1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
10 Abstract: rt2x00 queue datastructures and routines
16 #include <linux/prefetch.h>
19 * DOC: Entry frame size
21 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
22 * for USB devices this restriction does not apply, but the value of
23 * 2432 makes sense since it is big enough to contain the maximum fragment
24 * size according to the ieee802.11 specs.
25 * The aggregation size depends on support from the driver, but should
26 * be something around 3840 bytes.
28 #define DATA_FRAME_SIZE 2432
29 #define MGMT_FRAME_SIZE 256
30 #define AGGREGATION_SIZE 3840
33 * enum data_queue_qid: Queue identification
35 * @QID_AC_VO: AC VO queue
36 * @QID_AC_VI: AC VI queue
37 * @QID_AC_BE: AC BE queue
38 * @QID_AC_BK: AC BK queue
39 * @QID_HCCA: HCCA queue
40 * @QID_MGMT: MGMT queue (prio queue)
42 * @QID_OTHER: None of the above (don't use, only present for completeness)
43 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
44 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
60 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
62 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
63 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
64 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
65 * mac80211 but was stripped for processing by the driver.
66 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
67 * don't try to pass it back.
68 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
69 * skb, instead of in the desc field.
71 enum skb_frame_desc_flags
{
72 SKBDESC_DMA_MAPPED_RX
= 1 << 0,
73 SKBDESC_DMA_MAPPED_TX
= 1 << 1,
74 SKBDESC_IV_STRIPPED
= 1 << 2,
75 SKBDESC_NOT_MAC80211
= 1 << 3,
76 SKBDESC_DESC_IN_SKB
= 1 << 4,
80 * struct skb_frame_desc: Descriptor information for the skb buffer
82 * This structure is placed over the driver_data array, this means that
83 * this structure should not exceed the size of that array (40 bytes).
85 * @flags: Frame flags, see &enum skb_frame_desc_flags.
86 * @desc_len: Length of the frame descriptor.
87 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
88 * @tx_rate_flags: the TX rate flags, used for TX status reporting
89 * @desc: Pointer to descriptor part of the frame.
90 * Note that this pointer could point to something outside
91 * of the scope of the skb->data pointer.
92 * @iv: IV/EIV data used during encryption/decryption.
93 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
94 * @sta: The station where sk buffer was sent.
96 struct skb_frame_desc
{
108 struct ieee80211_sta
*sta
;
112 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
113 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
115 static inline struct skb_frame_desc
* get_skb_frame_desc(struct sk_buff
*skb
)
117 BUILD_BUG_ON(sizeof(struct skb_frame_desc
) >
118 IEEE80211_TX_INFO_DRIVER_DATA_SIZE
);
119 return (struct skb_frame_desc
*)&IEEE80211_SKB_CB(skb
)->driver_data
;
123 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
125 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
126 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
127 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
128 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
129 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
130 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
131 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
133 enum rxdone_entry_desc_flags
{
134 RXDONE_SIGNAL_PLCP
= BIT(0),
135 RXDONE_SIGNAL_BITRATE
= BIT(1),
136 RXDONE_SIGNAL_MCS
= BIT(2),
137 RXDONE_MY_BSS
= BIT(3),
138 RXDONE_CRYPTO_IV
= BIT(4),
139 RXDONE_CRYPTO_ICV
= BIT(5),
140 RXDONE_L2PAD
= BIT(6),
144 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
145 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
146 * from &rxdone_entry_desc to a signal value type.
148 #define RXDONE_SIGNAL_MASK \
149 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
152 * struct rxdone_entry_desc: RX Entry descriptor
154 * Summary of information that has been read from the RX frame descriptor.
156 * @timestamp: RX Timestamp
157 * @signal: Signal of the received frame.
158 * @rssi: RSSI of the received frame.
159 * @size: Data size of the received frame.
160 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
161 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
162 * @rate_mode: Rate mode (See @enum rate_modulation).
163 * @cipher: Cipher type used during decryption.
164 * @cipher_status: Decryption status.
165 * @iv: IV/EIV data used during decryption.
166 * @icv: ICV data used during decryption.
168 struct rxdone_entry_desc
{
177 enum mac80211_rx_encoding encoding
;
178 enum rate_info_bw bw
;
187 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
189 * Every txdone report has to contain the basic result of the
190 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
191 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
192 * conjunction with all of these flags but should only be set
193 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
194 * in conjunction with &TXDONE_FAILURE.
196 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
197 * @TXDONE_SUCCESS: Frame was successfully send
198 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
199 * @TXDONE_FAILURE: Frame was not successfully send
200 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
201 * frame transmission failed due to excessive retries.
203 enum txdone_entry_desc_flags
{
208 TXDONE_EXCESSIVE_RETRY
,
214 * struct txdone_entry_desc: TX done entry descriptor
216 * Summary of information that has been read from the TX frame descriptor
217 * after the device is done with transmission.
219 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
220 * @retry: Retry count.
222 struct txdone_entry_desc
{
228 * enum txentry_desc_flags: Status flags for TX entry descriptor
230 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
231 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
232 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
233 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
234 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
235 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
236 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
237 * @ENTRY_TXD_ACK: An ACK is required for this frame.
238 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
239 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
240 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
241 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
242 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
243 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
244 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
245 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
246 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
248 enum txentry_desc_flags
{
251 ENTRY_TXD_GENERATE_SEQ
,
252 ENTRY_TXD_FIRST_FRAGMENT
,
254 ENTRY_TXD_REQ_TIMESTAMP
,
257 ENTRY_TXD_RETRY_MODE
,
259 ENTRY_TXD_ENCRYPT_PAIRWISE
,
260 ENTRY_TXD_ENCRYPT_IV
,
261 ENTRY_TXD_ENCRYPT_MMIC
,
264 ENTRY_TXD_HT_SHORT_GI
,
265 ENTRY_TXD_HT_MIMO_PS
,
269 * struct txentry_desc: TX Entry descriptor
271 * Summary of information for the frame descriptor before sending a TX frame.
273 * @flags: Descriptor flags (See &enum queue_entry_flags).
274 * @length: Length of the entire frame.
275 * @header_length: Length of 802.11 header.
276 * @length_high: PLCP length high word.
277 * @length_low: PLCP length low word.
278 * @signal: PLCP signal.
279 * @service: PLCP service.
281 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
282 * @ba_size: Size of the recepients RX reorder buffer - 1.
283 * @rate_mode: Rate mode (See @enum rate_modulation).
284 * @mpdu_density: MDPU density.
285 * @retry_limit: Max number of retries.
287 * @txop: IFS value for 11n capable chips.
288 * @cipher: Cipher type used for encryption.
289 * @key_idx: Key index used for encryption.
290 * @iv_offset: Position where IV should be inserted by hardware.
291 * @iv_len: Length of IV data.
293 struct txentry_desc
{
318 enum rate_modulation rate_mode
;
329 * enum queue_entry_flags: Status flags for queue entry
331 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
332 * As long as this bit is set, this entry may only be touched
333 * through the interface structure.
334 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
335 * transfer (either TX or RX depending on the queue). The entry should
336 * only be touched after the device has signaled it is done with it.
337 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
338 * for the signal to start sending.
339 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
340 * while transferring the data to the hardware. No TX status report will
341 * be expected from the hardware.
342 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
343 * returned. It is now waiting for the status reporting before the
344 * entry can be reused again.
346 enum queue_entry_flags
{
349 ENTRY_OWNER_DEVICE_DATA
,
351 ENTRY_DATA_IO_FAILED
,
352 ENTRY_DATA_STATUS_PENDING
,
356 * struct queue_entry: Entry inside the &struct data_queue
358 * @flags: Entry flags, see &enum queue_entry_flags.
359 * @last_action: Timestamp of last change.
360 * @queue: The data queue (&struct data_queue) to which this entry belongs.
361 * @skb: The buffer which is currently being transmitted (for TX queue),
362 * or used to directly receive data in (for RX queue).
363 * @entry_idx: The entry index number.
364 * @priv_data: Private data belonging to this queue entry. The pointer
365 * points to data specific to a particular driver and queue type.
366 * @status: Device specific status
370 unsigned long last_action
;
372 struct data_queue
*queue
;
376 unsigned int entry_idx
;
382 * enum queue_index: Queue index type
384 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
385 * owned by the hardware then the queue is considered to be full.
386 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
387 * transferred to the hardware.
388 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
389 * the hardware and for which we need to run the txdone handler. If this
390 * entry is not owned by the hardware the queue is considered to be empty.
391 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
392 * of the index array.
402 * enum data_queue_flags: Status flags for data queues
404 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
405 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to
406 * be transmitted and beacon queues will start beaconing the configured
408 * @QUEUE_PAUSED: The queue has been started but is currently paused.
409 * When this bit is set, the queue has been stopped in mac80211,
410 * preventing new frames to be enqueued. However, a few frames
411 * might still appear shortly after the pausing...
413 enum data_queue_flags
{
419 * struct data_queue: Data queue
421 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
422 * @entries: Base address of the &struct queue_entry which are
423 * part of this queue.
424 * @qid: The queue identification, see &enum data_queue_qid.
425 * @flags: Entry flags, see &enum queue_entry_flags.
426 * @status_lock: The mutex for protecting the start/stop/flush
427 * handling on this queue.
428 * @tx_lock: Spinlock to serialize tx operations on this queue.
429 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
430 * @index_crypt needs to be changed this lock should be grabbed to prevent
431 * index corruption due to concurrency.
432 * @count: Number of frames handled in the queue.
433 * @limit: Maximum number of entries in the queue.
434 * @threshold: Minimum number of free entries before queue is kicked by force.
435 * @length: Number of frames in queue.
436 * @index: Index pointers to entry positions in the queue,
437 * use &enum queue_index to get a specific index field.
438 * @wd_count: watchdog counter number of times entry does change
440 * @wd_idx: index of queue entry saved by watchdog
441 * @txop: maximum burst time.
442 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
443 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
444 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
445 * @data_size: Maximum data size for the frames in this queue.
446 * @desc_size: Hardware descriptor size for the data in this queue.
447 * @priv_size: Size of per-queue_entry private data.
448 * @usb_endpoint: Device endpoint used for communication (USB only)
449 * @usb_maxpacket: Max packet size for given endpoint (USB only)
452 struct rt2x00_dev
*rt2x00dev
;
453 struct queue_entry
*entries
;
455 enum data_queue_qid qid
;
458 struct mutex status_lock
;
460 spinlock_t index_lock
;
463 unsigned short limit
;
464 unsigned short threshold
;
465 unsigned short length
;
466 unsigned short index
[Q_INDEX_MAX
];
468 unsigned short wd_count
;
473 unsigned short cw_min
;
474 unsigned short cw_max
;
476 unsigned short data_size
;
477 unsigned char desc_size
;
478 unsigned char winfo_size
;
479 unsigned short priv_size
;
481 unsigned short usb_endpoint
;
482 unsigned short usb_maxpacket
;
486 * queue_end - Return pointer to the last queue (HELPER MACRO).
487 * @__dev: Pointer to &struct rt2x00_dev
489 * Using the base rx pointer and the maximum number of available queues,
490 * this macro will return the address of 1 position beyond the end of the
493 #define queue_end(__dev) \
494 &(__dev)->rx[(__dev)->data_queues]
497 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
498 * @__dev: Pointer to &struct rt2x00_dev
500 * Using the base tx pointer and the maximum number of available TX
501 * queues, this macro will return the address of 1 position beyond
502 * the end of the TX queue array.
504 #define tx_queue_end(__dev) \
505 &(__dev)->tx[(__dev)->ops->tx_queues]
508 * queue_next - Return pointer to next queue in list (HELPER MACRO).
509 * @__queue: Current queue for which we need the next queue
511 * Using the current queue address we take the address directly
512 * after the queue to take the next queue. Note that this macro
513 * should be used carefully since it does not protect against
514 * moving past the end of the list. (See macros &queue_end and
515 * &tx_queue_end for determining the end of the queue).
517 #define queue_next(__queue) \
521 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
522 * @__entry: Pointer where the current queue entry will be stored in.
523 * @__start: Start queue pointer.
524 * @__end: End queue pointer.
526 * This macro will loop through all queues between &__start and &__end.
528 #define queue_loop(__entry, __start, __end) \
529 for ((__entry) = (__start); \
530 prefetch(queue_next(__entry)), (__entry) != (__end);\
531 (__entry) = queue_next(__entry))
534 * queue_for_each - Loop through all queues
535 * @__dev: Pointer to &struct rt2x00_dev
536 * @__entry: Pointer where the current queue entry will be stored in.
538 * This macro will loop through all available queues.
540 #define queue_for_each(__dev, __entry) \
541 queue_loop(__entry, (__dev)->rx, queue_end(__dev))
544 * tx_queue_for_each - Loop through the TX queues
545 * @__dev: Pointer to &struct rt2x00_dev
546 * @__entry: Pointer where the current queue entry will be stored in.
548 * This macro will loop through all TX related queues excluding
549 * the Beacon and Atim queues.
551 #define tx_queue_for_each(__dev, __entry) \
552 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
555 * txall_queue_for_each - Loop through all TX related queues
556 * @__dev: Pointer to &struct rt2x00_dev
557 * @__entry: Pointer where the current queue entry will be stored in.
559 * This macro will loop through all TX related queues including
560 * the Beacon and Atim queues.
562 #define txall_queue_for_each(__dev, __entry) \
563 queue_loop(__entry, (__dev)->tx, queue_end(__dev))
566 * rt2x00queue_for_each_entry - Loop through all entries in the queue
567 * @queue: Pointer to @data_queue
568 * @start: &enum queue_index Pointer to start index
569 * @end: &enum queue_index Pointer to end index
570 * @data: Data to pass to the callback function
571 * @fn: The function to call for each &struct queue_entry
573 * This will walk through all entries in the queue, in chronological
574 * order. This means it will start at the current @start pointer
575 * and will walk through the queue until it reaches the @end pointer.
577 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
578 * processing and return true as well.
580 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
581 enum queue_index start
,
582 enum queue_index end
,
584 bool (*fn
)(struct queue_entry
*entry
,
588 * rt2x00queue_empty - Check if the queue is empty.
589 * @queue: Queue to check if empty.
591 static inline int rt2x00queue_empty(struct data_queue
*queue
)
593 return queue
->length
== 0;
597 * rt2x00queue_full - Check if the queue is full.
598 * @queue: Queue to check if full.
600 static inline int rt2x00queue_full(struct data_queue
*queue
)
602 return queue
->length
== queue
->limit
;
606 * rt2x00queue_free - Check the number of available entries in queue.
607 * @queue: Queue to check.
609 static inline int rt2x00queue_available(struct data_queue
*queue
)
611 return queue
->limit
- queue
->length
;
615 * rt2x00queue_threshold - Check if the queue is below threshold
616 * @queue: Queue to check.
618 static inline int rt2x00queue_threshold(struct data_queue
*queue
)
620 return rt2x00queue_available(queue
) < queue
->threshold
;
623 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
624 * @entry: Queue entry to check.
626 static inline int rt2x00queue_dma_timeout(struct queue_entry
*entry
)
628 if (!test_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
))
630 return time_after(jiffies
, entry
->last_action
+ msecs_to_jiffies(100));
634 * _rt2x00_desc_read - Read a word from the hardware descriptor.
635 * @desc: Base descriptor address
636 * @word: Word index from where the descriptor should be read.
638 static inline __le32
_rt2x00_desc_read(__le32
*desc
, const u8 word
)
644 * rt2x00_desc_read - Read a word from the hardware descriptor, this
645 * function will take care of the byte ordering.
646 * @desc: Base descriptor address
647 * @word: Word index from where the descriptor should be read.
649 static inline u32
rt2x00_desc_read(__le32
*desc
, const u8 word
)
651 return le32_to_cpu(_rt2x00_desc_read(desc
, word
));
655 * rt2x00_desc_write - write a word to the hardware descriptor, this
656 * function will take care of the byte ordering.
657 * @desc: Base descriptor address
658 * @word: Word index from where the descriptor should be written.
659 * @value: Value that should be written into the descriptor.
661 static inline void _rt2x00_desc_write(__le32
*desc
, const u8 word
, __le32 value
)
667 * rt2x00_desc_write - write a word to the hardware descriptor.
668 * @desc: Base descriptor address
669 * @word: Word index from where the descriptor should be written.
670 * @value: Value that should be written into the descriptor.
672 static inline void rt2x00_desc_write(__le32
*desc
, const u8 word
, u32 value
)
674 _rt2x00_desc_write(desc
, word
, cpu_to_le32(value
));
677 #endif /* RT2X00QUEUE_H */