1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
11 MT_TXQ_VO
= IEEE80211_AC_VO
,
12 MT_TXQ_VI
= IEEE80211_AC_VI
,
13 MT_TXQ_BE
= IEEE80211_AC_BE
,
14 MT_TXQ_BK
= IEEE80211_AC_BK
,
20 /* Hardware uses mirrored order of queues with Q0 having the highest priority */
26 /* Take mac80211 Q id from the skb and translate it to hardware Q id */
27 static u8
skb2q(struct sk_buff
*skb
)
29 int qid
= skb_get_queue_mapping(skb
);
31 if (WARN_ON(qid
>= MT_TXQ_PSD
)) {
33 skb_set_queue_mapping(skb
, qid
);
39 /* Note: TX retry reporting is a bit broken.
40 * Retries are reported only once per AMPDU and often come a frame early
41 * i.e. they are reported in the last status preceding the AMPDU. Apart
42 * from the fact that it's hard to know the length of the AMPDU (which is
43 * required to know to how many consecutive frames retries should be
44 * applied), if status comes early on full FIFO it gets lost and retries
45 * of the whole AMPDU become invisible.
46 * As a work-around encode the desired rate in PKT_ID of TX descriptor
47 * and based on that guess the retries (every rate is tried once).
48 * Only downside here is that for MCS0 we have to rely solely on
49 * transmission failures as no retries can ever be reported.
50 * Not having to read EXT_FIFO has a nice effect of doubling the number
51 * of reports which can be fetched.
52 * Also the vendor driver never uses the EXT_FIFO register so it may be
55 static u8
mt7601u_tx_pktid_enc(struct mt7601u_dev
*dev
, u8 rate
, bool is_probe
)
57 u8 encoded
= (rate
+ 1) + is_probe
* 8;
59 /* Because PKT_ID 0 disables status reporting only 15 values are
60 * available but 16 are needed (8 MCS * 2 for encoding is_probe)
61 * - we need to cram together two rates. MCS0 and MCS7 with is_probe
64 if (is_probe
&& rate
== 7)
71 mt7601u_tx_pktid_dec(struct mt7601u_dev
*dev
, struct mt76_tx_status
*stat
)
73 u8 req_rate
= stat
->pktid
;
74 u8 eff_rate
= stat
->rate
& 0x7;
79 stat
->is_probe
= true;
82 /* Decide between MCS0 and MCS7 which share pktid 9 */
83 if (!req_rate
&& eff_rate
)
87 stat
->retry
= req_rate
- eff_rate
;
90 static void mt7601u_tx_skb_remove_dma_overhead(struct sk_buff
*skb
,
91 struct ieee80211_tx_info
*info
)
93 int pkt_len
= (unsigned long)info
->status
.status_driver_data
[0];
95 skb_pull(skb
, sizeof(struct mt76_txwi
) + 4);
96 if (ieee80211_get_hdrlen_from_skb(skb
) % 4)
97 mt76_remove_hdr_pad(skb
);
99 skb_trim(skb
, pkt_len
);
102 void mt7601u_tx_status(struct mt7601u_dev
*dev
, struct sk_buff
*skb
)
104 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
106 mt7601u_tx_skb_remove_dma_overhead(skb
, info
);
108 ieee80211_tx_info_clear_status(info
);
109 info
->status
.rates
[0].idx
= -1;
110 info
->flags
|= IEEE80211_TX_STAT_ACK
;
112 spin_lock_bh(&dev
->mac_lock
);
113 ieee80211_tx_status(dev
->hw
, skb
);
114 spin_unlock_bh(&dev
->mac_lock
);
117 static int mt7601u_skb_rooms(struct mt7601u_dev
*dev
, struct sk_buff
*skb
)
119 int hdr_len
= ieee80211_get_hdrlen_from_skb(skb
);
122 need_head
= sizeof(struct mt76_txwi
) + 4;
126 return skb_cow(skb
, need_head
);
129 static struct mt76_txwi
*
130 mt7601u_push_txwi(struct mt7601u_dev
*dev
, struct sk_buff
*skb
,
131 struct ieee80211_sta
*sta
, struct mt76_wcid
*wcid
,
134 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
135 struct ieee80211_tx_rate
*rate
= &info
->control
.rates
[0];
136 struct mt76_txwi
*txwi
;
143 txwi
= skb_push(skb
, sizeof(struct mt76_txwi
));
144 memset(txwi
, 0, sizeof(*txwi
));
146 if (!wcid
->tx_rate_set
)
147 ieee80211_get_tx_rates(info
->control
.vif
, sta
, skb
,
148 info
->control
.rates
, 1);
150 spin_lock_irqsave(&dev
->lock
, flags
);
151 if (rate
->idx
< 0 || !rate
->count
)
152 rate_ctl
= wcid
->tx_rate
;
154 rate_ctl
= mt76_mac_tx_rate_val(dev
, rate
, &nss
);
155 spin_unlock_irqrestore(&dev
->lock
, flags
);
156 txwi
->rate_ctl
= cpu_to_le16(rate_ctl
);
158 if (!(info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
159 txwi
->ack_ctl
|= MT_TXWI_ACK_CTL_REQ
;
160 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
)
161 txwi
->ack_ctl
|= MT_TXWI_ACK_CTL_NSEQ
;
163 if ((info
->flags
& IEEE80211_TX_CTL_AMPDU
) && sta
) {
164 u8 ba_size
= IEEE80211_MIN_AMPDU_BUF
;
166 ba_size
<<= sta
->ht_cap
.ampdu_factor
;
167 ba_size
= min_t(int, 63, ba_size
);
168 if (info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)
170 txwi
->ack_ctl
|= FIELD_PREP(MT_TXWI_ACK_CTL_BA_WINDOW
, ba_size
);
173 cpu_to_le16(MT_TXWI_FLAGS_AMPDU
|
174 FIELD_PREP(MT_TXWI_FLAGS_MPDU_DENSITY
,
175 sta
->ht_cap
.ampdu_density
));
176 if (info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)
180 txwi
->wcid
= wcid
->idx
;
182 is_probe
= !!(info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
);
183 pkt_id
= mt7601u_tx_pktid_enc(dev
, rate_ctl
& 0x7, is_probe
);
184 pkt_len
|= FIELD_PREP(MT_TXWI_LEN_PKTID
, pkt_id
);
185 txwi
->len_ctl
= cpu_to_le16(pkt_len
);
190 void mt7601u_tx(struct ieee80211_hw
*hw
, struct ieee80211_tx_control
*control
,
193 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
194 struct mt7601u_dev
*dev
= hw
->priv
;
195 struct ieee80211_vif
*vif
= info
->control
.vif
;
196 struct ieee80211_sta
*sta
= control
->sta
;
197 struct mt76_sta
*msta
= NULL
;
198 struct mt76_wcid
*wcid
= dev
->mon_wcid
;
199 struct mt76_txwi
*txwi
;
200 int pkt_len
= skb
->len
;
201 int hw_q
= skb2q(skb
);
203 BUILD_BUG_ON(ARRAY_SIZE(info
->status
.status_driver_data
) < 1);
204 info
->status
.status_driver_data
[0] = (void *)(unsigned long)pkt_len
;
206 if (mt7601u_skb_rooms(dev
, skb
) || mt76_insert_hdr_pad(skb
)) {
207 ieee80211_free_txskb(dev
->hw
, skb
);
212 msta
= (struct mt76_sta
*) sta
->drv_priv
;
215 struct mt76_vif
*mvif
= (struct mt76_vif
*)vif
->drv_priv
;
217 wcid
= &mvif
->group_wcid
;
220 txwi
= mt7601u_push_txwi(dev
, skb
, sta
, wcid
, pkt_len
);
222 if (mt7601u_dma_enqueue_tx(dev
, skb
, wcid
, hw_q
))
225 trace_mt_tx(dev
, skb
, msta
, txwi
);
228 void mt7601u_tx_stat(struct work_struct
*work
)
230 struct mt7601u_dev
*dev
= container_of(work
, struct mt7601u_dev
,
232 struct mt76_tx_status stat
;
236 while (!test_bit(MT7601U_STATE_REMOVED
, &dev
->state
)) {
237 stat
= mt7601u_mac_fetch_tx_status(dev
);
241 mt7601u_tx_pktid_dec(dev
, &stat
);
242 mt76_send_tx_status(dev
, &stat
);
246 trace_mt_tx_status_cleaned(dev
, cleaned
);
248 spin_lock_irqsave(&dev
->tx_lock
, flags
);
250 queue_delayed_work(dev
->stat_wq
, &dev
->stat_work
,
251 msecs_to_jiffies(10));
252 else if (test_and_clear_bit(MT7601U_STATE_MORE_STATS
, &dev
->state
))
253 queue_delayed_work(dev
->stat_wq
, &dev
->stat_work
,
254 msecs_to_jiffies(20));
256 clear_bit(MT7601U_STATE_READING_STATS
, &dev
->state
);
257 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
260 int mt7601u_conf_tx(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
261 u16 queue
, const struct ieee80211_tx_queue_params
*params
)
263 struct mt7601u_dev
*dev
= hw
->priv
;
264 u8 cw_min
= 5, cw_max
= 10, hw_q
= q2hwq(queue
);
267 /* TODO: should we do funny things with the parameters?
268 * See what mt7601u_set_default_edca() used to do in init.c.
272 cw_min
= fls(params
->cw_min
);
274 cw_max
= fls(params
->cw_max
);
276 WARN_ON(params
->txop
> 0xff);
277 WARN_ON(params
->aifs
> 0xf);
278 WARN_ON(cw_min
> 0xf);
279 WARN_ON(cw_max
> 0xf);
281 val
= FIELD_PREP(MT_EDCA_CFG_AIFSN
, params
->aifs
) |
282 FIELD_PREP(MT_EDCA_CFG_CWMIN
, cw_min
) |
283 FIELD_PREP(MT_EDCA_CFG_CWMAX
, cw_max
);
284 /* TODO: based on user-controlled EnableTxBurst var vendor drv sets
285 * a really long txop on AC0 (see connect.c:2009) but only on
286 * connect? When not connected should be 0.
291 val
|= FIELD_PREP(MT_EDCA_CFG_TXOP
, params
->txop
);
292 mt76_wr(dev
, MT_EDCA_CFG_AC(hw_q
), val
);
294 val
= mt76_rr(dev
, MT_WMM_TXOP(hw_q
));
295 val
&= ~(MT_WMM_TXOP_MASK
<< MT_WMM_TXOP_SHIFT(hw_q
));
296 val
|= params
->txop
<< MT_WMM_TXOP_SHIFT(hw_q
);
297 mt76_wr(dev
, MT_WMM_TXOP(hw_q
), val
);
299 val
= mt76_rr(dev
, MT_WMM_AIFSN
);
300 val
&= ~(MT_WMM_AIFSN_MASK
<< MT_WMM_AIFSN_SHIFT(hw_q
));
301 val
|= params
->aifs
<< MT_WMM_AIFSN_SHIFT(hw_q
);
302 mt76_wr(dev
, MT_WMM_AIFSN
, val
);
304 val
= mt76_rr(dev
, MT_WMM_CWMIN
);
305 val
&= ~(MT_WMM_CWMIN_MASK
<< MT_WMM_CWMIN_SHIFT(hw_q
));
306 val
|= cw_min
<< MT_WMM_CWMIN_SHIFT(hw_q
);
307 mt76_wr(dev
, MT_WMM_CWMIN
, val
);
309 val
= mt76_rr(dev
, MT_WMM_CWMAX
);
310 val
&= ~(MT_WMM_CWMAX_MASK
<< MT_WMM_CWMAX_SHIFT(hw_q
));
311 val
|= cw_max
<< MT_WMM_CWMAX_SHIFT(hw_q
);
312 mt76_wr(dev
, MT_WMM_CWMAX
, val
);