1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2012 Realtek Corporation.*/
20 u32
rtl92de_read_dword_dbi(struct ieee80211_hw
*hw
, u16 offset
, u8 direct
)
22 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
25 rtl_write_word(rtlpriv
, REG_DBI_CTRL
, (offset
& 0xFFC));
26 rtl_write_byte(rtlpriv
, REG_DBI_FLAG
, BIT(1) | direct
);
28 value
= rtl_read_dword(rtlpriv
, REG_DBI_RDATA
);
32 void rtl92de_write_dword_dbi(struct ieee80211_hw
*hw
,
33 u16 offset
, u32 value
, u8 direct
)
35 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
37 rtl_write_word(rtlpriv
, REG_DBI_CTRL
, ((offset
& 0xFFC) | 0xF000));
38 rtl_write_dword(rtlpriv
, REG_DBI_WDATA
, value
);
39 rtl_write_byte(rtlpriv
, REG_DBI_FLAG
, BIT(0) | direct
);
42 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw
*hw
,
43 u8 set_bits
, u8 clear_bits
)
45 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
46 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
48 rtlpci
->reg_bcn_ctrl_val
|= set_bits
;
49 rtlpci
->reg_bcn_ctrl_val
&= ~clear_bits
;
50 rtl_write_byte(rtlpriv
, REG_BCN_CTRL
, (u8
) rtlpci
->reg_bcn_ctrl_val
);
53 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw
*hw
)
55 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
58 tmp1byte
= rtl_read_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2);
59 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2, tmp1byte
& (~BIT(6)));
60 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0xff);
61 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0x64);
62 tmp1byte
= rtl_read_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2);
63 tmp1byte
&= ~(BIT(0));
64 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2, tmp1byte
);
67 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw
*hw
)
69 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
72 tmp1byte
= rtl_read_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2);
73 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2, tmp1byte
| BIT(6));
74 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0x0a);
75 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0xff);
76 tmp1byte
= rtl_read_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2);
78 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 2, tmp1byte
);
81 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw
*hw
)
83 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(1));
86 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw
*hw
)
88 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(1), 0);
91 void rtl92de_get_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
93 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
94 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
95 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
99 *((u32
*) (val
)) = rtlpci
->receive_config
;
101 case HW_VAR_RF_STATE
:
102 *((enum rf_pwrstate
*)(val
)) = ppsc
->rfpwr_state
;
104 case HW_VAR_FWLPS_RF_ON
:{
105 enum rf_pwrstate rfstate
;
108 rtlpriv
->cfg
->ops
->get_hw_reg(hw
, HW_VAR_RF_STATE
,
110 if (rfstate
== ERFOFF
) {
111 *((bool *) (val
)) = true;
113 val_rcr
= rtl_read_dword(rtlpriv
, REG_RCR
);
114 val_rcr
&= 0x00070000;
116 *((bool *) (val
)) = false;
118 *((bool *) (val
)) = true;
122 case HW_VAR_FW_PSMODE_STATUS
:
123 *((bool *) (val
)) = ppsc
->fw_current_inpsmode
;
125 case HW_VAR_CORRECT_TSF
:{
127 u32
*ptsf_low
= (u32
*)&tsf
;
128 u32
*ptsf_high
= ((u32
*)&tsf
) + 1;
130 *ptsf_high
= rtl_read_dword(rtlpriv
, (REG_TSFTR
+ 4));
131 *ptsf_low
= rtl_read_dword(rtlpriv
, REG_TSFTR
);
132 *((u64
*) (val
)) = tsf
;
135 case HW_VAR_INT_MIGRATION
:
136 *((bool *)(val
)) = rtlpriv
->dm
.interrupt_migration
;
139 *((bool *)(val
)) = rtlpriv
->dm
.disable_tx_int
;
144 pr_err("switch case %#x not processed\n", variable
);
149 void rtl92de_set_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
151 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
152 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
153 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
154 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
155 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
156 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
160 case HW_VAR_ETHER_ADDR
:
161 for (idx
= 0; idx
< ETH_ALEN
; idx
++) {
162 rtl_write_byte(rtlpriv
, (REG_MACID
+ idx
),
166 case HW_VAR_BASIC_RATE
: {
167 u16 rate_cfg
= ((u16
*) val
)[0];
170 rate_cfg
= rate_cfg
& 0x15f;
171 if (mac
->vendor
== PEER_CISCO
&&
172 ((rate_cfg
& 0x150) == 0))
174 rtl_write_byte(rtlpriv
, REG_RRSR
, rate_cfg
& 0xff);
175 rtl_write_byte(rtlpriv
, REG_RRSR
+ 1,
176 (rate_cfg
>> 8) & 0xff);
177 while (rate_cfg
> 0x1) {
178 rate_cfg
= (rate_cfg
>> 1);
181 if (rtlhal
->fw_version
> 0xe)
182 rtl_write_byte(rtlpriv
, REG_INIRTS_RATE_SEL
,
187 for (idx
= 0; idx
< ETH_ALEN
; idx
++) {
188 rtl_write_byte(rtlpriv
, (REG_BSSID
+ idx
),
193 rtl_write_byte(rtlpriv
, REG_SIFS_CTX
+ 1, val
[0]);
194 rtl_write_byte(rtlpriv
, REG_SIFS_TRX
+ 1, val
[1]);
195 rtl_write_byte(rtlpriv
, REG_SPEC_SIFS
+ 1, val
[0]);
196 rtl_write_byte(rtlpriv
, REG_MAC_SPEC_SIFS
+ 1, val
[0]);
198 rtl_write_word(rtlpriv
, REG_RESP_SIFS_OFDM
,
201 rtl_write_word(rtlpriv
, REG_RESP_SIFS_OFDM
,
204 case HW_VAR_SLOT_TIME
: {
207 rtl_dbg(rtlpriv
, COMP_MLME
, DBG_LOUD
,
208 "HW_VAR_SLOT_TIME %x\n", val
[0]);
209 rtl_write_byte(rtlpriv
, REG_SLOT
, val
[0]);
210 for (e_aci
= 0; e_aci
< AC_MAX
; e_aci
++)
211 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
216 case HW_VAR_ACK_PREAMBLE
: {
218 u8 short_preamble
= (bool) (*val
);
220 reg_tmp
= (mac
->cur_40_prime_sc
) << 5;
223 rtl_write_byte(rtlpriv
, REG_RRSR
+ 2, reg_tmp
);
226 case HW_VAR_AMPDU_MIN_SPACE
: {
227 u8 min_spacing_to_set
;
230 min_spacing_to_set
= *val
;
231 if (min_spacing_to_set
<= 7) {
233 if (min_spacing_to_set
< sec_min_space
)
234 min_spacing_to_set
= sec_min_space
;
235 mac
->min_space_cfg
= ((mac
->min_space_cfg
& 0xf8) |
237 *val
= min_spacing_to_set
;
238 rtl_dbg(rtlpriv
, COMP_MLME
, DBG_LOUD
,
239 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
241 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
,
246 case HW_VAR_SHORTGI_DENSITY
: {
249 density_to_set
= *val
;
250 mac
->min_space_cfg
= rtlpriv
->rtlhal
.minspace_cfg
;
251 mac
->min_space_cfg
|= (density_to_set
<< 3);
252 rtl_dbg(rtlpriv
, COMP_MLME
, DBG_LOUD
,
253 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
255 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
,
259 case HW_VAR_AMPDU_FACTOR
: {
262 u8
*ptmp_byte
= NULL
;
265 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
)
266 regtoset
= 0xb9726641;
267 else if (rtlhal
->macphymode
== DUALMAC_SINGLEPHY
)
268 regtoset
= 0x66626641;
270 regtoset
= 0xb972a841;
272 if (factor_toset
<= 3) {
273 factor_toset
= (1 << (factor_toset
+ 2));
274 if (factor_toset
> 0xf)
276 for (index
= 0; index
< 4; index
++) {
277 ptmp_byte
= (u8
*)(®toset
) + index
;
278 if ((*ptmp_byte
& 0xf0) >
280 *ptmp_byte
= (*ptmp_byte
& 0x0f)
281 | (factor_toset
<< 4);
282 if ((*ptmp_byte
& 0x0f) > factor_toset
)
283 *ptmp_byte
= (*ptmp_byte
& 0xf0)
286 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, regtoset
);
287 rtl_dbg(rtlpriv
, COMP_MLME
, DBG_LOUD
,
288 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
293 case HW_VAR_AC_PARAM
: {
295 rtl92d_dm_init_edca_turbo(hw
);
296 if (rtlpci
->acm_method
!= EACMWAY2_SW
)
297 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ACM_CTRL
,
301 case HW_VAR_ACM_CTRL
: {
303 union aci_aifsn
*p_aci_aifsn
=
304 (union aci_aifsn
*)(&(mac
->ac
[0].aifs
));
305 u8 acm
= p_aci_aifsn
->f
.acm
;
306 u8 acm_ctrl
= rtl_read_byte(rtlpriv
, REG_ACMHWCTRL
);
308 acm_ctrl
= acm_ctrl
| ((rtlpci
->acm_method
== 2) ? 0x0 : 0x1);
312 acm_ctrl
|= ACMHW_BEQEN
;
315 acm_ctrl
|= ACMHW_VIQEN
;
318 acm_ctrl
|= ACMHW_VOQEN
;
321 rtl_dbg(rtlpriv
, COMP_ERR
, DBG_WARNING
,
322 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
329 acm_ctrl
&= (~ACMHW_BEQEN
);
332 acm_ctrl
&= (~ACMHW_VIQEN
);
335 acm_ctrl
&= (~ACMHW_VOQEN
);
338 pr_err("switch case %#x not processed\n",
343 rtl_dbg(rtlpriv
, COMP_QOS
, DBG_TRACE
,
344 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
346 rtl_write_byte(rtlpriv
, REG_ACMHWCTRL
, acm_ctrl
);
350 rtl_write_dword(rtlpriv
, REG_RCR
, ((u32
*) (val
))[0]);
351 rtlpci
->receive_config
= ((u32
*) (val
))[0];
353 case HW_VAR_RETRY_LIMIT
: {
354 u8 retry_limit
= val
[0];
356 rtl_write_word(rtlpriv
, REG_RL
,
357 retry_limit
<< RETRY_LIMIT_SHORT_SHIFT
|
358 retry_limit
<< RETRY_LIMIT_LONG_SHIFT
);
361 case HW_VAR_DUAL_TSF_RST
:
362 rtl_write_byte(rtlpriv
, REG_DUAL_TSF_RST
, (BIT(0) | BIT(1)));
364 case HW_VAR_EFUSE_BYTES
:
365 rtlefuse
->efuse_usedbytes
= *((u16
*) val
);
367 case HW_VAR_EFUSE_USAGE
:
368 rtlefuse
->efuse_usedpercentage
= *val
;
371 rtl92d_phy_set_io_cmd(hw
, (*(enum io_type
*)val
));
373 case HW_VAR_WPA_CONFIG
:
374 rtl_write_byte(rtlpriv
, REG_SECCFG
, *val
);
376 case HW_VAR_SET_RPWM
:
377 rtl92d_fill_h2c_cmd(hw
, H2C_PWRM
, 1, (val
));
379 case HW_VAR_H2C_FW_PWRMODE
:
381 case HW_VAR_FW_PSMODE_STATUS
:
382 ppsc
->fw_current_inpsmode
= *((bool *) val
);
384 case HW_VAR_H2C_FW_JOINBSSRPT
: {
386 u8 tmp_regcr
, tmp_reg422
;
387 bool recover
= false;
389 if (mstatus
== RT_MEDIA_CONNECT
) {
390 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
392 tmp_regcr
= rtl_read_byte(rtlpriv
, REG_CR
+ 1);
393 rtl_write_byte(rtlpriv
, REG_CR
+ 1,
394 (tmp_regcr
| BIT(0)));
395 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(3));
396 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(4), 0);
397 tmp_reg422
= rtl_read_byte(rtlpriv
,
398 REG_FWHW_TXQ_CTRL
+ 2);
399 if (tmp_reg422
& BIT(6))
401 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 2,
402 tmp_reg422
& (~BIT(6)));
403 rtl92d_set_fw_rsvdpagepkt(hw
, 0);
404 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(3), 0);
405 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(4));
407 rtl_write_byte(rtlpriv
,
408 REG_FWHW_TXQ_CTRL
+ 2,
410 rtl_write_byte(rtlpriv
, REG_CR
+ 1,
411 (tmp_regcr
& ~(BIT(0))));
413 rtl92d_set_fw_joinbss_report_cmd(hw
, (*val
));
418 u2btmp
= rtl_read_word(rtlpriv
, REG_BCN_PSR_RPT
);
420 rtl_write_word(rtlpriv
, REG_BCN_PSR_RPT
, (u2btmp
|
424 case HW_VAR_CORRECT_TSF
: {
425 u8 btype_ibss
= val
[0];
428 _rtl92de_stop_tx_beacon(hw
);
429 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(3));
430 rtl_write_dword(rtlpriv
, REG_TSFTR
,
431 (u32
) (mac
->tsf
& 0xffffffff));
432 rtl_write_dword(rtlpriv
, REG_TSFTR
+ 4,
433 (u32
) ((mac
->tsf
>> 32) & 0xffffffff));
434 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(3), 0);
436 _rtl92de_resume_tx_beacon(hw
);
440 case HW_VAR_INT_MIGRATION
: {
441 bool int_migration
= *(bool *) (val
);
444 /* Set interrupt migration timer and
445 * corresponding Tx/Rx counter.
446 * timer 25ns*0xfa0=100us for 0xf packets.
447 * 0x306:Rx, 0x307:Tx */
448 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0xfe000fa0);
449 rtlpriv
->dm
.interrupt_migration
= int_migration
;
451 /* Reset all interrupt migration settings. */
452 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0);
453 rtlpriv
->dm
.interrupt_migration
= int_migration
;
457 case HW_VAR_INT_AC
: {
458 bool disable_ac_int
= *((bool *) val
);
460 /* Disable four ACs interrupts. */
461 if (disable_ac_int
) {
462 /* Disable VO, VI, BE and BK four AC interrupts
463 * to gain more efficient CPU utilization.
464 * When extremely highly Rx OK occurs,
465 * we will disable Tx interrupts.
467 rtlpriv
->cfg
->ops
->update_interrupt_mask(hw
, 0,
469 rtlpriv
->dm
.disable_tx_int
= disable_ac_int
;
470 /* Enable four ACs interrupts. */
472 rtlpriv
->cfg
->ops
->update_interrupt_mask(hw
,
474 rtlpriv
->dm
.disable_tx_int
= disable_ac_int
;
479 pr_err("switch case %#x not processed\n", variable
);
484 static bool _rtl92de_llt_write(struct ieee80211_hw
*hw
, u32 address
, u32 data
)
486 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
489 u32 value
= _LLT_INIT_ADDR(address
) |
490 _LLT_INIT_DATA(data
) | _LLT_OP(_LLT_WRITE_ACCESS
);
492 rtl_write_dword(rtlpriv
, REG_LLT_INIT
, value
);
494 value
= rtl_read_dword(rtlpriv
, REG_LLT_INIT
);
495 if (_LLT_NO_ACTIVE
== _LLT_OP_VALUE(value
))
497 if (count
> POLLING_LLT_THRESHOLD
) {
498 pr_err("Failed to polling write LLT done at address %d!\n",
507 static bool _rtl92de_llt_table_init(struct ieee80211_hw
*hw
)
509 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
514 u32 value32
; /* High+low page number */
515 u8 value8
; /* normal page number */
517 if (rtlpriv
->rtlhal
.macphymode
== SINGLEMAC_SINGLEPHY
) {
521 value32
= 0x80bf0d29;
526 value32
= 0x80750005;
529 /* Set reserved page for each queue */
530 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
532 rtl_write_byte(rtlpriv
, REG_RQPN_NPQ
, value8
);
533 rtl_write_dword(rtlpriv
, REG_RQPN
, value32
);
535 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
536 /* TXRKTBUG_PG_BNDY */
537 rtl_write_dword(rtlpriv
, REG_TRXFF_BNDY
,
538 (rtl_read_word(rtlpriv
, REG_TRXFF_BNDY
+ 2) << 16 |
541 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
542 /* Beacon Head for TXDMA */
543 rtl_write_byte(rtlpriv
, REG_TDECTRL
+ 1, txpktbuf_bndy
);
545 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
547 rtl_write_byte(rtlpriv
, REG_TXPKTBUF_BCNQ_BDNY
, txpktbuf_bndy
);
548 rtl_write_byte(rtlpriv
, REG_TXPKTBUF_MGQ_BDNY
, txpktbuf_bndy
);
550 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
552 rtl_write_byte(rtlpriv
, 0x45D, txpktbuf_bndy
);
554 /* Set Tx/Rx page size (Tx must be 128 Bytes, */
555 /* Rx can be 64,128,256,512,1024 bytes) */
556 /* 16. PBP [7:0] = 0x11 */
558 rtl_write_byte(rtlpriv
, REG_PBP
, 0x11);
560 /* 17. DRV_INFO_SZ = 0x04 */
561 rtl_write_byte(rtlpriv
, REG_RX_DRVINFO_SZ
, 0x4);
563 /* 18. LLT_table_init(Adapter); */
564 for (i
= 0; i
< (txpktbuf_bndy
- 1); i
++) {
565 status
= _rtl92de_llt_write(hw
, i
, i
+ 1);
571 status
= _rtl92de_llt_write(hw
, (txpktbuf_bndy
- 1), 0xFF);
575 /* Make the other pages as ring buffer */
576 /* This ring buffer is used as beacon buffer if we */
577 /* config this MAC as two MAC transfer. */
578 /* Otherwise used as local loopback buffer. */
579 for (i
= txpktbuf_bndy
; i
< maxpage
; i
++) {
580 status
= _rtl92de_llt_write(hw
, i
, (i
+ 1));
585 /* Let last entry point to the start entry of ring buffer */
586 status
= _rtl92de_llt_write(hw
, maxpage
, txpktbuf_bndy
);
593 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw
*hw
)
595 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
596 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
597 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
598 struct rtl_led
*pled0
= &rtlpriv
->ledctl
.sw_led0
;
600 if (rtlpci
->up_first_time
)
602 if (ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
)
603 rtl92de_sw_led_on(hw
, pled0
);
604 else if (ppsc
->rfoff_reason
== RF_CHANGE_BY_INIT
)
605 rtl92de_sw_led_on(hw
, pled0
);
607 rtl92de_sw_led_off(hw
, pled0
);
610 static bool _rtl92de_init_mac(struct ieee80211_hw
*hw
)
612 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
613 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
614 unsigned char bytetmp
;
615 unsigned short wordtmp
;
618 rtl92d_phy_set_poweron(hw
);
619 /* Add for resume sequence of power domain according
620 * to power document V11. Chapter V.11.... */
621 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
622 /* unlock ISO/CLK/Power control register */
623 rtl_write_byte(rtlpriv
, REG_RSV_CTRL
, 0x00);
624 rtl_write_byte(rtlpriv
, REG_LDOA15_CTRL
, 0x05);
626 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
627 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
628 /* 3. delay (1ms) this is not necessary when initially power on */
630 /* C. Resume Sequence */
631 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */
632 rtl_write_byte(rtlpriv
, REG_SPS0_CTRL
, 0x2b);
634 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */
635 rtl_write_byte(rtlpriv
, REG_AFE_XTAL_CTRL
, 0x0F);
637 /* c. DRV runs power on init flow */
639 /* auto enable WLAN */
640 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
641 /* Power On Reset for MAC Block */
642 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1) | BIT(0);
644 rtl_write_byte(rtlpriv
, REG_APS_FSMCO
+ 1, bytetmp
);
647 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
648 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1);
651 while ((bytetmp
& BIT(0)) && retry
< 1000) {
653 bytetmp
= rtl_read_byte(rtlpriv
, REG_APS_FSMCO
+ 1);
657 /* Enable Radio off, GPIO, and LED function */
658 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
659 rtl_write_word(rtlpriv
, REG_APS_FSMCO
, 0x1012);
661 /* release RF digital isolation */
662 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
663 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
664 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x82);
667 /* make sure that BB reset OK. */
668 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
670 /* Disable REG_CR before enable it to assure reset */
671 rtl_write_word(rtlpriv
, REG_CR
, 0x0);
673 /* Release MAC IO register reset */
674 rtl_write_word(rtlpriv
, REG_CR
, 0x2ff);
676 /* clear stopping tx/rx dma */
677 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0x0);
679 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
682 /* 18. LLT_table_init(Adapter); */
683 if (!_rtl92de_llt_table_init(hw
))
686 /* Clear interrupt and enable interrupt */
687 /* 19. HISR 0x124[31:0] = 0xffffffff; */
688 /* HISRE 0x12C[7:0] = 0xFF */
689 rtl_write_dword(rtlpriv
, REG_HISR
, 0xffffffff);
690 rtl_write_byte(rtlpriv
, REG_HISRE
, 0xff);
692 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
693 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
694 /* The IMR should be enabled later after all init sequence
697 /* 22. PCIE configuration space configuration */
698 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
699 /* and PCIe gated clock function is enabled. */
700 /* PCIE configuration space will be written after
701 * all init sequence.(Or by BIOS) */
703 rtl92d_phy_config_maccoexist_rfpage(hw
);
705 /* THe below section is not related to power document Vxx . */
706 /* This is only useful for driver and OS setting. */
707 /* -------------------Software Relative Setting---------------------- */
708 wordtmp
= rtl_read_word(rtlpriv
, REG_TRXDMA_CTRL
);
711 rtl_write_word(rtlpriv
, REG_TRXDMA_CTRL
, wordtmp
);
713 /* Reported Tx status from HW for rate adaptive. */
714 /* This should be realtive to power on step 14. But in document V11 */
715 /* still not contain the description.!!! */
716 rtl_write_byte(rtlpriv
, REG_FWHW_TXQ_CTRL
+ 1, 0x1F);
718 /* Set Tx/Rx page size (Tx must be 128 Bytes,
719 * Rx can be 64,128,256,512,1024 bytes) */
720 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
722 /* Set RCR register */
723 rtl_write_dword(rtlpriv
, REG_RCR
, rtlpci
->receive_config
);
724 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
726 /* Set TCR register */
727 rtl_write_dword(rtlpriv
, REG_TCR
, rtlpci
->transmit_config
);
729 /* disable earlymode */
730 rtl_write_byte(rtlpriv
, 0x4d0, 0x0);
732 /* Set TX/RX descriptor physical address(from OS API). */
733 rtl_write_dword(rtlpriv
, REG_BCNQ_DESA
,
734 rtlpci
->tx_ring
[BEACON_QUEUE
].dma
);
735 rtl_write_dword(rtlpriv
, REG_MGQ_DESA
, rtlpci
->tx_ring
[MGNT_QUEUE
].dma
);
736 rtl_write_dword(rtlpriv
, REG_VOQ_DESA
, rtlpci
->tx_ring
[VO_QUEUE
].dma
);
737 rtl_write_dword(rtlpriv
, REG_VIQ_DESA
, rtlpci
->tx_ring
[VI_QUEUE
].dma
);
738 rtl_write_dword(rtlpriv
, REG_BEQ_DESA
, rtlpci
->tx_ring
[BE_QUEUE
].dma
);
739 rtl_write_dword(rtlpriv
, REG_BKQ_DESA
, rtlpci
->tx_ring
[BK_QUEUE
].dma
);
740 rtl_write_dword(rtlpriv
, REG_HQ_DESA
, rtlpci
->tx_ring
[HIGH_QUEUE
].dma
);
741 /* Set RX Desc Address */
742 rtl_write_dword(rtlpriv
, REG_RX_DESA
,
743 rtlpci
->rx_ring
[RX_MPDU_QUEUE
].dma
);
745 /* if we want to support 64 bit DMA, we should set it here,
746 * but now we do not support 64 bit DMA*/
748 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 3, 0x33);
750 /* Reset interrupt migration setting when initialization */
751 rtl_write_dword(rtlpriv
, REG_INT_MIG
, 0);
753 /* Reconsider when to do this operation after asking HWSD. */
754 bytetmp
= rtl_read_byte(rtlpriv
, REG_APSD_CTRL
);
755 rtl_write_byte(rtlpriv
, REG_APSD_CTRL
, bytetmp
& ~BIT(6));
758 bytetmp
= rtl_read_byte(rtlpriv
, REG_APSD_CTRL
);
759 } while ((retry
< 200) && !(bytetmp
& BIT(7)));
761 /* After MACIO reset,we must refresh LED state. */
762 _rtl92de_gen_refresh_led_state(hw
);
764 /* Reset H2C protection register */
765 rtl_write_dword(rtlpriv
, REG_MCUTST_1
, 0x0);
770 static void _rtl92de_hw_configure(struct ieee80211_hw
*hw
)
772 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
773 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
774 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
775 u8 reg_bw_opmode
= BW_OPMODE_20MHZ
;
778 reg_rrsr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
;
779 rtl_write_byte(rtlpriv
, REG_INIRTS_RATE_SEL
, 0x8);
780 rtl_write_byte(rtlpriv
, REG_BWOPMODE
, reg_bw_opmode
);
781 rtl_write_dword(rtlpriv
, REG_RRSR
, reg_rrsr
);
782 rtl_write_byte(rtlpriv
, REG_SLOT
, 0x09);
783 rtl_write_byte(rtlpriv
, REG_AMPDU_MIN_SPACE
, 0x0);
784 rtl_write_word(rtlpriv
, REG_FWHW_TXQ_CTRL
, 0x1F80);
785 rtl_write_word(rtlpriv
, REG_RL
, 0x0707);
786 rtl_write_dword(rtlpriv
, REG_BAR_MODE_CTRL
, 0x02012802);
787 rtl_write_byte(rtlpriv
, REG_HWSEQ_CTRL
, 0xFF);
788 rtl_write_dword(rtlpriv
, REG_DARFRC
, 0x01000000);
789 rtl_write_dword(rtlpriv
, REG_DARFRC
+ 4, 0x07060504);
790 rtl_write_dword(rtlpriv
, REG_RARFRC
, 0x01000000);
791 rtl_write_dword(rtlpriv
, REG_RARFRC
+ 4, 0x07060504);
792 /* Aggregation threshold */
793 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
)
794 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0xb9726641);
795 else if (rtlhal
->macphymode
== DUALMAC_SINGLEPHY
)
796 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0x66626641);
798 rtl_write_dword(rtlpriv
, REG_AGGLEN_LMT
, 0xb972a841);
799 rtl_write_byte(rtlpriv
, REG_ATIMWND
, 0x2);
800 rtl_write_byte(rtlpriv
, REG_BCN_MAX_ERR
, 0x0a);
801 rtlpci
->reg_bcn_ctrl_val
= 0x1f;
802 rtl_write_byte(rtlpriv
, REG_BCN_CTRL
, rtlpci
->reg_bcn_ctrl_val
);
803 rtl_write_byte(rtlpriv
, REG_TBTT_PROHIBIT
+ 1, 0xff);
804 rtl_write_byte(rtlpriv
, REG_PIFS
, 0x1C);
805 rtl_write_byte(rtlpriv
, REG_AGGR_BREAK_TIME
, 0x16);
806 rtl_write_word(rtlpriv
, REG_NAV_PROT_LEN
, 0x0020);
808 rtl_write_word(rtlpriv
, REG_FAST_EDCA_CTRL
, 0x6666);
809 /* ACKTO for IOT issue. */
810 rtl_write_byte(rtlpriv
, REG_ACKTO
, 0x40);
811 /* Set Spec SIFS (used in NAV) */
812 rtl_write_word(rtlpriv
, REG_SPEC_SIFS
, 0x1010);
813 rtl_write_word(rtlpriv
, REG_MAC_SPEC_SIFS
, 0x1010);
814 /* Set SIFS for CCK */
815 rtl_write_word(rtlpriv
, REG_SIFS_CTX
, 0x1010);
816 /* Set SIFS for OFDM */
817 rtl_write_word(rtlpriv
, REG_SIFS_TRX
, 0x1010);
818 /* Set Multicast Address. */
819 rtl_write_dword(rtlpriv
, REG_MAR
, 0xffffffff);
820 rtl_write_dword(rtlpriv
, REG_MAR
+ 4, 0xffffffff);
821 switch (rtlpriv
->phy
.rf_type
) {
824 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_1T
<< 3);
828 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_2T
<< 3);
833 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw
*hw
)
835 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
836 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
838 rtl_write_byte(rtlpriv
, 0x34b, 0x93);
839 rtl_write_word(rtlpriv
, 0x350, 0x870c);
840 rtl_write_byte(rtlpriv
, 0x352, 0x1);
841 if (ppsc
->support_backdoor
)
842 rtl_write_byte(rtlpriv
, 0x349, 0x1b);
844 rtl_write_byte(rtlpriv
, 0x349, 0x03);
845 rtl_write_word(rtlpriv
, 0x350, 0x2718);
846 rtl_write_byte(rtlpriv
, 0x352, 0x1);
849 void rtl92de_enable_hw_security_config(struct ieee80211_hw
*hw
)
851 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
854 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
,
855 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
856 rtlpriv
->sec
.pairwise_enc_algorithm
,
857 rtlpriv
->sec
.group_enc_algorithm
);
858 if (rtlpriv
->cfg
->mod_params
->sw_crypto
|| rtlpriv
->sec
.use_sw_sec
) {
859 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
,
860 "not open hw encryption\n");
863 sec_reg_value
= SCR_TXENCENABLE
| SCR_RXENCENABLE
;
864 if (rtlpriv
->sec
.use_defaultkey
) {
865 sec_reg_value
|= SCR_TXUSEDK
;
866 sec_reg_value
|= SCR_RXUSEDK
;
868 sec_reg_value
|= (SCR_RXBCUSEDK
| SCR_TXBCUSEDK
);
869 rtl_write_byte(rtlpriv
, REG_CR
+ 1, 0x02);
870 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_LOUD
,
871 "The SECR-value %x\n", sec_reg_value
);
872 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_WPA_CONFIG
, &sec_reg_value
);
875 int rtl92de_hw_init(struct ieee80211_hw
*hw
)
877 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
878 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
879 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
880 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
881 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
882 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
883 bool rtstatus
= true;
889 rtlpci
->being_init_adapter
= true;
890 rtlpci
->init_ready
= false;
891 spin_lock_irqsave(&globalmutex_for_power_and_efuse
, flags
);
892 /* we should do iqk after disable/enable */
893 rtl92d_phy_reset_iqk_result(hw
);
894 /* rtlpriv->intf_ops->disable_aspm(hw); */
895 rtstatus
= _rtl92de_init_mac(hw
);
897 pr_err("Init MAC failed\n");
899 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse
, flags
);
902 err
= rtl92d_download_fw(hw
);
903 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse
, flags
);
905 rtl_dbg(rtlpriv
, COMP_ERR
, DBG_WARNING
,
906 "Failed to download FW. Init HW without FW..\n");
909 rtlhal
->last_hmeboxnum
= 0;
910 rtlpriv
->psc
.fw_current_inpsmode
= false;
912 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x605);
913 tmp_u1b
= tmp_u1b
| 0x30;
914 rtl_write_byte(rtlpriv
, 0x605, tmp_u1b
);
916 if (rtlhal
->earlymode_enable
) {
917 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
,
918 "EarlyMode Enabled!!!\n");
920 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x4d0);
921 tmp_u1b
= tmp_u1b
| 0x1f;
922 rtl_write_byte(rtlpriv
, 0x4d0, tmp_u1b
);
924 rtl_write_byte(rtlpriv
, 0x4d3, 0x80);
926 tmp_u1b
= rtl_read_byte(rtlpriv
, 0x605);
927 tmp_u1b
= tmp_u1b
| 0x40;
928 rtl_write_byte(rtlpriv
, 0x605, tmp_u1b
);
932 rtl_write_byte(rtlpriv
, REG_RD_CTRL
, 0xff);
933 rtl_write_word(rtlpriv
, REG_RD_NAV_NXT
, 0x200);
934 rtl_write_byte(rtlpriv
, REG_RD_RESP_PKT_TH
, 0x05);
937 rtl92d_phy_mac_config(hw
);
938 /* because last function modify RCR, so we update
939 * rcr var here, or TP will unstable for receive_config
940 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
941 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
942 rtlpci
->receive_config
= rtl_read_dword(rtlpriv
, REG_RCR
);
943 rtlpci
->receive_config
&= ~(RCR_ACRC32
| RCR_AICV
);
945 rtl92d_phy_bb_config(hw
);
947 rtlphy
->rf_mode
= RF_OP_BY_SW_3WIRE
;
948 /* set before initialize RF */
949 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0xf);
952 rtl92d_phy_rf_config(hw
);
954 /* After read predefined TXT, we must set BB/MAC/RF
955 * register as our requirement */
956 /* After load BB,RF params,we need do more for 92D. */
957 rtl92d_update_bbrf_configuration(hw
);
958 /* set default value after initialize RF, */
959 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0);
960 rtlphy
->rfreg_chnlval
[0] = rtl_get_rfreg(hw
, (enum radio_path
)0,
961 RF_CHNLBW
, RFREG_OFFSET_MASK
);
962 rtlphy
->rfreg_chnlval
[1] = rtl_get_rfreg(hw
, (enum radio_path
)1,
963 RF_CHNLBW
, RFREG_OFFSET_MASK
);
965 /*---- Set CCK and OFDM Block "ON"----*/
966 if (rtlhal
->current_bandtype
== BAND_ON_2_4G
)
967 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BCCKEN
, 0x1);
968 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BOFDMEN
, 0x1);
969 if (rtlhal
->interfaceindex
== 0) {
970 /* RFPGA0_ANALOGPARAMETER2: cck clock select,
971 * set to 20MHz by default */
972 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER2
, BIT(10) |
976 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER2
, BIT(11) |
980 _rtl92de_hw_configure(hw
);
983 rtl_cam_reset_all_entry(hw
);
984 rtl92de_enable_hw_security_config(hw
);
986 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
987 /* TX power index for different rate set. */
988 rtl92d_phy_get_hw_reg_originalvalue(hw
);
989 rtl92d_phy_set_txpower_level(hw
, rtlphy
->current_channel
);
991 ppsc
->rfpwr_state
= ERFON
;
993 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ETHER_ADDR
, mac
->mac_addr
);
995 _rtl92de_enable_aspm_back_door(hw
);
996 /* rtlpriv->intf_ops->enable_aspm(hw); */
999 rtlpci
->being_init_adapter
= false;
1001 if (ppsc
->rfpwr_state
== ERFON
) {
1002 rtl92d_phy_lc_calibrate(hw
);
1003 /* 5G and 2.4G must wait sometime to let RF LO ready */
1004 if (rtlhal
->macphymode
== DUALMAC_DUALPHY
) {
1006 for (i
= 0; i
< 10000; i
++) {
1007 udelay(MAX_STALL_TIME
);
1009 tmp_rega
= rtl_get_rfreg(hw
,
1010 (enum radio_path
)RF90_PATH_A
,
1013 if (((tmp_rega
& BIT(11)) == BIT(11)))
1016 /* check that loop was successful. If not, exit now */
1018 rtlpci
->init_ready
= false;
1023 rtlpci
->init_ready
= true;
1027 static enum version_8192d
_rtl92de_read_chip_version(struct ieee80211_hw
*hw
)
1029 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1030 enum version_8192d version
= VERSION_NORMAL_CHIP_92D_SINGLEPHY
;
1033 value32
= rtl_read_dword(rtlpriv
, REG_SYS_CFG
);
1034 if (!(value32
& 0x000f0000)) {
1035 version
= VERSION_TEST_CHIP_92D_SINGLEPHY
;
1036 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "TEST CHIP!!!\n");
1038 version
= VERSION_NORMAL_CHIP_92D_SINGLEPHY
;
1039 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "Normal CHIP!!!\n");
1044 static int _rtl92de_set_media_status(struct ieee80211_hw
*hw
,
1045 enum nl80211_iftype type
)
1047 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1048 u8 bt_msr
= rtl_read_byte(rtlpriv
, MSR
);
1049 enum led_ctl_mode ledaction
= LED_CTL_NO_LINK
;
1054 if (type
== NL80211_IFTYPE_UNSPECIFIED
||
1055 type
== NL80211_IFTYPE_STATION
) {
1056 _rtl92de_stop_tx_beacon(hw
);
1057 _rtl92de_enable_bcn_sub_func(hw
);
1058 } else if (type
== NL80211_IFTYPE_ADHOC
||
1059 type
== NL80211_IFTYPE_AP
) {
1060 _rtl92de_resume_tx_beacon(hw
);
1061 _rtl92de_disable_bcn_sub_func(hw
);
1063 rtl_dbg(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1064 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1067 bcnfunc_enable
= rtl_read_byte(rtlpriv
, REG_BCN_CTRL
);
1069 case NL80211_IFTYPE_UNSPECIFIED
:
1070 bt_msr
|= MSR_NOLINK
;
1071 ledaction
= LED_CTL_LINK
;
1072 bcnfunc_enable
&= 0xF7;
1073 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1074 "Set Network type to NO LINK!\n");
1076 case NL80211_IFTYPE_ADHOC
:
1077 bt_msr
|= MSR_ADHOC
;
1078 bcnfunc_enable
|= 0x08;
1079 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1080 "Set Network type to Ad Hoc!\n");
1082 case NL80211_IFTYPE_STATION
:
1083 bt_msr
|= MSR_INFRA
;
1084 ledaction
= LED_CTL_LINK
;
1085 bcnfunc_enable
&= 0xF7;
1086 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1087 "Set Network type to STA!\n");
1089 case NL80211_IFTYPE_AP
:
1091 bcnfunc_enable
|= 0x08;
1092 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1093 "Set Network type to AP!\n");
1096 pr_err("Network type %d not supported!\n", type
);
1099 rtl_write_byte(rtlpriv
, MSR
, bt_msr
);
1100 rtlpriv
->cfg
->ops
->led_control(hw
, ledaction
);
1101 if ((bt_msr
& MSR_MASK
) == MSR_AP
)
1102 rtl_write_byte(rtlpriv
, REG_BCNTCFG
+ 1, 0x00);
1104 rtl_write_byte(rtlpriv
, REG_BCNTCFG
+ 1, 0x66);
1108 void rtl92de_set_check_bssid(struct ieee80211_hw
*hw
, bool check_bssid
)
1110 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1113 if (rtlpriv
->psc
.rfpwr_state
!= ERFON
)
1116 rtlpriv
->cfg
->ops
->get_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1119 reg_rcr
|= (RCR_CBSSID_DATA
| RCR_CBSSID_BCN
);
1120 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1121 _rtl92de_set_bcn_ctrl_reg(hw
, 0, BIT(4));
1122 } else if (!check_bssid
) {
1123 reg_rcr
&= (~(RCR_CBSSID_DATA
| RCR_CBSSID_BCN
));
1124 _rtl92de_set_bcn_ctrl_reg(hw
, BIT(4), 0);
1125 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1129 int rtl92de_set_network_type(struct ieee80211_hw
*hw
, enum nl80211_iftype type
)
1131 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1133 if (_rtl92de_set_media_status(hw
, type
))
1137 if (rtlpriv
->mac80211
.link_state
== MAC80211_LINKED
) {
1138 if (type
!= NL80211_IFTYPE_AP
)
1139 rtl92de_set_check_bssid(hw
, true);
1141 rtl92de_set_check_bssid(hw
, false);
1146 /* do iqk or reload iqk */
1147 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1148 * but it's very strict for time sequence so we add
1149 * rtl92d_phy_reload_iqk_setting here */
1150 void rtl92d_linked_set_reg(struct ieee80211_hw
*hw
)
1152 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1153 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1155 u8 channel
= rtlphy
->current_channel
;
1157 indexforchannel
= rtl92d_get_rightchnlplace_for_iqk(channel
);
1158 if (!rtlphy
->iqk_matrix
[indexforchannel
].iqk_done
) {
1159 rtl_dbg(rtlpriv
, COMP_SCAN
| COMP_INIT
, DBG_DMESG
,
1160 "Do IQK for channel:%d\n", channel
);
1161 rtl92d_phy_iq_calibrate(hw
);
1165 /* don't set REG_EDCA_BE_PARAM here because
1166 * mac80211 will send pkt when scan */
1167 void rtl92de_set_qos(struct ieee80211_hw
*hw
, int aci
)
1169 rtl92d_dm_init_edca_turbo(hw
);
1172 void rtl92de_enable_interrupt(struct ieee80211_hw
*hw
)
1174 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1175 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1177 rtl_write_dword(rtlpriv
, REG_HIMR
, rtlpci
->irq_mask
[0] & 0xFFFFFFFF);
1178 rtl_write_dword(rtlpriv
, REG_HIMRE
, rtlpci
->irq_mask
[1] & 0xFFFFFFFF);
1179 rtlpci
->irq_enabled
= true;
1182 void rtl92de_disable_interrupt(struct ieee80211_hw
*hw
)
1184 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1185 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1187 rtl_write_dword(rtlpriv
, REG_HIMR
, IMR8190_DISABLED
);
1188 rtl_write_dword(rtlpriv
, REG_HIMRE
, IMR8190_DISABLED
);
1189 rtlpci
->irq_enabled
= false;
1192 static void _rtl92de_poweroff_adapter(struct ieee80211_hw
*hw
)
1194 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1196 unsigned long flags
;
1198 rtlpriv
->intf_ops
->enable_aspm(hw
);
1199 rtl_write_byte(rtlpriv
, REG_RF_CTRL
, 0x00);
1200 rtl_set_bbreg(hw
, RFPGA0_XCD_RFPARAMETER
, BIT(3), 0);
1201 rtl_set_bbreg(hw
, RFPGA0_XCD_RFPARAMETER
, BIT(15), 0);
1203 /* 0x20:value 05-->04 */
1204 rtl_write_byte(rtlpriv
, REG_LDOA15_CTRL
, 0x04);
1206 /* ==== Reset digital sequence ====== */
1207 rtl92d_firmware_selfreset(hw
);
1209 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1210 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, 0x51);
1212 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1213 rtl_write_byte(rtlpriv
, REG_MCUFWDL
, 0x00);
1215 /* ==== Pull GPIO PIN to balance level and LED control ====== */
1217 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
1218 rtl_write_dword(rtlpriv
, REG_GPIO_PIN_CTRL
, 0x00000000);
1220 /* i. Value = GPIO_PIN_CTRL[7:0] */
1221 u1b_tmp
= rtl_read_byte(rtlpriv
, REG_GPIO_PIN_CTRL
);
1223 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1224 /* write external PIN level */
1225 rtl_write_dword(rtlpriv
, REG_GPIO_PIN_CTRL
,
1226 0x00FF0000 | (u1b_tmp
<< 8));
1228 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1229 rtl_write_word(rtlpriv
, REG_GPIO_IO_SEL
, 0x0790);
1231 /* l. LEDCFG 0x4C[15:0] = 0x8080 */
1232 rtl_write_word(rtlpriv
, REG_LEDCFG0
, 0x8080);
1234 /* ==== Disable analog sequence === */
1236 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
1237 rtl_write_byte(rtlpriv
, REG_AFE_PLL_CTRL
, 0x80);
1239 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
1240 rtl_write_byte(rtlpriv
, REG_SPS0_CTRL
, 0x23);
1242 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
1243 rtl_write_byte(rtlpriv
, REG_AFE_XTAL_CTRL
, 0x0e);
1245 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1246 rtl_write_byte(rtlpriv
, REG_RSV_CTRL
, 0x0e);
1248 /* ==== interface into suspend === */
1250 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1251 /* According to power document V11, we need to set this */
1252 /* value as 0x18. Otherwise, we may not L0s sometimes. */
1253 /* This indluences power consumption. Bases on SD1's test, */
1254 /* set as 0x00 do not affect power current. And if it */
1255 /* is set as 0x18, they had ever met auto load fail problem. */
1256 rtl_write_byte(rtlpriv
, REG_APS_FSMCO
+ 1, 0x10);
1258 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1259 "In PowerOff,reg0x%x=%X\n",
1260 REG_SPS0_CTRL
, rtl_read_byte(rtlpriv
, REG_SPS0_CTRL
));
1261 /* r. Note: for PCIe interface, PON will not turn */
1262 /* off m-bias and BandGap in PCIe suspend mode. */
1264 /* 0x17[7] 1b': power off in process 0b' : power off over */
1265 if (rtlpriv
->rtlhal
.macphymode
!= SINGLEMAC_SINGLEPHY
) {
1266 spin_lock_irqsave(&globalmutex_power
, flags
);
1267 u1b_tmp
= rtl_read_byte(rtlpriv
, REG_POWER_OFF_IN_PROCESS
);
1268 u1b_tmp
&= (~BIT(7));
1269 rtl_write_byte(rtlpriv
, REG_POWER_OFF_IN_PROCESS
, u1b_tmp
);
1270 spin_unlock_irqrestore(&globalmutex_power
, flags
);
1273 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "<=======\n");
1276 void rtl92de_card_disable(struct ieee80211_hw
*hw
)
1278 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1279 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1280 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1281 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1282 enum nl80211_iftype opmode
;
1284 mac
->link_state
= MAC80211_NOLINK
;
1285 opmode
= NL80211_IFTYPE_UNSPECIFIED
;
1286 _rtl92de_set_media_status(hw
, opmode
);
1288 if (rtlpci
->driver_is_goingto_unload
||
1289 ppsc
->rfoff_reason
> RF_CHANGE_BY_PS
)
1290 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_OFF
);
1291 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
1292 /* Power sequence for each MAC. */
1293 /* a. stop tx DMA */
1295 /* c. clear rx buf */
1296 /* d. stop rx DMA */
1299 /* a. stop tx DMA */
1300 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0xFE);
1303 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1305 /* c. ========RF OFF sequence========== */
1306 /* 0x88c[23:20] = 0xf. */
1307 rtl_set_bbreg(hw
, RFPGA0_ANALOGPARAMETER4
, 0x00f00000, 0xf);
1308 rtl_set_rfreg(hw
, RF90_PATH_A
, 0x00, RFREG_OFFSET_MASK
, 0x00);
1310 /* APSD_CTRL 0x600[7:0] = 0x40 */
1311 rtl_write_byte(rtlpriv
, REG_APSD_CTRL
, 0x40);
1313 /* Close antenna 0,0xc04,0xd04 */
1314 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
, MASKBYTE0
, 0);
1315 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
, BDWORD
, 0);
1317 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
1318 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, 0xE2);
1320 /* Mac0 can not do Global reset. Mac1 can do. */
1321 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
1322 if (rtlpriv
->rtlhal
.interfaceindex
== 1)
1323 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, 0xE0);
1326 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
1327 /* dma hang issue when disable/enable device. */
1328 rtl_write_byte(rtlpriv
, REG_PCIE_CTRL_REG
+ 1, 0xff);
1330 rtl_write_byte(rtlpriv
, REG_CR
, 0x0);
1331 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "==> Do power off.......\n");
1332 if (rtl92d_phy_check_poweroff(hw
))
1333 _rtl92de_poweroff_adapter(hw
);
1337 void rtl92de_interrupt_recognized(struct ieee80211_hw
*hw
,
1338 struct rtl_int
*intvec
)
1340 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1341 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1343 intvec
->inta
= rtl_read_dword(rtlpriv
, ISR
) & rtlpci
->irq_mask
[0];
1344 rtl_write_dword(rtlpriv
, ISR
, intvec
->inta
);
1347 void rtl92de_set_beacon_related_registers(struct ieee80211_hw
*hw
)
1349 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1350 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1351 u16 bcn_interval
, atim_window
;
1353 bcn_interval
= mac
->beacon_interval
;
1355 rtl92de_disable_interrupt(hw
);
1356 rtl_write_word(rtlpriv
, REG_ATIMWND
, atim_window
);
1357 rtl_write_word(rtlpriv
, REG_BCN_INTERVAL
, bcn_interval
);
1358 rtl_write_word(rtlpriv
, REG_BCNTCFG
, 0x660f);
1359 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_CCK
, 0x20);
1360 if (rtlpriv
->rtlhal
.current_bandtype
== BAND_ON_5G
)
1361 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_OFDM
, 0x30);
1363 rtl_write_byte(rtlpriv
, REG_RXTSF_OFFSET_OFDM
, 0x20);
1364 rtl_write_byte(rtlpriv
, 0x606, 0x30);
1367 void rtl92de_set_beacon_interval(struct ieee80211_hw
*hw
)
1369 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1370 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1371 u16 bcn_interval
= mac
->beacon_interval
;
1373 rtl_dbg(rtlpriv
, COMP_BEACON
, DBG_DMESG
,
1374 "beacon_interval:%d\n", bcn_interval
);
1375 rtl92de_disable_interrupt(hw
);
1376 rtl_write_word(rtlpriv
, REG_BCN_INTERVAL
, bcn_interval
);
1377 rtl92de_enable_interrupt(hw
);
1380 void rtl92de_update_interrupt_mask(struct ieee80211_hw
*hw
,
1381 u32 add_msr
, u32 rm_msr
)
1383 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1384 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1386 rtl_dbg(rtlpriv
, COMP_INTR
, DBG_LOUD
, "add_msr:%x, rm_msr:%x\n",
1389 rtlpci
->irq_mask
[0] |= add_msr
;
1391 rtlpci
->irq_mask
[0] &= (~rm_msr
);
1392 rtl92de_disable_interrupt(hw
);
1393 rtl92de_enable_interrupt(hw
);
1396 static void _rtl92de_readpowervalue_fromprom(struct txpower_info
*pwrinfo
,
1397 u8
*rom_content
, bool autoloadfail
)
1399 u32 rfpath
, eeaddr
, group
, offset1
, offset2
;
1402 memset(pwrinfo
, 0, sizeof(struct txpower_info
));
1404 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1405 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1406 if (group
< CHANNEL_GROUP_MAX_2G
) {
1407 pwrinfo
->cck_index
[rfpath
][group
] =
1408 EEPROM_DEFAULT_TXPOWERLEVEL_2G
;
1409 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1410 EEPROM_DEFAULT_TXPOWERLEVEL_2G
;
1412 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1413 EEPROM_DEFAULT_TXPOWERLEVEL_5G
;
1415 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1416 EEPROM_DEFAULT_HT40_2SDIFF
;
1417 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1418 EEPROM_DEFAULT_HT20_DIFF
;
1419 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1420 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF
;
1421 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1422 EEPROM_DEFAULT_HT40_PWRMAXOFFSET
;
1423 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1424 EEPROM_DEFAULT_HT20_PWRMAXOFFSET
;
1427 for (i
= 0; i
< 3; i
++) {
1428 pwrinfo
->tssi_a
[i
] = EEPROM_DEFAULT_TSSI
;
1429 pwrinfo
->tssi_b
[i
] = EEPROM_DEFAULT_TSSI
;
1434 /* Maybe autoload OK,buf the tx power index value is not filled.
1435 * If we find it, we set it to default value. */
1436 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1437 for (group
= 0; group
< CHANNEL_GROUP_MAX_2G
; group
++) {
1438 eeaddr
= EEPROM_CCK_TX_PWR_INX_2G
+ (rfpath
* 3)
1440 pwrinfo
->cck_index
[rfpath
][group
] =
1441 (rom_content
[eeaddr
] == 0xFF) ?
1443 EEPROM_DEFAULT_TXPOWERLEVEL_5G
:
1444 EEPROM_DEFAULT_TXPOWERLEVEL_2G
) :
1445 rom_content
[eeaddr
];
1448 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1449 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1450 offset1
= group
/ 3;
1451 offset2
= group
% 3;
1452 eeaddr
= EEPROM_HT40_1S_TX_PWR_INX_2G
+ (rfpath
* 3) +
1453 offset2
+ offset1
* 21;
1454 pwrinfo
->ht40_1sindex
[rfpath
][group
] =
1455 (rom_content
[eeaddr
] == 0xFF) ? (eeaddr
> 0x7B ?
1456 EEPROM_DEFAULT_TXPOWERLEVEL_5G
:
1457 EEPROM_DEFAULT_TXPOWERLEVEL_2G
) :
1458 rom_content
[eeaddr
];
1461 /* These just for 92D efuse offset. */
1462 for (group
= 0; group
< CHANNEL_GROUP_MAX
; group
++) {
1463 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1464 int base1
= EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G
;
1466 offset1
= group
/ 3;
1467 offset2
= group
% 3;
1469 if (rom_content
[base1
+ offset2
+ offset1
* 21] != 0xFF)
1470 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1471 (rom_content
[base1
+
1472 offset2
+ offset1
* 21] >> (rfpath
* 4))
1475 pwrinfo
->ht40_2sindexdiff
[rfpath
][group
] =
1476 EEPROM_DEFAULT_HT40_2SDIFF
;
1477 if (rom_content
[EEPROM_HT20_TX_PWR_INX_DIFF_2G
+ offset2
1478 + offset1
* 21] != 0xFF)
1479 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1480 (rom_content
[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1481 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1484 pwrinfo
->ht20indexdiff
[rfpath
][group
] =
1485 EEPROM_DEFAULT_HT20_DIFF
;
1486 if (rom_content
[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
+ offset2
1487 + offset1
* 21] != 0xFF)
1488 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1489 (rom_content
[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1490 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1493 pwrinfo
->ofdmindexdiff
[rfpath
][group
] =
1494 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF
;
1495 if (rom_content
[EEPROM_HT40_MAX_PWR_OFFSET_2G
+ offset2
1496 + offset1
* 21] != 0xFF)
1497 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1498 (rom_content
[EEPROM_HT40_MAX_PWR_OFFSET_2G
1499 + offset2
+ offset1
* 21] >> (rfpath
* 4))
1502 pwrinfo
->ht40maxoffset
[rfpath
][group
] =
1503 EEPROM_DEFAULT_HT40_PWRMAXOFFSET
;
1504 if (rom_content
[EEPROM_HT20_MAX_PWR_OFFSET_2G
+ offset2
1505 + offset1
* 21] != 0xFF)
1506 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1507 (rom_content
[EEPROM_HT20_MAX_PWR_OFFSET_2G
+
1508 offset2
+ offset1
* 21] >> (rfpath
* 4)) &
1511 pwrinfo
->ht20maxoffset
[rfpath
][group
] =
1512 EEPROM_DEFAULT_HT20_PWRMAXOFFSET
;
1515 if (rom_content
[EEPROM_TSSI_A_5G
] != 0xFF) {
1517 pwrinfo
->tssi_a
[0] = rom_content
[EEPROM_TSSI_A_5G
] & 0x3F;
1518 pwrinfo
->tssi_b
[0] = rom_content
[EEPROM_TSSI_B_5G
] & 0x3F;
1520 pwrinfo
->tssi_a
[1] = rom_content
[EEPROM_TSSI_AB_5G
] & 0x3F;
1521 pwrinfo
->tssi_b
[1] =
1522 (rom_content
[EEPROM_TSSI_AB_5G
] & 0xC0) >> 6 |
1523 (rom_content
[EEPROM_TSSI_AB_5G
+ 1] & 0x0F) << 2;
1525 pwrinfo
->tssi_a
[2] = (rom_content
[EEPROM_TSSI_AB_5G
+ 1] &
1527 (rom_content
[EEPROM_TSSI_AB_5G
+ 2] & 0x03) << 4;
1528 pwrinfo
->tssi_b
[2] = (rom_content
[EEPROM_TSSI_AB_5G
+ 2] &
1531 for (i
= 0; i
< 3; i
++) {
1532 pwrinfo
->tssi_a
[i
] = EEPROM_DEFAULT_TSSI
;
1533 pwrinfo
->tssi_b
[i
] = EEPROM_DEFAULT_TSSI
;
1538 static void _rtl92de_read_txpower_info(struct ieee80211_hw
*hw
,
1539 bool autoload_fail
, u8
*hwinfo
)
1541 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1542 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1543 struct txpower_info pwrinfo
;
1544 u8 tempval
[2], i
, pwr
, diff
;
1545 u32 ch
, rfpath
, group
;
1547 _rtl92de_readpowervalue_fromprom(&pwrinfo
, hwinfo
, autoload_fail
);
1548 if (!autoload_fail
) {
1550 rtlefuse
->eeprom_regulatory
= (hwinfo
[EEPROM_RF_OPT1
] & 0x7);
1551 rtlefuse
->eeprom_thermalmeter
=
1552 hwinfo
[EEPROM_THERMAL_METER
] & 0x1f;
1553 rtlefuse
->crystalcap
= hwinfo
[EEPROM_XTAL_K
];
1554 tempval
[0] = hwinfo
[EEPROM_IQK_DELTA
] & 0x03;
1555 tempval
[1] = (hwinfo
[EEPROM_LCK_DELTA
] & 0x0C) >> 2;
1556 rtlefuse
->txpwr_fromeprom
= true;
1557 if (IS_92D_D_CUT(rtlpriv
->rtlhal
.version
) ||
1558 IS_92D_E_CUT(rtlpriv
->rtlhal
.version
)) {
1559 rtlefuse
->internal_pa_5g
[0] =
1560 !((hwinfo
[EEPROM_TSSI_A_5G
] & BIT(6)) >> 6);
1561 rtlefuse
->internal_pa_5g
[1] =
1562 !((hwinfo
[EEPROM_TSSI_B_5G
] & BIT(6)) >> 6);
1563 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_DMESG
,
1564 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1565 rtlefuse
->internal_pa_5g
[0],
1566 rtlefuse
->internal_pa_5g
[1]);
1568 rtlefuse
->eeprom_c9
= hwinfo
[EEPROM_RF_OPT6
];
1569 rtlefuse
->eeprom_cc
= hwinfo
[EEPROM_RF_OPT7
];
1571 rtlefuse
->eeprom_regulatory
= 0;
1572 rtlefuse
->eeprom_thermalmeter
= EEPROM_DEFAULT_THERMALMETER
;
1573 rtlefuse
->crystalcap
= EEPROM_DEFAULT_CRYSTALCAP
;
1574 tempval
[0] = tempval
[1] = 3;
1577 /* Use default value to fill parameters if
1578 * efuse is not filled on some place. */
1580 /* ThermalMeter from EEPROM */
1581 if (rtlefuse
->eeprom_thermalmeter
< 0x06 ||
1582 rtlefuse
->eeprom_thermalmeter
> 0x1c)
1583 rtlefuse
->eeprom_thermalmeter
= 0x12;
1584 rtlefuse
->thermalmeter
[0] = rtlefuse
->eeprom_thermalmeter
;
1587 if (rtlefuse
->crystalcap
== 0xFF)
1588 rtlefuse
->crystalcap
= 0;
1589 if (rtlefuse
->eeprom_regulatory
> 3)
1590 rtlefuse
->eeprom_regulatory
= 0;
1592 for (i
= 0; i
< 2; i
++) {
1593 switch (tempval
[i
]) {
1610 rtlefuse
->delta_iqk
= tempval
[0];
1612 rtlefuse
->delta_lck
= tempval
[1] - 1;
1613 if (rtlefuse
->eeprom_c9
== 0xFF)
1614 rtlefuse
->eeprom_c9
= 0x00;
1615 rtl_dbg(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1616 "EEPROMRegulatory = 0x%x\n", rtlefuse
->eeprom_regulatory
);
1617 rtl_dbg(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1618 "ThermalMeter = 0x%x\n", rtlefuse
->eeprom_thermalmeter
);
1619 rtl_dbg(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1620 "CrystalCap = 0x%x\n", rtlefuse
->crystalcap
);
1621 rtl_dbg(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1622 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1623 rtlefuse
->delta_iqk
, rtlefuse
->delta_lck
);
1625 for (rfpath
= 0; rfpath
< RF6052_MAX_PATH
; rfpath
++) {
1626 for (ch
= 0; ch
< CHANNEL_MAX_NUMBER
; ch
++) {
1627 group
= rtl92d_get_chnlgroup_fromarray((u8
) ch
);
1628 if (ch
< CHANNEL_MAX_NUMBER_2G
)
1629 rtlefuse
->txpwrlevel_cck
[rfpath
][ch
] =
1630 pwrinfo
.cck_index
[rfpath
][group
];
1631 rtlefuse
->txpwrlevel_ht40_1s
[rfpath
][ch
] =
1632 pwrinfo
.ht40_1sindex
[rfpath
][group
];
1633 rtlefuse
->txpwr_ht20diff
[rfpath
][ch
] =
1634 pwrinfo
.ht20indexdiff
[rfpath
][group
];
1635 rtlefuse
->txpwr_legacyhtdiff
[rfpath
][ch
] =
1636 pwrinfo
.ofdmindexdiff
[rfpath
][group
];
1637 rtlefuse
->pwrgroup_ht20
[rfpath
][ch
] =
1638 pwrinfo
.ht20maxoffset
[rfpath
][group
];
1639 rtlefuse
->pwrgroup_ht40
[rfpath
][ch
] =
1640 pwrinfo
.ht40maxoffset
[rfpath
][group
];
1641 pwr
= pwrinfo
.ht40_1sindex
[rfpath
][group
];
1642 diff
= pwrinfo
.ht40_2sindexdiff
[rfpath
][group
];
1643 rtlefuse
->txpwrlevel_ht40_2s
[rfpath
][ch
] =
1644 (pwr
> diff
) ? (pwr
- diff
) : 0;
1649 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw
*hw
,
1652 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1653 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1654 u8 macphy_crvalue
= content
[EEPROM_MAC_FUNCTION
];
1656 if (macphy_crvalue
& BIT(3)) {
1657 rtlhal
->macphymode
= SINGLEMAC_SINGLEPHY
;
1658 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1659 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1661 rtlhal
->macphymode
= DUALMAC_DUALPHY
;
1662 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1663 "MacPhyMode DUALMAC_DUALPHY\n");
1667 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw
*hw
,
1670 _rtl92de_read_macphymode_from_prom(hw
, content
);
1671 rtl92d_phy_config_macphymode(hw
);
1672 rtl92d_phy_config_macphymode_info(hw
);
1675 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw
*hw
)
1677 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1678 enum version_8192d chipver
= rtlpriv
->rtlhal
.version
;
1682 rtlpriv
->intf_ops
->read_efuse_byte(hw
, EEPROME_CHIP_VERSION_H
,
1684 rtlpriv
->intf_ops
->read_efuse_byte(hw
, EEPROME_CHIP_VERSION_L
,
1686 chipvalue
= (cutvalue
[1] << 8) | cutvalue
[0];
1687 switch (chipvalue
) {
1689 chipver
|= CHIP_92D_C_CUT
;
1690 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "C-CUT!!!\n");
1693 chipver
|= CHIP_92D_D_CUT
;
1694 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "D-CUT!!!\n");
1697 chipver
|= CHIP_92D_E_CUT
;
1698 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "E-CUT!!!\n");
1701 chipver
|= CHIP_92D_D_CUT
;
1702 pr_err("Unknown CUT!\n");
1705 rtlpriv
->rtlhal
.version
= chipver
;
1708 static void _rtl92de_read_adapter_info(struct ieee80211_hw
*hw
)
1710 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1711 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1712 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1713 int params
[] = {RTL8190_EEPROM_ID
, EEPROM_VID
, EEPROM_DID
,
1714 EEPROM_SVID
, EEPROM_SMID
, EEPROM_MAC_ADDR_MAC0_92D
,
1715 EEPROM_CHANNEL_PLAN
, EEPROM_VERSION
, EEPROM_CUSTOMER_ID
,
1716 COUNTRY_CODE_WORLD_WIDE_13
};
1721 hwinfo
= kzalloc(HWSET_MAX_SIZE
, GFP_KERNEL
);
1725 if (rtl_get_hwinfo(hw
, rtlpriv
, HWSET_MAX_SIZE
, hwinfo
, params
))
1728 _rtl92de_efuse_update_chip_version(hw
);
1729 _rtl92de_read_macphymode_and_bandtype(hw
, hwinfo
);
1731 /* Read Permanent MAC address for 2nd interface */
1732 if (rtlhal
->interfaceindex
!= 0) {
1733 for (i
= 0; i
< 6; i
+= 2) {
1734 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR_MAC1_92D
+ i
];
1735 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1738 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_ETHER_ADDR
,
1739 rtlefuse
->dev_addr
);
1740 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_DMESG
, "%pM\n", rtlefuse
->dev_addr
);
1741 _rtl92de_read_txpower_info(hw
, rtlefuse
->autoload_failflag
, hwinfo
);
1743 /* Read Channel Plan */
1744 switch (rtlhal
->bandset
) {
1746 rtlefuse
->channel_plan
= COUNTRY_CODE_TELEC
;
1749 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1752 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1755 rtlefuse
->channel_plan
= COUNTRY_CODE_FCC
;
1758 rtlefuse
->txpwr_fromeprom
= true;
1763 void rtl92de_read_eeprom_info(struct ieee80211_hw
*hw
)
1765 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1766 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1767 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1770 rtlhal
->version
= _rtl92de_read_chip_version(hw
);
1771 tmp_u1b
= rtl_read_byte(rtlpriv
, REG_9346CR
);
1772 rtlefuse
->autoload_status
= tmp_u1b
;
1773 if (tmp_u1b
& BIT(4)) {
1774 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_DMESG
, "Boot from EEPROM\n");
1775 rtlefuse
->epromtype
= EEPROM_93C46
;
1777 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_DMESG
, "Boot from EFUSE\n");
1778 rtlefuse
->epromtype
= EEPROM_BOOT_EFUSE
;
1780 if (tmp_u1b
& BIT(5)) {
1781 rtl_dbg(rtlpriv
, COMP_INIT
, DBG_LOUD
, "Autoload OK\n");
1783 rtlefuse
->autoload_failflag
= false;
1784 _rtl92de_read_adapter_info(hw
);
1786 pr_err("Autoload ERR!!\n");
1791 static void rtl92de_update_hal_rate_table(struct ieee80211_hw
*hw
,
1792 struct ieee80211_sta
*sta
)
1794 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1795 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1796 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1797 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1800 u8 nmode
= mac
->ht_enable
;
1801 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1804 u8 curtxbw_40mhz
= mac
->bw_40
;
1805 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1807 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
1809 enum wireless_mode wirelessmode
= mac
->mode
;
1811 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
1812 ratr_value
= sta
->supp_rates
[1] << 4;
1814 ratr_value
= sta
->supp_rates
[0];
1815 ratr_value
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
1816 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
1817 switch (wirelessmode
) {
1818 case WIRELESS_MODE_A
:
1819 ratr_value
&= 0x00000FF0;
1821 case WIRELESS_MODE_B
:
1822 if (ratr_value
& 0x0000000c)
1823 ratr_value
&= 0x0000000d;
1825 ratr_value
&= 0x0000000f;
1827 case WIRELESS_MODE_G
:
1828 ratr_value
&= 0x00000FF5;
1830 case WIRELESS_MODE_N_24G
:
1831 case WIRELESS_MODE_N_5G
:
1833 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
1834 ratr_value
&= 0x0007F005;
1838 if (get_rf_type(rtlphy
) == RF_1T2R
||
1839 get_rf_type(rtlphy
) == RF_1T1R
) {
1840 ratr_mask
= 0x000ff005;
1842 ratr_mask
= 0x0f0ff005;
1845 ratr_value
&= ratr_mask
;
1849 if (rtlphy
->rf_type
== RF_1T2R
)
1850 ratr_value
&= 0x000ff0ff;
1852 ratr_value
&= 0x0f0ff0ff;
1856 ratr_value
&= 0x0FFFFFFF;
1857 if (nmode
&& ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
1858 (!curtxbw_40mhz
&& curshortgi_20mhz
))) {
1859 ratr_value
|= 0x10000000;
1860 tmp_ratr_value
= (ratr_value
>> 12);
1861 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
1862 if ((1 << shortgi_rate
) & tmp_ratr_value
)
1865 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
1866 (shortgi_rate
<< 4) | (shortgi_rate
);
1868 rtl_write_dword(rtlpriv
, REG_ARFR0
+ ratr_index
* 4, ratr_value
);
1869 rtl_dbg(rtlpriv
, COMP_RATR
, DBG_DMESG
, "%x\n",
1870 rtl_read_dword(rtlpriv
, REG_ARFR0
));
1873 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw
*hw
,
1874 struct ieee80211_sta
*sta
, u8 rssi_level
, bool update_bw
)
1876 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1877 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1878 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1879 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1880 struct rtl_sta_info
*sta_entry
= NULL
;
1883 u8 curtxbw_40mhz
= (sta
->bandwidth
>= IEEE80211_STA_RX_BW_40
) ? 1 : 0;
1884 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1886 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
1888 enum wireless_mode wirelessmode
= 0;
1889 bool shortgi
= false;
1892 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1894 sta_entry
= (struct rtl_sta_info
*) sta
->drv_priv
;
1895 mimo_ps
= sta_entry
->mimo_ps
;
1896 wirelessmode
= sta_entry
->wireless_mode
;
1897 if (mac
->opmode
== NL80211_IFTYPE_STATION
)
1898 curtxbw_40mhz
= mac
->bw_40
;
1899 else if (mac
->opmode
== NL80211_IFTYPE_AP
||
1900 mac
->opmode
== NL80211_IFTYPE_ADHOC
)
1901 macid
= sta
->aid
+ 1;
1903 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
1904 ratr_bitmap
= sta
->supp_rates
[1] << 4;
1906 ratr_bitmap
= sta
->supp_rates
[0];
1907 ratr_bitmap
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
1908 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
1909 switch (wirelessmode
) {
1910 case WIRELESS_MODE_B
:
1911 ratr_index
= RATR_INX_WIRELESS_B
;
1912 if (ratr_bitmap
& 0x0000000c)
1913 ratr_bitmap
&= 0x0000000d;
1915 ratr_bitmap
&= 0x0000000f;
1917 case WIRELESS_MODE_G
:
1918 ratr_index
= RATR_INX_WIRELESS_GB
;
1920 if (rssi_level
== 1)
1921 ratr_bitmap
&= 0x00000f00;
1922 else if (rssi_level
== 2)
1923 ratr_bitmap
&= 0x00000ff0;
1925 ratr_bitmap
&= 0x00000ff5;
1927 case WIRELESS_MODE_A
:
1928 ratr_index
= RATR_INX_WIRELESS_G
;
1929 ratr_bitmap
&= 0x00000ff0;
1931 case WIRELESS_MODE_N_24G
:
1932 case WIRELESS_MODE_N_5G
:
1933 if (wirelessmode
== WIRELESS_MODE_N_24G
)
1934 ratr_index
= RATR_INX_WIRELESS_NGB
;
1936 ratr_index
= RATR_INX_WIRELESS_NG
;
1937 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
1938 if (rssi_level
== 1)
1939 ratr_bitmap
&= 0x00070000;
1940 else if (rssi_level
== 2)
1941 ratr_bitmap
&= 0x0007f000;
1943 ratr_bitmap
&= 0x0007f005;
1945 if (rtlphy
->rf_type
== RF_1T2R
||
1946 rtlphy
->rf_type
== RF_1T1R
) {
1947 if (curtxbw_40mhz
) {
1948 if (rssi_level
== 1)
1949 ratr_bitmap
&= 0x000f0000;
1950 else if (rssi_level
== 2)
1951 ratr_bitmap
&= 0x000ff000;
1953 ratr_bitmap
&= 0x000ff015;
1955 if (rssi_level
== 1)
1956 ratr_bitmap
&= 0x000f0000;
1957 else if (rssi_level
== 2)
1958 ratr_bitmap
&= 0x000ff000;
1960 ratr_bitmap
&= 0x000ff005;
1963 if (curtxbw_40mhz
) {
1964 if (rssi_level
== 1)
1965 ratr_bitmap
&= 0x0f0f0000;
1966 else if (rssi_level
== 2)
1967 ratr_bitmap
&= 0x0f0ff000;
1969 ratr_bitmap
&= 0x0f0ff015;
1971 if (rssi_level
== 1)
1972 ratr_bitmap
&= 0x0f0f0000;
1973 else if (rssi_level
== 2)
1974 ratr_bitmap
&= 0x0f0ff000;
1976 ratr_bitmap
&= 0x0f0ff005;
1980 if ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
1981 (!curtxbw_40mhz
&& curshortgi_20mhz
)) {
1985 else if (macid
== 1)
1990 ratr_index
= RATR_INX_WIRELESS_NGB
;
1992 if (rtlphy
->rf_type
== RF_1T2R
)
1993 ratr_bitmap
&= 0x000ff0ff;
1995 ratr_bitmap
&= 0x0f0ff0ff;
1999 value
[0] = (ratr_bitmap
& 0x0fffffff) | (ratr_index
<< 28);
2000 value
[1] = macid
| (shortgi
? 0x20 : 0x00) | 0x80;
2001 rtl_dbg(rtlpriv
, COMP_RATR
, DBG_DMESG
,
2002 "ratr_bitmap :%x value0:%x value1:%x\n",
2003 ratr_bitmap
, value
[0], value
[1]);
2004 rtl92d_fill_h2c_cmd(hw
, H2C_RA_MASK
, 5, (u8
*) value
);
2006 sta_entry
->ratr_index
= ratr_index
;
2009 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw
*hw
,
2010 struct ieee80211_sta
*sta
, u8 rssi_level
, bool update_bw
)
2012 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2014 if (rtlpriv
->dm
.useramask
)
2015 rtl92de_update_hal_rate_mask(hw
, sta
, rssi_level
, update_bw
);
2017 rtl92de_update_hal_rate_table(hw
, sta
);
2020 void rtl92de_update_channel_access_setting(struct ieee80211_hw
*hw
)
2022 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2023 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2026 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SLOT_TIME
,
2028 if (!mac
->ht_enable
)
2029 sifs_timer
= 0x0a0a;
2031 sifs_timer
= 0x1010;
2032 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SIFS
, (u8
*)&sifs_timer
);
2035 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw
*hw
, u8
*valid
)
2037 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2038 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
2039 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2040 enum rf_pwrstate e_rfpowerstate_toset
;
2042 bool actuallyset
= false;
2045 if (rtlpci
->being_init_adapter
)
2047 if (ppsc
->swrf_processing
)
2049 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2050 if (ppsc
->rfchange_inprogress
) {
2051 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2054 ppsc
->rfchange_inprogress
= true;
2055 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2057 rtl_write_byte(rtlpriv
, REG_MAC_PINMUX_CFG
, rtl_read_byte(rtlpriv
,
2058 REG_MAC_PINMUX_CFG
) & ~(BIT(3)));
2059 u1tmp
= rtl_read_byte(rtlpriv
, REG_GPIO_IO_SEL
);
2060 e_rfpowerstate_toset
= (u1tmp
& BIT(3)) ? ERFON
: ERFOFF
;
2061 if (ppsc
->hwradiooff
&& (e_rfpowerstate_toset
== ERFON
)) {
2062 rtl_dbg(rtlpriv
, COMP_RF
, DBG_DMESG
,
2063 "GPIOChangeRF - HW Radio ON, RF ON\n");
2064 e_rfpowerstate_toset
= ERFON
;
2065 ppsc
->hwradiooff
= false;
2067 } else if (!ppsc
->hwradiooff
&& (e_rfpowerstate_toset
== ERFOFF
)) {
2068 rtl_dbg(rtlpriv
, COMP_RF
, DBG_DMESG
,
2069 "GPIOChangeRF - HW Radio OFF, RF OFF\n");
2070 e_rfpowerstate_toset
= ERFOFF
;
2071 ppsc
->hwradiooff
= true;
2075 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2076 ppsc
->rfchange_inprogress
= false;
2077 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2079 if (ppsc
->reg_rfps_level
& RT_RF_OFF_LEVL_HALT_NIC
)
2080 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
2081 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2082 ppsc
->rfchange_inprogress
= false;
2083 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2086 return !ppsc
->hwradiooff
;
2089 void rtl92de_set_key(struct ieee80211_hw
*hw
, u32 key_index
,
2090 u8
*p_macaddr
, bool is_group
, u8 enc_algo
,
2091 bool is_wepkey
, bool clear_all
)
2093 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2094 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2095 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
2096 u8
*macaddr
= p_macaddr
;
2098 bool is_pairwise
= false;
2099 static u8 cam_const_addr
[4][6] = {
2100 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2101 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2102 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2103 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2105 static u8 cam_const_broad
[] = {
2106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2112 u8 clear_number
= 5;
2113 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
, "clear_all\n");
2114 for (idx
= 0; idx
< clear_number
; idx
++) {
2115 rtl_cam_mark_invalid(hw
, cam_offset
+ idx
);
2116 rtl_cam_empty_entry(hw
, cam_offset
+ idx
);
2119 memset(rtlpriv
->sec
.key_buf
[idx
], 0,
2121 rtlpriv
->sec
.key_len
[idx
] = 0;
2126 case WEP40_ENCRYPTION
:
2127 enc_algo
= CAM_WEP40
;
2129 case WEP104_ENCRYPTION
:
2130 enc_algo
= CAM_WEP104
;
2132 case TKIP_ENCRYPTION
:
2133 enc_algo
= CAM_TKIP
;
2135 case AESCCMP_ENCRYPTION
:
2139 pr_err("switch case %#x not processed\n",
2141 enc_algo
= CAM_TKIP
;
2144 if (is_wepkey
|| rtlpriv
->sec
.use_defaultkey
) {
2145 macaddr
= cam_const_addr
[key_index
];
2146 entry_id
= key_index
;
2149 macaddr
= cam_const_broad
;
2150 entry_id
= key_index
;
2152 if (mac
->opmode
== NL80211_IFTYPE_AP
) {
2153 entry_id
= rtl_cam_get_free_entry(hw
,
2155 if (entry_id
>= TOTAL_CAM_ENTRY
) {
2156 pr_err("Can not find free hw security cam entry\n");
2160 entry_id
= CAM_PAIRWISE_KEY_POSITION
;
2162 key_index
= PAIRWISE_KEYIDX
;
2166 if (rtlpriv
->sec
.key_len
[key_index
] == 0) {
2167 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2168 "delete one entry, entry_id is %d\n",
2170 if (mac
->opmode
== NL80211_IFTYPE_AP
)
2171 rtl_cam_del_entry(hw
, p_macaddr
);
2172 rtl_cam_delete_one_entry(hw
, p_macaddr
, entry_id
);
2174 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2175 "The insert KEY length is %d\n",
2176 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]);
2177 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2178 "The insert KEY is %x %x\n",
2179 rtlpriv
->sec
.key_buf
[0][0],
2180 rtlpriv
->sec
.key_buf
[0][1]);
2181 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2184 RT_PRINT_DATA(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2185 "Pairwise Key content",
2186 rtlpriv
->sec
.pairwise_key
,
2188 sec
.key_len
[PAIRWISE_KEYIDX
]);
2189 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2190 "set Pairwise key\n");
2191 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2193 CAM_CONFIG_NO_USEDK
,
2195 sec
.key_buf
[key_index
]);
2197 rtl_dbg(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2199 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
) {
2200 rtl_cam_add_one_entry(hw
,
2203 CAM_PAIRWISE_KEY_POSITION
,
2204 enc_algo
, CAM_CONFIG_NO_USEDK
,
2205 rtlpriv
->sec
.key_buf
[entry_id
]);
2207 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2209 CAM_CONFIG_NO_USEDK
,
2210 rtlpriv
->sec
.key_buf
2217 void rtl92de_suspend(struct ieee80211_hw
*hw
)
2219 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2221 rtlpriv
->rtlhal
.macphyctl_reg
= rtl_read_byte(rtlpriv
,
2222 REG_MAC_PHY_CTRL_NORMAL
);
2225 void rtl92de_resume(struct ieee80211_hw
*hw
)
2227 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2229 rtl_write_byte(rtlpriv
, REG_MAC_PHY_CTRL_NORMAL
,
2230 rtlpriv
->rtlhal
.macphyctl_reg
);