1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Tehuti Networks(R) Network Driver
4 * ethtool interface implementation
5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
9 * RX HW/SW interaction overview
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * There are 2 types of RX communication channels between driver and NIC.
12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
14 * info about buffer's location, size and ID. An ID field is used to identify a
15 * buffer when it's returned with data via RXD Fifo (see below)
16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
25 * filled with data, HW builds new RXD descriptor for it and push it into single
28 * RX SW Data Structures
29 * ~~~~~~~~~~~~~~~~~~~~~
30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
31 * For RX case, ownership lasts from allocating new empty skb for RXF until
32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
33 * skb db. Implemented as array with bitmask.
34 * fifo - keeps info about fifo's size and location, relevant HW registers,
35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
36 * Implemented as simple struct.
38 * RX SW Execution Flow
39 * ~~~~~~~~~~~~~~~~~~~~
40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
41 * relevant registers. At the end of init phase, driver enables interrupts.
42 * NIC sees that there is no RXF buffers and raises
43 * RD_INTR interrupt, isr fills skbs and Rx begins.
44 * Driver has two receive operation modes:
45 * NAPI - interrupt-driven mixed with polling
46 * interrupt-driven only
48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
49 * interrupt and isr is called. isr collects all available packets
50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
52 * Rx buffer allocation note
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Driver cares to feed such amount of RxF descriptors that respective amount of
55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
56 * overflow check in Bordeaux for RxD fifo free/used size.
57 * FIXME: this is NOT fully implemented, more work should be done
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 static const struct pci_device_id bdx_pci_tbl
[] = {
66 { PCI_VDEVICE(TEHUTI
, 0x3009), },
67 { PCI_VDEVICE(TEHUTI
, 0x3010), },
68 { PCI_VDEVICE(TEHUTI
, 0x3014), },
72 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
74 /* Definitions needed by ISR or NAPI functions */
75 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
76 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
77 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
79 /* Definitions needed by FW loading */
80 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
82 /* Definitions needed by hw_start */
83 static int bdx_tx_init(struct bdx_priv
*priv
);
84 static int bdx_rx_init(struct bdx_priv
*priv
);
86 /* Definitions needed by bdx_close */
87 static void bdx_rx_free(struct bdx_priv
*priv
);
88 static void bdx_tx_free(struct bdx_priv
*priv
);
90 /* Definitions needed by bdx_probe */
91 static void bdx_set_ethtool_ops(struct net_device
*netdev
);
93 /*************************************************************************
95 *************************************************************************/
97 static void print_hw_id(struct pci_dev
*pdev
)
99 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
100 u16 pci_link_status
= 0;
103 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
104 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
106 pr_info("%s%s\n", BDX_NIC_NAME
,
107 nic
->port_num
== 1 ? "" : ", 2-Port");
108 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
109 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
110 readl(nic
->regs
+ FPGA_SEED
),
111 GET_LINK_STATUS_LANES(pci_link_status
),
112 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
115 static void print_fw_id(struct pci_nic
*nic
)
117 pr_info("fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
120 static void print_eth_id(struct net_device
*ndev
)
122 netdev_info(ndev
, "%s, Port %c\n",
123 BDX_NIC_NAME
, (ndev
->if_port
== 0) ? 'A' : 'B');
127 /*************************************************************************
129 *************************************************************************/
131 #define bdx_enable_interrupts(priv) \
132 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
133 #define bdx_disable_interrupts(priv) \
134 do { WRITE_REG(priv, regIMR, 0); } while (0)
137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
138 * @priv: NIC private structure
139 * @f: fifo to initialize
140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
141 * @reg_CFG0: offsets of registers relative to base address
142 * @reg_CFG1: offsets of registers relative to base address
143 * @reg_RPTR: offsets of registers relative to base address
144 * @reg_WPTR: offsets of registers relative to base address
146 * 1K extra space is allocated at the end of the fifo to simplify
147 * processing of descriptors that wraps around fifo's end
149 * Returns 0 on success, negative value on failure
153 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
154 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
156 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
158 memset(f
, 0, sizeof(struct fifo
));
159 /* dma_alloc_coherent gives us 4k-aligned memory */
160 f
->va
= dma_alloc_coherent(&priv
->pdev
->dev
, memsz
+ FIFO_EXTRA_SPACE
,
163 pr_err("dma_alloc_coherent failed\n");
166 f
->reg_CFG0
= reg_CFG0
;
167 f
->reg_CFG1
= reg_CFG1
;
168 f
->reg_RPTR
= reg_RPTR
;
169 f
->reg_WPTR
= reg_WPTR
;
173 f
->size_mask
= memsz
- 1;
174 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
175 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
181 * bdx_fifo_free - free all resources used by fifo
182 * @priv: NIC private structure
183 * @f: fifo to release
185 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
189 dma_free_coherent(&priv
->pdev
->dev
,
190 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
197 * bdx_link_changed - notifies OS about hw link state.
198 * @priv: hw adapter structure
200 static void bdx_link_changed(struct bdx_priv
*priv
)
202 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
205 if (netif_carrier_ok(priv
->ndev
)) {
206 netif_stop_queue(priv
->ndev
);
207 netif_carrier_off(priv
->ndev
);
208 netdev_err(priv
->ndev
, "Link Down\n");
211 if (!netif_carrier_ok(priv
->ndev
)) {
212 netif_wake_queue(priv
->ndev
);
213 netif_carrier_on(priv
->ndev
);
214 netdev_err(priv
->ndev
, "Link Up\n");
219 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
221 if (isr
& IR_RX_FREE_0
) {
222 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
226 if (isr
& IR_LNKCHG0
)
227 bdx_link_changed(priv
);
229 if (isr
& IR_PCIE_LINK
)
230 netdev_err(priv
->ndev
, "PCI-E Link Fault\n");
232 if (isr
& IR_PCIE_TOUT
)
233 netdev_err(priv
->ndev
, "PCI-E Time Out\n");
238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
239 * @irq: interrupt number
240 * @dev: network device
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
251 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
253 struct net_device
*ndev
= dev
;
254 struct bdx_priv
*priv
= netdev_priv(ndev
);
258 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
259 if (unlikely(!isr
)) {
260 bdx_enable_interrupts(priv
);
261 return IRQ_NONE
; /* Not our interrupt */
265 bdx_isr_extra(priv
, isr
);
267 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
268 if (likely(napi_schedule_prep(&priv
->napi
))) {
269 __napi_schedule(&priv
->napi
);
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv
, regTXF_WPTR_0
);
281 READ_REG(priv
, regRXD_WPTR_0
);
285 bdx_enable_interrupts(priv
);
289 static int bdx_poll(struct napi_struct
*napi
, int budget
)
291 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
295 bdx_tx_cleanup(priv
);
296 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
297 if ((work_done
< budget
) ||
298 (priv
->napi_stop
++ >= 30)) {
299 DBG("rx poll is done. backing to isr-driven\n");
301 /* from time to time we exit to let NAPI layer release
302 * device lock and allow waiting tasks (eg rmmod) to advance) */
305 napi_complete_done(napi
, work_done
);
306 bdx_enable_interrupts(priv
);
312 * bdx_fw_load - loads firmware to NIC
313 * @priv: NIC private structure
315 * Firmware is loaded via TXD fifo, so it must be initialized first.
316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
317 * can have few of them). So all drivers use semaphore register to choose one
318 * that will actually load FW to NIC.
321 static int bdx_fw_load(struct bdx_priv
*priv
)
323 const struct firmware
*fw
= NULL
;
328 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
329 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
330 rc
= request_firmware(&fw
, "tehuti/bdx.bin", &priv
->pdev
->dev
);
333 bdx_tx_push_desc_safe(priv
, (char *)fw
->data
, fw
->size
);
336 for (i
= 0; i
< 200; i
++) {
337 if (READ_REG(priv
, regINIT_STATUS
)) {
346 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
348 release_firmware(fw
);
351 netdev_err(priv
->ndev
, "firmware loading failed\n");
353 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
354 READ_REG(priv
, regVPC
),
355 READ_REG(priv
, regVIC
),
356 READ_REG(priv
, regINIT_STATUS
), i
);
359 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
364 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
369 DBG("mac0=%x mac1=%x mac2=%x\n",
370 READ_REG(priv
, regUNC_MAC0_A
),
371 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
373 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
374 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
375 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
376 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
377 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
378 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
380 DBG("mac0=%x mac1=%x mac2=%x\n",
381 READ_REG(priv
, regUNC_MAC0_A
),
382 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
388 * @priv: NIC private structure
390 static int bdx_hw_start(struct bdx_priv
*priv
)
393 struct net_device
*ndev
= priv
->ndev
;
396 bdx_link_changed(priv
);
398 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
399 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
400 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
401 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
402 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
403 WRITE_REG(priv
, regRX_FULLNESS
, 0);
404 WRITE_REG(priv
, regTX_FULLNESS
, 0);
405 WRITE_REG(priv
, regCTRLST
,
406 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
408 WRITE_REG(priv
, regVGLB
, 0);
409 WRITE_REG(priv
, regMAX_FRAME_A
,
410 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
412 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
413 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
414 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
416 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
417 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
419 /* Enable timer interrupt once in 2 secs. */
420 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
421 bdx_restore_mac(priv
->ndev
, priv
);
423 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
424 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
426 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
428 rc
= request_irq(priv
->pdev
->irq
, bdx_isr_napi
, BDX_IRQ_TYPE
,
432 bdx_enable_interrupts(priv
);
440 static void bdx_hw_stop(struct bdx_priv
*priv
)
443 bdx_disable_interrupts(priv
);
444 free_irq(priv
->pdev
->irq
, priv
->ndev
);
446 netif_carrier_off(priv
->ndev
);
447 netif_stop_queue(priv
->ndev
);
452 static int bdx_hw_reset_direct(void __iomem
*regs
)
457 /* reset sequences: read, write 1, read, write 0 */
458 val
= readl(regs
+ regCLKPLL
);
459 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
461 val
= readl(regs
+ regCLKPLL
);
462 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
464 /* check that the PLLs are locked and reset ended */
465 for (i
= 0; i
< 70; i
++, mdelay(10))
466 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
467 /* do any PCI-E read transaction */
468 readl(regs
+ regRXD_CFG0_0
);
471 pr_err("HW reset failed\n");
472 return 1; /* failure */
475 static int bdx_hw_reset(struct bdx_priv
*priv
)
480 if (priv
->port
== 0) {
481 /* reset sequences: read, write 1, read, write 0 */
482 val
= READ_REG(priv
, regCLKPLL
);
483 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
485 val
= READ_REG(priv
, regCLKPLL
);
486 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
488 /* check that the PLLs are locked and reset ended */
489 for (i
= 0; i
< 70; i
++, mdelay(10))
490 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
491 /* do any PCI-E read transaction */
492 READ_REG(priv
, regRXD_CFG0_0
);
495 pr_err("HW reset failed\n");
496 return 1; /* failure */
499 static int bdx_sw_reset(struct bdx_priv
*priv
)
504 /* 1. load MAC (obsolete) */
505 /* 2. disable Rx (and Tx) */
506 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
508 /* 3. disable port */
509 WRITE_REG(priv
, regDIS_PORT
, 1);
510 /* 4. disable queue */
511 WRITE_REG(priv
, regDIS_QU
, 1);
512 /* 5. wait until hw is disabled */
513 for (i
= 0; i
< 50; i
++) {
514 if (READ_REG(priv
, regRST_PORT
) & 1)
519 netdev_err(priv
->ndev
, "SW reset timeout. continuing anyway\n");
521 /* 6. disable intrs */
522 WRITE_REG(priv
, regRDINTCM0
, 0);
523 WRITE_REG(priv
, regTDINTCM0
, 0);
524 WRITE_REG(priv
, regIMR
, 0);
525 READ_REG(priv
, regISR
);
528 WRITE_REG(priv
, regRST_QU
, 1);
530 WRITE_REG(priv
, regRST_PORT
, 1);
531 /* 9. zero all read and write pointers */
532 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
533 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
534 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
535 WRITE_REG(priv
, i
, 0);
536 /* 10. unseet port disable */
537 WRITE_REG(priv
, regDIS_PORT
, 0);
538 /* 11. unset queue disable */
539 WRITE_REG(priv
, regDIS_QU
, 0);
540 /* 12. unset queue reset */
541 WRITE_REG(priv
, regRST_QU
, 0);
542 /* 13. unset port reset */
543 WRITE_REG(priv
, regRST_PORT
, 0);
545 /* skiped. will be done later */
546 /* 15. save MAC (obsolete) */
547 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
548 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
553 /* bdx_reset - performs right type of reset depending on hw type */
554 static int bdx_reset(struct bdx_priv
*priv
)
557 RET((priv
->pdev
->device
== 0x3009)
559 : bdx_sw_reset(priv
));
563 * bdx_close - Disables a network interface
564 * @ndev: network interface device structure
566 * Returns 0, this is not allowed to fail
568 * The close entry point is called when an interface is de-activated
569 * by the OS. The hardware is still under the drivers control, but
570 * needs to be disabled. A global MAC reset is issued to stop the
571 * hardware, and all transmit and receive resources are freed.
573 static int bdx_close(struct net_device
*ndev
)
575 struct bdx_priv
*priv
= NULL
;
578 priv
= netdev_priv(ndev
);
580 napi_disable(&priv
->napi
);
590 * bdx_open - Called when a network interface is made active
591 * @ndev: network interface device structure
593 * Returns 0 on success, negative value on failure
595 * The open entry point is called when a network interface is made
596 * active by the system (IFF_UP). At this point all resources needed
597 * for transmit and receive operations are allocated, the interrupt
598 * handler is registered with the OS, the watchdog timer is started,
599 * and the stack is notified that the interface is ready.
601 static int bdx_open(struct net_device
*ndev
)
603 struct bdx_priv
*priv
;
607 priv
= netdev_priv(ndev
);
609 if (netif_running(ndev
))
610 netif_stop_queue(priv
->ndev
);
612 if ((rc
= bdx_tx_init(priv
)) ||
613 (rc
= bdx_rx_init(priv
)) ||
614 (rc
= bdx_fw_load(priv
)))
617 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
619 rc
= bdx_hw_start(priv
);
623 napi_enable(&priv
->napi
);
625 print_fw_id(priv
->nic
);
634 static int bdx_range_check(struct bdx_priv
*priv
, u32 offset
)
636 return (offset
> (u32
) (BDX_REGS_SIZE
/ priv
->nic
->port_num
)) ?
640 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
642 struct bdx_priv
*priv
= netdev_priv(ndev
);
648 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
649 if (cmd
!= SIOCDEVPRIVATE
) {
650 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
652 pr_err("can't copy from user\n");
655 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
660 if (!capable(CAP_SYS_RAWIO
))
666 error
= bdx_range_check(priv
, data
[1]);
669 data
[2] = READ_REG(priv
, data
[1]);
670 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
672 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
678 error
= bdx_range_check(priv
, data
[1]);
681 WRITE_REG(priv
, data
[1], data
[2]);
682 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
691 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
694 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
695 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
701 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
702 * @ndev: network device
704 * @enable: enable or disable vlan
706 * Passes VLAN filter table to hardware
708 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
710 struct bdx_priv
*priv
= netdev_priv(ndev
);
714 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
715 if (unlikely(vid
>= 4096)) {
716 pr_err("invalid VID: %u (> 4096)\n", vid
);
719 reg
= regVLAN_0
+ (vid
/ 32) * 4;
721 val
= READ_REG(priv
, reg
);
722 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
727 DBG2("new val %x\n", val
);
728 WRITE_REG(priv
, reg
, val
);
733 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
734 * @ndev: network device
736 * @vid: VLAN vid to add
738 static int bdx_vlan_rx_add_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
740 __bdx_vlan_rx_vid(ndev
, vid
, 1);
745 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
746 * @ndev: network device
748 * @vid: VLAN vid to kill
750 static int bdx_vlan_rx_kill_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
752 __bdx_vlan_rx_vid(ndev
, vid
, 0);
757 * bdx_change_mtu - Change the Maximum Transfer Unit
758 * @ndev: network interface device structure
759 * @new_mtu: new value for maximum frame size
761 * Returns 0 on success, negative on failure
763 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
768 if (netif_running(ndev
)) {
775 static void bdx_setmulti(struct net_device
*ndev
)
777 struct bdx_priv
*priv
= netdev_priv(ndev
);
780 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
784 /* IMF - imperfect (hash) rx multicat filter */
785 /* PMF - perfect rx multicat filter */
787 /* FIXME: RXE(OFF) */
788 if (ndev
->flags
& IFF_PROMISC
) {
789 rxf_val
|= GMAC_RX_FILTER_PRM
;
790 } else if (ndev
->flags
& IFF_ALLMULTI
) {
791 /* set IMF to accept all multicast frmaes */
792 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
793 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
794 } else if (!netdev_mc_empty(ndev
)) {
796 struct netdev_hw_addr
*ha
;
799 /* set IMF to deny all multicast frames */
800 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
801 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
802 /* set PMF to deny all multicast frames */
803 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
804 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
805 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
808 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
809 /* TBD: sort addresses and write them in ascending order
810 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
811 * multicast frames throu IMF */
812 /* accept the rest of addresses throu IMF */
813 netdev_for_each_mc_addr(ha
, ndev
) {
815 for (i
= 0; i
< ETH_ALEN
; i
++)
817 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
818 val
= READ_REG(priv
, reg
);
819 val
|= (1 << (hash
% 32));
820 WRITE_REG(priv
, reg
, val
);
824 DBG("only own mac %d\n", netdev_mc_count(ndev
));
825 rxf_val
|= GMAC_RX_FILTER_AB
;
827 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
833 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
835 struct bdx_priv
*priv
= netdev_priv(ndev
);
836 struct sockaddr
*addr
= p
;
840 if (netif_running(dev))
843 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
844 bdx_restore_mac(ndev
, priv
);
848 static int bdx_read_mac(struct bdx_priv
*priv
)
850 u16 macAddress
[3], i
;
853 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
854 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
855 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
856 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
857 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
858 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
859 for (i
= 0; i
< 3; i
++) {
860 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
861 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
866 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
870 val
= READ_REG(priv
, reg
);
871 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
875 /*Do the statistics-update work*/
876 static void bdx_update_stats(struct bdx_priv
*priv
)
878 struct bdx_stats
*stats
= &priv
->hw_stats
;
879 u64
*stats_vector
= (u64
*) stats
;
883 /*Fill HW structure */
885 /*First 12 statistics - 0x7200 - 0x72B0 */
886 for (i
= 0; i
< 12; i
++) {
887 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
890 BDX_ASSERT(addr
!= 0x72C0);
891 /* 0x72C0-0x72E0 RSRV */
893 for (; i
< 16; i
++) {
894 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
897 BDX_ASSERT(addr
!= 0x7330);
898 /* 0x7330-0x7360 RSRV */
900 for (; i
< 19; i
++) {
901 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
904 BDX_ASSERT(addr
!= 0x73A0);
905 /* 0x73A0-0x73B0 RSRV */
907 for (; i
< 23; i
++) {
908 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
911 BDX_ASSERT(addr
!= 0x7400);
912 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
915 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
917 static void print_rxfd(struct rxf_desc
*rxfd
);
919 /*************************************************************************
921 *************************************************************************/
923 static void bdx_rxdb_destroy(struct rxdb
*db
)
928 static struct rxdb
*bdx_rxdb_create(int nelem
)
933 db
= vmalloc(sizeof(struct rxdb
)
934 + (nelem
* sizeof(int))
935 + (nelem
* sizeof(struct rx_map
)));
936 if (likely(db
!= NULL
)) {
937 db
->stack
= (int *)(db
+ 1);
938 db
->elems
= (void *)(db
->stack
+ nelem
);
941 for (i
= 0; i
< nelem
; i
++)
942 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
949 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
951 BDX_ASSERT(db
->top
<= 0);
952 return db
->stack
[--(db
->top
)];
955 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
957 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
958 return db
->elems
+ n
;
961 static inline int bdx_rxdb_available(struct rxdb
*db
)
966 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
968 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
969 db
->stack
[(db
->top
)++] = n
;
972 /*************************************************************************
974 *************************************************************************/
977 * bdx_rx_init - initialize RX all related HW and SW resources
978 * @priv: NIC private structure
980 * Returns 0 on success, negative value on failure
982 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
983 * skb for rx. It assumes that Rx is desabled in HW
984 * funcs are grouped for better cache usage
986 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
987 * filled and packets will be dropped by nic without getting into host or
988 * cousing interrupt. Anyway, in that condition, host has no chance to process
989 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
992 /* TBD: ensure proper packet size */
994 static int bdx_rx_init(struct bdx_priv
*priv
)
998 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
999 regRXD_CFG0_0
, regRXD_CFG1_0
,
1000 regRXD_RPTR_0
, regRXD_WPTR_0
))
1002 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
1003 regRXF_CFG0_0
, regRXF_CFG1_0
,
1004 regRXF_RPTR_0
, regRXF_WPTR_0
))
1006 priv
->rxdb
= bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1007 sizeof(struct rxf_desc
));
1011 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1015 netdev_err(priv
->ndev
, "Rx init failed\n");
1020 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1021 * @priv: NIC private structure
1024 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1027 struct rxdb
*db
= priv
->rxdb
;
1031 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1032 db
->nelem
- bdx_rxdb_available(db
));
1033 while (bdx_rxdb_available(db
) > 0) {
1034 i
= bdx_rxdb_alloc_elem(db
);
1035 dm
= bdx_rxdb_addr_elem(db
, i
);
1038 for (i
= 0; i
< db
->nelem
; i
++) {
1039 dm
= bdx_rxdb_addr_elem(db
, i
);
1041 dma_unmap_single(&priv
->pdev
->dev
, dm
->dma
,
1042 f
->m
.pktsz
, DMA_FROM_DEVICE
);
1043 dev_kfree_skb(dm
->skb
);
1049 * bdx_rx_free - release all Rx resources
1050 * @priv: NIC private structure
1052 * It assumes that Rx is desabled in HW
1054 static void bdx_rx_free(struct bdx_priv
*priv
)
1058 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1059 bdx_rxdb_destroy(priv
->rxdb
);
1062 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1063 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1068 /*************************************************************************
1070 *************************************************************************/
1073 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1074 * @priv: nic's private structure
1075 * @f: RXF fifo that needs skbs
1077 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1078 * skb's virtual and physical addresses are stored in skb db.
1079 * To calculate free space, func uses cached values of RPTR and WPTR
1080 * When needed, it also updates RPTR and WPTR.
1083 /* TBD: do not update WPTR if no desc were written */
1085 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1087 struct sk_buff
*skb
;
1088 struct rxf_desc
*rxfd
;
1090 int dno
, delta
, idx
;
1091 struct rxdb
*db
= priv
->rxdb
;
1094 dno
= bdx_rxdb_available(db
) - 1;
1096 skb
= netdev_alloc_skb(priv
->ndev
, f
->m
.pktsz
+ NET_IP_ALIGN
);
1100 skb_reserve(skb
, NET_IP_ALIGN
);
1102 idx
= bdx_rxdb_alloc_elem(db
);
1103 dm
= bdx_rxdb_addr_elem(db
, idx
);
1104 dm
->dma
= dma_map_single(&priv
->pdev
->dev
, skb
->data
,
1105 f
->m
.pktsz
, DMA_FROM_DEVICE
);
1107 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1108 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1110 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1111 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1112 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1115 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1116 delta
= f
->m
.wptr
- f
->m
.memsz
;
1117 if (unlikely(delta
>= 0)) {
1120 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1121 DBG("wrapped descriptor\n");
1126 /*TBD: to do - delayed rxf wptr like in txd */
1127 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1132 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1133 struct sk_buff
*skb
)
1136 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1
));
1137 if (GET_RXD_VTAG(rxd_val1
)) {
1138 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1140 GET_RXD_VLAN_ID(rxd_vlan
),
1141 GET_RXD_VTAG(rxd_val1
));
1142 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), GET_RXD_VLAN_TCI(rxd_vlan
));
1144 netif_receive_skb(skb
);
1147 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1149 struct rxf_desc
*rxfd
;
1156 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1157 f
= &priv
->rxf_fifo0
;
1159 DBG("db=%p f=%p\n", db
, f
);
1160 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1162 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1163 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1164 rxfd
->va_lo
= rxdd
->va_lo
;
1165 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1166 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1167 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1170 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1171 delta
= f
->m
.wptr
- f
->m
.memsz
;
1172 if (unlikely(delta
>= 0)) {
1175 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1176 DBG("wrapped descriptor\n");
1183 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1184 * NOTE: a special treatment is given to non-continuous descriptors
1185 * that start near the end, wraps around and continue at the beginning. a second
1186 * part is copied right after the first, and then descriptor is interpreted as
1187 * normal. fifo has an extra space to allow such operations
1188 * @priv: nic's private structure
1189 * @f: RXF fifo that needs skbs
1190 * @budget: maximum number of packets to receive
1193 /* TBD: replace memcpy func call by explicite inline asm */
1195 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1197 struct net_device
*ndev
= priv
->ndev
;
1198 struct sk_buff
*skb
, *skb2
;
1199 struct rxd_desc
*rxdd
;
1201 struct rxf_fifo
*rxf_fifo
;
1204 int max_done
= BDX_MAX_RX_DONE
;
1205 struct rxdb
*db
= NULL
;
1206 /* Unmarshalled descriptor - copy of descriptor in host order */
1214 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1216 size
= f
->m
.wptr
- f
->m
.rptr
;
1218 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1222 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1223 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1225 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1227 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1229 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1231 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1232 BDX_ASSERT(tmp_len
<= 0);
1234 if (size
< 0) /* test for partially arrived descriptor */
1237 f
->m
.rptr
+= tmp_len
;
1239 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1240 if (unlikely(tmp_len
>= 0)) {
1241 f
->m
.rptr
= tmp_len
;
1243 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1244 f
->m
.rptr
, tmp_len
);
1245 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1249 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1250 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1251 ndev
->stats
.rx_errors
++;
1252 bdx_recycle_skb(priv
, rxdd
);
1256 rxf_fifo
= &priv
->rxf_fifo0
;
1258 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1261 if (len
< BDX_COPYBREAK
&&
1262 (skb2
= netdev_alloc_skb(priv
->ndev
, len
+ NET_IP_ALIGN
))) {
1263 skb_reserve(skb2
, NET_IP_ALIGN
);
1264 /*skb_put(skb2, len); */
1265 dma_sync_single_for_cpu(&priv
->pdev
->dev
, dm
->dma
,
1268 memcpy(skb2
->data
, skb
->data
, len
);
1269 bdx_recycle_skb(priv
, rxdd
);
1272 dma_unmap_single(&priv
->pdev
->dev
, dm
->dma
,
1273 rxf_fifo
->m
.pktsz
, DMA_FROM_DEVICE
);
1274 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1277 ndev
->stats
.rx_bytes
+= len
;
1280 skb
->protocol
= eth_type_trans(skb
, ndev
);
1282 /* Non-IP packets aren't checksum-offloaded */
1283 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1284 skb_checksum_none_assert(skb
);
1286 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1288 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1290 if (++done
>= max_done
)
1294 ndev
->stats
.rx_packets
+= done
;
1296 /* FIXME: do smth to minimize pci accesses */
1297 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1299 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1304 /*************************************************************************
1305 * Debug / Temprorary Code *
1306 *************************************************************************/
1307 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1310 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1311 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1312 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1313 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1314 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1315 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1319 static void print_rxfd(struct rxf_desc
*rxfd
)
1321 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1322 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1323 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1327 * TX HW/SW interaction overview
1328 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1329 * There are 2 types of TX communication channels between driver and NIC.
1330 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1331 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1333 * Currently NIC supports TSO, checksuming and gather DMA
1334 * UFO and IP fragmentation is on the way
1336 * RX SW Data Structures
1337 * ~~~~~~~~~~~~~~~~~~~~~
1338 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1339 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1340 * acknowledges sent by TXF descriptors.
1341 * Implemented as cyclic buffer.
1342 * fifo - keeps info about fifo's size and location, relevant HW registers,
1343 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1344 * Implemented as simple struct.
1346 * TX SW Execution Flow
1347 * ~~~~~~~~~~~~~~~~~~~~
1348 * OS calls driver's hard_xmit method with packet to sent.
1349 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1350 * by updating TXD WPTR.
1351 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1352 * To prevent TXD fifo overflow without reading HW registers every time,
1353 * SW deploys "tx level" technique.
1354 * Upon strart up, tx level is initialized to TXD fifo length.
1355 * For every sent packet, SW gets its TXD descriptor sizei
1356 * (from precalculated array) and substructs it from tx level.
1357 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1358 * original TXD descriptor from txdb and adds it to tx level.
1359 * When Tx level drops under some predefined treshhold, the driver
1360 * stops the TX queue. When TX level rises above that level,
1361 * the tx queue is enabled again.
1363 * This technique avoids eccessive reading of RPTR and WPTR registers.
1364 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1368 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1370 * @pptr: read or write pointer
1372 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1374 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1376 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1377 *pptr
!= db
->wptr
); /* or write pointer */
1379 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1380 *pptr
>= db
->end
); /* in range */
1383 if (unlikely(*pptr
== db
->end
))
1388 * bdx_tx_db_inc_rptr - increment read pointer
1391 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1393 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1394 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1398 * bdx_tx_db_inc_wptr - increment write pointer
1401 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1403 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1404 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1405 a result of write */
1409 * bdx_tx_db_init - creates and initializes tx db
1411 * @sz_type: size of tx fifo
1413 * Returns 0 on success, error code otherwise
1415 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1417 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1419 d
->start
= vmalloc(memsz
);
1424 * In order to differentiate between db is empty and db is full
1425 * states at least one element should always be empty in order to
1426 * avoid rptr == wptr which means db is empty
1428 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1429 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1431 /* all dbs are created equally empty */
1439 * bdx_tx_db_close - closes tx db and frees all memory
1442 static void bdx_tx_db_close(struct txdb
*d
)
1444 BDX_ASSERT(d
== NULL
);
1450 /*************************************************************************
1452 *************************************************************************/
1454 /* sizes of tx desc (including padding if needed) as function
1455 * of skb's frag number */
1458 u16 qwords
; /* qword = 64 bit */
1459 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1462 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1463 * @priv: NIC private structure
1464 * @skb: socket buffer to map
1465 * @txdd: TX descriptor to use
1467 * It makes dma mappings for skb's data blocks and writes them to PBL of
1468 * new tx descriptor. It also stores them in the tx db, so they could be
1469 * unmaped after data was sent. It is reponsibility of a caller to make
1470 * sure that there is enough space in the tx db. Last element holds pointer
1471 * to skb itself and marked with zero length
1474 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1475 struct txd_desc
*txdd
)
1477 struct txdb
*db
= &priv
->txdb
;
1478 struct pbl
*pbl
= &txdd
->pbl
[0];
1479 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1482 db
->wptr
->len
= skb_headlen(skb
);
1483 db
->wptr
->addr
.dma
= dma_map_single(&priv
->pdev
->dev
, skb
->data
,
1484 db
->wptr
->len
, DMA_TO_DEVICE
);
1485 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1486 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1487 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1488 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1489 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1490 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1491 bdx_tx_db_inc_wptr(db
);
1493 for (i
= 0; i
< nr_frags
; i
++) {
1494 const skb_frag_t
*frag
;
1496 frag
= &skb_shinfo(skb
)->frags
[i
];
1497 db
->wptr
->len
= skb_frag_size(frag
);
1498 db
->wptr
->addr
.dma
= skb_frag_dma_map(&priv
->pdev
->dev
, frag
,
1499 0, skb_frag_size(frag
),
1503 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1504 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1505 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1506 bdx_tx_db_inc_wptr(db
);
1509 /* add skb clean up info. */
1510 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1511 db
->wptr
->addr
.skb
= skb
;
1512 bdx_tx_db_inc_wptr(db
);
1515 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1516 * number of frags is used as index to fetch correct descriptors size,
1517 * instead of calculating it each time */
1518 static void __init
init_txd_sizes(void)
1522 /* 7 - is number of lwords in txd with one phys buffer
1523 * 3 - is number of lwords used for every additional phys buffer */
1524 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1525 lwords
= 7 + (i
* 3);
1527 lwords
++; /* pad it with 1 lword */
1528 txd_sizes
[i
].qwords
= lwords
>> 1;
1529 txd_sizes
[i
].bytes
= lwords
<< 2;
1533 /* bdx_tx_init - initialize all Tx related stuff.
1534 * Namely, TXD and TXF fifos, database etc */
1535 static int bdx_tx_init(struct bdx_priv
*priv
)
1537 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1539 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1541 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1543 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1546 /* The TX db has to keep mappings for all packets sent (on TxD)
1547 * and not yet reclaimed (on TxF) */
1548 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1551 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1552 #ifdef BDX_DELAY_WPTR
1553 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1558 netdev_err(priv
->ndev
, "Tx init failed\n");
1563 * bdx_tx_space - calculates available space in TX fifo
1564 * @priv: NIC private structure
1566 * Returns available space in TX fifo in bytes
1568 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1570 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1573 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1574 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1576 fsize
= f
->m
.memsz
+ fsize
;
1581 * bdx_tx_transmit - send packet to NIC
1582 * @skb: packet to send
1583 * @ndev: network device assigned to NIC
1585 * o NETDEV_TX_OK everything ok.
1586 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1587 * Usually a bug, means queue start/stop flow control is broken in
1588 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1590 static netdev_tx_t
bdx_tx_transmit(struct sk_buff
*skb
,
1591 struct net_device
*ndev
)
1593 struct bdx_priv
*priv
= netdev_priv(ndev
);
1594 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1595 int txd_checksum
= 7; /* full checksum */
1597 int txd_vlan_id
= 0;
1601 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1602 struct txd_desc
*txdd
;
1604 unsigned long flags
;
1607 local_irq_save(flags
);
1608 spin_lock(&priv
->tx_lock
);
1610 /* build tx descriptor */
1611 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1612 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1613 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1616 if (skb_shinfo(skb
)->gso_size
) {
1617 txd_mss
= skb_shinfo(skb
)->gso_size
;
1619 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1623 if (skb_vlan_tag_present(skb
)) {
1624 /*Cut VLAN ID to 12 bits */
1625 txd_vlan_id
= skb_vlan_tag_get(skb
) & BITS_MASK(12);
1629 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1630 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1632 CPU_CHIP_SWAP32(TXD_W1_VAL
1633 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1634 txd_lgsnd
, txd_vlan_id
));
1635 DBG("=== TxD desc =====================\n");
1636 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1637 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1639 bdx_tx_map_skb(priv
, skb
, txdd
);
1641 /* increment TXD write pointer. In case of
1642 fifo wrapping copy reminder of the descriptor
1644 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1645 len
= f
->m
.wptr
- f
->m
.memsz
;
1646 if (unlikely(len
>= 0)) {
1649 BDX_ASSERT(len
> f
->m
.memsz
);
1650 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1653 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1655 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1656 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1657 #ifdef BDX_DELAY_WPTR
1658 if (priv
->tx_level
> priv
->tx_update_mark
) {
1659 /* Force memory writes to complete before letting h/w
1660 know there are new descriptors to fetch.
1661 (might be needed on platforms like IA64)
1663 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1665 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1667 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1668 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1672 /* Force memory writes to complete before letting h/w
1673 know there are new descriptors to fetch.
1674 (might be needed on platforms like IA64)
1676 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1680 netif_trans_update(ndev
); /* NETIF_F_LLTX driver :( */
1682 ndev
->stats
.tx_packets
++;
1683 ndev
->stats
.tx_bytes
+= skb
->len
;
1685 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1686 DBG("%s: %s: TX Q STOP level %d\n",
1687 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1688 netif_stop_queue(ndev
);
1691 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1692 return NETDEV_TX_OK
;
1696 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1697 * @priv: bdx adapter
1699 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1700 * that those packets were sent
1702 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1704 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1705 struct txdb
*db
= &priv
->txdb
;
1709 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1710 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1712 while (f
->m
.wptr
!= f
->m
.rptr
) {
1713 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1714 f
->m
.rptr
&= f
->m
.size_mask
;
1716 /* unmap all the fragments */
1717 /* first has to come tx_maps containing dma */
1718 BDX_ASSERT(db
->rptr
->len
== 0);
1720 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1721 dma_unmap_page(&priv
->pdev
->dev
, db
->rptr
->addr
.dma
,
1722 db
->rptr
->len
, DMA_TO_DEVICE
);
1723 bdx_tx_db_inc_rptr(db
);
1724 } while (db
->rptr
->len
> 0);
1725 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1727 /* now should come skb pointer - free it */
1728 dev_consume_skb_irq(db
->rptr
->addr
.skb
);
1729 bdx_tx_db_inc_rptr(db
);
1732 /* let h/w know which TXF descriptors were cleaned */
1733 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1734 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1736 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1737 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1738 spin_lock(&priv
->tx_lock
);
1739 priv
->tx_level
+= tx_level
;
1740 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1741 #ifdef BDX_DELAY_WPTR
1742 if (priv
->tx_noupd
) {
1744 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1745 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1749 if (unlikely(netif_queue_stopped(priv
->ndev
) &&
1750 netif_carrier_ok(priv
->ndev
) &&
1751 (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1752 DBG("%s: %s: TX Q WAKE level %d\n",
1753 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1754 netif_wake_queue(priv
->ndev
);
1756 spin_unlock(&priv
->tx_lock
);
1760 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1761 * @priv: NIC private structure
1763 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1765 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1767 struct txdb
*db
= &priv
->txdb
;
1770 while (db
->rptr
!= db
->wptr
) {
1771 if (likely(db
->rptr
->len
))
1772 dma_unmap_page(&priv
->pdev
->dev
, db
->rptr
->addr
.dma
,
1773 db
->rptr
->len
, DMA_TO_DEVICE
);
1775 dev_kfree_skb(db
->rptr
->addr
.skb
);
1776 bdx_tx_db_inc_rptr(db
);
1781 /* bdx_tx_free - frees all Tx resources */
1782 static void bdx_tx_free(struct bdx_priv
*priv
)
1785 bdx_tx_free_skbs(priv
);
1786 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1787 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1788 bdx_tx_db_close(&priv
->txdb
);
1792 * bdx_tx_push_desc - push descriptor to TxD fifo
1793 * @priv: NIC private structure
1794 * @data: desc's data
1795 * @size: desc's size
1797 * Pushes desc to TxD fifo and overlaps it if needed.
1798 * NOTE: this func does not check for available space. this is responsibility
1799 * of the caller. Neither does it check that data size is smaller than
1802 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1804 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1805 int i
= f
->m
.memsz
- f
->m
.wptr
;
1811 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1814 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1815 f
->m
.wptr
= size
- i
;
1816 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1818 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1822 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1823 * @priv: NIC private structure
1824 * @data: desc's data
1825 * @size: desc's size
1827 * NOTE: this func does check for available space and, if necessary, waits for
1828 * NIC to read existing data before writing new one.
1830 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1836 /* we substruct 8 because when fifo is full rptr == wptr
1837 which also means that fifo is empty, we can understand
1838 the difference, but could hw do the same ??? :) */
1839 int avail
= bdx_tx_space(priv
) - 8;
1841 if (timer
++ > 300) { /* prevent endless loop */
1842 DBG("timeout while writing desc to TxD fifo\n");
1845 udelay(50); /* give hw a chance to clean fifo */
1848 avail
= min(avail
, size
);
1849 DBG("about to push %d bytes starting %p size %d\n", avail
,
1851 bdx_tx_push_desc(priv
, data
, avail
);
1858 static const struct net_device_ops bdx_netdev_ops
= {
1859 .ndo_open
= bdx_open
,
1860 .ndo_stop
= bdx_close
,
1861 .ndo_start_xmit
= bdx_tx_transmit
,
1862 .ndo_validate_addr
= eth_validate_addr
,
1863 .ndo_do_ioctl
= bdx_ioctl
,
1864 .ndo_set_rx_mode
= bdx_setmulti
,
1865 .ndo_change_mtu
= bdx_change_mtu
,
1866 .ndo_set_mac_address
= bdx_set_mac
,
1867 .ndo_vlan_rx_add_vid
= bdx_vlan_rx_add_vid
,
1868 .ndo_vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
,
1872 * bdx_probe - Device Initialization Routine
1873 * @pdev: PCI device information struct
1874 * @ent: entry in bdx_pci_tbl
1876 * Returns 0 on success, negative on failure
1878 * bdx_probe initializes an adapter identified by a pci_dev structure.
1879 * The OS initialization, configuring of the adapter private structure,
1880 * and a hardware reset occur.
1882 * functions and their order used as explained in
1883 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1887 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1889 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1891 struct net_device
*ndev
;
1892 struct bdx_priv
*priv
;
1893 int err
, pci_using_dac
, port
;
1894 unsigned long pciaddr
;
1896 struct pci_nic
*nic
;
1900 nic
= vmalloc(sizeof(*nic
));
1904 /************** pci *****************/
1905 err
= pci_enable_device(pdev
);
1906 if (err
) /* it triggers interrupt, dunno why. */
1907 goto err_pci
; /* it's not a problem though */
1909 if (!(err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) &&
1910 !(err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64)))) {
1913 if ((err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32))) ||
1914 (err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32)))) {
1915 pr_err("No usable DMA configuration, aborting\n");
1921 err
= pci_request_regions(pdev
, BDX_DRV_NAME
);
1925 pci_set_master(pdev
);
1927 pciaddr
= pci_resource_start(pdev
, 0);
1930 pr_err("no MMIO resource\n");
1933 regionSize
= pci_resource_len(pdev
, 0);
1934 if (regionSize
< BDX_REGS_SIZE
) {
1936 pr_err("MMIO resource (%x) too small\n", regionSize
);
1940 nic
->regs
= ioremap(pciaddr
, regionSize
);
1943 pr_err("ioremap failed\n");
1947 if (pdev
->irq
< 2) {
1949 pr_err("invalid irq (%d)\n", pdev
->irq
);
1952 pci_set_drvdata(pdev
, nic
);
1954 if (pdev
->device
== 0x3014)
1961 bdx_hw_reset_direct(nic
->regs
);
1963 nic
->irq_type
= IRQ_INTX
;
1965 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1966 err
= pci_enable_msi(pdev
);
1968 pr_err("Can't enable msi. error is %d\n", err
);
1970 nic
->irq_type
= IRQ_MSI
;
1972 DBG("HW does not support MSI\n");
1975 /************** netdev **************/
1976 for (port
= 0; port
< nic
->port_num
; port
++) {
1977 ndev
= alloc_etherdev(sizeof(struct bdx_priv
));
1983 ndev
->netdev_ops
= &bdx_netdev_ops
;
1984 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
1986 bdx_set_ethtool_ops(ndev
); /* ethtool interface */
1988 /* these fields are used for info purposes only
1989 * so we can have them same for all ports of the board */
1990 ndev
->if_port
= port
;
1991 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
1992 | NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
|
1993 NETIF_F_HW_VLAN_CTAG_FILTER
| NETIF_F_RXCSUM
1995 ndev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1996 NETIF_F_TSO
| NETIF_F_HW_VLAN_CTAG_TX
;
1999 ndev
->features
|= NETIF_F_HIGHDMA
;
2001 /************** priv ****************/
2002 priv
= nic
->priv
[port
] = netdev_priv(ndev
);
2004 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2009 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2011 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2013 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2014 DBG("HW statistics not supported\n");
2015 priv
->stats_flag
= 0;
2017 priv
->stats_flag
= 1;
2020 /* Initialize fifo sizes. */
2026 /* Initialize the initial coalescing registers. */
2027 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2028 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2030 /* ndev->xmit_lock spinlock is not used.
2031 * Private priv->tx_lock is used for synchronization
2032 * between transmit and TX irq cleanup. In addition
2033 * set multicast list callback has to use priv->tx_lock.
2036 ndev
->features
|= NETIF_F_LLTX
;
2038 /* MTU range: 60 - 16384 */
2039 ndev
->min_mtu
= ETH_ZLEN
;
2040 ndev
->max_mtu
= BDX_MAX_MTU
;
2042 spin_lock_init(&priv
->tx_lock
);
2044 /*bdx_hw_reset(priv); */
2045 if (bdx_read_mac(priv
)) {
2046 pr_err("load MAC address failed\n");
2049 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2050 err
= register_netdev(ndev
);
2052 pr_err("register_netdev failed\n");
2055 netif_carrier_off(ndev
);
2056 netif_stop_queue(ndev
);
2067 pci_release_regions(pdev
);
2069 pci_disable_device(pdev
);
2076 /****************** Ethtool interface *********************/
2077 /* get strings for statistics counters */
2079 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2080 "InUCast", /* 0x7200 */
2081 "InMCast", /* 0x7210 */
2082 "InBCast", /* 0x7220 */
2083 "InPkts", /* 0x7230 */
2084 "InErrors", /* 0x7240 */
2085 "InDropped", /* 0x7250 */
2086 "FrameTooLong", /* 0x7260 */
2087 "FrameSequenceErrors", /* 0x7270 */
2088 "InVLAN", /* 0x7280 */
2089 "InDroppedDFE", /* 0x7290 */
2090 "InDroppedIntFull", /* 0x72A0 */
2091 "InFrameAlignErrors", /* 0x72B0 */
2093 /* 0x72C0-0x72E0 RSRV */
2095 "OutUCast", /* 0x72F0 */
2096 "OutMCast", /* 0x7300 */
2097 "OutBCast", /* 0x7310 */
2098 "OutPkts", /* 0x7320 */
2100 /* 0x7330-0x7360 RSRV */
2102 "OutVLAN", /* 0x7370 */
2103 "InUCastOctects", /* 0x7380 */
2104 "OutUCastOctects", /* 0x7390 */
2106 /* 0x73A0-0x73B0 RSRV */
2108 "InBCastOctects", /* 0x73C0 */
2109 "OutBCastOctects", /* 0x73D0 */
2110 "InOctects", /* 0x73E0 */
2111 "OutOctects", /* 0x73F0 */
2115 * bdx_get_link_ksettings - get device-specific settings
2119 static int bdx_get_link_ksettings(struct net_device
*netdev
,
2120 struct ethtool_link_ksettings
*ecmd
)
2122 ethtool_link_ksettings_zero_link_mode(ecmd
, supported
);
2123 ethtool_link_ksettings_add_link_mode(ecmd
, supported
,
2125 ethtool_link_ksettings_add_link_mode(ecmd
, supported
, FIBRE
);
2126 ethtool_link_ksettings_zero_link_mode(ecmd
, advertising
);
2127 ethtool_link_ksettings_add_link_mode(ecmd
, advertising
,
2129 ethtool_link_ksettings_add_link_mode(ecmd
, advertising
, FIBRE
);
2131 ecmd
->base
.speed
= SPEED_10000
;
2132 ecmd
->base
.duplex
= DUPLEX_FULL
;
2133 ecmd
->base
.port
= PORT_FIBRE
;
2134 ecmd
->base
.autoneg
= AUTONEG_DISABLE
;
2140 * bdx_get_drvinfo - report driver information
2145 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2147 struct bdx_priv
*priv
= netdev_priv(netdev
);
2149 strlcpy(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2150 strlcpy(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2151 strlcpy(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2152 strlcpy(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2153 sizeof(drvinfo
->bus_info
));
2157 * bdx_get_coalesce - get interrupt coalescing parameters
2162 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2166 struct bdx_priv
*priv
= netdev_priv(netdev
);
2168 rdintcm
= priv
->rdintcm
;
2169 tdintcm
= priv
->tdintcm
;
2171 /* PCK_TH measures in multiples of FIFO bytes
2172 We translate to packets */
2173 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2174 ecoal
->rx_max_coalesced_frames
=
2175 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2177 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2178 ecoal
->tx_max_coalesced_frames
=
2179 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2181 /* adaptive parameters ignored */
2186 * bdx_set_coalesce - set interrupt coalescing parameters
2191 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2195 struct bdx_priv
*priv
= netdev_priv(netdev
);
2201 /* Check for valid input */
2202 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2203 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2204 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2205 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2207 /* Translate from packets to multiples of FIFO bytes */
2209 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2212 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2215 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF) ||
2216 (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2219 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2220 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2221 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2224 priv
->rdintcm
= rdintcm
;
2225 priv
->tdintcm
= tdintcm
;
2227 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2228 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2233 /* Convert RX fifo size to number of pending packets */
2234 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2236 return (FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
);
2239 /* Convert TX fifo size to number of pending packets */
2240 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2242 return (FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
;
2246 * bdx_get_ringparam - report ring sizes
2251 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2253 struct bdx_priv
*priv
= netdev_priv(netdev
);
2255 /*max_pending - the maximum-sized FIFO we allow */
2256 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2257 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2258 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2259 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2263 * bdx_set_ringparam - set ring sizes
2268 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2270 struct bdx_priv
*priv
= netdev_priv(netdev
);
2274 for (; rx_size
< 4; rx_size
++) {
2275 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2281 for (; tx_size
< 4; tx_size
++) {
2282 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2288 /*Is there anything to do? */
2289 if ((rx_size
== priv
->rxf_size
) &&
2290 (tx_size
== priv
->txd_size
))
2293 priv
->rxf_size
= rx_size
;
2295 priv
->rxd_size
= rx_size
- 1;
2297 priv
->rxd_size
= rx_size
;
2299 priv
->txf_size
= priv
->txd_size
= tx_size
;
2301 if (netif_running(netdev
)) {
2309 * bdx_get_strings - return a set of strings that describe the requested objects
2313 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2315 switch (stringset
) {
2317 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2323 * bdx_get_sset_count - return number of statistics or tests
2326 static int bdx_get_sset_count(struct net_device
*netdev
, int stringset
)
2328 struct bdx_priv
*priv
= netdev_priv(netdev
);
2330 switch (stringset
) {
2332 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names
)
2333 != sizeof(struct bdx_stats
) / sizeof(u64
));
2334 return (priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0;
2341 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2346 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2347 struct ethtool_stats
*stats
, u64
*data
)
2349 struct bdx_priv
*priv
= netdev_priv(netdev
);
2351 if (priv
->stats_flag
) {
2353 /* Update stats from HW */
2354 bdx_update_stats(priv
);
2356 /* Copy data to user buffer */
2357 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2362 * bdx_set_ethtool_ops - ethtool interface implementation
2365 static void bdx_set_ethtool_ops(struct net_device
*netdev
)
2367 static const struct ethtool_ops bdx_ethtool_ops
= {
2368 .supported_coalesce_params
= ETHTOOL_COALESCE_USECS
|
2369 ETHTOOL_COALESCE_MAX_FRAMES
,
2370 .get_drvinfo
= bdx_get_drvinfo
,
2371 .get_link
= ethtool_op_get_link
,
2372 .get_coalesce
= bdx_get_coalesce
,
2373 .set_coalesce
= bdx_set_coalesce
,
2374 .get_ringparam
= bdx_get_ringparam
,
2375 .set_ringparam
= bdx_set_ringparam
,
2376 .get_strings
= bdx_get_strings
,
2377 .get_sset_count
= bdx_get_sset_count
,
2378 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2379 .get_link_ksettings
= bdx_get_link_ksettings
,
2382 netdev
->ethtool_ops
= &bdx_ethtool_ops
;
2386 * bdx_remove - Device Removal Routine
2387 * @pdev: PCI device information struct
2389 * bdx_remove is called by the PCI subsystem to alert the driver
2390 * that it should release a PCI device. The could be caused by a
2391 * Hot-Plug event, or because the driver is going to be removed from
2394 static void bdx_remove(struct pci_dev
*pdev
)
2396 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2397 struct net_device
*ndev
;
2400 for (port
= 0; port
< nic
->port_num
; port
++) {
2401 ndev
= nic
->priv
[port
]->ndev
;
2402 unregister_netdev(ndev
);
2406 /*bdx_hw_reset_direct(nic->regs); */
2408 if (nic
->irq_type
== IRQ_MSI
)
2409 pci_disable_msi(pdev
);
2413 pci_release_regions(pdev
);
2414 pci_disable_device(pdev
);
2420 static struct pci_driver bdx_pci_driver
= {
2421 .name
= BDX_DRV_NAME
,
2422 .id_table
= bdx_pci_tbl
,
2424 .remove
= bdx_remove
,
2428 * print_driver_id - print parameters of the driver build
2430 static void __init
print_driver_id(void)
2432 pr_info("%s, %s\n", BDX_DRV_DESC
, BDX_DRV_VERSION
);
2433 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING
);
2436 static int __init
bdx_module_init(void)
2441 RET(pci_register_driver(&bdx_pci_driver
));
2444 module_init(bdx_module_init
);
2446 static void __exit
bdx_module_exit(void)
2449 pci_unregister_driver(&bdx_pci_driver
);
2453 module_exit(bdx_module_exit
);
2455 MODULE_LICENSE("GPL");
2456 MODULE_AUTHOR(DRIVER_AUTHOR
);
2457 MODULE_DESCRIPTION(BDX_DRV_DESC
);
2458 MODULE_FIRMWARE("tehuti/bdx.bin");