WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / ti / cpsw_priv.c
blob99f44563e10f6325d8db4328301acfb2c250e8e3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Texas Instruments Ethernet Switch Driver
5 * Copyright (C) 2019 Texas Instruments
6 */
8 #include <linux/bpf.h>
9 #include <linux/bpf_trace.h>
10 #include <linux/if_ether.h>
11 #include <linux/if_vlan.h>
12 #include <linux/kmemleak.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/net_tstamp.h>
16 #include <linux/of.h>
17 #include <linux/phy.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/skbuff.h>
21 #include <net/page_pool.h>
22 #include <net/pkt_cls.h>
24 #include "cpsw.h"
25 #include "cpts.h"
26 #include "cpsw_ale.h"
27 #include "cpsw_priv.h"
28 #include "cpsw_sl.h"
29 #include "davinci_cpdma.h"
31 #define CPTS_N_ETX_TS 4
33 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv);
35 void cpsw_intr_enable(struct cpsw_common *cpsw)
37 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
38 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
40 cpdma_ctlr_int_ctrl(cpsw->dma, true);
43 void cpsw_intr_disable(struct cpsw_common *cpsw)
45 writel_relaxed(0, &cpsw->wr_regs->tx_en);
46 writel_relaxed(0, &cpsw->wr_regs->rx_en);
48 cpdma_ctlr_int_ctrl(cpsw->dma, false);
51 void cpsw_tx_handler(void *token, int len, int status)
53 struct cpsw_meta_xdp *xmeta;
54 struct xdp_frame *xdpf;
55 struct net_device *ndev;
56 struct netdev_queue *txq;
57 struct sk_buff *skb;
58 int ch;
60 if (cpsw_is_xdpf_handle(token)) {
61 xdpf = cpsw_handle_to_xdpf(token);
62 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
63 ndev = xmeta->ndev;
64 ch = xmeta->ch;
65 xdp_return_frame(xdpf);
66 } else {
67 skb = token;
68 ndev = skb->dev;
69 ch = skb_get_queue_mapping(skb);
70 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
71 dev_kfree_skb_any(skb);
74 /* Check whether the queue is stopped due to stalled tx dma, if the
75 * queue is stopped then start the queue as we have free desc for tx
77 txq = netdev_get_tx_queue(ndev, ch);
78 if (unlikely(netif_tx_queue_stopped(txq)))
79 netif_tx_wake_queue(txq);
81 ndev->stats.tx_packets++;
82 ndev->stats.tx_bytes += len;
85 irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
87 struct cpsw_common *cpsw = dev_id;
89 writel(0, &cpsw->wr_regs->tx_en);
90 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
92 if (cpsw->quirk_irq) {
93 disable_irq_nosync(cpsw->irqs_table[1]);
94 cpsw->tx_irq_disabled = true;
97 napi_schedule(&cpsw->napi_tx);
98 return IRQ_HANDLED;
101 irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
103 struct cpsw_common *cpsw = dev_id;
105 writel(0, &cpsw->wr_regs->rx_en);
106 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
108 if (cpsw->quirk_irq) {
109 disable_irq_nosync(cpsw->irqs_table[0]);
110 cpsw->rx_irq_disabled = true;
113 napi_schedule(&cpsw->napi_rx);
114 return IRQ_HANDLED;
117 irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id)
119 struct cpsw_common *cpsw = dev_id;
121 writel(0, &cpsw->wr_regs->misc_en);
122 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC);
123 cpts_misc_interrupt(cpsw->cpts);
124 writel(0x10, &cpsw->wr_regs->misc_en);
126 return IRQ_HANDLED;
129 int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
131 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
132 int num_tx, cur_budget, ch;
133 u32 ch_map;
134 struct cpsw_vector *txv;
136 /* process every unprocessed channel */
137 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
138 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
139 if (!(ch_map & 0x80))
140 continue;
142 txv = &cpsw->txv[ch];
143 if (unlikely(txv->budget > budget - num_tx))
144 cur_budget = budget - num_tx;
145 else
146 cur_budget = txv->budget;
148 num_tx += cpdma_chan_process(txv->ch, cur_budget);
149 if (num_tx >= budget)
150 break;
153 if (num_tx < budget) {
154 napi_complete(napi_tx);
155 writel(0xff, &cpsw->wr_regs->tx_en);
158 return num_tx;
161 int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
163 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
164 int num_tx;
166 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
167 if (num_tx < budget) {
168 napi_complete(napi_tx);
169 writel(0xff, &cpsw->wr_regs->tx_en);
170 if (cpsw->tx_irq_disabled) {
171 cpsw->tx_irq_disabled = false;
172 enable_irq(cpsw->irqs_table[1]);
176 return num_tx;
179 int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
181 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
182 int num_rx, cur_budget, ch;
183 u32 ch_map;
184 struct cpsw_vector *rxv;
186 /* process every unprocessed channel */
187 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
188 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
189 if (!(ch_map & 0x01))
190 continue;
192 rxv = &cpsw->rxv[ch];
193 if (unlikely(rxv->budget > budget - num_rx))
194 cur_budget = budget - num_rx;
195 else
196 cur_budget = rxv->budget;
198 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
199 if (num_rx >= budget)
200 break;
203 if (num_rx < budget) {
204 napi_complete_done(napi_rx, num_rx);
205 writel(0xff, &cpsw->wr_regs->rx_en);
208 return num_rx;
211 int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
213 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
214 int num_rx;
216 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
217 if (num_rx < budget) {
218 napi_complete_done(napi_rx, num_rx);
219 writel(0xff, &cpsw->wr_regs->rx_en);
220 if (cpsw->rx_irq_disabled) {
221 cpsw->rx_irq_disabled = false;
222 enable_irq(cpsw->irqs_table[0]);
226 return num_rx;
229 void cpsw_rx_vlan_encap(struct sk_buff *skb)
231 struct cpsw_priv *priv = netdev_priv(skb->dev);
232 u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
233 struct cpsw_common *cpsw = priv->cpsw;
234 u16 vtag, vid, prio, pkt_type;
236 /* Remove VLAN header encapsulation word */
237 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
239 pkt_type = (rx_vlan_encap_hdr >>
240 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
241 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
242 /* Ignore unknown & Priority-tagged packets*/
243 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
244 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
245 return;
247 vid = (rx_vlan_encap_hdr >>
248 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
249 VLAN_VID_MASK;
250 /* Ignore vid 0 and pass packet as is */
251 if (!vid)
252 return;
254 /* Untag P0 packets if set for vlan */
255 if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) {
256 prio = (rx_vlan_encap_hdr >>
257 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
258 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
260 vtag = (prio << VLAN_PRIO_SHIFT) | vid;
261 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
264 /* strip vlan tag for VLAN-tagged packet */
265 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
266 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
267 skb_pull(skb, VLAN_HLEN);
271 void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv)
273 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
274 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
277 void soft_reset(const char *module, void __iomem *reg)
279 unsigned long timeout = jiffies + HZ;
281 writel_relaxed(1, reg);
282 do {
283 cpu_relax();
284 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
286 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
289 void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
291 struct cpsw_priv *priv = netdev_priv(ndev);
292 struct cpsw_common *cpsw = priv->cpsw;
293 int ch;
295 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
296 ndev->stats.tx_errors++;
297 cpsw_intr_disable(cpsw);
298 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
299 cpdma_chan_stop(cpsw->txv[ch].ch);
300 cpdma_chan_start(cpsw->txv[ch].ch);
303 cpsw_intr_enable(cpsw);
304 netif_trans_update(ndev);
305 netif_tx_wake_all_queues(ndev);
308 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
310 int i, speed;
312 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
313 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
314 speed += cpsw->slaves[i].phy->speed;
316 return speed;
319 int cpsw_need_resplit(struct cpsw_common *cpsw)
321 int i, rlim_ch_num;
322 int speed, ch_rate;
324 /* re-split resources only in case speed was changed */
325 speed = cpsw_get_common_speed(cpsw);
326 if (speed == cpsw->speed || !speed)
327 return 0;
329 cpsw->speed = speed;
331 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
332 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
333 if (!ch_rate)
334 break;
336 rlim_ch_num++;
339 /* cases not dependent on speed */
340 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
341 return 0;
343 return 1;
346 void cpsw_split_res(struct cpsw_common *cpsw)
348 u32 consumed_rate = 0, bigest_rate = 0;
349 struct cpsw_vector *txv = cpsw->txv;
350 int i, ch_weight, rlim_ch_num = 0;
351 int budget, bigest_rate_ch = 0;
352 u32 ch_rate, max_rate;
353 int ch_budget = 0;
355 for (i = 0; i < cpsw->tx_ch_num; i++) {
356 ch_rate = cpdma_chan_get_rate(txv[i].ch);
357 if (!ch_rate)
358 continue;
360 rlim_ch_num++;
361 consumed_rate += ch_rate;
364 if (cpsw->tx_ch_num == rlim_ch_num) {
365 max_rate = consumed_rate;
366 } else if (!rlim_ch_num) {
367 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
368 bigest_rate = 0;
369 max_rate = consumed_rate;
370 } else {
371 max_rate = cpsw->speed * 1000;
373 /* if max_rate is less then expected due to reduced link speed,
374 * split proportionally according next potential max speed
376 if (max_rate < consumed_rate)
377 max_rate *= 10;
379 if (max_rate < consumed_rate)
380 max_rate *= 10;
382 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
383 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
384 (cpsw->tx_ch_num - rlim_ch_num);
385 bigest_rate = (max_rate - consumed_rate) /
386 (cpsw->tx_ch_num - rlim_ch_num);
389 /* split tx weight/budget */
390 budget = CPSW_POLL_WEIGHT;
391 for (i = 0; i < cpsw->tx_ch_num; i++) {
392 ch_rate = cpdma_chan_get_rate(txv[i].ch);
393 if (ch_rate) {
394 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
395 if (!txv[i].budget)
396 txv[i].budget++;
397 if (ch_rate > bigest_rate) {
398 bigest_rate_ch = i;
399 bigest_rate = ch_rate;
402 ch_weight = (ch_rate * 100) / max_rate;
403 if (!ch_weight)
404 ch_weight++;
405 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
406 } else {
407 txv[i].budget = ch_budget;
408 if (!bigest_rate_ch)
409 bigest_rate_ch = i;
410 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
413 budget -= txv[i].budget;
416 if (budget)
417 txv[bigest_rate_ch].budget += budget;
419 /* split rx budget */
420 budget = CPSW_POLL_WEIGHT;
421 ch_budget = budget / cpsw->rx_ch_num;
422 for (i = 0; i < cpsw->rx_ch_num; i++) {
423 cpsw->rxv[i].budget = ch_budget;
424 budget -= ch_budget;
427 if (budget)
428 cpsw->rxv[0].budget += budget;
431 int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
432 int ale_ageout, phys_addr_t desc_mem_phys,
433 int descs_pool_size)
435 u32 slave_offset, sliver_offset, slave_size;
436 struct cpsw_ale_params ale_params;
437 struct cpsw_platform_data *data;
438 struct cpdma_params dma_params;
439 struct device *dev = cpsw->dev;
440 struct device_node *cpts_node;
441 void __iomem *cpts_regs;
442 int ret = 0, i;
444 data = &cpsw->data;
445 cpsw->rx_ch_num = 1;
446 cpsw->tx_ch_num = 1;
448 cpsw->version = readl(&cpsw->regs->id_ver);
450 memset(&dma_params, 0, sizeof(dma_params));
451 memset(&ale_params, 0, sizeof(ale_params));
453 switch (cpsw->version) {
454 case CPSW_VERSION_1:
455 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
456 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
457 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
458 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
459 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
460 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
461 slave_offset = CPSW1_SLAVE_OFFSET;
462 slave_size = CPSW1_SLAVE_SIZE;
463 sliver_offset = CPSW1_SLIVER_OFFSET;
464 dma_params.desc_mem_phys = 0;
465 break;
466 case CPSW_VERSION_2:
467 case CPSW_VERSION_3:
468 case CPSW_VERSION_4:
469 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
470 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
471 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
472 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
473 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
474 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
475 slave_offset = CPSW2_SLAVE_OFFSET;
476 slave_size = CPSW2_SLAVE_SIZE;
477 sliver_offset = CPSW2_SLIVER_OFFSET;
478 dma_params.desc_mem_phys = desc_mem_phys;
479 break;
480 default:
481 dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
482 return -ENODEV;
485 for (i = 0; i < cpsw->data.slaves; i++) {
486 struct cpsw_slave *slave = &cpsw->slaves[i];
487 void __iomem *regs = cpsw->regs;
489 slave->slave_num = i;
490 slave->data = &cpsw->data.slave_data[i];
491 slave->regs = regs + slave_offset;
492 slave->port_vlan = slave->data->dual_emac_res_vlan;
493 slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset);
494 if (IS_ERR(slave->mac_sl))
495 return PTR_ERR(slave->mac_sl);
497 slave_offset += slave_size;
498 sliver_offset += SLIVER_SIZE;
501 ale_params.dev = dev;
502 ale_params.ale_ageout = ale_ageout;
503 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
504 ale_params.dev_id = "cpsw";
506 cpsw->ale = cpsw_ale_create(&ale_params);
507 if (IS_ERR(cpsw->ale)) {
508 dev_err(dev, "error initializing ale engine\n");
509 return PTR_ERR(cpsw->ale);
512 dma_params.dev = dev;
513 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
514 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
515 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
516 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
517 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
519 dma_params.num_chan = data->channels;
520 dma_params.has_soft_reset = true;
521 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
522 dma_params.desc_mem_size = data->bd_ram_size;
523 dma_params.desc_align = 16;
524 dma_params.has_ext_regs = true;
525 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
526 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
527 dma_params.descs_pool_size = descs_pool_size;
529 cpsw->dma = cpdma_ctlr_create(&dma_params);
530 if (!cpsw->dma) {
531 dev_err(dev, "error initializing dma\n");
532 return -ENOMEM;
535 cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts");
536 if (!cpts_node)
537 cpts_node = cpsw->dev->of_node;
539 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node,
540 CPTS_N_ETX_TS);
541 if (IS_ERR(cpsw->cpts)) {
542 ret = PTR_ERR(cpsw->cpts);
543 cpdma_ctlr_destroy(cpsw->dma);
545 of_node_put(cpts_node);
547 return ret;
550 #if IS_ENABLED(CONFIG_TI_CPTS)
552 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
554 struct cpsw_common *cpsw = priv->cpsw;
555 struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
556 u32 ts_en, seq_id;
558 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
559 slave_write(slave, 0, CPSW1_TS_CTL);
560 return;
563 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
564 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
566 if (priv->tx_ts_enabled)
567 ts_en |= CPSW_V1_TS_TX_EN;
569 if (priv->rx_ts_enabled)
570 ts_en |= CPSW_V1_TS_RX_EN;
572 slave_write(slave, ts_en, CPSW1_TS_CTL);
573 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
576 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
578 struct cpsw_common *cpsw = priv->cpsw;
579 struct cpsw_slave *slave;
580 u32 ctrl, mtype;
582 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
584 ctrl = slave_read(slave, CPSW2_CONTROL);
585 switch (cpsw->version) {
586 case CPSW_VERSION_2:
587 ctrl &= ~CTRL_V2_ALL_TS_MASK;
589 if (priv->tx_ts_enabled)
590 ctrl |= CTRL_V2_TX_TS_BITS;
592 if (priv->rx_ts_enabled)
593 ctrl |= CTRL_V2_RX_TS_BITS;
594 break;
595 case CPSW_VERSION_3:
596 default:
597 ctrl &= ~CTRL_V3_ALL_TS_MASK;
599 if (priv->tx_ts_enabled)
600 ctrl |= CTRL_V3_TX_TS_BITS;
602 if (priv->rx_ts_enabled)
603 ctrl |= CTRL_V3_RX_TS_BITS;
604 break;
607 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
609 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
610 slave_write(slave, ctrl, CPSW2_CONTROL);
611 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
612 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
615 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
617 struct cpsw_priv *priv = netdev_priv(dev);
618 struct cpsw_common *cpsw = priv->cpsw;
619 struct hwtstamp_config cfg;
621 if (cpsw->version != CPSW_VERSION_1 &&
622 cpsw->version != CPSW_VERSION_2 &&
623 cpsw->version != CPSW_VERSION_3)
624 return -EOPNOTSUPP;
626 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
627 return -EFAULT;
629 /* reserved for future extensions */
630 if (cfg.flags)
631 return -EINVAL;
633 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
634 return -ERANGE;
636 switch (cfg.rx_filter) {
637 case HWTSTAMP_FILTER_NONE:
638 priv->rx_ts_enabled = 0;
639 break;
640 case HWTSTAMP_FILTER_ALL:
641 case HWTSTAMP_FILTER_NTP_ALL:
642 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
643 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
644 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
645 return -ERANGE;
646 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
647 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
648 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
649 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
650 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
651 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
652 case HWTSTAMP_FILTER_PTP_V2_EVENT:
653 case HWTSTAMP_FILTER_PTP_V2_SYNC:
654 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
655 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
656 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
657 break;
658 default:
659 return -ERANGE;
662 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
664 switch (cpsw->version) {
665 case CPSW_VERSION_1:
666 cpsw_hwtstamp_v1(priv);
667 break;
668 case CPSW_VERSION_2:
669 case CPSW_VERSION_3:
670 cpsw_hwtstamp_v2(priv);
671 break;
672 default:
673 WARN_ON(1);
676 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
679 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
681 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
682 struct cpsw_priv *priv = netdev_priv(dev);
683 struct hwtstamp_config cfg;
685 if (cpsw->version != CPSW_VERSION_1 &&
686 cpsw->version != CPSW_VERSION_2 &&
687 cpsw->version != CPSW_VERSION_3)
688 return -EOPNOTSUPP;
690 cfg.flags = 0;
691 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
692 cfg.rx_filter = priv->rx_ts_enabled;
694 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
696 #else
697 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
699 return -EOPNOTSUPP;
702 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
704 return -EOPNOTSUPP;
706 #endif /*CONFIG_TI_CPTS*/
708 int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
710 struct cpsw_priv *priv = netdev_priv(dev);
711 struct cpsw_common *cpsw = priv->cpsw;
712 int slave_no = cpsw_slave_index(cpsw, priv);
714 if (!netif_running(dev))
715 return -EINVAL;
717 switch (cmd) {
718 case SIOCSHWTSTAMP:
719 return cpsw_hwtstamp_set(dev, req);
720 case SIOCGHWTSTAMP:
721 return cpsw_hwtstamp_get(dev, req);
724 if (!cpsw->slaves[slave_no].phy)
725 return -EOPNOTSUPP;
726 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
729 int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
731 struct cpsw_priv *priv = netdev_priv(ndev);
732 struct cpsw_common *cpsw = priv->cpsw;
733 struct cpsw_slave *slave;
734 u32 min_rate;
735 u32 ch_rate;
736 int i, ret;
738 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
739 if (ch_rate == rate)
740 return 0;
742 ch_rate = rate * 1000;
743 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
744 if ((ch_rate < min_rate && ch_rate)) {
745 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
746 min_rate);
747 return -EINVAL;
750 if (rate > cpsw->speed) {
751 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
752 return -EINVAL;
755 ret = pm_runtime_get_sync(cpsw->dev);
756 if (ret < 0) {
757 pm_runtime_put_noidle(cpsw->dev);
758 return ret;
761 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
762 pm_runtime_put(cpsw->dev);
764 if (ret)
765 return ret;
767 /* update rates for slaves tx queues */
768 for (i = 0; i < cpsw->data.slaves; i++) {
769 slave = &cpsw->slaves[i];
770 if (!slave->ndev)
771 continue;
773 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
776 cpsw_split_res(cpsw);
777 return ret;
780 static int cpsw_tc_to_fifo(int tc, int num_tc)
782 if (tc == num_tc - 1)
783 return 0;
785 return CPSW_FIFO_SHAPERS_NUM - tc;
788 bool cpsw_shp_is_off(struct cpsw_priv *priv)
790 struct cpsw_common *cpsw = priv->cpsw;
791 struct cpsw_slave *slave;
792 u32 shift, mask, val;
794 val = readl_relaxed(&cpsw->regs->ptype);
796 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
797 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
798 mask = 7 << shift;
799 val = val & mask;
801 return !val;
804 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
806 struct cpsw_common *cpsw = priv->cpsw;
807 struct cpsw_slave *slave;
808 u32 shift, mask, val;
810 val = readl_relaxed(&cpsw->regs->ptype);
812 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
813 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
814 mask = (1 << --fifo) << shift;
815 val = on ? val | mask : val & ~mask;
817 writel_relaxed(val, &cpsw->regs->ptype);
820 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
822 struct cpsw_common *cpsw = priv->cpsw;
823 u32 val = 0, send_pct, shift;
824 struct cpsw_slave *slave;
825 int pct = 0, i;
827 if (bw > priv->shp_cfg_speed * 1000)
828 goto err;
830 /* shaping has to stay enabled for highest fifos linearly
831 * and fifo bw no more then interface can allow
833 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
834 send_pct = slave_read(slave, SEND_PERCENT);
835 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
836 if (!bw) {
837 if (i >= fifo || !priv->fifo_bw[i])
838 continue;
840 dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
841 continue;
844 if (!priv->fifo_bw[i] && i > fifo) {
845 dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
846 return -EINVAL;
849 shift = (i - 1) * 8;
850 if (i == fifo) {
851 send_pct &= ~(CPSW_PCT_MASK << shift);
852 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
853 if (!val)
854 val = 1;
856 send_pct |= val << shift;
857 pct += val;
858 continue;
861 if (priv->fifo_bw[i])
862 pct += (send_pct >> shift) & CPSW_PCT_MASK;
865 if (pct >= 100)
866 goto err;
868 slave_write(slave, send_pct, SEND_PERCENT);
869 priv->fifo_bw[fifo] = bw;
871 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
872 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
874 return 0;
875 err:
876 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
877 return -EINVAL;
880 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
882 struct cpsw_common *cpsw = priv->cpsw;
883 struct cpsw_slave *slave;
884 u32 tx_in_ctl_rg, val;
885 int ret;
887 ret = cpsw_set_fifo_bw(priv, fifo, bw);
888 if (ret)
889 return ret;
891 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
892 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
893 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
895 if (!bw)
896 cpsw_fifo_shp_on(priv, fifo, bw);
898 val = slave_read(slave, tx_in_ctl_rg);
899 if (cpsw_shp_is_off(priv)) {
900 /* disable FIFOs rate limited queues */
901 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
903 /* set type of FIFO queues to normal priority mode */
904 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
906 /* set type of FIFO queues to be rate limited */
907 if (bw)
908 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
909 else
910 priv->shp_cfg_speed = 0;
913 /* toggle a FIFO rate limited queue */
914 if (bw)
915 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
916 else
917 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
918 slave_write(slave, val, tx_in_ctl_rg);
920 /* FIFO transmit shape enable */
921 cpsw_fifo_shp_on(priv, fifo, bw);
922 return 0;
925 /* Defaults:
926 * class A - prio 3
927 * class B - prio 2
928 * shaping for class A should be set first
930 static int cpsw_set_cbs(struct net_device *ndev,
931 struct tc_cbs_qopt_offload *qopt)
933 struct cpsw_priv *priv = netdev_priv(ndev);
934 struct cpsw_common *cpsw = priv->cpsw;
935 struct cpsw_slave *slave;
936 int prev_speed = 0;
937 int tc, ret, fifo;
938 u32 bw = 0;
940 tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
942 /* enable channels in backward order, as highest FIFOs must be rate
943 * limited first and for compliance with CPDMA rate limited channels
944 * that also used in bacward order. FIFO0 cannot be rate limited.
946 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
947 if (!fifo) {
948 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
949 return -EINVAL;
952 /* do nothing, it's disabled anyway */
953 if (!qopt->enable && !priv->fifo_bw[fifo])
954 return 0;
956 /* shapers can be set if link speed is known */
957 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
958 if (slave->phy && slave->phy->link) {
959 if (priv->shp_cfg_speed &&
960 priv->shp_cfg_speed != slave->phy->speed)
961 prev_speed = priv->shp_cfg_speed;
963 priv->shp_cfg_speed = slave->phy->speed;
966 if (!priv->shp_cfg_speed) {
967 dev_err(priv->dev, "Link speed is not known");
968 return -1;
971 ret = pm_runtime_get_sync(cpsw->dev);
972 if (ret < 0) {
973 pm_runtime_put_noidle(cpsw->dev);
974 return ret;
977 bw = qopt->enable ? qopt->idleslope : 0;
978 ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
979 if (ret) {
980 priv->shp_cfg_speed = prev_speed;
981 prev_speed = 0;
984 if (bw && prev_speed)
985 dev_warn(priv->dev,
986 "Speed was changed, CBS shaper speeds are changed!");
988 pm_runtime_put_sync(cpsw->dev);
989 return ret;
992 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
994 struct tc_mqprio_qopt_offload *mqprio = type_data;
995 struct cpsw_priv *priv = netdev_priv(ndev);
996 struct cpsw_common *cpsw = priv->cpsw;
997 int fifo, num_tc, count, offset;
998 struct cpsw_slave *slave;
999 u32 tx_prio_map = 0;
1000 int i, tc, ret;
1002 num_tc = mqprio->qopt.num_tc;
1003 if (num_tc > CPSW_TC_NUM)
1004 return -EINVAL;
1006 if (mqprio->mode != TC_MQPRIO_MODE_DCB)
1007 return -EINVAL;
1009 ret = pm_runtime_get_sync(cpsw->dev);
1010 if (ret < 0) {
1011 pm_runtime_put_noidle(cpsw->dev);
1012 return ret;
1015 if (num_tc) {
1016 for (i = 0; i < 8; i++) {
1017 tc = mqprio->qopt.prio_tc_map[i];
1018 fifo = cpsw_tc_to_fifo(tc, num_tc);
1019 tx_prio_map |= fifo << (4 * i);
1022 netdev_set_num_tc(ndev, num_tc);
1023 for (i = 0; i < num_tc; i++) {
1024 count = mqprio->qopt.count[i];
1025 offset = mqprio->qopt.offset[i];
1026 netdev_set_tc_queue(ndev, i, count, offset);
1030 if (!mqprio->qopt.hw) {
1031 /* restore default configuration */
1032 netdev_reset_tc(ndev);
1033 tx_prio_map = TX_PRIORITY_MAPPING;
1036 priv->mqprio_hw = mqprio->qopt.hw;
1038 offset = cpsw->version == CPSW_VERSION_1 ?
1039 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1041 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1042 slave_write(slave, tx_prio_map, offset);
1044 pm_runtime_put_sync(cpsw->dev);
1046 return 0;
1049 int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1050 void *type_data)
1052 switch (type) {
1053 case TC_SETUP_QDISC_CBS:
1054 return cpsw_set_cbs(ndev, type_data);
1056 case TC_SETUP_QDISC_MQPRIO:
1057 return cpsw_set_mqprio(ndev, type_data);
1059 default:
1060 return -EOPNOTSUPP;
1064 void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1066 int fifo, bw;
1068 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1069 bw = priv->fifo_bw[fifo];
1070 if (!bw)
1071 continue;
1073 cpsw_set_fifo_rlimit(priv, fifo, bw);
1077 void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1079 struct cpsw_common *cpsw = priv->cpsw;
1080 u32 tx_prio_map = 0;
1081 int i, tc, fifo;
1082 u32 tx_prio_rg;
1084 if (!priv->mqprio_hw)
1085 return;
1087 for (i = 0; i < 8; i++) {
1088 tc = netdev_get_prio_tc_map(priv->ndev, i);
1089 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1090 tx_prio_map |= fifo << (4 * i);
1093 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1094 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1096 slave_write(slave, tx_prio_map, tx_prio_rg);
1099 int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1101 struct cpsw_common *cpsw = priv->cpsw;
1102 struct cpsw_meta_xdp *xmeta;
1103 struct page_pool *pool;
1104 struct page *page;
1105 int ch_buf_num;
1106 int ch, i, ret;
1107 dma_addr_t dma;
1109 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1110 pool = cpsw->page_pool[ch];
1111 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1112 for (i = 0; i < ch_buf_num; i++) {
1113 page = page_pool_dev_alloc_pages(pool);
1114 if (!page) {
1115 cpsw_err(priv, ifup, "allocate rx page err\n");
1116 return -ENOMEM;
1119 xmeta = page_address(page) + CPSW_XMETA_OFFSET;
1120 xmeta->ndev = priv->ndev;
1121 xmeta->ch = ch;
1123 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM;
1124 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
1125 page, dma,
1126 cpsw->rx_packet_max,
1128 if (ret < 0) {
1129 cpsw_err(priv, ifup,
1130 "cannot submit page to channel %d rx, error %d\n",
1131 ch, ret);
1132 page_pool_recycle_direct(pool, page);
1133 return ret;
1137 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1138 ch, ch_buf_num);
1141 return 0;
1144 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
1145 int size)
1147 struct page_pool_params pp_params;
1148 struct page_pool *pool;
1150 pp_params.order = 0;
1151 pp_params.flags = PP_FLAG_DMA_MAP;
1152 pp_params.pool_size = size;
1153 pp_params.nid = NUMA_NO_NODE;
1154 pp_params.dma_dir = DMA_BIDIRECTIONAL;
1155 pp_params.dev = cpsw->dev;
1157 pool = page_pool_create(&pp_params);
1158 if (IS_ERR(pool))
1159 dev_err(cpsw->dev, "cannot create rx page pool\n");
1161 return pool;
1164 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
1166 struct page_pool *pool;
1167 int ret = 0, pool_size;
1169 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1170 pool = cpsw_create_page_pool(cpsw, pool_size);
1171 if (IS_ERR(pool))
1172 ret = PTR_ERR(pool);
1173 else
1174 cpsw->page_pool[ch] = pool;
1176 return ret;
1179 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
1181 struct cpsw_common *cpsw = priv->cpsw;
1182 struct xdp_rxq_info *rxq;
1183 struct page_pool *pool;
1184 int ret;
1186 pool = cpsw->page_pool[ch];
1187 rxq = &priv->xdp_rxq[ch];
1189 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0);
1190 if (ret)
1191 return ret;
1193 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
1194 if (ret)
1195 xdp_rxq_info_unreg(rxq);
1197 return ret;
1200 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
1202 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];
1204 if (!xdp_rxq_info_is_reg(rxq))
1205 return;
1207 xdp_rxq_info_unreg(rxq);
1210 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
1212 struct net_device *ndev;
1213 int i, ch;
1215 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1216 for (i = 0; i < cpsw->data.slaves; i++) {
1217 ndev = cpsw->slaves[i].ndev;
1218 if (!ndev)
1219 continue;
1221 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
1224 page_pool_destroy(cpsw->page_pool[ch]);
1225 cpsw->page_pool[ch] = NULL;
1229 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
1231 struct net_device *ndev;
1232 int i, ch, ret;
1234 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1235 ret = cpsw_create_rx_pool(cpsw, ch);
1236 if (ret)
1237 goto err_cleanup;
1239 /* using same page pool is allowed as no running rx handlers
1240 * simultaneously for both ndevs
1242 for (i = 0; i < cpsw->data.slaves; i++) {
1243 ndev = cpsw->slaves[i].ndev;
1244 if (!ndev)
1245 continue;
1247 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
1248 if (ret)
1249 goto err_cleanup;
1253 return 0;
1255 err_cleanup:
1256 cpsw_destroy_xdp_rxqs(cpsw);
1258 return ret;
1261 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
1263 struct bpf_prog *prog = bpf->prog;
1265 if (!priv->xdpi.prog && !prog)
1266 return 0;
1268 WRITE_ONCE(priv->xdp_prog, prog);
1270 xdp_attachment_setup(&priv->xdpi, bpf);
1272 return 0;
1275 int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
1277 struct cpsw_priv *priv = netdev_priv(ndev);
1279 switch (bpf->command) {
1280 case XDP_SETUP_PROG:
1281 return cpsw_xdp_prog_setup(priv, bpf);
1283 default:
1284 return -EINVAL;
1288 int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
1289 struct page *page, int port)
1291 struct cpsw_common *cpsw = priv->cpsw;
1292 struct cpsw_meta_xdp *xmeta;
1293 struct cpdma_chan *txch;
1294 dma_addr_t dma;
1295 int ret;
1297 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
1298 xmeta->ndev = priv->ndev;
1299 xmeta->ch = 0;
1300 txch = cpsw->txv[0].ch;
1302 if (page) {
1303 dma = page_pool_get_dma_addr(page);
1304 dma += xdpf->headroom + sizeof(struct xdp_frame);
1305 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
1306 dma, xdpf->len, port);
1307 } else {
1308 if (sizeof(*xmeta) > xdpf->headroom) {
1309 xdp_return_frame_rx_napi(xdpf);
1310 return -EINVAL;
1313 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
1314 xdpf->data, xdpf->len, port);
1317 if (ret) {
1318 priv->ndev->stats.tx_dropped++;
1319 xdp_return_frame_rx_napi(xdpf);
1322 return ret;
1325 int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
1326 struct page *page, int port)
1328 struct cpsw_common *cpsw = priv->cpsw;
1329 struct net_device *ndev = priv->ndev;
1330 int ret = CPSW_XDP_CONSUMED;
1331 struct xdp_frame *xdpf;
1332 struct bpf_prog *prog;
1333 u32 act;
1335 rcu_read_lock();
1337 prog = READ_ONCE(priv->xdp_prog);
1338 if (!prog) {
1339 ret = CPSW_XDP_PASS;
1340 goto out;
1343 act = bpf_prog_run_xdp(prog, xdp);
1344 switch (act) {
1345 case XDP_PASS:
1346 ret = CPSW_XDP_PASS;
1347 break;
1348 case XDP_TX:
1349 xdpf = xdp_convert_buff_to_frame(xdp);
1350 if (unlikely(!xdpf))
1351 goto drop;
1353 cpsw_xdp_tx_frame(priv, xdpf, page, port);
1354 break;
1355 case XDP_REDIRECT:
1356 if (xdp_do_redirect(ndev, xdp, prog))
1357 goto drop;
1359 /* Have to flush here, per packet, instead of doing it in bulk
1360 * at the end of the napi handler. The RX devices on this
1361 * particular hardware is sharing a common queue, so the
1362 * incoming device might change per packet.
1364 xdp_do_flush_map();
1365 break;
1366 default:
1367 bpf_warn_invalid_xdp_action(act);
1368 fallthrough;
1369 case XDP_ABORTED:
1370 trace_xdp_exception(ndev, prog, act);
1371 fallthrough; /* handle aborts by dropping packet */
1372 case XDP_DROP:
1373 goto drop;
1375 out:
1376 rcu_read_unlock();
1377 return ret;
1378 drop:
1379 rcu_read_unlock();
1380 page_pool_recycle_direct(cpsw->page_pool[ch], page);
1381 return ret;