1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
4 Copyright(c) 2006 Tundra Semiconductor Corporation.
7 *******************************************************************************/
9 /* This driver is based on the driver code originally developed
10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
13 * Currently changes from original version are:
14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15 * - modifications to handle two ports independently and support for
16 * additional PHY devices (alexandre.bounine@tundra.com)
17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
41 #include <asm/tsi108.h>
43 #include "tsi108_eth.h"
45 #define MII_READ_DELAY 10000 /* max link wait time in msec */
47 #define TSI108_RXRING_LEN 256
49 /* NOTE: The driver currently does not support receiving packets
50 * larger than the buffer size, so don't decrease this (unless you
51 * want to add such support).
53 #define TSI108_RXBUF_SIZE 1536
55 #define TSI108_TXRING_LEN 256
57 #define TSI108_TX_INT_FREQ 64
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
62 static int tsi108_init_one(struct platform_device
*pdev
);
63 static int tsi108_ether_remove(struct platform_device
*pdev
);
65 struct tsi108_prv_data
{
66 void __iomem
*regs
; /* Base of normal regs */
67 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
69 struct net_device
*dev
;
70 struct napi_struct napi
;
72 unsigned int phy
; /* Index of PHY for this interface */
75 unsigned int phy_type
;
77 struct timer_list timer
;/* Timer that triggers the check phy function */
78 unsigned int rxtail
; /* Next entry in rxring to read */
79 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
80 unsigned int rxfree
; /* Number of free, allocated RX buffers */
82 unsigned int rxpending
; /* Non-zero if there are still descriptors
83 * to be processed from a previous descriptor
84 * interrupt condition that has been cleared */
86 unsigned int txtail
; /* Next TX descriptor to check status on */
87 unsigned int txhead
; /* Next TX descriptor to use */
89 /* Number of free TX descriptors. This could be calculated from
90 * rxhead and rxtail if one descriptor were left unused to disambiguate
91 * full and empty conditions, but it's simpler to just keep track
96 unsigned int phy_ok
; /* The PHY is currently powered on. */
98 /* PHY status (duplex is 1 for half, 2 for full,
99 * so that the default 0 indicates that neither has
100 * yet been configured). */
102 unsigned int link_up
;
108 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
109 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
111 dma_addr_t txdma
, rxdma
;
113 /* txlock nests in misclock and phy_lock */
115 spinlock_t txlock
, misclock
;
117 /* stats is used to hold the upper bits of each hardware counter,
118 * and tmpstats is used to hold the full values for returning
119 * to the caller of get_stats(). They must be separate in case
120 * an overflow interrupt occurs before the stats are consumed.
123 struct net_device_stats stats
;
124 struct net_device_stats tmpstats
;
126 /* These stats are kept separate in hardware, thus require individual
127 * fields for handling carry. They are combined in get_stats.
130 unsigned long rx_fcs
; /* Add to rx_frame_errors */
131 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
132 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
133 unsigned long rx_underruns
; /* Add to rx_length_errors */
134 unsigned long rx_overruns
; /* Add to rx_length_errors */
136 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
137 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
139 unsigned long mc_hash
[16];
140 u32 msg_enable
; /* debug message level */
141 struct mii_if_info mii_if
;
142 unsigned int init_media
;
144 struct platform_device
*pdev
;
147 /* Structure for a device driver */
149 static struct platform_driver tsi_eth_driver
= {
150 .probe
= tsi108_init_one
,
151 .remove
= tsi108_ether_remove
,
153 .name
= "tsi-ethernet",
157 static void tsi108_timed_checker(struct timer_list
*t
);
160 static void dump_eth_one(struct net_device
*dev
)
162 struct tsi108_prv_data
*data
= netdev_priv(dev
);
164 printk("Dumping %s...\n", dev
->name
);
165 printk("intstat %x intmask %x phy_ok %d"
166 " link %d speed %d duplex %d\n",
167 TSI_READ(TSI108_EC_INTSTAT
),
168 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
169 data
->link_up
, data
->speed
, data
->duplex
);
171 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172 data
->txhead
, data
->txtail
, data
->txfree
,
173 TSI_READ(TSI108_EC_TXSTAT
),
174 TSI_READ(TSI108_EC_TXESTAT
),
175 TSI_READ(TSI108_EC_TXERR
));
177 printk("RX: head %d, tail %d, free %d, stat %x,"
178 " estat %x, err %x, pending %d\n\n",
179 data
->rxhead
, data
->rxtail
, data
->rxfree
,
180 TSI_READ(TSI108_EC_RXSTAT
),
181 TSI_READ(TSI108_EC_RXESTAT
),
182 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
186 /* Synchronization is needed between the thread and up/down events.
187 * Note that the PHY is accessed through the same registers for both
188 * interfaces, so this can't be made interface-specific.
191 static DEFINE_SPINLOCK(phy_lock
);
193 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
197 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
198 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
199 (reg
<< TSI108_MAC_MII_ADDR_REG
));
200 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
201 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
202 for (i
= 0; i
< 100; i
++) {
203 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
204 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
212 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN
);
215 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
219 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
220 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
221 (reg
<< TSI108_MAC_MII_ADDR_REG
));
222 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
224 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
225 TSI108_MAC_MII_IND_BUSY
))
231 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
233 struct tsi108_prv_data
*data
= netdev_priv(dev
);
234 return tsi108_read_mii(data
, reg
);
237 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
239 struct tsi108_prv_data
*data
= netdev_priv(dev
);
240 tsi108_write_mii(data
, reg
, val
);
243 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
247 TSI_WRITE(TSI108_MAC_MII_ADDR
,
248 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
249 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
250 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
252 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
256 printk(KERN_ERR
"%s function time out\n", __func__
);
259 static int mii_speed(struct mii_if_info
*mii
)
261 int advert
, lpa
, val
, media
;
265 if (!mii_link_ok(mii
))
268 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
269 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
272 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
273 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
274 media
= mii_nway_result(advert
& lpa
);
276 if (mii
->supports_gmii
)
277 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
279 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
280 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
284 static void tsi108_check_phy(struct net_device
*dev
)
286 struct tsi108_prv_data
*data
= netdev_priv(dev
);
287 u32 mac_cfg2_reg
, portctrl_reg
;
292 spin_lock_irqsave(&phy_lock
, flags
);
297 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
298 data
->init_media
= 0;
300 if (netif_carrier_ok(dev
)) {
302 speed
= mii_speed(&data
->mii_if
);
304 if ((speed
!= data
->speed
) || duplex
) {
306 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
307 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
309 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
312 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
313 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
315 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
316 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
321 if (data
->mii_if
.full_duplex
) {
322 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
323 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
326 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
327 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
331 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
332 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
335 if (data
->link_up
== 0) {
336 /* The manual says it can take 3-4 usecs for the speed change
341 spin_lock(&data
->txlock
);
342 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
343 netif_wake_queue(dev
);
346 spin_unlock(&data
->txlock
);
349 if (data
->link_up
== 1) {
350 netif_stop_queue(dev
);
352 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
360 spin_unlock_irqrestore(&phy_lock
, flags
);
364 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
365 unsigned long *upper
)
367 if (carry
& carry_bit
)
368 *upper
+= carry_shift
;
371 static void tsi108_stat_carry(struct net_device
*dev
)
373 struct tsi108_prv_data
*data
= netdev_priv(dev
);
377 spin_lock_irqsave(&data
->misclock
, flags
);
379 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
380 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
382 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
383 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
385 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
386 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
388 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
389 TSI108_STAT_RXPKTS_CARRY
,
390 &data
->stats
.rx_packets
);
392 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
393 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
395 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
396 TSI108_STAT_RXMCAST_CARRY
,
397 &data
->stats
.multicast
);
399 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
400 TSI108_STAT_RXALIGN_CARRY
,
401 &data
->stats
.rx_frame_errors
);
403 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
404 TSI108_STAT_RXLENGTH_CARRY
,
405 &data
->stats
.rx_length_errors
);
407 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
408 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
410 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
411 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
413 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
414 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
416 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
417 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
419 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
420 TSI108_STAT_RXDROP_CARRY
,
421 &data
->stats
.rx_missed_errors
);
423 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
424 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
426 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
427 TSI108_STAT_TXPKTS_CARRY
,
428 &data
->stats
.tx_packets
);
430 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
431 TSI108_STAT_TXEXDEF_CARRY
,
432 &data
->stats
.tx_aborted_errors
);
434 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
435 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
437 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
438 TSI108_STAT_TXTCOL_CARRY
,
439 &data
->stats
.collisions
);
441 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
442 TSI108_STAT_TXPAUSEDROP_CARRY
,
443 &data
->tx_pause_drop
);
445 spin_unlock_irqrestore(&data
->misclock
, flags
);
448 /* Read a stat counter atomically with respect to carries.
449 * data->misclock must be held.
451 static inline unsigned long
452 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
453 int carry_shift
, unsigned long *upper
)
459 carryreg
= TSI108_STAT_CARRY1
;
461 carryreg
= TSI108_STAT_CARRY2
;
464 val
= TSI_READ(reg
) | *upper
;
466 /* Check to see if it overflowed, but the interrupt hasn't
467 * been serviced yet. If so, handle the carry here, and
471 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
472 *upper
+= carry_shift
;
473 TSI_WRITE(carryreg
, carry_bit
);
480 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
484 struct tsi108_prv_data
*data
= netdev_priv(dev
);
485 spin_lock_irq(&data
->misclock
);
487 data
->tmpstats
.rx_packets
=
488 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
489 TSI108_STAT_CARRY1_RXPKTS
,
490 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
492 data
->tmpstats
.tx_packets
=
493 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
494 TSI108_STAT_CARRY2_TXPKTS
,
495 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
497 data
->tmpstats
.rx_bytes
=
498 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
499 TSI108_STAT_CARRY1_RXBYTES
,
500 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
502 data
->tmpstats
.tx_bytes
=
503 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
504 TSI108_STAT_CARRY2_TXBYTES
,
505 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
507 data
->tmpstats
.multicast
=
508 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
509 TSI108_STAT_CARRY1_RXMCAST
,
510 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
512 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
513 TSI108_STAT_CARRY2_TXEXCOL
,
514 TSI108_STAT_TXEXCOL_CARRY
,
515 &data
->tx_coll_abort
);
517 data
->tmpstats
.collisions
=
518 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
519 TSI108_STAT_CARRY2_TXTCOL
,
520 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
522 data
->tmpstats
.collisions
+= excol
;
524 data
->tmpstats
.rx_length_errors
=
525 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
526 TSI108_STAT_CARRY1_RXLENGTH
,
527 TSI108_STAT_RXLENGTH_CARRY
,
528 &data
->stats
.rx_length_errors
);
530 data
->tmpstats
.rx_length_errors
+=
531 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
532 TSI108_STAT_CARRY1_RXRUNT
,
533 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
535 data
->tmpstats
.rx_length_errors
+=
536 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
537 TSI108_STAT_CARRY1_RXJUMBO
,
538 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
540 data
->tmpstats
.rx_frame_errors
=
541 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
542 TSI108_STAT_CARRY1_RXALIGN
,
543 TSI108_STAT_RXALIGN_CARRY
,
544 &data
->stats
.rx_frame_errors
);
546 data
->tmpstats
.rx_frame_errors
+=
547 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
548 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
551 data
->tmpstats
.rx_frame_errors
+=
552 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
553 TSI108_STAT_CARRY1_RXFRAG
,
554 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
556 data
->tmpstats
.rx_missed_errors
=
557 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
558 TSI108_STAT_CARRY1_RXDROP
,
559 TSI108_STAT_RXDROP_CARRY
,
560 &data
->stats
.rx_missed_errors
);
562 /* These three are maintained by software. */
563 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
564 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
566 data
->tmpstats
.tx_aborted_errors
=
567 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
568 TSI108_STAT_CARRY2_TXEXDEF
,
569 TSI108_STAT_TXEXDEF_CARRY
,
570 &data
->stats
.tx_aborted_errors
);
572 data
->tmpstats
.tx_aborted_errors
+=
573 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
574 TSI108_STAT_CARRY2_TXPAUSE
,
575 TSI108_STAT_TXPAUSEDROP_CARRY
,
576 &data
->tx_pause_drop
);
578 data
->tmpstats
.tx_aborted_errors
+= excol
;
580 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
581 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
582 data
->tmpstats
.rx_crc_errors
+
583 data
->tmpstats
.rx_frame_errors
+
584 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
586 spin_unlock_irq(&data
->misclock
);
587 return &data
->tmpstats
;
590 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
592 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
593 TSI108_EC_RXQ_PTRHIGH_VALID
);
595 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
596 | TSI108_EC_RXCTRL_QUEUE0
);
599 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
601 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
602 TSI108_EC_TXQ_PTRHIGH_VALID
);
604 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
605 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
608 /* txlock must be held by caller, with IRQs disabled, and
609 * with permission to re-enable them when the lock is dropped.
611 static void tsi108_complete_tx(struct net_device
*dev
)
613 struct tsi108_prv_data
*data
= netdev_priv(dev
);
618 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
621 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
624 skb
= data
->txskbs
[tx
];
626 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
627 printk("%s: bad tx packet, misc %x\n",
628 dev
->name
, data
->txring
[tx
].misc
);
630 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
633 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
634 dev_kfree_skb_any(skb
);
640 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
641 netif_wake_queue(dev
);
645 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
647 struct tsi108_prv_data
*data
= netdev_priv(dev
);
648 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
651 if (!data
->phy_ok
&& net_ratelimit())
652 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
654 if (!data
->link_up
) {
655 printk(KERN_ERR
"%s: Transmit while link is down!\n",
657 netif_stop_queue(dev
);
658 return NETDEV_TX_BUSY
;
661 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
662 netif_stop_queue(dev
);
665 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
667 return NETDEV_TX_BUSY
;
670 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
671 netif_stop_queue(dev
);
674 spin_lock_irq(&data
->txlock
);
676 for (i
= 0; i
< frags
; i
++) {
678 int tx
= data
->txhead
;
680 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
681 * the interrupt bit. TX descriptor-complete interrupts are
682 * enabled when the queue fills up, and masked when there is
683 * still free space. This way, when saturating the outbound
684 * link, the tx interrupts are kept to a reasonable level.
685 * When the queue is not full, reclamation of skbs still occurs
686 * as new packets are transmitted, or on a queue-empty
690 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
691 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
692 misc
= TSI108_TX_INT
;
694 data
->txskbs
[tx
] = skb
;
697 data
->txring
[tx
].buf0
= dma_map_single(&data
->pdev
->dev
,
698 skb
->data
, skb_headlen(skb
),
700 data
->txring
[tx
].len
= skb_headlen(skb
);
701 misc
|= TSI108_TX_SOF
;
703 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
705 data
->txring
[tx
].buf0
=
706 skb_frag_dma_map(&data
->pdev
->dev
, frag
,
707 0, skb_frag_size(frag
),
709 data
->txring
[tx
].len
= skb_frag_size(frag
);
713 misc
|= TSI108_TX_EOF
;
715 if (netif_msg_pktdata(data
)) {
717 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
719 for (i
= 0; i
< skb
->len
; i
++)
720 printk(" %2.2x", skb
->data
[i
]);
723 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
725 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
729 tsi108_complete_tx(dev
);
731 /* This must be done after the check for completed tx descriptors,
732 * so that the tail pointer is correct.
735 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
736 tsi108_restart_tx(data
);
738 spin_unlock_irq(&data
->txlock
);
742 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
744 struct tsi108_prv_data
*data
= netdev_priv(dev
);
747 while (data
->rxfree
&& done
!= budget
) {
748 int rx
= data
->rxtail
;
751 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
754 skb
= data
->rxskbs
[rx
];
755 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
759 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
760 spin_lock_irq(&data
->misclock
);
762 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
763 data
->stats
.rx_crc_errors
++;
764 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
765 data
->stats
.rx_fifo_errors
++;
767 spin_unlock_irq(&data
->misclock
);
769 dev_kfree_skb_any(skb
);
772 if (netif_msg_pktdata(data
)) {
774 printk("%s: Rx Frame contents (%d)\n",
775 dev
->name
, data
->rxring
[rx
].len
);
776 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
777 printk(" %2.2x", skb
->data
[i
]);
781 skb_put(skb
, data
->rxring
[rx
].len
);
782 skb
->protocol
= eth_type_trans(skb
, dev
);
783 netif_receive_skb(skb
);
789 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
791 struct tsi108_prv_data
*data
= netdev_priv(dev
);
794 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
795 int rx
= data
->rxhead
;
798 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
799 data
->rxskbs
[rx
] = skb
;
803 data
->rxring
[rx
].buf0
= dma_map_single(&data
->pdev
->dev
,
804 skb
->data
, TSI108_RX_SKB_SIZE
,
807 /* Sometimes the hardware sets blen to zero after packet
808 * reception, even though the manual says that it's only ever
809 * modified by the driver.
812 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
813 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
815 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
820 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
821 TSI108_EC_RXSTAT_QUEUE0
))
822 tsi108_restart_rx(data
, dev
);
827 static int tsi108_poll(struct napi_struct
*napi
, int budget
)
829 struct tsi108_prv_data
*data
= container_of(napi
, struct tsi108_prv_data
, napi
);
830 struct net_device
*dev
= data
->dev
;
831 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
832 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
833 int num_received
= 0, num_filled
= 0;
835 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
836 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
838 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
839 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
841 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
842 num_received
= tsi108_complete_rx(dev
, budget
);
844 /* This should normally fill no more slots than the number of
845 * packets received in tsi108_complete_rx(). The exception
846 * is when we previously ran out of memory for RX SKBs. In that
847 * case, it's helpful to obey the budget, not only so that the
848 * CPU isn't hogged, but so that memory (which may still be low)
849 * is not hogged by one device.
851 * A work unit is considered to be two SKBs to allow us to catch
852 * up when the ring has shrunk due to out-of-memory but we're
853 * still removing the full budget's worth of packets each time.
856 if (data
->rxfree
< TSI108_RXRING_LEN
)
857 num_filled
= tsi108_refill_rx(dev
, budget
* 2);
859 if (intstat
& TSI108_INT_RXERROR
) {
860 u32 err
= TSI_READ(TSI108_EC_RXERR
);
861 TSI_WRITE(TSI108_EC_RXERR
, err
);
865 printk(KERN_DEBUG
"%s: RX error %x\n",
868 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
869 TSI108_EC_RXSTAT_QUEUE0
))
870 tsi108_restart_rx(data
, dev
);
874 if (intstat
& TSI108_INT_RXOVERRUN
) {
875 spin_lock_irq(&data
->misclock
);
876 data
->stats
.rx_fifo_errors
++;
877 spin_unlock_irq(&data
->misclock
);
880 if (num_received
< budget
) {
882 napi_complete_done(napi
, num_received
);
884 TSI_WRITE(TSI108_EC_INTMASK
,
885 TSI_READ(TSI108_EC_INTMASK
)
886 & ~(TSI108_INT_RXQUEUE0
887 | TSI108_INT_RXTHRESH
|
888 TSI108_INT_RXOVERRUN
|
898 static void tsi108_rx_int(struct net_device
*dev
)
900 struct tsi108_prv_data
*data
= netdev_priv(dev
);
902 /* A race could cause dev to already be scheduled, so it's not an
903 * error if that happens (and interrupts shouldn't be re-masked,
904 * because that can cause harmful races, if poll has already
905 * unmasked them but not cleared LINK_STATE_SCHED).
907 * This can happen if this code races with tsi108_poll(), which masks
908 * the interrupts after tsi108_irq_one() read the mask, but before
909 * napi_schedule is called. It could also happen due to calls
910 * from tsi108_check_rxring().
913 if (napi_schedule_prep(&data
->napi
)) {
914 /* Mask, rather than ack, the receive interrupts. The ack
915 * will happen in tsi108_poll().
918 TSI_WRITE(TSI108_EC_INTMASK
,
919 TSI_READ(TSI108_EC_INTMASK
) |
921 | TSI108_INT_RXTHRESH
|
922 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
924 __napi_schedule(&data
->napi
);
926 if (!netif_running(dev
)) {
927 /* This can happen if an interrupt occurs while the
928 * interface is being brought down, as the START
929 * bit is cleared before the stop function is called.
931 * In this case, the interrupts must be masked, or
932 * they will continue indefinitely.
934 * There's a race here if the interface is brought down
935 * and then up in rapid succession, as the device could
936 * be made running after the above check and before
937 * the masking below. This will only happen if the IRQ
938 * thread has a lower priority than the task brining
939 * up the interface. Fixing this race would likely
940 * require changes in generic code.
943 TSI_WRITE(TSI108_EC_INTMASK
,
945 (TSI108_EC_INTMASK
) |
946 TSI108_INT_RXQUEUE0
|
947 TSI108_INT_RXTHRESH
|
948 TSI108_INT_RXOVERRUN
|
955 /* If the RX ring has run out of memory, try periodically
956 * to allocate some more, as otherwise poll would never
957 * get called (apart from the initial end-of-queue condition).
959 * This is called once per second (by default) from the thread.
962 static void tsi108_check_rxring(struct net_device
*dev
)
964 struct tsi108_prv_data
*data
= netdev_priv(dev
);
966 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
967 * directly, so as to keep the receive path single-threaded
968 * (and thus not needing a lock).
971 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
975 static void tsi108_tx_int(struct net_device
*dev
)
977 struct tsi108_prv_data
*data
= netdev_priv(dev
);
978 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
980 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
981 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
982 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
983 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
984 u32 err
= TSI_READ(TSI108_EC_TXERR
);
985 TSI_WRITE(TSI108_EC_TXERR
, err
);
987 if (err
&& net_ratelimit())
988 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
991 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
992 spin_lock(&data
->txlock
);
993 tsi108_complete_tx(dev
);
994 spin_unlock(&data
->txlock
);
999 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1001 struct net_device
*dev
= dev_id
;
1002 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1003 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1005 if (!(stat
& TSI108_INT_ANY
))
1006 return IRQ_NONE
; /* Not our interrupt */
1008 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1010 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1011 TSI108_INT_TXERROR
))
1013 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1014 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1015 TSI108_INT_RXERROR
))
1018 if (stat
& TSI108_INT_SFN
) {
1019 if (net_ratelimit())
1020 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1021 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1024 if (stat
& TSI108_INT_STATCARRY
) {
1025 tsi108_stat_carry(dev
);
1026 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1032 static void tsi108_stop_ethernet(struct net_device
*dev
)
1034 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1036 /* Disable all TX and RX queues ... */
1037 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1038 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1040 /* ...and wait for them to become idle */
1042 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1048 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1052 printk(KERN_ERR
"%s function time out\n", __func__
);
1055 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1057 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1059 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1061 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1063 TSI_WRITE(TSI108_EC_PORTCTRL
,
1064 TSI_READ(TSI108_EC_PORTCTRL
) &
1065 ~TSI108_EC_PORTCTRL_STATRST
);
1067 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1069 TSI_WRITE(TSI108_EC_TXCFG
,
1070 TSI_READ(TSI108_EC_TXCFG
) &
1071 ~TSI108_EC_TXCFG_RST
);
1073 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1075 TSI_WRITE(TSI108_EC_RXCFG
,
1076 TSI_READ(TSI108_EC_RXCFG
) &
1077 ~TSI108_EC_RXCFG_RST
);
1079 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1080 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1081 TSI108_MAC_MII_MGMT_RST
);
1083 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1084 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1085 ~(TSI108_MAC_MII_MGMT_RST
|
1086 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1089 static int tsi108_get_mac(struct net_device
*dev
)
1091 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1092 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1093 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1095 /* Note that the octets are reversed from what the manual says,
1096 * producing an even weirder ordering...
1098 if (word2
== 0 && word1
== 0) {
1099 dev
->dev_addr
[0] = 0x00;
1100 dev
->dev_addr
[1] = 0x06;
1101 dev
->dev_addr
[2] = 0xd2;
1102 dev
->dev_addr
[3] = 0x00;
1103 dev
->dev_addr
[4] = 0x00;
1104 if (0x8 == data
->phy
)
1105 dev
->dev_addr
[5] = 0x01;
1107 dev
->dev_addr
[5] = 0x02;
1109 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1111 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1112 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1114 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1115 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1117 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1118 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1119 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1120 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1121 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1122 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1125 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1127 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128 dev
->name
, word1
, word2
);
1135 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1137 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1141 if (!is_valid_ether_addr(addr
))
1142 return -EADDRNOTAVAIL
;
1144 for (i
= 0; i
< 6; i
++)
1145 /* +2 is for the offset of the HW addr type */
1146 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1148 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1150 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1151 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1153 spin_lock_irq(&data
->misclock
);
1154 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1155 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1156 spin_lock(&data
->txlock
);
1158 if (data
->txfree
&& data
->link_up
)
1159 netif_wake_queue(dev
);
1161 spin_unlock(&data
->txlock
);
1162 spin_unlock_irq(&data
->misclock
);
1166 /* Protected by dev->xmit_lock. */
1167 static void tsi108_set_rx_mode(struct net_device
*dev
)
1169 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1170 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1172 if (dev
->flags
& IFF_PROMISC
) {
1173 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1174 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1178 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1180 if (dev
->flags
& IFF_ALLMULTI
|| !netdev_mc_empty(dev
)) {
1182 struct netdev_hw_addr
*ha
;
1183 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1185 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1187 netdev_for_each_mc_addr(ha
, dev
) {
1190 crc
= ether_crc(6, ha
->addr
);
1192 __set_bit(hash
, &data
->mc_hash
[0]);
1195 TSI_WRITE(TSI108_EC_HASHADDR
,
1196 TSI108_EC_HASHADDR_AUTOINC
|
1197 TSI108_EC_HASHADDR_MCAST
);
1199 for (i
= 0; i
< 16; i
++) {
1200 /* The manual says that the hardware may drop
1201 * back-to-back writes to the data register.
1204 TSI_WRITE(TSI108_EC_HASHDATA
,
1210 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1213 static void tsi108_init_phy(struct net_device
*dev
)
1215 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1218 unsigned long flags
;
1220 spin_lock_irqsave(&phy_lock
, flags
);
1222 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1224 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1229 printk(KERN_ERR
"%s function time out\n", __func__
);
1231 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1232 tsi108_write_mii(data
, 0x09, 0x0300);
1233 tsi108_write_mii(data
, 0x10, 0x1020);
1234 tsi108_write_mii(data
, 0x1c, 0x8c00);
1237 tsi108_write_mii(data
,
1239 BMCR_ANENABLE
| BMCR_ANRESTART
);
1240 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1243 /* Set G/MII mode and receive clock select in TBI control #2. The
1244 * second port won't work if this isn't done, even though we don't
1248 tsi108_write_tbi(data
, 0x11, 0x30);
1250 /* FIXME: It seems to take more than 2 back-to-back reads to the
1251 * PHY_STAT register before the link up status bit is set.
1256 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1258 if (i
++ > (MII_READ_DELAY
/ 10)) {
1261 spin_unlock_irqrestore(&phy_lock
, flags
);
1263 spin_lock_irqsave(&phy_lock
, flags
);
1266 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1267 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1269 data
->init_media
= 1;
1270 spin_unlock_irqrestore(&phy_lock
, flags
);
1273 static void tsi108_kill_phy(struct net_device
*dev
)
1275 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1276 unsigned long flags
;
1278 spin_lock_irqsave(&phy_lock
, flags
);
1279 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1281 spin_unlock_irqrestore(&phy_lock
, flags
);
1284 static int tsi108_open(struct net_device
*dev
)
1287 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1288 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1289 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1291 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1293 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1294 data
->id
, data
->irq_num
);
1297 dev
->irq
= data
->irq_num
;
1299 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300 data
->id
, dev
->irq
, dev
->name
);
1303 data
->rxring
= dma_alloc_coherent(&data
->pdev
->dev
, rxring_size
,
1304 &data
->rxdma
, GFP_KERNEL
);
1308 data
->txring
= dma_alloc_coherent(&data
->pdev
->dev
, txring_size
,
1309 &data
->txdma
, GFP_KERNEL
);
1310 if (!data
->txring
) {
1311 dma_free_coherent(&data
->pdev
->dev
, rxring_size
, data
->rxring
,
1316 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1317 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1318 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1319 data
->rxring
[i
].vlan
= 0;
1322 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1327 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1328 struct sk_buff
*skb
;
1330 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
1332 /* Bah. No memory for now, but maybe we'll get
1334 * For now, we'll live with the smaller ring.
1337 "%s: Could only allocate %d receive skb(s).\n",
1343 data
->rxskbs
[i
] = skb
;
1344 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1345 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1349 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1351 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1352 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1353 data
->txring
[i
].misc
= 0;
1356 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1359 data
->txfree
= TSI108_TXRING_LEN
;
1360 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1361 tsi108_init_phy(dev
);
1363 napi_enable(&data
->napi
);
1365 timer_setup(&data
->timer
, tsi108_timed_checker
, 0);
1366 mod_timer(&data
->timer
, jiffies
+ 1);
1368 tsi108_restart_rx(data
, dev
);
1370 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1372 TSI_WRITE(TSI108_EC_INTMASK
,
1373 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1374 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1375 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1376 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1378 TSI_WRITE(TSI108_MAC_CFG1
,
1379 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1380 netif_start_queue(dev
);
1384 static int tsi108_close(struct net_device
*dev
)
1386 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1388 netif_stop_queue(dev
);
1389 napi_disable(&data
->napi
);
1391 del_timer_sync(&data
->timer
);
1393 tsi108_stop_ethernet(dev
);
1394 tsi108_kill_phy(dev
);
1395 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1396 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1398 /* Check for any pending TX packets, and drop them. */
1400 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1401 int tx
= data
->txtail
;
1402 struct sk_buff
*skb
;
1403 skb
= data
->txskbs
[tx
];
1404 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1409 free_irq(data
->irq_num
, dev
);
1411 /* Discard the RX ring. */
1413 while (data
->rxfree
) {
1414 int rx
= data
->rxtail
;
1415 struct sk_buff
*skb
;
1417 skb
= data
->rxskbs
[rx
];
1418 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1423 dma_free_coherent(&data
->pdev
->dev
,
1424 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1425 data
->rxring
, data
->rxdma
);
1426 dma_free_coherent(&data
->pdev
->dev
,
1427 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1428 data
->txring
, data
->txdma
);
1433 static void tsi108_init_mac(struct net_device
*dev
)
1435 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1437 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1438 TSI108_MAC_CFG2_PADCRC
);
1440 TSI_WRITE(TSI108_EC_TXTHRESH
,
1441 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1442 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1444 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1445 ~(TSI108_STAT_CARRY1_RXBYTES
|
1446 TSI108_STAT_CARRY1_RXPKTS
|
1447 TSI108_STAT_CARRY1_RXFCS
|
1448 TSI108_STAT_CARRY1_RXMCAST
|
1449 TSI108_STAT_CARRY1_RXALIGN
|
1450 TSI108_STAT_CARRY1_RXLENGTH
|
1451 TSI108_STAT_CARRY1_RXRUNT
|
1452 TSI108_STAT_CARRY1_RXJUMBO
|
1453 TSI108_STAT_CARRY1_RXFRAG
|
1454 TSI108_STAT_CARRY1_RXJABBER
|
1455 TSI108_STAT_CARRY1_RXDROP
));
1457 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1458 ~(TSI108_STAT_CARRY2_TXBYTES
|
1459 TSI108_STAT_CARRY2_TXPKTS
|
1460 TSI108_STAT_CARRY2_TXEXDEF
|
1461 TSI108_STAT_CARRY2_TXEXCOL
|
1462 TSI108_STAT_CARRY2_TXTCOL
|
1463 TSI108_STAT_CARRY2_TXPAUSE
));
1465 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1466 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1468 TSI_WRITE(TSI108_EC_RXCFG
,
1469 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1471 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1472 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1473 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1474 TSI108_EC_TXQ_CFG_SFNPORT
));
1476 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1477 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1478 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1479 TSI108_EC_RXQ_CFG_SFNPORT
));
1481 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1482 TSI108_EC_TXQ_BUFCFG_BURST256
|
1483 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1484 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1486 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1487 TSI108_EC_RXQ_BUFCFG_BURST256
|
1488 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1489 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1491 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1494 static int tsi108_get_link_ksettings(struct net_device
*dev
,
1495 struct ethtool_link_ksettings
*cmd
)
1497 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1498 unsigned long flags
;
1500 spin_lock_irqsave(&data
->txlock
, flags
);
1501 mii_ethtool_get_link_ksettings(&data
->mii_if
, cmd
);
1502 spin_unlock_irqrestore(&data
->txlock
, flags
);
1507 static int tsi108_set_link_ksettings(struct net_device
*dev
,
1508 const struct ethtool_link_ksettings
*cmd
)
1510 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1511 unsigned long flags
;
1514 spin_lock_irqsave(&data
->txlock
, flags
);
1515 rc
= mii_ethtool_set_link_ksettings(&data
->mii_if
, cmd
);
1516 spin_unlock_irqrestore(&data
->txlock
, flags
);
1521 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1523 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1524 if (!netif_running(dev
))
1526 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1529 static const struct ethtool_ops tsi108_ethtool_ops
= {
1530 .get_link
= ethtool_op_get_link
,
1531 .get_link_ksettings
= tsi108_get_link_ksettings
,
1532 .set_link_ksettings
= tsi108_set_link_ksettings
,
1535 static const struct net_device_ops tsi108_netdev_ops
= {
1536 .ndo_open
= tsi108_open
,
1537 .ndo_stop
= tsi108_close
,
1538 .ndo_start_xmit
= tsi108_send_packet
,
1539 .ndo_set_rx_mode
= tsi108_set_rx_mode
,
1540 .ndo_get_stats
= tsi108_get_stats
,
1541 .ndo_do_ioctl
= tsi108_do_ioctl
,
1542 .ndo_set_mac_address
= tsi108_set_mac
,
1543 .ndo_validate_addr
= eth_validate_addr
,
1547 tsi108_init_one(struct platform_device
*pdev
)
1549 struct net_device
*dev
= NULL
;
1550 struct tsi108_prv_data
*data
= NULL
;
1554 einfo
= dev_get_platdata(&pdev
->dev
);
1556 if (NULL
== einfo
) {
1557 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1562 /* Create an ethernet device instance */
1564 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1568 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1569 data
= netdev_priv(dev
);
1573 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1574 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1575 einfo
->phy
, einfo
->irq_num
);
1577 data
->regs
= ioremap(einfo
->regs
, 0x400);
1578 if (NULL
== data
->regs
) {
1583 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1584 if (NULL
== data
->phyregs
) {
1589 data
->mii_if
.dev
= dev
;
1590 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1591 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1592 data
->mii_if
.phy_id
= einfo
->phy
;
1593 data
->mii_if
.phy_id_mask
= 0x1f;
1594 data
->mii_if
.reg_num_mask
= 0x1f;
1596 data
->phy
= einfo
->phy
;
1597 data
->phy_type
= einfo
->phy_type
;
1598 data
->irq_num
= einfo
->irq_num
;
1599 data
->id
= pdev
->id
;
1600 netif_napi_add(dev
, &data
->napi
, tsi108_poll
, 64);
1601 dev
->netdev_ops
= &tsi108_netdev_ops
;
1602 dev
->ethtool_ops
= &tsi108_ethtool_ops
;
1604 /* Apparently, the Linux networking code won't use scatter-gather
1605 * if the hardware doesn't do checksums. However, it's faster
1606 * to checksum in place and use SG, as (among other reasons)
1607 * the cache won't be dirtied (which then has to be flushed
1608 * before DMA). The checksumming is done by the driver (via
1609 * a new function skb_csum_dev() in net/core/skbuff.c).
1612 dev
->features
= NETIF_F_HIGHDMA
;
1614 spin_lock_init(&data
->txlock
);
1615 spin_lock_init(&data
->misclock
);
1617 tsi108_reset_ether(data
);
1618 tsi108_kill_phy(dev
);
1620 if ((err
= tsi108_get_mac(dev
)) != 0) {
1621 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1626 tsi108_init_mac(dev
);
1627 err
= register_netdev(dev
);
1629 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1634 platform_set_drvdata(pdev
, dev
);
1635 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1636 dev
->name
, dev
->dev_addr
);
1638 data
->msg_enable
= DEBUG
;
1645 iounmap(data
->phyregs
);
1648 iounmap(data
->regs
);
1655 /* There's no way to either get interrupts from the PHY when
1656 * something changes, or to have the Tsi108 automatically communicate
1657 * with the PHY to reconfigure itself.
1659 * Thus, we have to do it using a timer.
1662 static void tsi108_timed_checker(struct timer_list
*t
)
1664 struct tsi108_prv_data
*data
= from_timer(data
, t
, timer
);
1665 struct net_device
*dev
= data
->dev
;
1667 tsi108_check_phy(dev
);
1668 tsi108_check_rxring(dev
);
1669 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1672 static int tsi108_ether_remove(struct platform_device
*pdev
)
1674 struct net_device
*dev
= platform_get_drvdata(pdev
);
1675 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1677 unregister_netdev(dev
);
1678 tsi108_stop_ethernet(dev
);
1679 iounmap(priv
->regs
);
1680 iounmap(priv
->phyregs
);
1685 module_platform_driver(tsi_eth_driver
);
1687 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1688 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:tsi-ethernet");