
782 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
783 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
784 if (hp
->timer_ticks
== 1) {
785 if (!is_lucent_phy(hp
)) {
786 /* Re-enable transceiver, we'll re-enable the transceiver next
787 * tick, then check link state on the following tick.
789 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
790 happy_meal_tcvr_write(hp
, tregs
,
791 DP83840_CSCONFIG
, hp
->sw_csconfig
);
796 if (hp
->timer_ticks
== 2) {
797 if (!is_lucent_phy(hp
)) {
798 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
799 happy_meal_tcvr_write(hp
, tregs
,
800 DP83840_CSCONFIG
, hp
->sw_csconfig
);
805 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
806 /* Force mode selection success. */
807 display_forced_link_mode(hp
, tregs
);
808 set_happy_link_modes(hp
, tregs
); /* XXX error? then what? */
809 hp
->timer_state
= asleep
;
812 if (hp
->timer_ticks
>= 4) { /* 6 seconds or so... */
815 ret
= try_next_permutation(hp
, tregs
);
817 /* Aieee, tried them all, reset the
818 * chip and try all over again.
821 /* Let the user know... */
822 printk(KERN_NOTICE
"%s: Link down, cable problem?\n",
825 ret
= happy_meal_init(hp
);
828 printk(KERN_ERR
"%s: Error, cannot re-init the "
829 "Happy Meal.\n", hp
->dev
->name
);
833 if (!is_lucent_phy(hp
)) {
834 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
836 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
837 happy_meal_tcvr_write(hp
, tregs
,
838 DP83840_CSCONFIG
, hp
->sw_csconfig
);
850 /* Can't happens.... */
851 printk(KERN_ERR
"%s: Aieee, link timer is asleep but we got one anyways!\n",
855 hp
->timer_state
= asleep
; /* foo on you */
860 hp
->happy_timer
.expires
= jiffies
+ ((12 * HZ
)/10); /* 1.2 sec. */
861 add_timer(&hp
->happy_timer
);
865 spin_unlock_irq(&hp
->happy_lock
);
868 #define TX_RESET_TRIES 32
869 #define RX_RESET_TRIES 32
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
874 int tries
= TX_RESET_TRIES
;
876 HMD(("happy_meal_tx_reset: reset, "));
878 /* Would you like to try our SMCC Delux? */
879 hme_write32(hp
, bregs
+ BMAC_TXSWRESET
, 0);
880 while ((hme_read32(hp
, bregs
+ BMAC_TXSWRESET
) & 1) && --tries
)
883 /* Lettuce, tomato, buggy hardware (no extra charge)? */
885 printk(KERN_ERR
"happy meal: Transceiver BigMac ATTACK!");
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
894 int tries
= RX_RESET_TRIES
;
896 HMD(("happy_meal_rx_reset: reset, "));
898 /* We have a special on GNU/Viking hardware bugs today. */
899 hme_write32(hp
, bregs
+ BMAC_RXSWRESET
, 0);
900 while ((hme_read32(hp
, bregs
+ BMAC_RXSWRESET
) & 1) && --tries
)
903 /* Will that be all? */
905 printk(KERN_ERR
"happy meal: Receiver BigMac ATTACK!");
907 /* Don't forget your vik_1137125_wa. Have a nice day. */
911 #define STOP_TRIES 16
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal
*hp
, void __iomem
*gregs
)
916 int tries
= STOP_TRIES
;
918 HMD(("happy_meal_stop: reset, "));
920 /* We're consolidating our STB products, it's your lucky day. */
921 hme_write32(hp
, gregs
+ GREG_SWRESET
, GREG_RESET_ALL
);
922 while (hme_read32(hp
, gregs
+ GREG_SWRESET
) && --tries
)
925 /* Come back next week when we are "Sun Microelectronics". */
927 printk(KERN_ERR
"happy meal: Fry guys.");
929 /* Remember: "Different name, same old buggy as shit hardware." */
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal
*hp
, void __iomem
*bregs
)
936 struct net_device_stats
*stats
= &hp
->dev
->stats
;
938 stats
->rx_crc_errors
+= hme_read32(hp
, bregs
+ BMAC_RCRCECTR
);
939 hme_write32(hp
, bregs
+ BMAC_RCRCECTR
, 0);
941 stats
->rx_frame_errors
+= hme_read32(hp
, bregs
+ BMAC_UNALECTR
);
942 hme_write32(hp
, bregs
+ BMAC_UNALECTR
, 0);
944 stats
->rx_length_errors
+= hme_read32(hp
, bregs
+ BMAC_GLECTR
);
945 hme_write32(hp
, bregs
+ BMAC_GLECTR
, 0);
947 stats
->tx_aborted_errors
+= hme_read32(hp
, bregs
+ BMAC_EXCTR
);
950 (hme_read32(hp
, bregs
+ BMAC_EXCTR
) +
951 hme_read32(hp
, bregs
+ BMAC_LTCTR
));
952 hme_write32(hp
, bregs
+ BMAC_EXCTR
, 0);
953 hme_write32(hp
, bregs
+ BMAC_LTCTR
, 0);
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal
*hp
, void __iomem
*tregs
)
959 ASD(("happy_meal_poll_stop: "));
961 /* If polling disabled or not polling already, nothing to do. */
962 if ((hp
->happy_flags
& (HFLAG_POLLENABLE
| HFLAG_POLL
)) !=
963 (HFLAG_POLLENABLE
| HFLAG_POLL
)) {
964 HMD(("not polling, return\n"));
968 /* Shut up the MIF. */
969 ASD(("were polling, mif ints off, "));
970 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
972 /* Turn off polling. */
973 ASD(("polling off, "));
974 hme_write32(hp
, tregs
+ TCVR_CFG
,
975 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_PENABLE
));
977 /* We are no longer polling. */
978 hp
->happy_flags
&= ~(HFLAG_POLL
);
980 /* Let the bits set. */
985 /* Only Sun can take such nice parts and fuck up the programming interface
986 * like this. Good job guys...
988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal
*hp
, void __iomem
*tregs
)
995 int result
, tries
= TCVR_RESET_TRIES
;
997 tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
998 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig
));
999 if (hp
->tcvr_type
== external
) {
1001 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
& ~(TCV_CFG_PSELECT
));
1002 hp
->tcvr_type
= internal
;
1003 hp
->paddr
= TCV_PADDR_ITX
;
1005 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1006 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1007 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1008 if (result
== TCVR_FAILURE
) {
1009 ASD(("phyread_fail>\n"));
1012 ASD(("phyread_ok,PSELECT>"));
1013 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1014 hp
->tcvr_type
= external
;
1015 hp
->paddr
= TCV_PADDR_ETX
;
1017 if (tconfig
& TCV_CFG_MDIO1
) {
1018 ASD(("internal<PSELECT,"));
1019 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
| TCV_CFG_PSELECT
));
1021 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1022 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1023 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1024 if (result
== TCVR_FAILURE
) {
1025 ASD(("phyread_fail>\n"));
1028 ASD(("phyread_ok,~PSELECT>"));
1029 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
& ~(TCV_CFG_PSELECT
)));
1030 hp
->tcvr_type
= internal
;
1031 hp
->paddr
= TCV_PADDR_ITX
;
1035 ASD(("BMCR_RESET "));
1036 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, BMCR_RESET
);
1039 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1040 if (result
== TCVR_FAILURE
)
1042 hp
->sw_bmcr
= result
;
1043 if (!(result
& BMCR_RESET
))
1048 ASD(("BMCR RESET FAILED!\n"));
1051 ASD(("RESET_OK\n"));
1053 /* Get fresh copies of the PHY registers. */
1054 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1055 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1056 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1057 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1060 hp
->sw_bmcr
&= ~(BMCR_ISOLATE
);
1061 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1063 tries
= TCVR_UNISOLATE_TRIES
;
1065 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1066 if (result
== TCVR_FAILURE
)
1068 if (!(result
& BMCR_ISOLATE
))
1073 ASD((" FAILED!\n"));
1076 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077 if (!is_lucent_phy(hp
)) {
1078 result
= happy_meal_tcvr_read(hp
, tregs
,
1080 happy_meal_tcvr_write(hp
, tregs
,
1081 DP83840_CSCONFIG
, (result
| CSCONFIG_DFBYPASS
));
1086 /* Figure out whether we have an internal or external transceiver.
1088 * hp->happy_lock must be held
1090 static void happy_meal_transceiver_check(struct happy_meal
*hp
, void __iomem
*tregs
)
1092 unsigned long tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1094 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig
));
1095 if (hp
->happy_flags
& HFLAG_POLL
) {
1096 /* If we are polling, we must stop to get the transceiver type. */
1097 ASD(("<polling> "));
1098 if (hp
->tcvr_type
== internal
) {
1099 if (tconfig
& TCV_CFG_MDIO1
) {
1100 ASD(("<internal> <poll stop> "));
1101 happy_meal_poll_stop(hp
, tregs
);
1102 hp
->paddr
= TCV_PADDR_ETX
;
1103 hp
->tcvr_type
= external
;
1104 ASD(("<external>\n"));
1105 tconfig
&= ~(TCV_CFG_PENABLE
);
1106 tconfig
|= TCV_CFG_PSELECT
;
1107 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
);
1110 if (hp
->tcvr_type
== external
) {
1111 ASD(("<external> "));
1112 if (!(hme_read32(hp
, tregs
+ TCVR_STATUS
) >> 16)) {
1113 ASD(("<poll stop> "));
1114 happy_meal_poll_stop(hp
, tregs
);
1115 hp
->paddr
= TCV_PADDR_ITX
;
1116 hp
->tcvr_type
= internal
;
1117 ASD(("<internal>\n"));
1118 hme_write32(hp
, tregs
+ TCVR_CFG
,
1119 hme_read32(hp
, tregs
+ TCVR_CFG
) &
1120 ~(TCV_CFG_PSELECT
));
1128 u32 reread
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1130 /* Else we can just work off of the MDIO bits. */
1131 ASD(("<not polling> "));
1132 if (reread
& TCV_CFG_MDIO1
) {
1133 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1134 hp
->paddr
= TCV_PADDR_ETX
;
1135 hp
->tcvr_type
= external
;
1136 ASD(("<external>\n"));
1138 if (reread
& TCV_CFG_MDIO0
) {
1139 hme_write32(hp
, tregs
+ TCVR_CFG
,
1140 tconfig
& ~(TCV_CFG_PSELECT
));
1141 hp
->paddr
= TCV_PADDR_ITX
;
1142 hp
->tcvr_type
= internal
;
1143 ASD(("<internal>\n"));
1145 printk(KERN_ERR
"happy meal: Transceiver and a coke please.");
1146 hp
->tcvr_type
= none
; /* Grrr... */
1153 /* The receive ring buffers are a bit tricky to get right. Here goes...
1155 * The buffers we dma into must be 64 byte aligned. So we use a special
1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1159 * We use skb_reserve() to align the data block we get in the skb. We
1160 * also program the etxregs->cfg register to use an offset of 2. This
1161 * imperical constant plus the ethernet header size will always leave
1162 * us with a nicely aligned ip header once we pass things up to the
1165 * The numbers work out to:
1167 * Max ethernet frame size 1518
1168 * Ethernet header size 14
1169 * Happy Meal base offset 2
1171 * Say a skb data area is at 0xf001b010, and its size alloced is
1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 * First our alloc_skb() routine aligns the data base to a 64 byte
1175 * boundary. We now have 0xf001b040 as our skb data address. We
1176 * plug this into the receive descriptor address.
1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179 * So now the data we will end up looking at starts at 0xf001b042. When
1180 * the packet arrives, we will check out the size received and subtract
1181 * this from the skb->length. Then we just pass the packet up to the
1182 * protocols as is, and allocate a new skb to replace this slot we have
1183 * just received from.
1185 * The ethernet layer will strip the ether header from the front of the
1186 * skb we just sent to it, this leaves us with the ip header sitting
1187 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1188 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1189 * bit checksum is obtained from the low bits of the receive descriptor
1192 * skb->csum = rxd->rx_flags & 0xffff;
1193 * skb->ip_summed = CHECKSUM_COMPLETE;
1195 * before sending off the skb to the protocols, and we are good as gold.
1197 static void happy_meal_clean_rings(struct happy_meal
*hp
)
1201 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1202 if (hp
->rx_skbs
[i
] != NULL
) {
1203 struct sk_buff
*skb
= hp
->rx_skbs
[i
];
1204 struct happy_meal_rxd
*rxd
;
1207 rxd
= &hp
->happy_block
->happy_meal_rxd
[i
];
1208 dma_addr
= hme_read_desc32(hp
, &rxd
->rx_addr
);
1209 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1210 RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
1211 dev_kfree_skb_any(skb
);
1212 hp
->rx_skbs
[i
] = NULL
;
1216 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1217 if (hp
->tx_skbs
[i
] != NULL
) {
1218 struct sk_buff
*skb
= hp
->tx_skbs
[i
];
1219 struct happy_meal_txd
*txd
;
1223 hp
->tx_skbs
[i
] = NULL
;
1225 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1226 txd
= &hp
->happy_block
->happy_meal_txd
[i
];
1227 dma_addr
= hme_read_desc32(hp
, &txd
->tx_addr
);
1229 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1230 (hme_read_desc32(hp
, &txd
->tx_flags
)
1234 dma_unmap_page(hp
->dma_dev
, dma_addr
,
1235 (hme_read_desc32(hp
, &txd
->tx_flags
)
1239 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1243 dev_kfree_skb_any(skb
);
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal
*hp
)
1251 struct hmeal_init_block
*hb
= hp
->happy_block
;
1254 HMD(("happy_meal_init_rings: counters to zero, "));
1255 hp
->rx_new
= hp
->rx_old
= hp
->tx_new
= hp
->tx_old
= 0;
1257 /* Free any skippy bufs left around in the rings. */
1259 happy_meal_clean_rings(hp
);
1261 /* Now get new skippy bufs for the receive ring. */
1262 HMD(("init rxring, "));
1263 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1264 struct sk_buff
*skb
;
1267 skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
1269 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1272 hp
->rx_skbs
[i
] = skb
;
1274 /* Because we reserve afterwards. */
1275 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
1276 mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, RX_BUF_ALLOC_SIZE
,
1278 if (dma_mapping_error(hp
->dma_dev
, mapping
)) {
1279 dev_kfree_skb_any(skb
);
1280 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1283 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
],
1284 (RXFLAG_OWN
| ((RX_BUF_ALLOC_SIZE
- RX_OFFSET
) << 16)),
1286 skb_reserve(skb
, RX_OFFSET
);
1289 HMD(("init txring, "));
1290 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1291 hme_write_txd(hp
, &hb
->happy_meal_txd
[i
], 0, 0);
1296 /* hp->happy_lock must be held */
1298 happy_meal_begin_auto_negotiation(struct happy_meal
*hp
,
1299 void __iomem
*tregs
,
1300 const struct ethtool_link_ksettings
*ep
)
1304 /* Read all of the registers we are interested in now. */
1305 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1306 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1307 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1308 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1310 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1313 if (!ep
|| ep
->base
.autoneg
== AUTONEG_ENABLE
) {
1314 /* Advertise everything we can support. */
1315 if (hp
->sw_bmsr
& BMSR_10HALF
)
1316 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1318 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1320 if (hp
->sw_bmsr
& BMSR_10FULL
)
1321 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1323 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1324 if (hp
->sw_bmsr
& BMSR_100HALF
)
1325 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1327 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1328 if (hp
->sw_bmsr
& BMSR_100FULL
)
1329 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1331 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1332 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1334 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1335 * XXX and this is because the DP83840 does not support it, changes
1336 * XXX would need to be made to the tx/rx logic in the driver as well
1337 * XXX so I completely skip checking for it in the BMSR for now.
1340 #ifdef AUTO_SWITCH_DEBUG
1341 ASD(("%s: Advertising [ ", hp
->dev
->name
));
1342 if (hp
->sw_advertise
& ADVERTISE_10HALF
)
1344 if (hp
->sw_advertise
& ADVERTISE_10FULL
)
1346 if (hp
->sw_advertise
& ADVERTISE_100HALF
)
1348 if (hp
->sw_advertise
& ADVERTISE_100FULL
)
1352 /* Enable Auto-Negotiation, this is usually on already... */
1353 hp
->sw_bmcr
|= BMCR_ANENABLE
;
1354 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1356 /* Restart it to make sure it is going. */
1357 hp
->sw_bmcr
|= BMCR_ANRESTART
;
1358 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1360 /* BMCR_ANRESTART self clears when the process has begun. */
1362 timeout
= 64; /* More than enough. */
1364 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1365 if (!(hp
->sw_bmcr
& BMCR_ANRESTART
))
1366 break; /* got it. */
1370 printk(KERN_ERR
"%s: Happy Meal would not start auto negotiation "
1371 "BMCR=0x%04x\n", hp
->dev
->name
, hp
->sw_bmcr
);
1372 printk(KERN_NOTICE
"%s: Performing force link detection.\n",
1376 hp
->timer_state
= arbwait
;
1380 /* Force the link up, trying first a particular mode.
1381 * Either we are here at the request of ethtool or
1382 * because the Happy Meal would not start to autoneg.
1385 /* Disable auto-negotiation in BMCR, enable the duplex and
1386 * speed setting, init the timer state machine, and fire it off.
1388 if (!ep
|| ep
->base
.autoneg
== AUTONEG_ENABLE
) {
1389 hp
->sw_bmcr
= BMCR_SPEED100
;
1391 if (ep
->base
.speed
== SPEED_100
)
1392 hp
->sw_bmcr
= BMCR_SPEED100
;
1395 if (ep
->base
.duplex
== DUPLEX_FULL
)
1396 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1398 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1400 if (!is_lucent_phy(hp
)) {
1401 /* OK, seems we need do disable the transceiver for the first
1402 * tick to make sure we get an accurate link state at the
1405 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
1407 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
1408 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
,
1411 hp
->timer_state
= ltrywait
;
1414 hp
->timer_ticks
= 0;
1415 hp
->happy_timer
.expires
= jiffies
+ (12 * HZ
)/10; /* 1.2 sec. */
1416 add_timer(&hp
->happy_timer
);
1419 /* hp->happy_lock must be held */
1420 static int happy_meal_init(struct happy_meal
*hp
)
1422 void __iomem
*gregs
= hp
->gregs
;
1423 void __iomem
*etxregs
= hp
->etxregs
;
1424 void __iomem
*erxregs
= hp
->erxregs
;
1425 void __iomem
*bregs
= hp
->bigmacregs
;
1426 void __iomem
*tregs
= hp
->tcvregs
;
1428 unsigned char *e
= &hp
->dev
->dev_addr
[0];
1430 /* If auto-negotiation timer is running, kill it. */
1431 del_timer(&hp
->happy_timer
);
1433 HMD(("happy_meal_init: happy_flags[%08x] ",
1435 if (!(hp
->happy_flags
& HFLAG_INIT
)) {
1436 HMD(("set HFLAG_INIT, "));
1437 hp
->happy_flags
|= HFLAG_INIT
;
1438 happy_meal_get_counters(hp
, bregs
);
1442 HMD(("to happy_meal_poll_stop\n"));
1443 happy_meal_poll_stop(hp
, tregs
);
1445 /* Stop transmitter and receiver. */
1446 HMD(("happy_meal_init: to happy_meal_stop\n"));
1447 happy_meal_stop(hp
, gregs
);
1449 /* Alloc and reset the tx/rx descriptor chains. */
1450 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1451 happy_meal_init_rings(hp
);
1453 /* Shut up the MIF. */
1454 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1455 hme_read32(hp
, tregs
+ TCVR_IMASK
)));
1456 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1458 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1459 if (hp
->happy_flags
& HFLAG_FENABLE
) {
1460 HMD(("use frame old[%08x], ",
1461 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1462 hme_write32(hp
, tregs
+ TCVR_CFG
,
1463 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1465 HMD(("use bitbang old[%08x], ",
1466 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1467 hme_write32(hp
, tregs
+ TCVR_CFG
,
1468 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1471 /* Check the state of the transceiver. */
1472 HMD(("to happy_meal_transceiver_check\n"));
1473 happy_meal_transceiver_check(hp
, tregs
);
1475 /* Put the Big Mac into a sane state. */
1476 HMD(("happy_meal_init: "));
1477 switch(hp
->tcvr_type
) {
1479 /* Cannot operate if we don't know the transceiver type! */
1480 HMD(("AAIEEE no transceiver type, EAGAIN"));
1484 /* Using the MII buffers. */
1485 HMD(("internal, using MII, "));
1486 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1490 /* Not using the MII, disable it. */
1491 HMD(("external, disable MII, "));
1492 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1496 if (happy_meal_tcvr_reset(hp
, tregs
))
1499 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1500 HMD(("tx/rx reset, "));
1501 happy_meal_tx_reset(hp
, bregs
);
1502 happy_meal_rx_reset(hp
, bregs
);
1504 /* Set jam size and inter-packet gaps to reasonable defaults. */
1505 HMD(("jsize/ipg1/ipg2, "));
1506 hme_write32(hp
, bregs
+ BMAC_JSIZE
, DEFAULT_JAMSIZE
);
1507 hme_write32(hp
, bregs
+ BMAC_IGAP1
, DEFAULT_IPG1
);
1508 hme_write32(hp
, bregs
+ BMAC_IGAP2
, DEFAULT_IPG2
);
1510 /* Load up the MAC address and random seed. */
1511 HMD(("rseed/macaddr, "));
1513 /* The docs recommend to use the 10LSB of our MAC here. */
1514 hme_write32(hp
, bregs
+ BMAC_RSEED
, ((e
[5] | e
[4]<<8)&0x3ff));
1516 hme_write32(hp
, bregs
+ BMAC_MACADDR2
, ((e
[4] << 8) | e
[5]));
1517 hme_write32(hp
, bregs
+ BMAC_MACADDR1
, ((e
[2] << 8) | e
[3]));
1518 hme_write32(hp
, bregs
+ BMAC_MACADDR0
, ((e
[0] << 8) | e
[1]));
1521 if ((hp
->dev
->flags
& IFF_ALLMULTI
) ||
1522 (netdev_mc_count(hp
->dev
) > 64)) {
1523 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
1524 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
1525 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
1526 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
1527 } else if ((hp
->dev
->flags
& IFF_PROMISC
) == 0) {
1529 struct netdev_hw_addr
*ha
;
1532 memset(hash_table
, 0, sizeof(hash_table
));
1533 netdev_for_each_mc_addr(ha
, hp
->dev
) {
1534 crc
= ether_crc_le(6, ha
->addr
);
1536 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
1538 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
1539 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
1540 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
1541 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
1543 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0);
1544 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0);
1545 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0);
1546 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0);
1549 /* Set the RX and TX ring ptrs. */
1550 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1551 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)),
1552 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0))));
1553 hme_write32(hp
, erxregs
+ ERX_RING
,
1554 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)));
1555 hme_write32(hp
, etxregs
+ ETX_RING
,
1556 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0)));
1558 /* Parity issues in the ERX unit of some HME revisions can cause some
1559 * registers to not be written unless their parity is even. Detect such
1560 * lost writes and simply rewrite with a low bit set (which will be ignored
1561 * since the rxring needs to be 2K aligned).
1563 if (hme_read32(hp
, erxregs
+ ERX_RING
) !=
1564 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)))
1565 hme_write32(hp
, erxregs
+ ERX_RING
,
1566 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0))
1569 /* Set the supported burst sizes. */
1570 HMD(("happy_meal_init: old[%08x] bursts<",
1571 hme_read32(hp
, gregs
+ GREG_CFG
)));
1573 #ifndef CONFIG_SPARC
1574 /* It is always PCI and can handle 64byte bursts. */
1575 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST64
);
1577 if ((hp
->happy_bursts
& DMA_BURST64
) &&
1578 ((hp
->happy_flags
& HFLAG_PCI
) != 0
1580 || sbus_can_burst64()
1583 u32 gcfg
= GREG_CFG_BURST64
;
1585 /* I have no idea if I should set the extended
1586 * transfer mode bit for Cheerio, so for now I
1590 if ((hp
->happy_flags
& HFLAG_PCI
) == 0) {
1591 struct platform_device
*op
= hp
->happy_dev
;
1592 if (sbus_can_dma_64bit()) {
1593 sbus_set_sbus64(&op
->dev
,
1595 gcfg
|= GREG_CFG_64BIT
;
1601 hme_write32(hp
, gregs
+ GREG_CFG
, gcfg
);
1602 } else if (hp
->happy_bursts
& DMA_BURST32
) {
1604 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST32
);
1605 } else if (hp
->happy_bursts
& DMA_BURST16
) {
1607 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST16
);
1610 hme_write32(hp
, gregs
+ GREG_CFG
, 0);
1612 #endif /* CONFIG_SPARC */
1614 /* Turn off interrupts we do not want to hear. */
1615 HMD((", enable global interrupts, "));
1616 hme_write32(hp
, gregs
+ GREG_IMASK
,
1617 (GREG_IMASK_GOTFRAME
| GREG_IMASK_RCNTEXP
|
1618 GREG_IMASK_SENTFRAME
| GREG_IMASK_TXPERR
));
1620 /* Set the transmit ring buffer size. */
1621 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE
,
1622 hme_read32(hp
, etxregs
+ ETX_RSIZE
)));
1623 hme_write32(hp
, etxregs
+ ETX_RSIZE
, (TX_RING_SIZE
>> ETX_RSIZE_SHIFT
) - 1);
1625 /* Enable transmitter DVMA. */
1626 HMD(("tx dma enable old[%08x], ",
1627 hme_read32(hp
, etxregs
+ ETX_CFG
)));
1628 hme_write32(hp
, etxregs
+ ETX_CFG
,
1629 hme_read32(hp
, etxregs
+ ETX_CFG
) | ETX_CFG_DMAENABLE
);
1631 /* This chip really rots, for the receiver sometimes when you
1632 * write to its control registers not all the bits get there
1633 * properly. I cannot think of a sane way to provide complete
1634 * coverage for this hardware bug yet.
1636 HMD(("erx regs bug old[%08x]\n",
1637 hme_read32(hp
, erxregs
+ ERX_CFG
)));
1638 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1639 regtmp
= hme_read32(hp
, erxregs
+ ERX_CFG
);
1640 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1641 if (hme_read32(hp
, erxregs
+ ERX_CFG
) != ERX_CFG_DEFAULT(RX_OFFSET
)) {
1642 printk(KERN_ERR
"happy meal: Eieee, rx config register gets greasy fries.\n");
1643 printk(KERN_ERR
"happy meal: Trying to set %08x, reread gives %08x\n",
1644 ERX_CFG_DEFAULT(RX_OFFSET
), regtmp
);
1645 /* XXX Should return failure here... */
1648 /* Enable Big Mac hash table filter. */
1649 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1650 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1651 rxcfg
= BIGMAC_RXCFG_HENABLE
| BIGMAC_RXCFG_REJME
;
1652 if (hp
->dev
->flags
& IFF_PROMISC
)
1653 rxcfg
|= BIGMAC_RXCFG_PMISC
;
1654 hme_write32(hp
, bregs
+ BMAC_RXCFG
, rxcfg
);
1656 /* Let the bits settle in the chip. */
1659 /* Ok, configure the Big Mac transmitter. */
1660 HMD(("BIGMAC init, "));
1662 if (hp
->happy_flags
& HFLAG_FULL
)
1663 regtmp
|= BIGMAC_TXCFG_FULLDPLX
;
1665 /* Don't turn on the "don't give up" bit for now. It could cause hme
1666 * to deadlock with the PHY if a Jabber occurs.
1668 hme_write32(hp
, bregs
+ BMAC_TXCFG
, regtmp
/*| BIGMAC_TXCFG_DGIVEUP*/);
1670 /* Give up after 16 TX attempts. */
1671 hme_write32(hp
, bregs
+ BMAC_ALIMIT
, 16);
1673 /* Enable the output drivers no matter what. */
1674 regtmp
= BIGMAC_XCFG_ODENABLE
;
1676 /* If card can do lance mode, enable it. */
1677 if (hp
->happy_flags
& HFLAG_LANCE
)
1678 regtmp
|= (DEFAULT_IPG0
<< 5) | BIGMAC_XCFG_LANCE
;
1680 /* Disable the MII buffers if using external transceiver. */
1681 if (hp
->tcvr_type
== external
)
1682 regtmp
|= BIGMAC_XCFG_MIIDISAB
;
1684 HMD(("XIF config old[%08x], ",
1685 hme_read32(hp
, bregs
+ BMAC_XIFCFG
)));
1686 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, regtmp
);
1688 /* Start things up. */
1689 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1690 hme_read32(hp
, bregs
+ BMAC_TXCFG
),
1691 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1693 /* Set larger TX/RX size to allow for 802.1q */
1694 hme_write32(hp
, bregs
+ BMAC_TXMAX
, ETH_FRAME_LEN
+ 8);
1695 hme_write32(hp
, bregs
+ BMAC_RXMAX
, ETH_FRAME_LEN
+ 8);
1697 hme_write32(hp
, bregs
+ BMAC_TXCFG
,
1698 hme_read32(hp
, bregs
+ BMAC_TXCFG
) | BIGMAC_TXCFG_ENABLE
);
1699 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
1700 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_ENABLE
);
1702 /* Get the autonegotiation started, and the watch timer ticking. */
1703 happy_meal_begin_auto_negotiation(hp
, tregs
, NULL
);
1709 /* hp->happy_lock must be held */
1710 static void happy_meal_set_initial_advertisement(struct happy_meal
*hp
)
1712 void __iomem
*tregs
= hp
->tcvregs
;
1713 void __iomem
*bregs
= hp
->bigmacregs
;
1714 void __iomem
*gregs
= hp
->gregs
;
1716 happy_meal_stop(hp
, gregs
);
1717 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1718 if (hp
->happy_flags
& HFLAG_FENABLE
)
1719 hme_write32(hp
, tregs
+ TCVR_CFG
,
1720 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1722 hme_write32(hp
, tregs
+ TCVR_CFG
,
1723 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1724 happy_meal_transceiver_check(hp
, tregs
);
1725 switch(hp
->tcvr_type
) {
1729 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1732 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1735 if (happy_meal_tcvr_reset(hp
, tregs
))
1738 /* Latch PHY registers as of now. */
1739 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1740 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1742 /* Advertise everything we can support. */
1743 if (hp
->sw_bmsr
& BMSR_10HALF
)
1744 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1746 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1748 if (hp
->sw_bmsr
& BMSR_10FULL
)
1749 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1751 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1752 if (hp
->sw_bmsr
& BMSR_100HALF
)
1753 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1755 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1756 if (hp
->sw_bmsr
& BMSR_100FULL
)
1757 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1759 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1761 /* Update the PHY advertisement register. */
1762 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1765 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1766 * the hardware, so we cannot re-read it and get a correct value.
1768 * hp->happy_lock must be held
1770 static int happy_meal_is_not_so_happy(struct happy_meal
*hp
, u32 status
)
1774 /* Only print messages for non-counter related interrupts. */
1775 if (status
& (GREG_STAT_STSTERR
| GREG_STAT_TFIFO_UND
|
1776 GREG_STAT_MAXPKTERR
| GREG_STAT_RXERR
|
1777 GREG_STAT_RXPERR
| GREG_STAT_RXTERR
| GREG_STAT_EOPERR
|
1778 GREG_STAT_MIFIRQ
| GREG_STAT_TXEACK
| GREG_STAT_TXLERR
|
1779 GREG_STAT_TXPERR
| GREG_STAT_TXTERR
| GREG_STAT_SLVERR
|
1781 printk(KERN_ERR
"%s: Error interrupt for happy meal, status = %08x\n",
1782 hp
->dev
->name
, status
);
1784 if (status
& GREG_STAT_RFIFOVF
) {
1785 /* Receive FIFO overflow is harmless and the hardware will take
1786 care of it, just some packets are lost. Who cares. */
1787 printk(KERN_DEBUG
"%s: Happy Meal receive FIFO overflow.\n", hp
->dev
->name
);
1790 if (status
& GREG_STAT_STSTERR
) {
1791 /* BigMAC SQE link test failed. */
1792 printk(KERN_ERR
"%s: Happy Meal BigMAC SQE test failed.\n", hp
->dev
->name
);
1796 if (status
& GREG_STAT_TFIFO_UND
) {
1797 /* Transmit FIFO underrun, again DMA error likely. */
1798 printk(KERN_ERR
"%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1803 if (status
& GREG_STAT_MAXPKTERR
) {
1804 /* Driver error, tried to transmit something larger
1805 * than ethernet max mtu.
1807 printk(KERN_ERR
"%s: Happy Meal MAX Packet size error.\n", hp
->dev
->name
);
1811 if (status
& GREG_STAT_NORXD
) {
1812 /* This is harmless, it just means the system is
1813 * quite loaded and the incoming packet rate was
1814 * faster than the interrupt handler could keep up
1817 printk(KERN_INFO
"%s: Happy Meal out of receive "
1818 "descriptors, packet dropped.\n",
1822 if (status
& (GREG_STAT_RXERR
|GREG_STAT_RXPERR
|GREG_STAT_RXTERR
)) {
1823 /* All sorts of DMA receive errors. */
1824 printk(KERN_ERR
"%s: Happy Meal rx DMA errors [ ", hp
->dev
->name
);
1825 if (status
& GREG_STAT_RXERR
)
1826 printk("GenericError ");
1827 if (status
& GREG_STAT_RXPERR
)
1828 printk("ParityError ");
1829 if (status
& GREG_STAT_RXTERR
)
1830 printk("RxTagBotch ");
1835 if (status
& GREG_STAT_EOPERR
) {
1836 /* Driver bug, didn't set EOP bit in tx descriptor given
1837 * to the happy meal.
1839 printk(KERN_ERR
"%s: EOP not set in happy meal transmit descriptor!\n",
1844 if (status
& GREG_STAT_MIFIRQ
) {
1845 /* MIF signalled an interrupt, were we polling it? */
1846 printk(KERN_ERR
"%s: Happy Meal MIF interrupt.\n", hp
->dev
->name
);
1850 (GREG_STAT_TXEACK
|GREG_STAT_TXLERR
|GREG_STAT_TXPERR
|GREG_STAT_TXTERR
)) {
1851 /* All sorts of transmit DMA errors. */
1852 printk(KERN_ERR
"%s: Happy Meal tx DMA errors [ ", hp
->dev
->name
);
1853 if (status
& GREG_STAT_TXEACK
)
1854 printk("GenericError ");
1855 if (status
& GREG_STAT_TXLERR
)
1856 printk("LateError ");
1857 if (status
& GREG_STAT_TXPERR
)
1858 printk("ParityError ");
1859 if (status
& GREG_STAT_TXTERR
)
1860 printk("TagBotch ");
1865 if (status
& (GREG_STAT_SLVERR
|GREG_STAT_SLVPERR
)) {
1866 /* Bus or parity error when cpu accessed happy meal registers
1867 * or it's internal FIFO's. Should never see this.
1869 printk(KERN_ERR
"%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 (status
& GREG_STAT_SLVPERR
) ? "parity" : "generic");
1876 printk(KERN_NOTICE
"%s: Resetting...\n", hp
->dev
->name
);
1877 happy_meal_init(hp
);
1883 /* hp->happy_lock must be held */
1884 static void happy_meal_mif_interrupt(struct happy_meal
*hp
)
1886 void __iomem
*tregs
= hp
->tcvregs
;
1888 printk(KERN_INFO
"%s: Link status change.\n", hp
->dev
->name
);
1889 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1890 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
1892 /* Use the fastest transmission protocol possible. */
1893 if (hp
->sw_lpa
& LPA_100FULL
) {
1894 printk(KERN_INFO
"%s: Switching to 100Mbps at full duplex.", hp
->dev
->name
);
1895 hp
->sw_bmcr
|= (BMCR_FULLDPLX
| BMCR_SPEED100
);
1896 } else if (hp
->sw_lpa
& LPA_100HALF
) {
1897 printk(KERN_INFO
"%s: Switching to 100MBps at half duplex.", hp
->dev
->name
);
1898 hp
->sw_bmcr
|= BMCR_SPEED100
;
1899 } else if (hp
->sw_lpa
& LPA_10FULL
) {
1900 printk(KERN_INFO
"%s: Switching to 10MBps at full duplex.", hp
->dev
->name
);
1901 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1903 printk(KERN_INFO
"%s: Using 10Mbps at half duplex.", hp
->dev
->name
);
1905 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1907 /* Finally stop polling and shut up the MIF. */
1908 happy_meal_poll_stop(hp
, tregs
);
1912 #define TXD(x) printk x
1917 /* hp->happy_lock must be held */
1918 static void happy_meal_tx(struct happy_meal
*hp
)
1920 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
1921 struct happy_meal_txd
*this;
1922 struct net_device
*dev
= hp
->dev
;
1927 while (elem
!= hp
->tx_new
) {
1928 struct sk_buff
*skb
;
1929 u32 flags
, dma_addr
, dma_len
;
1932 TXD(("[%d]", elem
));
1933 this = &txbase
[elem
];
1934 flags
= hme_read_desc32(hp
, &this->tx_flags
);
1935 if (flags
& TXFLAG_OWN
)
1937 skb
= hp
->tx_skbs
[elem
];
1938 if (skb_shinfo(skb
)->nr_frags
) {
1941 last
= elem
+ skb_shinfo(skb
)->nr_frags
;
1942 last
&= (TX_RING_SIZE
- 1);
1943 flags
= hme_read_desc32(hp
, &txbase
[last
].tx_flags
);
1944 if (flags
& TXFLAG_OWN
)
1947 hp
->tx_skbs
[elem
] = NULL
;
1948 dev
->stats
.tx_bytes
+= skb
->len
;
1950 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1951 dma_addr
= hme_read_desc32(hp
, &this->tx_addr
);
1952 dma_len
= hme_read_desc32(hp
, &this->tx_flags
);
1954 dma_len
&= TXFLAG_SIZE
;
1956 dma_unmap_single(hp
->dma_dev
, dma_addr
, dma_len
, DMA_TO_DEVICE
);
1958 dma_unmap_page(hp
->dma_dev
, dma_addr
, dma_len
, DMA_TO_DEVICE
);
1960 elem
= NEXT_TX(elem
);
1961 this = &txbase
[elem
];
1964 dev_consume_skb_irq(skb
);
1965 dev
->stats
.tx_packets
++;
1970 if (netif_queue_stopped(dev
) &&
1971 TX_BUFFS_AVAIL(hp
) > (MAX_SKB_FRAGS
+ 1))
1972 netif_wake_queue(dev
);
1976 #define RXD(x) printk x
1981 /* Originally I used to handle the allocation failure by just giving back just
1982 * that one ring buffer to the happy meal. Problem is that usually when that
1983 * condition is triggered, the happy meal expects you to do something reasonable
1984 * with all of the packets it has DMA'd in. So now I just drop the entire
1985 * ring when we cannot get a new skb and give them all back to the happy meal,
1986 * maybe things will be "happier" now.
1988 * hp->happy_lock must be held
1990 static void happy_meal_rx(struct happy_meal
*hp
, struct net_device
*dev
)
1992 struct happy_meal_rxd
*rxbase
= &hp
->happy_block
->happy_meal_rxd
[0];
1993 struct happy_meal_rxd
*this;
1994 int elem
= hp
->rx_new
, drops
= 0;
1998 this = &rxbase
[elem
];
1999 while (!((flags
= hme_read_desc32(hp
, &this->rx_flags
)) & RXFLAG_OWN
)) {
2000 struct sk_buff
*skb
;
2001 int len
= flags
>> 16;
2002 u16 csum
= flags
& RXFLAG_CSUM
;
2003 u32 dma_addr
= hme_read_desc32(hp
, &this->rx_addr
);
2005 RXD(("[%d ", elem
));
2007 /* Check for errors. */
2008 if ((len
< ETH_ZLEN
) || (flags
& RXFLAG_OVERFLOW
)) {
2009 RXD(("ERR(%08x)]", flags
));
2010 dev
->stats
.rx_errors
++;
2012 dev
->stats
.rx_length_errors
++;
2013 if (len
& (RXFLAG_OVERFLOW
>> 16)) {
2014 dev
->stats
.rx_over_errors
++;
2015 dev
->stats
.rx_fifo_errors
++;
2018 /* Return it to the Happy meal. */
2020 dev
->stats
.rx_dropped
++;
2021 hme_write_rxd(hp
, this,
2022 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2026 skb
= hp
->rx_skbs
[elem
];
2027 if (len
> RX_COPY_THRESHOLD
) {
2028 struct sk_buff
*new_skb
;
2031 /* Now refill the entry, if we can. */
2032 new_skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
2033 if (new_skb
== NULL
) {
2037 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
2038 mapping
= dma_map_single(hp
->dma_dev
, new_skb
->data
,
2041 if (unlikely(dma_mapping_error(hp
->dma_dev
, mapping
))) {
2042 dev_kfree_skb_any(new_skb
);
2047 dma_unmap_single(hp
->dma_dev
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
2048 hp
->rx_skbs
[elem
] = new_skb
;
2049 hme_write_rxd(hp
, this,
2050 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2052 skb_reserve(new_skb
, RX_OFFSET
);
2054 /* Trim the original skb for the netif. */
2057 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
2059 if (copy_skb
== NULL
) {
2064 skb_reserve(copy_skb
, 2);
2065 skb_put(copy_skb
, len
);
2066 dma_sync_single_for_cpu(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2067 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
2068 dma_sync_single_for_device(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2069 /* Reuse original ring buffer. */
2070 hme_write_rxd(hp
, this,
2071 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2077 /* This card is _fucking_ hot... */
2078 skb
->csum
= csum_unfold(~(__force __sum16
)htons(csum
));
2079 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2081 RXD(("len=%d csum=%4x]", len
, csum
));
2082 skb
->protocol
= eth_type_trans(skb
, dev
);
2085 dev
->stats
.rx_packets
++;
2086 dev
->stats
.rx_bytes
+= len
;
2088 elem
= NEXT_RX(elem
);
2089 this = &rxbase
[elem
];
2093 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n", hp
->dev
->name
);
2097 static irqreturn_t
happy_meal_interrupt(int irq
, void *dev_id
)
2099 struct net_device
*dev
= dev_id
;
2100 struct happy_meal
*hp
= netdev_priv(dev
);
2101 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2103 HMD(("happy_meal_interrupt: status=%08x ", happy_status
));
2105 spin_lock(&hp
->happy_lock
);
2107 if (happy_status
& GREG_STAT_ERRORS
) {
2109 if (happy_meal_is_not_so_happy(hp
, /* un- */ happy_status
))
2113 if (happy_status
& GREG_STAT_MIFIRQ
) {
2115 happy_meal_mif_interrupt(hp
);
2118 if (happy_status
& GREG_STAT_TXALL
) {
2123 if (happy_status
& GREG_STAT_RXTOHOST
) {
2125 happy_meal_rx(hp
, dev
);
2130 spin_unlock(&hp
->happy_lock
);
2136 static irqreturn_t
quattro_sbus_interrupt(int irq
, void *cookie
)
2138 struct quattro
*qp
= (struct quattro
*) cookie
;
2141 for (i
= 0; i
< 4; i
++) {
2142 struct net_device
*dev
= qp
->happy_meals
[i
];
2143 struct happy_meal
*hp
= netdev_priv(dev
);
2144 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2146 HMD(("quattro_interrupt: status=%08x ", happy_status
));
2148 if (!(happy_status
& (GREG_STAT_ERRORS
|
2151 GREG_STAT_RXTOHOST
)))
2154 spin_lock(&hp
->happy_lock
);
2156 if (happy_status
& GREG_STAT_ERRORS
) {
2158 if (happy_meal_is_not_so_happy(hp
, happy_status
))
2162 if (happy_status
& GREG_STAT_MIFIRQ
) {
2164 happy_meal_mif_interrupt(hp
);
2167 if (happy_status
& GREG_STAT_TXALL
) {
2172 if (happy_status
& GREG_STAT_RXTOHOST
) {
2174 happy_meal_rx(hp
, dev
);
2178 spin_unlock(&hp
->happy_lock
);
2186 static int happy_meal_open(struct net_device
*dev
)
2188 struct happy_meal
*hp
= netdev_priv(dev
);
2191 HMD(("happy_meal_open: "));
2193 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2194 * into a single source which we register handling at probe time.
2196 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
) {
2197 res
= request_irq(hp
->irq
, happy_meal_interrupt
, IRQF_SHARED
,
2201 printk(KERN_ERR
"happy_meal(SBUS): Can't order irq %d to go.\n",
2208 HMD(("to happy_meal_init\n"));
2210 spin_lock_irq(&hp
->happy_lock
);
2211 res
= happy_meal_init(hp
);
2212 spin_unlock_irq(&hp
->happy_lock
);
2214 if (res
&& ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
))
2215 free_irq(hp
->irq
, dev
);
2219 static int happy_meal_close(struct net_device
*dev
)
2221 struct happy_meal
*hp
= netdev_priv(dev
);
2223 spin_lock_irq(&hp
->happy_lock
);
2224 happy_meal_stop(hp
, hp
->gregs
);
2225 happy_meal_clean_rings(hp
);
2227 /* If auto-negotiation timer is running, kill it. */
2228 del_timer(&hp
->happy_timer
);
2230 spin_unlock_irq(&hp
->happy_lock
);
2232 /* On Quattro QFE cards, all hme interrupts are concentrated
2233 * into a single source which we register handling at probe
2234 * time and never unregister.
2236 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
)
2237 free_irq(hp
->irq
, dev
);
2243 #define SXD(x) printk x
2248 static void happy_meal_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
2250 struct happy_meal
*hp
= netdev_priv(dev
);
2252 printk (KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2254 printk (KERN_ERR
"%s: Happy Status %08x TX[%08x:%08x]\n", dev
->name
,
2255 hme_read32(hp
, hp
->gregs
+ GREG_STAT
),
2256 hme_read32(hp
, hp
->etxregs
+ ETX_CFG
),
2257 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
));
2259 spin_lock_irq(&hp
->happy_lock
);
2260 happy_meal_init(hp
);
2261 spin_unlock_irq(&hp
->happy_lock
);
2263 netif_wake_queue(dev
);
2266 static void unmap_partial_tx_skb(struct happy_meal
*hp
, u32 first_mapping
,
2267 u32 first_len
, u32 first_entry
, u32 entry
)
2269 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
2271 dma_unmap_single(hp
->dma_dev
, first_mapping
, first_len
, DMA_TO_DEVICE
);
2273 first_entry
= NEXT_TX(first_entry
);
2274 while (first_entry
!= entry
) {
2275 struct happy_meal_txd
*this = &txbase
[first_entry
];
2278 addr
= hme_read_desc32(hp
, &this->tx_addr
);
2279 len
= hme_read_desc32(hp
, &this->tx_flags
);
2281 dma_unmap_page(hp
->dma_dev
, addr
, len
, DMA_TO_DEVICE
);
2285 static netdev_tx_t
happy_meal_start_xmit(struct sk_buff
*skb
,
2286 struct net_device
*dev
)
2288 struct happy_meal
*hp
= netdev_priv(dev
);
2292 tx_flags
= TXFLAG_OWN
;
2293 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2294 const u32 csum_start_off
= skb_checksum_start_offset(skb
);
2295 const u32 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2297 tx_flags
= (TXFLAG_OWN
| TXFLAG_CSENABLE
|
2298 ((csum_start_off
<< 14) & TXFLAG_CSBUFBEGIN
) |
2299 ((csum_stuff_off
<< 20) & TXFLAG_CSLOCATION
));
2302 spin_lock_irq(&hp
->happy_lock
);
2304 if (TX_BUFFS_AVAIL(hp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
2305 netif_stop_queue(dev
);
2306 spin_unlock_irq(&hp
->happy_lock
);
2307 printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
2309 return NETDEV_TX_BUSY
;
2313 SXD(("SX<l[%d]e[%d]>", len
, entry
));
2314 hp
->tx_skbs
[entry
] = skb
;
2316 if (skb_shinfo(skb
)->nr_frags
== 0) {
2320 mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
2321 if (unlikely(dma_mapping_error(hp
->dma_dev
, mapping
)))
2323 tx_flags
|= (TXFLAG_SOP
| TXFLAG_EOP
);
2324 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2325 (tx_flags
| (len
& TXFLAG_SIZE
)),
2327 entry
= NEXT_TX(entry
);
2329 u32 first_len
, first_mapping
;
2330 int frag
, first_entry
= entry
;
2332 /* We must give this initial chunk to the device last.
2333 * Otherwise we could race with the device.
2335 first_len
= skb_headlen(skb
);
2336 first_mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, first_len
,
2338 if (unlikely(dma_mapping_error(hp
->dma_dev
, first_mapping
)))
2340 entry
= NEXT_TX(entry
);
2342 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
2343 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
2344 u32 len
, mapping
, this_txflags
;
2346 len
= skb_frag_size(this_frag
);
2347 mapping
= skb_frag_dma_map(hp
->dma_dev
, this_frag
,
2348 0, len
, DMA_TO_DEVICE
);
2349 if (unlikely(dma_mapping_error(hp
->dma_dev
, mapping
))) {
2350 unmap_partial_tx_skb(hp
, first_mapping
, first_len
,
2351 first_entry
, entry
);
2354 this_txflags
= tx_flags
;
2355 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
2356 this_txflags
|= TXFLAG_EOP
;
2357 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2358 (this_txflags
| (len
& TXFLAG_SIZE
)),
2360 entry
= NEXT_TX(entry
);
2362 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[first_entry
],
2363 (tx_flags
| TXFLAG_SOP
| (first_len
& TXFLAG_SIZE
)),
2369 if (TX_BUFFS_AVAIL(hp
) <= (MAX_SKB_FRAGS
+ 1))
2370 netif_stop_queue(dev
);
2373 hme_write32(hp
, hp
->etxregs
+ ETX_PENDING
, ETX_TP_DMAWAKEUP
);
2375 spin_unlock_irq(&hp
->happy_lock
);
2377 tx_add_log(hp
, TXLOG_ACTION_TXMIT
, 0);
2378 return NETDEV_TX_OK
;
2381 hp
->tx_skbs
[hp
->tx_new
] = NULL
;
2382 spin_unlock_irq(&hp
->happy_lock
);
2384 dev_kfree_skb_any(skb
);
2385 dev
->stats
.tx_dropped
++;
2386 return NETDEV_TX_OK
;
2389 static struct net_device_stats
*happy_meal_get_stats(struct net_device
*dev
)
2391 struct happy_meal
*hp
= netdev_priv(dev
);
2393 spin_lock_irq(&hp
->happy_lock
);
2394 happy_meal_get_counters(hp
, hp
->bigmacregs
);
2395 spin_unlock_irq(&hp
->happy_lock
);
2400 static void happy_meal_set_multicast(struct net_device
*dev
)
2402 struct happy_meal
*hp
= netdev_priv(dev
);
2403 void __iomem
*bregs
= hp
->bigmacregs
;
2404 struct netdev_hw_addr
*ha
;
2407 spin_lock_irq(&hp
->happy_lock
);
2409 if ((dev
->flags
& IFF_ALLMULTI
) || (netdev_mc_count(dev
) > 64)) {
2410 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
2411 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
2412 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
2413 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
2414 } else if (dev
->flags
& IFF_PROMISC
) {
2415 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
2416 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_PMISC
);
2420 memset(hash_table
, 0, sizeof(hash_table
));
2421 netdev_for_each_mc_addr(ha
, dev
) {
2422 crc
= ether_crc_le(6, ha
->addr
);
2424 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
2426 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
2427 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
2428 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
2429 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
2432 spin_unlock_irq(&hp
->happy_lock
);
2435 /* Ethtool support... */
2436 static int hme_get_link_ksettings(struct net_device
*dev
,
2437 struct ethtool_link_ksettings
*cmd
)
2439 struct happy_meal
*hp
= netdev_priv(dev
);
2444 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2445 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2446 SUPPORTED_Autoneg
| SUPPORTED_TP
| SUPPORTED_MII
);
2448 /* XXX hardcoded stuff for now */
2449 cmd
->base
.port
= PORT_TP
; /* XXX no MII support */
2450 cmd
->base
.phy_address
= 0; /* XXX fixed PHYAD */
2452 /* Record PHY settings. */
2453 spin_lock_irq(&hp
->happy_lock
);
2454 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2455 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_LPA
);
2456 spin_unlock_irq(&hp
->happy_lock
);
2458 if (hp
->sw_bmcr
& BMCR_ANENABLE
) {
2459 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
2460 speed
= ((hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) ?
2461 SPEED_100
: SPEED_10
);
2462 if (speed
== SPEED_100
)
2464 (hp
->sw_lpa
& (LPA_100FULL
)) ?
2465 DUPLEX_FULL
: DUPLEX_HALF
;
2468 (hp
->sw_lpa
& (LPA_10FULL
)) ?
2469 DUPLEX_FULL
: DUPLEX_HALF
;
2471 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
2472 speed
= (hp
->sw_bmcr
& BMCR_SPEED100
) ? SPEED_100
: SPEED_10
;
2474 (hp
->sw_bmcr
& BMCR_FULLDPLX
) ?
2475 DUPLEX_FULL
: DUPLEX_HALF
;
2477 cmd
->base
.speed
= speed
;
2478 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
2484 static int hme_set_link_ksettings(struct net_device
*dev
,
2485 const struct ethtool_link_ksettings
*cmd
)
2487 struct happy_meal
*hp
= netdev_priv(dev
);
2489 /* Verify the settings we care about. */
2490 if (cmd
->base
.autoneg
!= AUTONEG_ENABLE
&&
2491 cmd
->base
.autoneg
!= AUTONEG_DISABLE
)
2493 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
&&
2494 ((cmd
->base
.speed
!= SPEED_100
&&
2495 cmd
->base
.speed
!= SPEED_10
) ||
2496 (cmd
->base
.duplex
!= DUPLEX_HALF
&&
2497 cmd
->base
.duplex
!= DUPLEX_FULL
)))
2500 /* Ok, do it to it. */
2501 spin_lock_irq(&hp
->happy_lock
);
2502 del_timer(&hp
->happy_timer
);
2503 happy_meal_begin_auto_negotiation(hp
, hp
->tcvregs
, cmd
);
2504 spin_unlock_irq(&hp
->happy_lock
);
2509 static void hme_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2511 struct happy_meal
*hp
= netdev_priv(dev
);
2513 strlcpy(info
->driver
, "sunhme", sizeof(info
->driver
));
2514 strlcpy(info
->version
, "2.02", sizeof(info
->version
));
2515 if (hp
->happy_flags
& HFLAG_PCI
) {
2516 struct pci_dev
*pdev
= hp
->happy_dev
;
2517 strlcpy(info
->bus_info
, pci_name(pdev
), sizeof(info
->bus_info
));
2521 const struct linux_prom_registers
*regs
;
2522 struct platform_device
*op
= hp
->happy_dev
;
2523 regs
= of_get_property(op
->dev
.of_node
, "regs", NULL
);
2525 snprintf(info
->bus_info
, sizeof(info
->bus_info
),
2532 static u32
hme_get_link(struct net_device
*dev
)
2534 struct happy_meal
*hp
= netdev_priv(dev
);
2536 spin_lock_irq(&hp
->happy_lock
);
2537 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2538 spin_unlock_irq(&hp
->happy_lock
);
2540 return hp
->sw_bmsr
& BMSR_LSTATUS
;
2543 static const struct ethtool_ops hme_ethtool_ops
= {
2544 .get_drvinfo
= hme_get_drvinfo
,
2545 .get_link
= hme_get_link
,
2546 .get_link_ksettings
= hme_get_link_ksettings
,
2547 .set_link_ksettings
= hme_set_link_ksettings
,
2550 static int hme_version_printed
;
2553 /* Given a happy meal sbus device, find it's quattro parent.
2554 * If none exist, allocate and return a new one.
2556 * Return NULL on failure.
2558 static struct quattro
*quattro_sbus_find(struct platform_device
*child
)
2560 struct device
*parent
= child
->dev
.parent
;
2561 struct platform_device
*op
;
2564 op
= to_platform_device(parent
);
2565 qp
= platform_get_drvdata(op
);
2569 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2573 for (i
= 0; i
< 4; i
++)
2574 qp
->happy_meals
[i
] = NULL
;
2576 qp
->quattro_dev
= child
;
2577 qp
->next
= qfe_sbus_list
;
2580 platform_set_drvdata(op
, qp
);
2585 /* After all quattro cards have been probed, we call these functions
2586 * to register the IRQ handlers for the cards that have been
2587 * successfully probed and skip the cards that failed to initialize
2589 static int __init
quattro_sbus_register_irqs(void)
2593 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2594 struct platform_device
*op
= qp
->quattro_dev
;
2595 int err
, qfe_slot
, skip
= 0;
2597 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2598 if (!qp
->happy_meals
[qfe_slot
])
2604 err
= request_irq(op
->archdata
.irqs
[0],
2605 quattro_sbus_interrupt
,
2606 IRQF_SHARED
, "Quattro",
2609 printk(KERN_ERR
"Quattro HME: IRQ registration "
2610 "error %d.\n", err
);
2618 static void quattro_sbus_free_irqs(void)
2622 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2623 struct platform_device
*op
= qp
->quattro_dev
;
2624 int qfe_slot
, skip
= 0;
2626 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2627 if (!qp
->happy_meals
[qfe_slot
])
2633 free_irq(op
->archdata
.irqs
[0], qp
);
2636 #endif /* CONFIG_SBUS */
2639 static struct quattro
*quattro_pci_find(struct pci_dev
*pdev
)
2641 struct pci_dev
*bdev
= pdev
->bus
->self
;
2644 if (!bdev
) return NULL
;
2645 for (qp
= qfe_pci_list
; qp
!= NULL
; qp
= qp
->next
) {
2646 struct pci_dev
*qpdev
= qp
->quattro_dev
;
2651 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2655 for (i
= 0; i
< 4; i
++)
2656 qp
->happy_meals
[i
] = NULL
;
2658 qp
->quattro_dev
= bdev
;
2659 qp
->next
= qfe_pci_list
;
2662 /* No range tricks necessary on PCI. */
2667 #endif /* CONFIG_PCI */
2669 static const struct net_device_ops hme_netdev_ops
= {
2670 .ndo_open
= happy_meal_open
,
2671 .ndo_stop
= happy_meal_close
,
2672 .ndo_start_xmit
= happy_meal_start_xmit
,
2673 .ndo_tx_timeout
= happy_meal_tx_timeout
,
2674 .ndo_get_stats
= happy_meal_get_stats
,
2675 .ndo_set_rx_mode
= happy_meal_set_multicast
,
2676 .ndo_set_mac_address
= eth_mac_addr
,
2677 .ndo_validate_addr
= eth_validate_addr
,
2681 static int happy_meal_sbus_probe_one(struct platform_device
*op
, int is_qfe
)
2683 struct device_node
*dp
= op
->dev
.of_node
, *sbus_dp
;
2684 struct quattro
*qp
= NULL
;
2685 struct happy_meal
*hp
;
2686 struct net_device
*dev
;
2687 int i
, qfe_slot
= -1;
2690 sbus_dp
= op
->dev
.parent
->of_node
;
2692 /* We can match PCI devices too, do not accept those here. */
2693 if (!of_node_name_eq(sbus_dp
, "sbus") && !of_node_name_eq(sbus_dp
, "sbi"))
2697 qp
= quattro_sbus_find(op
);
2700 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2701 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2708 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2711 SET_NETDEV_DEV(dev
, &op
->dev
);
2713 if (hme_version_printed
++ == 0)
2714 printk(KERN_INFO
"%s", version
);
2716 /* If user did not specify a MAC address specifically, use
2717 * the Quattro local-mac-address property...
2719 for (i
= 0; i
< 6; i
++) {
2720 if (macaddr
[i
] != 0)
2723 if (i
< 6) { /* a mac address was given */
2724 for (i
= 0; i
< 6; i
++)
2725 dev
->dev_addr
[i
] = macaddr
[i
];
2728 const unsigned char *addr
;
2731 addr
= of_get_property(dp
, "local-mac-address", &len
);
2733 if (qfe_slot
!= -1 && addr
&& len
== ETH_ALEN
)
2734 memcpy(dev
->dev_addr
, addr
, ETH_ALEN
);
2736 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, ETH_ALEN
);
2739 hp
= netdev_priv(dev
);
2742 hp
->dma_dev
= &op
->dev
;
2744 spin_lock_init(&hp
->happy_lock
);
2748 hp
->qfe_parent
= qp
;
2749 hp
->qfe_ent
= qfe_slot
;
2750 qp
->happy_meals
[qfe_slot
] = dev
;
2753 hp
->gregs
= of_ioremap(&op
->resource
[0], 0,
2754 GREG_REG_SIZE
, "HME Global Regs");
2756 printk(KERN_ERR
"happymeal: Cannot map global registers.\n");
2757 goto err_out_free_netdev
;
2760 hp
->etxregs
= of_ioremap(&op
->resource
[1], 0,
2761 ETX_REG_SIZE
, "HME TX Regs");
2763 printk(KERN_ERR
"happymeal: Cannot map MAC TX registers.\n");
2764 goto err_out_iounmap
;
2767 hp
->erxregs
= of_ioremap(&op
->resource
[2], 0,
2768 ERX_REG_SIZE
, "HME RX Regs");
2770 printk(KERN_ERR
"happymeal: Cannot map MAC RX registers.\n");
2771 goto err_out_iounmap
;
2774 hp
->bigmacregs
= of_ioremap(&op
->resource
[3], 0,
2775 BMAC_REG_SIZE
, "HME BIGMAC Regs");
2776 if (!hp
->bigmacregs
) {
2777 printk(KERN_ERR
"happymeal: Cannot map BIGMAC registers.\n");
2778 goto err_out_iounmap
;
2781 hp
->tcvregs
= of_ioremap(&op
->resource
[4], 0,
2782 TCVR_REG_SIZE
, "HME Tranceiver Regs");
2784 printk(KERN_ERR
"happymeal: Cannot map TCVR registers.\n");
2785 goto err_out_iounmap
;
2788 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
2789 if (hp
->hm_revision
== 0xff)
2790 hp
->hm_revision
= 0xa0;
2792 /* Now enable the feature flags we can. */
2793 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
2794 hp
->happy_flags
= HFLAG_20_21
;
2795 else if (hp
->hm_revision
!= 0xa0)
2796 hp
->happy_flags
= HFLAG_NOT_A0
;
2799 hp
->happy_flags
|= HFLAG_QUATTRO
;
2801 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2802 hp
->happy_bursts
= of_getintprop_default(sbus_dp
,
2803 "burst-sizes", 0x00);
2805 hp
->happy_block
= dma_alloc_coherent(hp
->dma_dev
,
2810 if (!hp
->happy_block
)
2811 goto err_out_iounmap
;
2813 /* Force check of the link first time we are brought up. */
2816 /* Force timer state to 'asleep' with count of zero. */
2817 hp
->timer_state
= asleep
;
2818 hp
->timer_ticks
= 0;
2820 timer_setup(&hp
->happy_timer
, happy_meal_timer
, 0);
2823 dev
->netdev_ops
= &hme_netdev_ops
;
2824 dev
->watchdog_timeo
= 5*HZ
;
2825 dev
->ethtool_ops
= &hme_ethtool_ops
;
2827 /* Happy Meal can do it all... */
2828 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2829 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2831 hp
->irq
= op
->archdata
.irqs
[0];
2833 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2834 /* Hook up SBUS register/descriptor accessors. */
2835 hp
->read_desc32
= sbus_hme_read_desc32
;
2836 hp
->write_txd
= sbus_hme_write_txd
;
2837 hp
->write_rxd
= sbus_hme_write_rxd
;
2838 hp
->read32
= sbus_hme_read32
;
2839 hp
->write32
= sbus_hme_write32
;
2842 /* Grrr, Happy Meal comes up by default not advertising
2843 * full duplex 100baseT capabilities, fix this.
2845 spin_lock_irq(&hp
->happy_lock
);
2846 happy_meal_set_initial_advertisement(hp
);
2847 spin_unlock_irq(&hp
->happy_lock
);
2849 err
= register_netdev(hp
->dev
);
2851 printk(KERN_ERR
"happymeal: Cannot register net device, "
2853 goto err_out_free_coherent
;
2856 platform_set_drvdata(op
, hp
);
2859 printk(KERN_INFO
"%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2860 dev
->name
, qfe_slot
);
2862 printk(KERN_INFO
"%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2865 printk("%pM\n", dev
->dev_addr
);
2869 err_out_free_coherent
:
2870 dma_free_coherent(hp
->dma_dev
,
2877 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
2879 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
2881 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
2883 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
2885 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
2888 qp
->happy_meals
[qfe_slot
] = NULL
;
2890 err_out_free_netdev
:
2899 #ifndef CONFIG_SPARC
2900 static int is_quattro_p(struct pci_dev
*pdev
)
2902 struct pci_dev
*busdev
= pdev
->bus
->self
;
2903 struct pci_dev
*this_pdev
;
2906 if (busdev
== NULL
||
2907 busdev
->vendor
!= PCI_VENDOR_ID_DEC
||
2908 busdev
->device
!= PCI_DEVICE_ID_DEC_21153
)
2912 list_for_each_entry(this_pdev
, &pdev
->bus
->devices
, bus_list
) {
2913 if (this_pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2914 this_pdev
->device
== PCI_DEVICE_ID_SUN_HAPPYMEAL
)
2924 /* Fetch MAC address from vital product data of PCI ROM. */
2925 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, int index
, unsigned char *dev_addr
)
2929 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2930 void __iomem
*p
= rom_base
+ this_offset
;
2932 if (readb(p
+ 0) != 0x90 ||
2933 readb(p
+ 1) != 0x00 ||
2934 readb(p
+ 2) != 0x09 ||
2935 readb(p
+ 3) != 0x4e ||
2936 readb(p
+ 4) != 0x41 ||
2937 readb(p
+ 5) != 0x06)
2946 for (i
= 0; i
< 6; i
++)
2947 dev_addr
[i
] = readb(p
+ i
);
2955 static void get_hme_mac_nonsparc(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2958 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2964 if (is_quattro_p(pdev
))
2965 index
= PCI_SLOT(pdev
->devfn
);
2967 found
= readb(p
) == 0x55 &&
2968 readb(p
+ 1) == 0xaa &&
2969 find_eth_addr_in_vpd(p
, (64 * 1024), index
, dev_addr
);
2970 pci_unmap_rom(pdev
, p
);
2975 /* Sun MAC prefix then 3 random bytes. */
2979 get_random_bytes(&dev_addr
[3], 3);
2981 #endif /* !(CONFIG_SPARC) */
2983 static int happy_meal_pci_probe(struct pci_dev
*pdev
,
2984 const struct pci_device_id
*ent
)
2986 struct quattro
*qp
= NULL
;
2988 struct device_node
*dp
;
2990 struct happy_meal
*hp
;
2991 struct net_device
*dev
;
2992 void __iomem
*hpreg_base
;
2993 unsigned long hpreg_res
;
2994 int i
, qfe_slot
= -1;
2998 /* Now make sure pci_dev cookie is there. */
3000 dp
= pci_device_to_OF_node(pdev
);
3001 snprintf(prom_name
, sizeof(prom_name
), "%pOFn", dp
);
3003 if (is_quattro_p(pdev
))
3004 strcpy(prom_name
, "SUNW,qfe");
3006 strcpy(prom_name
, "SUNW,hme");
3011 if (pci_enable_device(pdev
))
3013 pci_set_master(pdev
);
3015 if (!strcmp(prom_name
, "SUNW,qfe") || !strcmp(prom_name
, "qfe")) {
3016 qp
= quattro_pci_find(pdev
);
3019 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
3020 if (qp
->happy_meals
[qfe_slot
] == NULL
)
3026 dev
= alloc_etherdev(sizeof(struct happy_meal
));
3030 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3032 if (hme_version_printed
++ == 0)
3033 printk(KERN_INFO
"%s", version
);
3035 hp
= netdev_priv(dev
);
3037 hp
->happy_dev
= pdev
;
3038 hp
->dma_dev
= &pdev
->dev
;
3040 spin_lock_init(&hp
->happy_lock
);
3043 hp
->qfe_parent
= qp
;
3044 hp
->qfe_ent
= qfe_slot
;
3045 qp
->happy_meals
[qfe_slot
] = dev
;
3048 hpreg_res
= pci_resource_start(pdev
, 0);
3050 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3051 printk(KERN_ERR
"happymeal(PCI): Cannot find proper PCI device base address.\n");
3052 goto err_out_clear_quattro
;
3054 if (pci_request_regions(pdev
, DRV_NAME
)) {
3055 printk(KERN_ERR
"happymeal(PCI): Cannot obtain PCI resources, "
3057 goto err_out_clear_quattro
;
3060 if ((hpreg_base
= ioremap(hpreg_res
, 0x8000)) == NULL
) {
3061 printk(KERN_ERR
"happymeal(PCI): Unable to remap card memory.\n");
3062 goto err_out_free_res
;
3065 for (i
= 0; i
< 6; i
++) {
3066 if (macaddr
[i
] != 0)
3069 if (i
< 6) { /* a mac address was given */
3070 for (i
= 0; i
< 6; i
++)
3071 dev
->dev_addr
[i
] = macaddr
[i
];
3075 const unsigned char *addr
;
3078 if (qfe_slot
!= -1 &&
3079 (addr
= of_get_property(dp
, "local-mac-address", &len
))
3082 memcpy(dev
->dev_addr
, addr
, ETH_ALEN
);
3084 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, ETH_ALEN
);
3087 get_hme_mac_nonsparc(pdev
, &dev
->dev_addr
[0]);
3091 /* Layout registers. */
3092 hp
->gregs
= (hpreg_base
+ 0x0000UL
);
3093 hp
->etxregs
= (hpreg_base
+ 0x2000UL
);
3094 hp
->erxregs
= (hpreg_base
+ 0x4000UL
);
3095 hp
->bigmacregs
= (hpreg_base
+ 0x6000UL
);
3096 hp
->tcvregs
= (hpreg_base
+ 0x7000UL
);
3099 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
3100 if (hp
->hm_revision
== 0xff)
3101 hp
->hm_revision
= 0xc0 | (pdev
->revision
& 0x0f);
3103 /* works with this on non-sparc hosts */
3104 hp
->hm_revision
= 0x20;
3107 /* Now enable the feature flags we can. */
3108 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
3109 hp
->happy_flags
= HFLAG_20_21
;
3110 else if (hp
->hm_revision
!= 0xa0 && hp
->hm_revision
!= 0xc0)
3111 hp
->happy_flags
= HFLAG_NOT_A0
;
3114 hp
->happy_flags
|= HFLAG_QUATTRO
;
3116 /* And of course, indicate this is PCI. */
3117 hp
->happy_flags
|= HFLAG_PCI
;
3120 /* Assume PCI happy meals can handle all burst sizes. */
3121 hp
->happy_bursts
= DMA_BURSTBITS
;
3124 hp
->happy_block
= dma_alloc_coherent(&pdev
->dev
, PAGE_SIZE
,
3125 &hp
->hblock_dvma
, GFP_KERNEL
);
3127 if (!hp
->happy_block
)
3128 goto err_out_iounmap
;
3131 hp
->timer_state
= asleep
;
3132 hp
->timer_ticks
= 0;
3134 timer_setup(&hp
->happy_timer
, happy_meal_timer
, 0);
3136 hp
->irq
= pdev
->irq
;
3138 dev
->netdev_ops
= &hme_netdev_ops
;
3139 dev
->watchdog_timeo
= 5*HZ
;
3140 dev
->ethtool_ops
= &hme_ethtool_ops
;
3142 /* Happy Meal can do it all... */
3143 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3144 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
3146 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3147 /* Hook up PCI register/descriptor accessors. */
3148 hp
->read_desc32
= pci_hme_read_desc32
;
3149 hp
->write_txd
= pci_hme_write_txd
;
3150 hp
->write_rxd
= pci_hme_write_rxd
;
3151 hp
->read32
= pci_hme_read32
;
3152 hp
->write32
= pci_hme_write32
;
3155 /* Grrr, Happy Meal comes up by default not advertising
3156 * full duplex 100baseT capabilities, fix this.
3158 spin_lock_irq(&hp
->happy_lock
);
3159 happy_meal_set_initial_advertisement(hp
);
3160 spin_unlock_irq(&hp
->happy_lock
);
3162 err
= register_netdev(hp
->dev
);
3164 printk(KERN_ERR
"happymeal(PCI): Cannot register net device, "
3166 goto err_out_iounmap
;
3169 pci_set_drvdata(pdev
, hp
);
3172 struct pci_dev
*qpdev
= qp
->quattro_dev
;
3175 if (!strncmp(dev
->name
, "eth", 3)) {
3176 int i
= simple_strtoul(dev
->name
+ 3, NULL
, 10);
3177 sprintf(prom_name
, "-%d", i
+ 3);
3179 printk(KERN_INFO
"%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev
->name
, prom_name
);
3180 if (qpdev
->vendor
== PCI_VENDOR_ID_DEC
&&
3181 qpdev
->device
== PCI_DEVICE_ID_DEC_21153
)
3182 printk("DEC 21153 PCI Bridge\n");
3184 printk("unknown bridge %04x.%04x\n",
3185 qpdev
->vendor
, qpdev
->device
);
3189 printk(KERN_INFO
"%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3190 dev
->name
, qfe_slot
);
3192 printk(KERN_INFO
"%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3195 printk("%pM\n", dev
->dev_addr
);
3203 pci_release_regions(pdev
);
3205 err_out_clear_quattro
:
3207 qp
->happy_meals
[qfe_slot
] = NULL
;
3215 static void happy_meal_pci_remove(struct pci_dev
*pdev
)
3217 struct happy_meal
*hp
= pci_get_drvdata(pdev
);
3218 struct net_device
*net_dev
= hp
->dev
;
3220 unregister_netdev(net_dev
);
3222 dma_free_coherent(hp
->dma_dev
, PAGE_SIZE
,
3223 hp
->happy_block
, hp
->hblock_dvma
);
3225 pci_release_regions(hp
->happy_dev
);
3227 free_netdev(net_dev
);
3230 static const struct pci_device_id happymeal_pci_ids
[] = {
3231 { PCI_DEVICE(PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_HAPPYMEAL
) },
3232 { } /* Terminating entry */
3235 MODULE_DEVICE_TABLE(pci
, happymeal_pci_ids
);
3237 static struct pci_driver hme_pci_driver
= {
3239 .id_table
= happymeal_pci_ids
,
3240 .probe
= happy_meal_pci_probe
,
3241 .remove
= happy_meal_pci_remove
,
3244 static int __init
happy_meal_pci_init(void)
3246 return pci_register_driver(&hme_pci_driver
);
3249 static void happy_meal_pci_exit(void)
3251 pci_unregister_driver(&hme_pci_driver
);
3253 while (qfe_pci_list
) {
3254 struct quattro
*qfe
= qfe_pci_list
;
3255 struct quattro
*next
= qfe
->next
;
3259 qfe_pci_list
= next
;
3266 static const struct of_device_id hme_sbus_match
[];
3267 static int hme_sbus_probe(struct platform_device
*op
)
3269 const struct of_device_id
*match
;
3270 struct device_node
*dp
= op
->dev
.of_node
;
3271 const char *model
= of_get_property(dp
, "model", NULL
);
3274 match
= of_match_device(hme_sbus_match
, &op
->dev
);
3277 is_qfe
= (match
->data
!= NULL
);
3279 if (!is_qfe
&& model
&& !strcmp(model
, "SUNW,sbus-qfe"))
3282 return happy_meal_sbus_probe_one(op
, is_qfe
);
3285 static int hme_sbus_remove(struct platform_device
*op
)
3287 struct happy_meal
*hp
= platform_get_drvdata(op
);
3288 struct net_device
*net_dev
= hp
->dev
;
3290 unregister_netdev(net_dev
);
3292 /* XXX qfe parent interrupt... */
3294 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
3295 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
3296 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
3297 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
3298 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
3299 dma_free_coherent(hp
->dma_dev
,
3304 free_netdev(net_dev
);
3309 static const struct of_device_id hme_sbus_match
[] = {
3324 MODULE_DEVICE_TABLE(of
, hme_sbus_match
);
3326 static struct platform_driver hme_sbus_driver
= {
3329 .of_match_table
= hme_sbus_match
,
3331 .probe
= hme_sbus_probe
,
3332 .remove
= hme_sbus_remove
,
3335 static int __init
happy_meal_sbus_init(void)
3339 err
= platform_driver_register(&hme_sbus_driver
);
3341 err
= quattro_sbus_register_irqs();
3346 static void happy_meal_sbus_exit(void)
3348 platform_driver_unregister(&hme_sbus_driver
);
3349 quattro_sbus_free_irqs();
3351 while (qfe_sbus_list
) {
3352 struct quattro
*qfe
= qfe_sbus_list
;
3353 struct quattro
*next
= qfe
->next
;
3357 qfe_sbus_list
= next
;
3362 static int __init
happy_meal_probe(void)
3367 err
= happy_meal_sbus_init();
3371 err
= happy_meal_pci_init();
3374 happy_meal_sbus_exit();
3383 static void __exit
happy_meal_exit(void)
3386 happy_meal_sbus_exit();
3389 happy_meal_pci_exit();
3393 module_init(happy_meal_probe
);
3394 module_exit(happy_meal_exit
);