WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / phy / sfp-bus.c
blob20b91f5dfc6edc1bc5e8fccba04c564e7c15db6b
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
11 #include "sfp.h"
13 struct sfp_quirk {
14 const char *vendor;
15 const char *part;
16 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
19 /**
20 * struct sfp_bus - internal representation of a sfp bus
22 struct sfp_bus {
23 /* private: */
24 struct kref kref;
25 struct list_head node;
26 struct fwnode_handle *fwnode;
28 const struct sfp_socket_ops *socket_ops;
29 struct device *sfp_dev;
30 struct sfp *sfp;
31 const struct sfp_quirk *sfp_quirk;
33 const struct sfp_upstream_ops *upstream_ops;
34 void *upstream;
35 struct phy_device *phydev;
37 bool registered;
38 bool started;
41 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 unsigned long *modes)
44 phylink_set(modes, 2500baseX_Full);
47 static const struct sfp_quirk sfp_quirks[] = {
49 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
50 // incorrectly report 2500MBd NRZ in their EEPROM
51 .vendor = "ALCATELLUCENT",
52 .part = "G010SP",
53 .modes = sfp_quirk_2500basex,
54 }, {
55 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
56 // report 3.2GBd NRZ in their EEPROM
57 .vendor = "ALCATELLUCENT",
58 .part = "3FE46541AA",
59 .modes = sfp_quirk_2500basex,
60 }, {
61 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
62 // NRZ in their EEPROM
63 .vendor = "HUAWEI",
64 .part = "MA5671A",
65 .modes = sfp_quirk_2500basex,
69 static size_t sfp_strlen(const char *str, size_t maxlen)
71 size_t size, i;
73 /* Trailing characters should be filled with space chars */
74 for (i = 0, size = 0; i < maxlen; i++)
75 if (str[i] != ' ')
76 size = i + 1;
78 return size;
81 static bool sfp_match(const char *qs, const char *str, size_t len)
83 if (!qs)
84 return true;
85 if (strlen(qs) != len)
86 return false;
87 return !strncmp(qs, str, len);
90 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
92 const struct sfp_quirk *q;
93 unsigned int i;
94 size_t vs, ps;
96 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
97 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
99 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
100 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
101 sfp_match(q->part, id->base.vendor_pn, ps))
102 return q;
104 return NULL;
108 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
109 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
110 * @id: a pointer to the module's &struct sfp_eeprom_id
111 * @support: optional pointer to an array of unsigned long for the
112 * ethtool support mask
114 * Parse the EEPROM identification given in @id, and return one of
115 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
116 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
117 * the connector type.
119 * If the port type is not known, returns %PORT_OTHER.
121 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
122 unsigned long *support)
124 int port;
126 /* port is the physical connector, set this from the connector field. */
127 switch (id->base.connector) {
128 case SFF8024_CONNECTOR_SC:
129 case SFF8024_CONNECTOR_FIBERJACK:
130 case SFF8024_CONNECTOR_LC:
131 case SFF8024_CONNECTOR_MT_RJ:
132 case SFF8024_CONNECTOR_MU:
133 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
134 case SFF8024_CONNECTOR_MPO_1X12:
135 case SFF8024_CONNECTOR_MPO_2X16:
136 port = PORT_FIBRE;
137 break;
139 case SFF8024_CONNECTOR_RJ45:
140 port = PORT_TP;
141 break;
143 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
144 port = PORT_DA;
145 break;
147 case SFF8024_CONNECTOR_UNSPEC:
148 if (id->base.e1000_base_t) {
149 port = PORT_TP;
150 break;
152 fallthrough;
153 case SFF8024_CONNECTOR_SG: /* guess */
154 case SFF8024_CONNECTOR_HSSDC_II:
155 case SFF8024_CONNECTOR_NOSEPARATE:
156 case SFF8024_CONNECTOR_MXC_2X16:
157 port = PORT_OTHER;
158 break;
159 default:
160 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
161 id->base.connector);
162 port = PORT_OTHER;
163 break;
166 if (support) {
167 switch (port) {
168 case PORT_FIBRE:
169 phylink_set(support, FIBRE);
170 break;
172 case PORT_TP:
173 phylink_set(support, TP);
174 break;
178 return port;
180 EXPORT_SYMBOL_GPL(sfp_parse_port);
183 * sfp_may_have_phy() - indicate whether the module may have a PHY
184 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
185 * @id: a pointer to the module's &struct sfp_eeprom_id
187 * Parse the EEPROM identification given in @id, and return whether
188 * this module may have a PHY.
190 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
192 if (id->base.e1000_base_t)
193 return true;
195 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
196 switch (id->base.extended_cc) {
197 case SFF8024_ECC_10GBASE_T_SFI:
198 case SFF8024_ECC_10GBASE_T_SR:
199 case SFF8024_ECC_5GBASE_T:
200 case SFF8024_ECC_2_5GBASE_T:
201 return true;
205 return false;
207 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
210 * sfp_parse_support() - Parse the eeprom id for supported link modes
211 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
212 * @id: a pointer to the module's &struct sfp_eeprom_id
213 * @support: pointer to an array of unsigned long for the ethtool support mask
215 * Parse the EEPROM identification information and derive the supported
216 * ethtool link modes for the module.
218 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
219 unsigned long *support)
221 unsigned int br_min, br_nom, br_max;
222 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
224 /* Decode the bitrate information to MBd */
225 br_min = br_nom = br_max = 0;
226 if (id->base.br_nominal) {
227 if (id->base.br_nominal != 255) {
228 br_nom = id->base.br_nominal * 100;
229 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
230 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
231 } else if (id->ext.br_max) {
232 br_nom = 250 * id->ext.br_max;
233 br_max = br_nom + br_nom * id->ext.br_min / 100;
234 br_min = br_nom - br_nom * id->ext.br_min / 100;
237 /* When using passive cables, in case neither BR,min nor BR,max
238 * are specified, set br_min to 0 as the nominal value is then
239 * used as the maximum.
241 if (br_min == br_max && id->base.sfp_ct_passive)
242 br_min = 0;
245 /* Set ethtool support from the compliance fields. */
246 if (id->base.e10g_base_sr)
247 phylink_set(modes, 10000baseSR_Full);
248 if (id->base.e10g_base_lr)
249 phylink_set(modes, 10000baseLR_Full);
250 if (id->base.e10g_base_lrm)
251 phylink_set(modes, 10000baseLRM_Full);
252 if (id->base.e10g_base_er)
253 phylink_set(modes, 10000baseER_Full);
254 if (id->base.e1000_base_sx ||
255 id->base.e1000_base_lx ||
256 id->base.e1000_base_cx)
257 phylink_set(modes, 1000baseX_Full);
258 if (id->base.e1000_base_t) {
259 phylink_set(modes, 1000baseT_Half);
260 phylink_set(modes, 1000baseT_Full);
263 /* 1000Base-PX or 1000Base-BX10 */
264 if ((id->base.e_base_px || id->base.e_base_bx10) &&
265 br_min <= 1300 && br_max >= 1200)
266 phylink_set(modes, 1000baseX_Full);
268 /* For active or passive cables, select the link modes
269 * based on the bit rates and the cable compliance bytes.
271 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
272 /* This may look odd, but some manufacturers use 12000MBd */
273 if (br_min <= 12000 && br_max >= 10300)
274 phylink_set(modes, 10000baseCR_Full);
275 if (br_min <= 3200 && br_max >= 3100)
276 phylink_set(modes, 2500baseX_Full);
277 if (br_min <= 1300 && br_max >= 1200)
278 phylink_set(modes, 1000baseX_Full);
280 if (id->base.sfp_ct_passive) {
281 if (id->base.passive.sff8431_app_e)
282 phylink_set(modes, 10000baseCR_Full);
284 if (id->base.sfp_ct_active) {
285 if (id->base.active.sff8431_app_e ||
286 id->base.active.sff8431_lim) {
287 phylink_set(modes, 10000baseCR_Full);
291 switch (id->base.extended_cc) {
292 case SFF8024_ECC_UNSPEC:
293 break;
294 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
295 phylink_set(modes, 100000baseSR4_Full);
296 phylink_set(modes, 25000baseSR_Full);
297 break;
298 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
299 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
300 phylink_set(modes, 100000baseLR4_ER4_Full);
301 break;
302 case SFF8024_ECC_100GBASE_CR4:
303 phylink_set(modes, 100000baseCR4_Full);
304 fallthrough;
305 case SFF8024_ECC_25GBASE_CR_S:
306 case SFF8024_ECC_25GBASE_CR_N:
307 phylink_set(modes, 25000baseCR_Full);
308 break;
309 case SFF8024_ECC_10GBASE_T_SFI:
310 case SFF8024_ECC_10GBASE_T_SR:
311 phylink_set(modes, 10000baseT_Full);
312 break;
313 case SFF8024_ECC_5GBASE_T:
314 phylink_set(modes, 5000baseT_Full);
315 break;
316 case SFF8024_ECC_2_5GBASE_T:
317 phylink_set(modes, 2500baseT_Full);
318 break;
319 default:
320 dev_warn(bus->sfp_dev,
321 "Unknown/unsupported extended compliance code: 0x%02x\n",
322 id->base.extended_cc);
323 break;
326 /* For fibre channel SFP, derive possible BaseX modes */
327 if (id->base.fc_speed_100 ||
328 id->base.fc_speed_200 ||
329 id->base.fc_speed_400) {
330 if (id->base.br_nominal >= 31)
331 phylink_set(modes, 2500baseX_Full);
332 if (id->base.br_nominal >= 12)
333 phylink_set(modes, 1000baseX_Full);
336 /* If we haven't discovered any modes that this module supports, try
337 * the bitrate to determine supported modes. Some BiDi modules (eg,
338 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
339 * wavelengths, so do not set any transceiver bits.
341 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
342 /* If the bit rate allows 1000baseX */
343 if (br_nom && br_min <= 1300 && br_max >= 1200)
344 phylink_set(modes, 1000baseX_Full);
347 if (bus->sfp_quirk)
348 bus->sfp_quirk->modes(id, modes);
350 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
352 phylink_set(support, Autoneg);
353 phylink_set(support, Pause);
354 phylink_set(support, Asym_Pause);
356 EXPORT_SYMBOL_GPL(sfp_parse_support);
359 * sfp_select_interface() - Select appropriate phy_interface_t mode
360 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
361 * @link_modes: ethtool link modes mask
363 * Derive the phy_interface_t mode for the SFP module from the link
364 * modes mask.
366 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
367 unsigned long *link_modes)
369 if (phylink_test(link_modes, 10000baseCR_Full) ||
370 phylink_test(link_modes, 10000baseSR_Full) ||
371 phylink_test(link_modes, 10000baseLR_Full) ||
372 phylink_test(link_modes, 10000baseLRM_Full) ||
373 phylink_test(link_modes, 10000baseER_Full) ||
374 phylink_test(link_modes, 10000baseT_Full))
375 return PHY_INTERFACE_MODE_10GBASER;
377 if (phylink_test(link_modes, 2500baseX_Full))
378 return PHY_INTERFACE_MODE_2500BASEX;
380 if (phylink_test(link_modes, 1000baseT_Half) ||
381 phylink_test(link_modes, 1000baseT_Full))
382 return PHY_INTERFACE_MODE_SGMII;
384 if (phylink_test(link_modes, 1000baseX_Full))
385 return PHY_INTERFACE_MODE_1000BASEX;
387 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
389 return PHY_INTERFACE_MODE_NA;
391 EXPORT_SYMBOL_GPL(sfp_select_interface);
393 static LIST_HEAD(sfp_buses);
394 static DEFINE_MUTEX(sfp_mutex);
396 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
398 return bus->registered ? bus->upstream_ops : NULL;
401 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
403 struct sfp_bus *sfp, *new, *found = NULL;
405 new = kzalloc(sizeof(*new), GFP_KERNEL);
407 mutex_lock(&sfp_mutex);
409 list_for_each_entry(sfp, &sfp_buses, node) {
410 if (sfp->fwnode == fwnode) {
411 kref_get(&sfp->kref);
412 found = sfp;
413 break;
417 if (!found && new) {
418 kref_init(&new->kref);
419 new->fwnode = fwnode;
420 list_add(&new->node, &sfp_buses);
421 found = new;
422 new = NULL;
425 mutex_unlock(&sfp_mutex);
427 kfree(new);
429 return found;
432 static void sfp_bus_release(struct kref *kref)
434 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
436 list_del(&bus->node);
437 mutex_unlock(&sfp_mutex);
438 kfree(bus);
442 * sfp_bus_put() - put a reference on the &struct sfp_bus
443 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
445 * Put a reference on the &struct sfp_bus and free the underlying structure
446 * if this was the last reference.
448 void sfp_bus_put(struct sfp_bus *bus)
450 if (bus)
451 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
453 EXPORT_SYMBOL_GPL(sfp_bus_put);
455 static int sfp_register_bus(struct sfp_bus *bus)
457 const struct sfp_upstream_ops *ops = bus->upstream_ops;
458 int ret;
460 if (ops) {
461 if (ops->link_down)
462 ops->link_down(bus->upstream);
463 if (ops->connect_phy && bus->phydev) {
464 ret = ops->connect_phy(bus->upstream, bus->phydev);
465 if (ret)
466 return ret;
469 bus->registered = true;
470 bus->socket_ops->attach(bus->sfp);
471 if (bus->started)
472 bus->socket_ops->start(bus->sfp);
473 bus->upstream_ops->attach(bus->upstream, bus);
474 return 0;
477 static void sfp_unregister_bus(struct sfp_bus *bus)
479 const struct sfp_upstream_ops *ops = bus->upstream_ops;
481 if (bus->registered) {
482 bus->upstream_ops->detach(bus->upstream, bus);
483 if (bus->started)
484 bus->socket_ops->stop(bus->sfp);
485 bus->socket_ops->detach(bus->sfp);
486 if (bus->phydev && ops && ops->disconnect_phy)
487 ops->disconnect_phy(bus->upstream);
489 bus->registered = false;
493 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
494 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
495 * @modinfo: a &struct ethtool_modinfo
497 * Fill in the type and eeprom_len parameters in @modinfo for a module on
498 * the sfp bus specified by @bus.
500 * Returns 0 on success or a negative errno number.
502 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
504 return bus->socket_ops->module_info(bus->sfp, modinfo);
506 EXPORT_SYMBOL_GPL(sfp_get_module_info);
509 * sfp_get_module_eeprom() - Read the SFP module EEPROM
510 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
511 * @ee: a &struct ethtool_eeprom
512 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
514 * Read the EEPROM as specified by the supplied @ee. See the documentation
515 * for &struct ethtool_eeprom for the region to be read.
517 * Returns 0 on success or a negative errno number.
519 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
520 u8 *data)
522 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
524 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
527 * sfp_upstream_start() - Inform the SFP that the network device is up
528 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
530 * Inform the SFP socket that the network device is now up, so that the
531 * module can be enabled by allowing TX_DISABLE to be deasserted. This
532 * should be called from the network device driver's &struct net_device_ops
533 * ndo_open() method.
535 void sfp_upstream_start(struct sfp_bus *bus)
537 if (bus->registered)
538 bus->socket_ops->start(bus->sfp);
539 bus->started = true;
541 EXPORT_SYMBOL_GPL(sfp_upstream_start);
544 * sfp_upstream_stop() - Inform the SFP that the network device is down
545 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
547 * Inform the SFP socket that the network device is now up, so that the
548 * module can be disabled by asserting TX_DISABLE, disabling the laser
549 * in optical modules. This should be called from the network device
550 * driver's &struct net_device_ops ndo_stop() method.
552 void sfp_upstream_stop(struct sfp_bus *bus)
554 if (bus->registered)
555 bus->socket_ops->stop(bus->sfp);
556 bus->started = false;
558 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
560 static void sfp_upstream_clear(struct sfp_bus *bus)
562 bus->upstream_ops = NULL;
563 bus->upstream = NULL;
567 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
568 * @fwnode: firmware node for the parent device (MAC or PHY)
570 * Parse the parent device's firmware node for a SFP bus, and locate
571 * the sfp_bus structure, incrementing its reference count. This must
572 * be put via sfp_bus_put() when done.
574 * Returns:
575 * - on success, a pointer to the sfp_bus structure,
576 * - %NULL if no SFP is specified,
577 * - on failure, an error pointer value:
579 * - corresponding to the errors detailed for
580 * fwnode_property_get_reference_args().
581 * - %-ENOMEM if we failed to allocate the bus.
582 * - an error from the upstream's connect_phy() method.
584 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
586 struct fwnode_reference_args ref;
587 struct sfp_bus *bus;
588 int ret;
590 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
591 0, 0, &ref);
592 if (ret == -ENOENT)
593 return NULL;
594 else if (ret < 0)
595 return ERR_PTR(ret);
597 bus = sfp_bus_get(ref.fwnode);
598 fwnode_handle_put(ref.fwnode);
599 if (!bus)
600 return ERR_PTR(-ENOMEM);
602 return bus;
604 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
607 * sfp_bus_add_upstream() - parse and register the neighbouring device
608 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
609 * @upstream: the upstream private data
610 * @ops: the upstream's &struct sfp_upstream_ops
612 * Add upstream driver for the SFP bus, and if the bus is complete, register
613 * the SFP bus using sfp_register_upstream(). This takes a reference on the
614 * bus, so it is safe to put the bus after this call.
616 * Returns:
617 * - on success, a pointer to the sfp_bus structure,
618 * - %NULL if no SFP is specified,
619 * - on failure, an error pointer value:
621 * - corresponding to the errors detailed for
622 * fwnode_property_get_reference_args().
623 * - %-ENOMEM if we failed to allocate the bus.
624 * - an error from the upstream's connect_phy() method.
626 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
627 const struct sfp_upstream_ops *ops)
629 int ret;
631 /* If no bus, return success */
632 if (!bus)
633 return 0;
635 rtnl_lock();
636 kref_get(&bus->kref);
637 bus->upstream_ops = ops;
638 bus->upstream = upstream;
640 if (bus->sfp) {
641 ret = sfp_register_bus(bus);
642 if (ret)
643 sfp_upstream_clear(bus);
644 } else {
645 ret = 0;
647 rtnl_unlock();
649 if (ret)
650 sfp_bus_put(bus);
652 return ret;
654 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
657 * sfp_bus_del_upstream() - Delete a sfp bus
658 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
660 * Delete a previously registered upstream connection for the SFP
661 * module. @bus should have been added by sfp_bus_add_upstream().
663 void sfp_bus_del_upstream(struct sfp_bus *bus)
665 if (bus) {
666 rtnl_lock();
667 if (bus->sfp)
668 sfp_unregister_bus(bus);
669 sfp_upstream_clear(bus);
670 rtnl_unlock();
672 sfp_bus_put(bus);
675 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
677 /* Socket driver entry points */
678 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
680 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
681 int ret = 0;
683 if (ops && ops->connect_phy)
684 ret = ops->connect_phy(bus->upstream, phydev);
686 if (ret == 0)
687 bus->phydev = phydev;
689 return ret;
691 EXPORT_SYMBOL_GPL(sfp_add_phy);
693 void sfp_remove_phy(struct sfp_bus *bus)
695 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
697 if (ops && ops->disconnect_phy)
698 ops->disconnect_phy(bus->upstream);
699 bus->phydev = NULL;
701 EXPORT_SYMBOL_GPL(sfp_remove_phy);
703 void sfp_link_up(struct sfp_bus *bus)
705 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
707 if (ops && ops->link_up)
708 ops->link_up(bus->upstream);
710 EXPORT_SYMBOL_GPL(sfp_link_up);
712 void sfp_link_down(struct sfp_bus *bus)
714 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
716 if (ops && ops->link_down)
717 ops->link_down(bus->upstream);
719 EXPORT_SYMBOL_GPL(sfp_link_down);
721 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
723 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
724 int ret = 0;
726 bus->sfp_quirk = sfp_lookup_quirk(id);
728 if (ops && ops->module_insert)
729 ret = ops->module_insert(bus->upstream, id);
731 return ret;
733 EXPORT_SYMBOL_GPL(sfp_module_insert);
735 void sfp_module_remove(struct sfp_bus *bus)
737 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
739 if (ops && ops->module_remove)
740 ops->module_remove(bus->upstream);
742 bus->sfp_quirk = NULL;
744 EXPORT_SYMBOL_GPL(sfp_module_remove);
746 int sfp_module_start(struct sfp_bus *bus)
748 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
749 int ret = 0;
751 if (ops && ops->module_start)
752 ret = ops->module_start(bus->upstream);
754 return ret;
756 EXPORT_SYMBOL_GPL(sfp_module_start);
758 void sfp_module_stop(struct sfp_bus *bus)
760 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
762 if (ops && ops->module_stop)
763 ops->module_stop(bus->upstream);
765 EXPORT_SYMBOL_GPL(sfp_module_stop);
767 static void sfp_socket_clear(struct sfp_bus *bus)
769 bus->sfp_dev = NULL;
770 bus->sfp = NULL;
771 bus->socket_ops = NULL;
774 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
775 const struct sfp_socket_ops *ops)
777 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
778 int ret = 0;
780 if (bus) {
781 rtnl_lock();
782 bus->sfp_dev = dev;
783 bus->sfp = sfp;
784 bus->socket_ops = ops;
786 if (bus->upstream_ops) {
787 ret = sfp_register_bus(bus);
788 if (ret)
789 sfp_socket_clear(bus);
791 rtnl_unlock();
794 if (ret) {
795 sfp_bus_put(bus);
796 bus = NULL;
799 return bus;
801 EXPORT_SYMBOL_GPL(sfp_register_socket);
803 void sfp_unregister_socket(struct sfp_bus *bus)
805 rtnl_lock();
806 if (bus->upstream_ops)
807 sfp_unregister_bus(bus);
808 sfp_socket_clear(bus);
809 rtnl_unlock();
811 sfp_bus_put(bus);
813 EXPORT_SYMBOL_GPL(sfp_unregister_socket);