WIP FPC-III support
[linux/fpc-iii.git] / drivers / nvme / host / core.c
blobf320273fc6727fec7b9f944c8c1ea895d12e51e0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
25 #include "nvme.h"
26 #include "fabrics.h"
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94 unsigned nsid);
97 * Prepare a queue for teardown.
99 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100 * the capacity to 0 after that to avoid blocking dispatchers that may be
101 * holding bd_butex. This will end buffered writers dirtying pages that can't
102 * be synced.
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
106 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107 return;
109 blk_set_queue_dying(ns->queue);
110 blk_mq_unquiesce_queue(ns->queue);
112 set_capacity_and_notify(ns->disk, 0);
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
118 * Only new queue scan work when admin and IO queues are both alive
120 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121 queue_work(nvme_wq, &ctrl->scan_work);
125 * Use this function to proceed with scheduling reset_work for a controller
126 * that had previously been set to the resetting state. This is intended for
127 * code paths that can't be interrupted by other reset attempts. A hot removal
128 * may prevent this from succeeding.
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
132 if (ctrl->state != NVME_CTRL_RESETTING)
133 return -EBUSY;
134 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 return -EBUSY;
136 return 0;
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
140 static void nvme_failfast_work(struct work_struct *work)
142 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143 struct nvme_ctrl, failfast_work);
145 if (ctrl->state != NVME_CTRL_CONNECTING)
146 return;
148 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149 dev_info(ctrl->device, "failfast expired\n");
150 nvme_kick_requeue_lists(ctrl);
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
155 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156 return;
158 schedule_delayed_work(&ctrl->failfast_work,
159 ctrl->opts->fast_io_fail_tmo * HZ);
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
164 if (!ctrl->opts)
165 return;
167 cancel_delayed_work_sync(&ctrl->failfast_work);
168 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
174 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175 return -EBUSY;
176 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177 return -EBUSY;
178 return 0;
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
184 int ret;
186 ret = nvme_reset_ctrl(ctrl);
187 if (!ret) {
188 flush_work(&ctrl->reset_work);
189 if (ctrl->state != NVME_CTRL_LIVE)
190 ret = -ENETRESET;
193 return ret;
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
198 dev_info(ctrl->device,
199 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
201 flush_work(&ctrl->reset_work);
202 nvme_stop_ctrl(ctrl);
203 nvme_remove_namespaces(ctrl);
204 ctrl->ops->delete_ctrl(ctrl);
205 nvme_uninit_ctrl(ctrl);
208 static void nvme_delete_ctrl_work(struct work_struct *work)
210 struct nvme_ctrl *ctrl =
211 container_of(work, struct nvme_ctrl, delete_work);
213 nvme_do_delete_ctrl(ctrl);
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
218 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219 return -EBUSY;
220 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221 return -EBUSY;
222 return 0;
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
229 * Keep a reference until nvme_do_delete_ctrl() complete,
230 * since ->delete_ctrl can free the controller.
232 nvme_get_ctrl(ctrl);
233 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 nvme_do_delete_ctrl(ctrl);
235 nvme_put_ctrl(ctrl);
238 static blk_status_t nvme_error_status(u16 status)
240 switch (status & 0x7ff) {
241 case NVME_SC_SUCCESS:
242 return BLK_STS_OK;
243 case NVME_SC_CAP_EXCEEDED:
244 return BLK_STS_NOSPC;
245 case NVME_SC_LBA_RANGE:
246 case NVME_SC_CMD_INTERRUPTED:
247 case NVME_SC_NS_NOT_READY:
248 return BLK_STS_TARGET;
249 case NVME_SC_BAD_ATTRIBUTES:
250 case NVME_SC_ONCS_NOT_SUPPORTED:
251 case NVME_SC_INVALID_OPCODE:
252 case NVME_SC_INVALID_FIELD:
253 case NVME_SC_INVALID_NS:
254 return BLK_STS_NOTSUPP;
255 case NVME_SC_WRITE_FAULT:
256 case NVME_SC_READ_ERROR:
257 case NVME_SC_UNWRITTEN_BLOCK:
258 case NVME_SC_ACCESS_DENIED:
259 case NVME_SC_READ_ONLY:
260 case NVME_SC_COMPARE_FAILED:
261 return BLK_STS_MEDIUM;
262 case NVME_SC_GUARD_CHECK:
263 case NVME_SC_APPTAG_CHECK:
264 case NVME_SC_REFTAG_CHECK:
265 case NVME_SC_INVALID_PI:
266 return BLK_STS_PROTECTION;
267 case NVME_SC_RESERVATION_CONFLICT:
268 return BLK_STS_NEXUS;
269 case NVME_SC_HOST_PATH_ERROR:
270 return BLK_STS_TRANSPORT;
271 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273 case NVME_SC_ZONE_TOO_MANY_OPEN:
274 return BLK_STS_ZONE_OPEN_RESOURCE;
275 default:
276 return BLK_STS_IOERR;
280 static void nvme_retry_req(struct request *req)
282 struct nvme_ns *ns = req->q->queuedata;
283 unsigned long delay = 0;
284 u16 crd;
286 /* The mask and shift result must be <= 3 */
287 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288 if (ns && crd)
289 delay = ns->ctrl->crdt[crd - 1] * 100;
291 nvme_req(req)->retries++;
292 blk_mq_requeue_request(req, false);
293 blk_mq_delay_kick_requeue_list(req->q, delay);
296 enum nvme_disposition {
297 COMPLETE,
298 RETRY,
299 FAILOVER,
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
304 if (likely(nvme_req(req)->status == 0))
305 return COMPLETE;
307 if (blk_noretry_request(req) ||
308 (nvme_req(req)->status & NVME_SC_DNR) ||
309 nvme_req(req)->retries >= nvme_max_retries)
310 return COMPLETE;
312 if (req->cmd_flags & REQ_NVME_MPATH) {
313 if (nvme_is_path_error(nvme_req(req)->status) ||
314 blk_queue_dying(req->q))
315 return FAILOVER;
316 } else {
317 if (blk_queue_dying(req->q))
318 return COMPLETE;
321 return RETRY;
324 static inline void nvme_end_req(struct request *req)
326 blk_status_t status = nvme_error_status(nvme_req(req)->status);
328 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329 req_op(req) == REQ_OP_ZONE_APPEND)
330 req->__sector = nvme_lba_to_sect(req->q->queuedata,
331 le64_to_cpu(nvme_req(req)->result.u64));
333 nvme_trace_bio_complete(req);
334 blk_mq_end_request(req, status);
337 void nvme_complete_rq(struct request *req)
339 trace_nvme_complete_rq(req);
340 nvme_cleanup_cmd(req);
342 if (nvme_req(req)->ctrl->kas)
343 nvme_req(req)->ctrl->comp_seen = true;
345 switch (nvme_decide_disposition(req)) {
346 case COMPLETE:
347 nvme_end_req(req);
348 return;
349 case RETRY:
350 nvme_retry_req(req);
351 return;
352 case FAILOVER:
353 nvme_failover_req(req);
354 return;
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
361 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362 "Cancelling I/O %d", req->tag);
364 /* don't abort one completed request */
365 if (blk_mq_request_completed(req))
366 return true;
368 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369 blk_mq_complete_request(req);
370 return true;
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375 enum nvme_ctrl_state new_state)
377 enum nvme_ctrl_state old_state;
378 unsigned long flags;
379 bool changed = false;
381 spin_lock_irqsave(&ctrl->lock, flags);
383 old_state = ctrl->state;
384 switch (new_state) {
385 case NVME_CTRL_LIVE:
386 switch (old_state) {
387 case NVME_CTRL_NEW:
388 case NVME_CTRL_RESETTING:
389 case NVME_CTRL_CONNECTING:
390 changed = true;
391 fallthrough;
392 default:
393 break;
395 break;
396 case NVME_CTRL_RESETTING:
397 switch (old_state) {
398 case NVME_CTRL_NEW:
399 case NVME_CTRL_LIVE:
400 changed = true;
401 fallthrough;
402 default:
403 break;
405 break;
406 case NVME_CTRL_CONNECTING:
407 switch (old_state) {
408 case NVME_CTRL_NEW:
409 case NVME_CTRL_RESETTING:
410 changed = true;
411 fallthrough;
412 default:
413 break;
415 break;
416 case NVME_CTRL_DELETING:
417 switch (old_state) {
418 case NVME_CTRL_LIVE:
419 case NVME_CTRL_RESETTING:
420 case NVME_CTRL_CONNECTING:
421 changed = true;
422 fallthrough;
423 default:
424 break;
426 break;
427 case NVME_CTRL_DELETING_NOIO:
428 switch (old_state) {
429 case NVME_CTRL_DELETING:
430 case NVME_CTRL_DEAD:
431 changed = true;
432 fallthrough;
433 default:
434 break;
436 break;
437 case NVME_CTRL_DEAD:
438 switch (old_state) {
439 case NVME_CTRL_DELETING:
440 changed = true;
441 fallthrough;
442 default:
443 break;
445 break;
446 default:
447 break;
450 if (changed) {
451 ctrl->state = new_state;
452 wake_up_all(&ctrl->state_wq);
455 spin_unlock_irqrestore(&ctrl->lock, flags);
456 if (!changed)
457 return false;
459 if (ctrl->state == NVME_CTRL_LIVE) {
460 if (old_state == NVME_CTRL_CONNECTING)
461 nvme_stop_failfast_work(ctrl);
462 nvme_kick_requeue_lists(ctrl);
463 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
464 old_state == NVME_CTRL_RESETTING) {
465 nvme_start_failfast_work(ctrl);
467 return changed;
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
472 * Returns true for sink states that can't ever transition back to live.
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
476 switch (ctrl->state) {
477 case NVME_CTRL_NEW:
478 case NVME_CTRL_LIVE:
479 case NVME_CTRL_RESETTING:
480 case NVME_CTRL_CONNECTING:
481 return false;
482 case NVME_CTRL_DELETING:
483 case NVME_CTRL_DELETING_NOIO:
484 case NVME_CTRL_DEAD:
485 return true;
486 default:
487 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488 return true;
493 * Waits for the controller state to be resetting, or returns false if it is
494 * not possible to ever transition to that state.
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
498 wait_event(ctrl->state_wq,
499 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500 nvme_state_terminal(ctrl));
501 return ctrl->state == NVME_CTRL_RESETTING;
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
505 static void nvme_free_ns_head(struct kref *ref)
507 struct nvme_ns_head *head =
508 container_of(ref, struct nvme_ns_head, ref);
510 nvme_mpath_remove_disk(head);
511 ida_simple_remove(&head->subsys->ns_ida, head->instance);
512 cleanup_srcu_struct(&head->srcu);
513 nvme_put_subsystem(head->subsys);
514 kfree(head);
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
519 kref_put(&head->ref, nvme_free_ns_head);
522 static void nvme_free_ns(struct kref *kref)
524 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
526 if (ns->ndev)
527 nvme_nvm_unregister(ns);
529 put_disk(ns->disk);
530 nvme_put_ns_head(ns->head);
531 nvme_put_ctrl(ns->ctrl);
532 kfree(ns);
535 void nvme_put_ns(struct nvme_ns *ns)
537 kref_put(&ns->kref, nvme_free_ns);
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
541 static inline void nvme_clear_nvme_request(struct request *req)
543 if (!(req->rq_flags & RQF_DONTPREP)) {
544 nvme_req(req)->retries = 0;
545 nvme_req(req)->flags = 0;
546 req->rq_flags |= RQF_DONTPREP;
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
552 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
555 static inline void nvme_init_request(struct request *req,
556 struct nvme_command *cmd)
558 if (req->q->queuedata)
559 req->timeout = NVME_IO_TIMEOUT;
560 else /* no queuedata implies admin queue */
561 req->timeout = NVME_ADMIN_TIMEOUT;
563 req->cmd_flags |= REQ_FAILFAST_DRIVER;
564 nvme_clear_nvme_request(req);
565 nvme_req(req)->cmd = cmd;
568 struct request *nvme_alloc_request(struct request_queue *q,
569 struct nvme_command *cmd, blk_mq_req_flags_t flags)
571 struct request *req;
573 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574 if (!IS_ERR(req))
575 nvme_init_request(req, cmd);
576 return req;
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
583 struct request *req;
585 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586 qid ? qid - 1 : 0);
587 if (!IS_ERR(req))
588 nvme_init_request(req, cmd);
589 return req;
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
594 struct nvme_command c;
596 memset(&c, 0, sizeof(c));
598 c.directive.opcode = nvme_admin_directive_send;
599 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601 c.directive.dtype = NVME_DIR_IDENTIFY;
602 c.directive.tdtype = NVME_DIR_STREAMS;
603 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
605 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
610 return nvme_toggle_streams(ctrl, false);
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
615 return nvme_toggle_streams(ctrl, true);
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619 struct streams_directive_params *s, u32 nsid)
621 struct nvme_command c;
623 memset(&c, 0, sizeof(c));
624 memset(s, 0, sizeof(*s));
626 c.directive.opcode = nvme_admin_directive_recv;
627 c.directive.nsid = cpu_to_le32(nsid);
628 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630 c.directive.dtype = NVME_DIR_STREAMS;
632 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
637 struct streams_directive_params s;
638 int ret;
640 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641 return 0;
642 if (!streams)
643 return 0;
645 ret = nvme_enable_streams(ctrl);
646 if (ret)
647 return ret;
649 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650 if (ret)
651 goto out_disable_stream;
653 ctrl->nssa = le16_to_cpu(s.nssa);
654 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655 dev_info(ctrl->device, "too few streams (%u) available\n",
656 ctrl->nssa);
657 goto out_disable_stream;
660 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662 return 0;
664 out_disable_stream:
665 nvme_disable_streams(ctrl);
666 return ret;
670 * Check if 'req' has a write hint associated with it. If it does, assign
671 * a valid namespace stream to the write.
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674 struct request *req, u16 *control,
675 u32 *dsmgmt)
677 enum rw_hint streamid = req->write_hint;
679 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680 streamid = 0;
681 else {
682 streamid--;
683 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684 return;
686 *control |= NVME_RW_DTYPE_STREAMS;
687 *dsmgmt |= streamid << 16;
690 if (streamid < ARRAY_SIZE(req->q->write_hints))
691 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
694 static void nvme_setup_passthrough(struct request *req,
695 struct nvme_command *cmd)
697 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698 /* passthru commands should let the driver set the SGL flags */
699 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703 struct nvme_command *cmnd)
705 cmnd->common.opcode = nvme_cmd_flush;
706 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710 struct nvme_command *cmnd)
712 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713 struct nvme_dsm_range *range;
714 struct bio *bio;
717 * Some devices do not consider the DSM 'Number of Ranges' field when
718 * determining how much data to DMA. Always allocate memory for maximum
719 * number of segments to prevent device reading beyond end of buffer.
721 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
723 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724 if (!range) {
726 * If we fail allocation our range, fallback to the controller
727 * discard page. If that's also busy, it's safe to return
728 * busy, as we know we can make progress once that's freed.
730 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731 return BLK_STS_RESOURCE;
733 range = page_address(ns->ctrl->discard_page);
736 __rq_for_each_bio(bio, req) {
737 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
740 if (n < segments) {
741 range[n].cattr = cpu_to_le32(0);
742 range[n].nlb = cpu_to_le32(nlb);
743 range[n].slba = cpu_to_le64(slba);
745 n++;
748 if (WARN_ON_ONCE(n != segments)) {
749 if (virt_to_page(range) == ns->ctrl->discard_page)
750 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751 else
752 kfree(range);
753 return BLK_STS_IOERR;
756 cmnd->dsm.opcode = nvme_cmd_dsm;
757 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758 cmnd->dsm.nr = cpu_to_le32(segments - 1);
759 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
761 req->special_vec.bv_page = virt_to_page(range);
762 req->special_vec.bv_offset = offset_in_page(range);
763 req->special_vec.bv_len = alloc_size;
764 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
766 return BLK_STS_OK;
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770 struct request *req, struct nvme_command *cmnd)
772 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773 return nvme_setup_discard(ns, req, cmnd);
775 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777 cmnd->write_zeroes.slba =
778 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779 cmnd->write_zeroes.length =
780 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781 cmnd->write_zeroes.control = 0;
782 return BLK_STS_OK;
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786 struct request *req, struct nvme_command *cmnd,
787 enum nvme_opcode op)
789 struct nvme_ctrl *ctrl = ns->ctrl;
790 u16 control = 0;
791 u32 dsmgmt = 0;
793 if (req->cmd_flags & REQ_FUA)
794 control |= NVME_RW_FUA;
795 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796 control |= NVME_RW_LR;
798 if (req->cmd_flags & REQ_RAHEAD)
799 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
801 cmnd->rw.opcode = op;
802 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
806 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
809 if (ns->ms) {
811 * If formated with metadata, the block layer always provides a
812 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
813 * we enable the PRACT bit for protection information or set the
814 * namespace capacity to zero to prevent any I/O.
816 if (!blk_integrity_rq(req)) {
817 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818 return BLK_STS_NOTSUPP;
819 control |= NVME_RW_PRINFO_PRACT;
822 switch (ns->pi_type) {
823 case NVME_NS_DPS_PI_TYPE3:
824 control |= NVME_RW_PRINFO_PRCHK_GUARD;
825 break;
826 case NVME_NS_DPS_PI_TYPE1:
827 case NVME_NS_DPS_PI_TYPE2:
828 control |= NVME_RW_PRINFO_PRCHK_GUARD |
829 NVME_RW_PRINFO_PRCHK_REF;
830 if (op == nvme_cmd_zone_append)
831 control |= NVME_RW_APPEND_PIREMAP;
832 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833 break;
837 cmnd->rw.control = cpu_to_le16(control);
838 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839 return 0;
842 void nvme_cleanup_cmd(struct request *req)
844 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845 struct nvme_ns *ns = req->rq_disk->private_data;
846 struct page *page = req->special_vec.bv_page;
848 if (page == ns->ctrl->discard_page)
849 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850 else
851 kfree(page_address(page) + req->special_vec.bv_offset);
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857 struct nvme_command *cmd)
859 blk_status_t ret = BLK_STS_OK;
861 nvme_clear_nvme_request(req);
863 memset(cmd, 0, sizeof(*cmd));
864 switch (req_op(req)) {
865 case REQ_OP_DRV_IN:
866 case REQ_OP_DRV_OUT:
867 nvme_setup_passthrough(req, cmd);
868 break;
869 case REQ_OP_FLUSH:
870 nvme_setup_flush(ns, cmd);
871 break;
872 case REQ_OP_ZONE_RESET_ALL:
873 case REQ_OP_ZONE_RESET:
874 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875 break;
876 case REQ_OP_ZONE_OPEN:
877 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878 break;
879 case REQ_OP_ZONE_CLOSE:
880 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881 break;
882 case REQ_OP_ZONE_FINISH:
883 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884 break;
885 case REQ_OP_WRITE_ZEROES:
886 ret = nvme_setup_write_zeroes(ns, req, cmd);
887 break;
888 case REQ_OP_DISCARD:
889 ret = nvme_setup_discard(ns, req, cmd);
890 break;
891 case REQ_OP_READ:
892 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893 break;
894 case REQ_OP_WRITE:
895 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896 break;
897 case REQ_OP_ZONE_APPEND:
898 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899 break;
900 default:
901 WARN_ON_ONCE(1);
902 return BLK_STS_IOERR;
905 cmd->common.command_id = req->tag;
906 trace_nvme_setup_cmd(req, cmd);
907 return ret;
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
913 struct completion *waiting = rq->end_io_data;
915 rq->end_io_data = NULL;
916 complete(waiting);
919 static void nvme_execute_rq_polled(struct request_queue *q,
920 struct gendisk *bd_disk, struct request *rq, int at_head)
922 DECLARE_COMPLETION_ONSTACK(wait);
924 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
926 rq->cmd_flags |= REQ_HIPRI;
927 rq->end_io_data = &wait;
928 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
930 while (!completion_done(&wait)) {
931 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932 cond_resched();
937 * Returns 0 on success. If the result is negative, it's a Linux error code;
938 * if the result is positive, it's an NVM Express status code
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941 union nvme_result *result, void *buffer, unsigned bufflen,
942 unsigned timeout, int qid, int at_head,
943 blk_mq_req_flags_t flags, bool poll)
945 struct request *req;
946 int ret;
948 if (qid == NVME_QID_ANY)
949 req = nvme_alloc_request(q, cmd, flags);
950 else
951 req = nvme_alloc_request_qid(q, cmd, flags, qid);
952 if (IS_ERR(req))
953 return PTR_ERR(req);
955 if (timeout)
956 req->timeout = timeout;
958 if (buffer && bufflen) {
959 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960 if (ret)
961 goto out;
964 if (poll)
965 nvme_execute_rq_polled(req->q, NULL, req, at_head);
966 else
967 blk_execute_rq(req->q, NULL, req, at_head);
968 if (result)
969 *result = nvme_req(req)->result;
970 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971 ret = -EINTR;
972 else
973 ret = nvme_req(req)->status;
974 out:
975 blk_mq_free_request(req);
976 return ret;
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981 void *buffer, unsigned bufflen)
983 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984 NVME_QID_ANY, 0, 0, false);
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989 unsigned len, u32 seed, bool write)
991 struct bio_integrity_payload *bip;
992 int ret = -ENOMEM;
993 void *buf;
995 buf = kmalloc(len, GFP_KERNEL);
996 if (!buf)
997 goto out;
999 ret = -EFAULT;
1000 if (write && copy_from_user(buf, ubuf, len))
1001 goto out_free_meta;
1003 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004 if (IS_ERR(bip)) {
1005 ret = PTR_ERR(bip);
1006 goto out_free_meta;
1009 bip->bip_iter.bi_size = len;
1010 bip->bip_iter.bi_sector = seed;
1011 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012 offset_in_page(buf));
1013 if (ret == len)
1014 return buf;
1015 ret = -ENOMEM;
1016 out_free_meta:
1017 kfree(buf);
1018 out:
1019 return ERR_PTR(ret);
1022 static u32 nvme_known_admin_effects(u8 opcode)
1024 switch (opcode) {
1025 case nvme_admin_format_nvm:
1026 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027 NVME_CMD_EFFECTS_CSE_MASK;
1028 case nvme_admin_sanitize_nvm:
1029 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030 default:
1031 break;
1033 return 0;
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1038 u32 effects = 0;
1040 if (ns) {
1041 if (ns->head->effects)
1042 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044 dev_warn(ctrl->device,
1045 "IO command:%02x has unhandled effects:%08x\n",
1046 opcode, effects);
1047 return 0;
1050 if (ctrl->effects)
1051 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052 effects |= nvme_known_admin_effects(opcode);
1054 return effects;
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059 u8 opcode)
1061 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1064 * For simplicity, IO to all namespaces is quiesced even if the command
1065 * effects say only one namespace is affected.
1067 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068 mutex_lock(&ctrl->scan_lock);
1069 mutex_lock(&ctrl->subsys->lock);
1070 nvme_mpath_start_freeze(ctrl->subsys);
1071 nvme_mpath_wait_freeze(ctrl->subsys);
1072 nvme_start_freeze(ctrl);
1073 nvme_wait_freeze(ctrl);
1075 return effects;
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1080 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081 nvme_unfreeze(ctrl);
1082 nvme_mpath_unfreeze(ctrl->subsys);
1083 mutex_unlock(&ctrl->subsys->lock);
1084 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085 mutex_unlock(&ctrl->scan_lock);
1087 if (effects & NVME_CMD_EFFECTS_CCC)
1088 nvme_init_identify(ctrl);
1089 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090 nvme_queue_scan(ctrl);
1091 flush_work(&ctrl->scan_work);
1095 void nvme_execute_passthru_rq(struct request *rq)
1097 struct nvme_command *cmd = nvme_req(rq)->cmd;
1098 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099 struct nvme_ns *ns = rq->q->queuedata;
1100 struct gendisk *disk = ns ? ns->disk : NULL;
1101 u32 effects;
1103 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104 blk_execute_rq(rq->q, disk, rq, 0);
1105 nvme_passthru_end(ctrl, effects);
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110 struct nvme_command *cmd, void __user *ubuffer,
1111 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112 u32 meta_seed, u64 *result, unsigned timeout)
1114 bool write = nvme_is_write(cmd);
1115 struct nvme_ns *ns = q->queuedata;
1116 struct gendisk *disk = ns ? ns->disk : NULL;
1117 struct request *req;
1118 struct bio *bio = NULL;
1119 void *meta = NULL;
1120 int ret;
1122 req = nvme_alloc_request(q, cmd, 0);
1123 if (IS_ERR(req))
1124 return PTR_ERR(req);
1126 if (timeout)
1127 req->timeout = timeout;
1128 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1130 if (ubuffer && bufflen) {
1131 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132 GFP_KERNEL);
1133 if (ret)
1134 goto out;
1135 bio = req->bio;
1136 bio->bi_disk = disk;
1137 if (disk && meta_buffer && meta_len) {
1138 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1139 meta_seed, write);
1140 if (IS_ERR(meta)) {
1141 ret = PTR_ERR(meta);
1142 goto out_unmap;
1144 req->cmd_flags |= REQ_INTEGRITY;
1148 nvme_execute_passthru_rq(req);
1149 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1150 ret = -EINTR;
1151 else
1152 ret = nvme_req(req)->status;
1153 if (result)
1154 *result = le64_to_cpu(nvme_req(req)->result.u64);
1155 if (meta && !ret && !write) {
1156 if (copy_to_user(meta_buffer, meta, meta_len))
1157 ret = -EFAULT;
1159 kfree(meta);
1160 out_unmap:
1161 if (bio)
1162 blk_rq_unmap_user(bio);
1163 out:
1164 blk_mq_free_request(req);
1165 return ret;
1168 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1170 struct nvme_ctrl *ctrl = rq->end_io_data;
1171 unsigned long flags;
1172 bool startka = false;
1174 blk_mq_free_request(rq);
1176 if (status) {
1177 dev_err(ctrl->device,
1178 "failed nvme_keep_alive_end_io error=%d\n",
1179 status);
1180 return;
1183 ctrl->comp_seen = false;
1184 spin_lock_irqsave(&ctrl->lock, flags);
1185 if (ctrl->state == NVME_CTRL_LIVE ||
1186 ctrl->state == NVME_CTRL_CONNECTING)
1187 startka = true;
1188 spin_unlock_irqrestore(&ctrl->lock, flags);
1189 if (startka)
1190 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1193 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1195 struct request *rq;
1197 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1198 BLK_MQ_REQ_RESERVED);
1199 if (IS_ERR(rq))
1200 return PTR_ERR(rq);
1202 rq->timeout = ctrl->kato * HZ;
1203 rq->end_io_data = ctrl;
1205 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1207 return 0;
1210 static void nvme_keep_alive_work(struct work_struct *work)
1212 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1213 struct nvme_ctrl, ka_work);
1214 bool comp_seen = ctrl->comp_seen;
1216 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1217 dev_dbg(ctrl->device,
1218 "reschedule traffic based keep-alive timer\n");
1219 ctrl->comp_seen = false;
1220 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1221 return;
1224 if (nvme_keep_alive(ctrl)) {
1225 /* allocation failure, reset the controller */
1226 dev_err(ctrl->device, "keep-alive failed\n");
1227 nvme_reset_ctrl(ctrl);
1228 return;
1232 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1234 if (unlikely(ctrl->kato == 0))
1235 return;
1237 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1240 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1242 if (unlikely(ctrl->kato == 0))
1243 return;
1245 cancel_delayed_work_sync(&ctrl->ka_work);
1247 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1250 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251 * flag, thus sending any new CNS opcodes has a big chance of not working.
1252 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253 * (but not for any later version).
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1257 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258 return ctrl->vs < NVME_VS(1, 2, 0);
1259 return ctrl->vs < NVME_VS(1, 1, 0);
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1264 struct nvme_command c = { };
1265 int error;
1267 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268 c.identify.opcode = nvme_admin_identify;
1269 c.identify.cns = NVME_ID_CNS_CTRL;
1271 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1272 if (!*id)
1273 return -ENOMEM;
1275 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276 sizeof(struct nvme_id_ctrl));
1277 if (error)
1278 kfree(*id);
1279 return error;
1282 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1284 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1287 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1288 struct nvme_ns_id_desc *cur, bool *csi_seen)
1290 const char *warn_str = "ctrl returned bogus length:";
1291 void *data = cur;
1293 switch (cur->nidt) {
1294 case NVME_NIDT_EUI64:
1295 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1296 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1297 warn_str, cur->nidl);
1298 return -1;
1300 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1301 return NVME_NIDT_EUI64_LEN;
1302 case NVME_NIDT_NGUID:
1303 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1304 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1305 warn_str, cur->nidl);
1306 return -1;
1308 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1309 return NVME_NIDT_NGUID_LEN;
1310 case NVME_NIDT_UUID:
1311 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1312 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1313 warn_str, cur->nidl);
1314 return -1;
1316 uuid_copy(&ids->uuid, data + sizeof(*cur));
1317 return NVME_NIDT_UUID_LEN;
1318 case NVME_NIDT_CSI:
1319 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1320 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1321 warn_str, cur->nidl);
1322 return -1;
1324 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1325 *csi_seen = true;
1326 return NVME_NIDT_CSI_LEN;
1327 default:
1328 /* Skip unknown types */
1329 return cur->nidl;
1333 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1334 struct nvme_ns_ids *ids)
1336 struct nvme_command c = { };
1337 bool csi_seen = false;
1338 int status, pos, len;
1339 void *data;
1341 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1342 return 0;
1343 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1344 return 0;
1346 c.identify.opcode = nvme_admin_identify;
1347 c.identify.nsid = cpu_to_le32(nsid);
1348 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1350 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1351 if (!data)
1352 return -ENOMEM;
1354 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1355 NVME_IDENTIFY_DATA_SIZE);
1356 if (status) {
1357 dev_warn(ctrl->device,
1358 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1359 nsid, status);
1360 goto free_data;
1363 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1364 struct nvme_ns_id_desc *cur = data + pos;
1366 if (cur->nidl == 0)
1367 break;
1369 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1370 if (len < 0)
1371 break;
1373 len += sizeof(*cur);
1376 if (nvme_multi_css(ctrl) && !csi_seen) {
1377 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1378 nsid);
1379 status = -EINVAL;
1382 free_data:
1383 kfree(data);
1384 return status;
1387 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1388 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1390 struct nvme_command c = { };
1391 int error;
1393 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1394 c.identify.opcode = nvme_admin_identify;
1395 c.identify.nsid = cpu_to_le32(nsid);
1396 c.identify.cns = NVME_ID_CNS_NS;
1398 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1399 if (!*id)
1400 return -ENOMEM;
1402 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1403 if (error) {
1404 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1405 goto out_free_id;
1408 error = -ENODEV;
1409 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1410 goto out_free_id;
1412 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1413 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1414 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1415 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1416 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1417 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1419 return 0;
1421 out_free_id:
1422 kfree(*id);
1423 return error;
1426 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1427 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1429 union nvme_result res = { 0 };
1430 struct nvme_command c;
1431 int ret;
1433 memset(&c, 0, sizeof(c));
1434 c.features.opcode = op;
1435 c.features.fid = cpu_to_le32(fid);
1436 c.features.dword11 = cpu_to_le32(dword11);
1438 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1439 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1440 if (ret >= 0 && result)
1441 *result = le32_to_cpu(res.u32);
1442 return ret;
1445 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1446 unsigned int dword11, void *buffer, size_t buflen,
1447 u32 *result)
1449 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1450 buflen, result);
1452 EXPORT_SYMBOL_GPL(nvme_set_features);
1454 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1455 unsigned int dword11, void *buffer, size_t buflen,
1456 u32 *result)
1458 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1459 buflen, result);
1461 EXPORT_SYMBOL_GPL(nvme_get_features);
1463 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1465 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1466 u32 result;
1467 int status, nr_io_queues;
1469 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1470 &result);
1471 if (status < 0)
1472 return status;
1475 * Degraded controllers might return an error when setting the queue
1476 * count. We still want to be able to bring them online and offer
1477 * access to the admin queue, as that might be only way to fix them up.
1479 if (status > 0) {
1480 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1481 *count = 0;
1482 } else {
1483 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1484 *count = min(*count, nr_io_queues);
1487 return 0;
1489 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1491 #define NVME_AEN_SUPPORTED \
1492 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1493 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1495 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1497 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1498 int status;
1500 if (!supported_aens)
1501 return;
1503 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1504 NULL, 0, &result);
1505 if (status)
1506 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1507 supported_aens);
1509 queue_work(nvme_wq, &ctrl->async_event_work);
1513 * Convert integer values from ioctl structures to user pointers, silently
1514 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1515 * kernels.
1517 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1519 if (in_compat_syscall())
1520 ptrval = (compat_uptr_t)ptrval;
1521 return (void __user *)ptrval;
1524 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1526 struct nvme_user_io io;
1527 struct nvme_command c;
1528 unsigned length, meta_len;
1529 void __user *metadata;
1531 if (copy_from_user(&io, uio, sizeof(io)))
1532 return -EFAULT;
1533 if (io.flags)
1534 return -EINVAL;
1536 switch (io.opcode) {
1537 case nvme_cmd_write:
1538 case nvme_cmd_read:
1539 case nvme_cmd_compare:
1540 break;
1541 default:
1542 return -EINVAL;
1545 length = (io.nblocks + 1) << ns->lba_shift;
1546 meta_len = (io.nblocks + 1) * ns->ms;
1547 metadata = nvme_to_user_ptr(io.metadata);
1549 if (ns->features & NVME_NS_EXT_LBAS) {
1550 length += meta_len;
1551 meta_len = 0;
1552 } else if (meta_len) {
1553 if ((io.metadata & 3) || !io.metadata)
1554 return -EINVAL;
1557 memset(&c, 0, sizeof(c));
1558 c.rw.opcode = io.opcode;
1559 c.rw.flags = io.flags;
1560 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1561 c.rw.slba = cpu_to_le64(io.slba);
1562 c.rw.length = cpu_to_le16(io.nblocks);
1563 c.rw.control = cpu_to_le16(io.control);
1564 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1565 c.rw.reftag = cpu_to_le32(io.reftag);
1566 c.rw.apptag = cpu_to_le16(io.apptag);
1567 c.rw.appmask = cpu_to_le16(io.appmask);
1569 return nvme_submit_user_cmd(ns->queue, &c,
1570 nvme_to_user_ptr(io.addr), length,
1571 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1574 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1575 struct nvme_passthru_cmd __user *ucmd)
1577 struct nvme_passthru_cmd cmd;
1578 struct nvme_command c;
1579 unsigned timeout = 0;
1580 u64 result;
1581 int status;
1583 if (!capable(CAP_SYS_ADMIN))
1584 return -EACCES;
1585 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1586 return -EFAULT;
1587 if (cmd.flags)
1588 return -EINVAL;
1590 memset(&c, 0, sizeof(c));
1591 c.common.opcode = cmd.opcode;
1592 c.common.flags = cmd.flags;
1593 c.common.nsid = cpu_to_le32(cmd.nsid);
1594 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1595 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1596 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1597 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1598 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1599 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1600 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1601 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1603 if (cmd.timeout_ms)
1604 timeout = msecs_to_jiffies(cmd.timeout_ms);
1606 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1607 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1608 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1609 0, &result, timeout);
1611 if (status >= 0) {
1612 if (put_user(result, &ucmd->result))
1613 return -EFAULT;
1616 return status;
1619 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1620 struct nvme_passthru_cmd64 __user *ucmd)
1622 struct nvme_passthru_cmd64 cmd;
1623 struct nvme_command c;
1624 unsigned timeout = 0;
1625 int status;
1627 if (!capable(CAP_SYS_ADMIN))
1628 return -EACCES;
1629 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1630 return -EFAULT;
1631 if (cmd.flags)
1632 return -EINVAL;
1634 memset(&c, 0, sizeof(c));
1635 c.common.opcode = cmd.opcode;
1636 c.common.flags = cmd.flags;
1637 c.common.nsid = cpu_to_le32(cmd.nsid);
1638 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1639 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1640 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1641 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1642 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1643 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1644 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1645 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1647 if (cmd.timeout_ms)
1648 timeout = msecs_to_jiffies(cmd.timeout_ms);
1650 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1651 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1652 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1653 0, &cmd.result, timeout);
1655 if (status >= 0) {
1656 if (put_user(cmd.result, &ucmd->result))
1657 return -EFAULT;
1660 return status;
1664 * Issue ioctl requests on the first available path. Note that unlike normal
1665 * block layer requests we will not retry failed request on another controller.
1667 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1668 struct nvme_ns_head **head, int *srcu_idx)
1670 #ifdef CONFIG_NVME_MULTIPATH
1671 if (disk->fops == &nvme_ns_head_ops) {
1672 struct nvme_ns *ns;
1674 *head = disk->private_data;
1675 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1676 ns = nvme_find_path(*head);
1677 if (!ns)
1678 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1679 return ns;
1681 #endif
1682 *head = NULL;
1683 *srcu_idx = -1;
1684 return disk->private_data;
1687 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1689 if (head)
1690 srcu_read_unlock(&head->srcu, idx);
1693 static bool is_ctrl_ioctl(unsigned int cmd)
1695 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1696 return true;
1697 if (is_sed_ioctl(cmd))
1698 return true;
1699 return false;
1702 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1703 void __user *argp,
1704 struct nvme_ns_head *head,
1705 int srcu_idx)
1707 struct nvme_ctrl *ctrl = ns->ctrl;
1708 int ret;
1710 nvme_get_ctrl(ns->ctrl);
1711 nvme_put_ns_from_disk(head, srcu_idx);
1713 switch (cmd) {
1714 case NVME_IOCTL_ADMIN_CMD:
1715 ret = nvme_user_cmd(ctrl, NULL, argp);
1716 break;
1717 case NVME_IOCTL_ADMIN64_CMD:
1718 ret = nvme_user_cmd64(ctrl, NULL, argp);
1719 break;
1720 default:
1721 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1722 break;
1724 nvme_put_ctrl(ctrl);
1725 return ret;
1728 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1729 unsigned int cmd, unsigned long arg)
1731 struct nvme_ns_head *head = NULL;
1732 void __user *argp = (void __user *)arg;
1733 struct nvme_ns *ns;
1734 int srcu_idx, ret;
1736 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1737 if (unlikely(!ns))
1738 return -EWOULDBLOCK;
1741 * Handle ioctls that apply to the controller instead of the namespace
1742 * seperately and drop the ns SRCU reference early. This avoids a
1743 * deadlock when deleting namespaces using the passthrough interface.
1745 if (is_ctrl_ioctl(cmd))
1746 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1748 switch (cmd) {
1749 case NVME_IOCTL_ID:
1750 force_successful_syscall_return();
1751 ret = ns->head->ns_id;
1752 break;
1753 case NVME_IOCTL_IO_CMD:
1754 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1755 break;
1756 case NVME_IOCTL_SUBMIT_IO:
1757 ret = nvme_submit_io(ns, argp);
1758 break;
1759 case NVME_IOCTL_IO64_CMD:
1760 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1761 break;
1762 default:
1763 if (ns->ndev)
1764 ret = nvme_nvm_ioctl(ns, cmd, arg);
1765 else
1766 ret = -ENOTTY;
1769 nvme_put_ns_from_disk(head, srcu_idx);
1770 return ret;
1773 #ifdef CONFIG_COMPAT
1774 struct nvme_user_io32 {
1775 __u8 opcode;
1776 __u8 flags;
1777 __u16 control;
1778 __u16 nblocks;
1779 __u16 rsvd;
1780 __u64 metadata;
1781 __u64 addr;
1782 __u64 slba;
1783 __u32 dsmgmt;
1784 __u32 reftag;
1785 __u16 apptag;
1786 __u16 appmask;
1787 } __attribute__((__packed__));
1789 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1791 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1792 unsigned int cmd, unsigned long arg)
1795 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1796 * between 32 bit programs and 64 bit kernel.
1797 * The cause is that the results of sizeof(struct nvme_user_io),
1798 * which is used to define NVME_IOCTL_SUBMIT_IO,
1799 * are not same between 32 bit compiler and 64 bit compiler.
1800 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1801 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1802 * Other IOCTL numbers are same between 32 bit and 64 bit.
1803 * So there is nothing to do regarding to other IOCTL numbers.
1805 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1806 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1808 return nvme_ioctl(bdev, mode, cmd, arg);
1810 #else
1811 #define nvme_compat_ioctl NULL
1812 #endif /* CONFIG_COMPAT */
1814 static int nvme_open(struct block_device *bdev, fmode_t mode)
1816 struct nvme_ns *ns = bdev->bd_disk->private_data;
1818 #ifdef CONFIG_NVME_MULTIPATH
1819 /* should never be called due to GENHD_FL_HIDDEN */
1820 if (WARN_ON_ONCE(ns->head->disk))
1821 goto fail;
1822 #endif
1823 if (!kref_get_unless_zero(&ns->kref))
1824 goto fail;
1825 if (!try_module_get(ns->ctrl->ops->module))
1826 goto fail_put_ns;
1828 return 0;
1830 fail_put_ns:
1831 nvme_put_ns(ns);
1832 fail:
1833 return -ENXIO;
1836 static void nvme_release(struct gendisk *disk, fmode_t mode)
1838 struct nvme_ns *ns = disk->private_data;
1840 module_put(ns->ctrl->ops->module);
1841 nvme_put_ns(ns);
1844 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1846 /* some standard values */
1847 geo->heads = 1 << 6;
1848 geo->sectors = 1 << 5;
1849 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1850 return 0;
1853 #ifdef CONFIG_BLK_DEV_INTEGRITY
1854 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1855 u32 max_integrity_segments)
1857 struct blk_integrity integrity;
1859 memset(&integrity, 0, sizeof(integrity));
1860 switch (pi_type) {
1861 case NVME_NS_DPS_PI_TYPE3:
1862 integrity.profile = &t10_pi_type3_crc;
1863 integrity.tag_size = sizeof(u16) + sizeof(u32);
1864 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1865 break;
1866 case NVME_NS_DPS_PI_TYPE1:
1867 case NVME_NS_DPS_PI_TYPE2:
1868 integrity.profile = &t10_pi_type1_crc;
1869 integrity.tag_size = sizeof(u16);
1870 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1871 break;
1872 default:
1873 integrity.profile = NULL;
1874 break;
1876 integrity.tuple_size = ms;
1877 blk_integrity_register(disk, &integrity);
1878 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1880 #else
1881 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1882 u32 max_integrity_segments)
1885 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1887 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1889 struct nvme_ctrl *ctrl = ns->ctrl;
1890 struct request_queue *queue = disk->queue;
1891 u32 size = queue_logical_block_size(queue);
1893 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1894 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1895 return;
1898 if (ctrl->nr_streams && ns->sws && ns->sgs)
1899 size *= ns->sws * ns->sgs;
1901 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1902 NVME_DSM_MAX_RANGES);
1904 queue->limits.discard_alignment = 0;
1905 queue->limits.discard_granularity = size;
1907 /* If discard is already enabled, don't reset queue limits */
1908 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1909 return;
1911 blk_queue_max_discard_sectors(queue, UINT_MAX);
1912 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1914 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1915 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1918 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1920 u64 max_blocks;
1922 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1923 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1924 return;
1926 * Even though NVMe spec explicitly states that MDTS is not
1927 * applicable to the write-zeroes:- "The restriction does not apply to
1928 * commands that do not transfer data between the host and the
1929 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1930 * In order to be more cautious use controller's max_hw_sectors value
1931 * to configure the maximum sectors for the write-zeroes which is
1932 * configured based on the controller's MDTS field in the
1933 * nvme_init_identify() if available.
1935 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1936 max_blocks = (u64)USHRT_MAX + 1;
1937 else
1938 max_blocks = ns->ctrl->max_hw_sectors + 1;
1940 blk_queue_max_write_zeroes_sectors(disk->queue,
1941 nvme_lba_to_sect(ns, max_blocks));
1944 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1946 return !uuid_is_null(&ids->uuid) ||
1947 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1948 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1951 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1953 return uuid_equal(&a->uuid, &b->uuid) &&
1954 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1955 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1956 a->csi == b->csi;
1959 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1960 u32 *phys_bs, u32 *io_opt)
1962 struct streams_directive_params s;
1963 int ret;
1965 if (!ctrl->nr_streams)
1966 return 0;
1968 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1969 if (ret)
1970 return ret;
1972 ns->sws = le32_to_cpu(s.sws);
1973 ns->sgs = le16_to_cpu(s.sgs);
1975 if (ns->sws) {
1976 *phys_bs = ns->sws * (1 << ns->lba_shift);
1977 if (ns->sgs)
1978 *io_opt = *phys_bs * ns->sgs;
1981 return 0;
1984 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1986 struct nvme_ctrl *ctrl = ns->ctrl;
1989 * The PI implementation requires the metadata size to be equal to the
1990 * t10 pi tuple size.
1992 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1993 if (ns->ms == sizeof(struct t10_pi_tuple))
1994 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1995 else
1996 ns->pi_type = 0;
1998 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1999 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2000 return 0;
2001 if (ctrl->ops->flags & NVME_F_FABRICS) {
2003 * The NVMe over Fabrics specification only supports metadata as
2004 * part of the extended data LBA. We rely on HCA/HBA support to
2005 * remap the separate metadata buffer from the block layer.
2007 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2008 return -EINVAL;
2009 if (ctrl->max_integrity_segments)
2010 ns->features |=
2011 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2012 } else {
2014 * For PCIe controllers, we can't easily remap the separate
2015 * metadata buffer from the block layer and thus require a
2016 * separate metadata buffer for block layer metadata/PI support.
2017 * We allow extended LBAs for the passthrough interface, though.
2019 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2020 ns->features |= NVME_NS_EXT_LBAS;
2021 else
2022 ns->features |= NVME_NS_METADATA_SUPPORTED;
2025 return 0;
2028 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2029 struct request_queue *q)
2031 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2033 if (ctrl->max_hw_sectors) {
2034 u32 max_segments =
2035 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2037 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2038 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2039 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2041 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2042 blk_queue_dma_alignment(q, 7);
2043 blk_queue_write_cache(q, vwc, vwc);
2046 static void nvme_update_disk_info(struct gendisk *disk,
2047 struct nvme_ns *ns, struct nvme_id_ns *id)
2049 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2050 unsigned short bs = 1 << ns->lba_shift;
2051 u32 atomic_bs, phys_bs, io_opt = 0;
2054 * The block layer can't support LBA sizes larger than the page size
2055 * yet, so catch this early and don't allow block I/O.
2057 if (ns->lba_shift > PAGE_SHIFT) {
2058 capacity = 0;
2059 bs = (1 << 9);
2062 blk_integrity_unregister(disk);
2064 atomic_bs = phys_bs = bs;
2065 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2066 if (id->nabo == 0) {
2068 * Bit 1 indicates whether NAWUPF is defined for this namespace
2069 * and whether it should be used instead of AWUPF. If NAWUPF ==
2070 * 0 then AWUPF must be used instead.
2072 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2073 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2074 else
2075 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2078 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2079 /* NPWG = Namespace Preferred Write Granularity */
2080 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2081 /* NOWS = Namespace Optimal Write Size */
2082 io_opt = bs * (1 + le16_to_cpu(id->nows));
2085 blk_queue_logical_block_size(disk->queue, bs);
2087 * Linux filesystems assume writing a single physical block is
2088 * an atomic operation. Hence limit the physical block size to the
2089 * value of the Atomic Write Unit Power Fail parameter.
2091 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2092 blk_queue_io_min(disk->queue, phys_bs);
2093 blk_queue_io_opt(disk->queue, io_opt);
2096 * Register a metadata profile for PI, or the plain non-integrity NVMe
2097 * metadata masquerading as Type 0 if supported, otherwise reject block
2098 * I/O to namespaces with metadata except when the namespace supports
2099 * PI, as it can strip/insert in that case.
2101 if (ns->ms) {
2102 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2103 (ns->features & NVME_NS_METADATA_SUPPORTED))
2104 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2105 ns->ctrl->max_integrity_segments);
2106 else if (!nvme_ns_has_pi(ns))
2107 capacity = 0;
2110 set_capacity_and_notify(disk, capacity);
2112 nvme_config_discard(disk, ns);
2113 nvme_config_write_zeroes(disk, ns);
2115 if ((id->nsattr & NVME_NS_ATTR_RO) ||
2116 test_bit(NVME_NS_FORCE_RO, &ns->flags))
2117 set_disk_ro(disk, true);
2120 static inline bool nvme_first_scan(struct gendisk *disk)
2122 /* nvme_alloc_ns() scans the disk prior to adding it */
2123 return !(disk->flags & GENHD_FL_UP);
2126 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2128 struct nvme_ctrl *ctrl = ns->ctrl;
2129 u32 iob;
2131 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2132 is_power_of_2(ctrl->max_hw_sectors))
2133 iob = ctrl->max_hw_sectors;
2134 else
2135 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2137 if (!iob)
2138 return;
2140 if (!is_power_of_2(iob)) {
2141 if (nvme_first_scan(ns->disk))
2142 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2143 ns->disk->disk_name, iob);
2144 return;
2147 if (blk_queue_is_zoned(ns->disk->queue)) {
2148 if (nvme_first_scan(ns->disk))
2149 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2150 ns->disk->disk_name);
2151 return;
2154 blk_queue_chunk_sectors(ns->queue, iob);
2157 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2159 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2160 int ret;
2162 blk_mq_freeze_queue(ns->disk->queue);
2163 ns->lba_shift = id->lbaf[lbaf].ds;
2164 nvme_set_queue_limits(ns->ctrl, ns->queue);
2166 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2167 ret = nvme_update_zone_info(ns, lbaf);
2168 if (ret)
2169 goto out_unfreeze;
2172 ret = nvme_configure_metadata(ns, id);
2173 if (ret)
2174 goto out_unfreeze;
2175 nvme_set_chunk_sectors(ns, id);
2176 nvme_update_disk_info(ns->disk, ns, id);
2177 blk_mq_unfreeze_queue(ns->disk->queue);
2179 if (blk_queue_is_zoned(ns->queue)) {
2180 ret = nvme_revalidate_zones(ns);
2181 if (ret && !nvme_first_scan(ns->disk))
2182 return ret;
2185 #ifdef CONFIG_NVME_MULTIPATH
2186 if (ns->head->disk) {
2187 blk_mq_freeze_queue(ns->head->disk->queue);
2188 nvme_update_disk_info(ns->head->disk, ns, id);
2189 blk_stack_limits(&ns->head->disk->queue->limits,
2190 &ns->queue->limits, 0);
2191 blk_queue_update_readahead(ns->head->disk->queue);
2192 blk_mq_unfreeze_queue(ns->head->disk->queue);
2194 #endif
2195 return 0;
2197 out_unfreeze:
2198 blk_mq_unfreeze_queue(ns->disk->queue);
2199 return ret;
2202 static char nvme_pr_type(enum pr_type type)
2204 switch (type) {
2205 case PR_WRITE_EXCLUSIVE:
2206 return 1;
2207 case PR_EXCLUSIVE_ACCESS:
2208 return 2;
2209 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2210 return 3;
2211 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2212 return 4;
2213 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2214 return 5;
2215 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2216 return 6;
2217 default:
2218 return 0;
2222 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2223 u64 key, u64 sa_key, u8 op)
2225 struct nvme_ns_head *head = NULL;
2226 struct nvme_ns *ns;
2227 struct nvme_command c;
2228 int srcu_idx, ret;
2229 u8 data[16] = { 0, };
2231 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2232 if (unlikely(!ns))
2233 return -EWOULDBLOCK;
2235 put_unaligned_le64(key, &data[0]);
2236 put_unaligned_le64(sa_key, &data[8]);
2238 memset(&c, 0, sizeof(c));
2239 c.common.opcode = op;
2240 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2241 c.common.cdw10 = cpu_to_le32(cdw10);
2243 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2244 nvme_put_ns_from_disk(head, srcu_idx);
2245 return ret;
2248 static int nvme_pr_register(struct block_device *bdev, u64 old,
2249 u64 new, unsigned flags)
2251 u32 cdw10;
2253 if (flags & ~PR_FL_IGNORE_KEY)
2254 return -EOPNOTSUPP;
2256 cdw10 = old ? 2 : 0;
2257 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2258 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2259 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2262 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2263 enum pr_type type, unsigned flags)
2265 u32 cdw10;
2267 if (flags & ~PR_FL_IGNORE_KEY)
2268 return -EOPNOTSUPP;
2270 cdw10 = nvme_pr_type(type) << 8;
2271 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2272 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2275 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2276 enum pr_type type, bool abort)
2278 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2279 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2282 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2284 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2285 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2288 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2290 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2291 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2294 static const struct pr_ops nvme_pr_ops = {
2295 .pr_register = nvme_pr_register,
2296 .pr_reserve = nvme_pr_reserve,
2297 .pr_release = nvme_pr_release,
2298 .pr_preempt = nvme_pr_preempt,
2299 .pr_clear = nvme_pr_clear,
2302 #ifdef CONFIG_BLK_SED_OPAL
2303 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2304 bool send)
2306 struct nvme_ctrl *ctrl = data;
2307 struct nvme_command cmd;
2309 memset(&cmd, 0, sizeof(cmd));
2310 if (send)
2311 cmd.common.opcode = nvme_admin_security_send;
2312 else
2313 cmd.common.opcode = nvme_admin_security_recv;
2314 cmd.common.nsid = 0;
2315 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2316 cmd.common.cdw11 = cpu_to_le32(len);
2318 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2319 NVME_QID_ANY, 1, 0, false);
2321 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2322 #endif /* CONFIG_BLK_SED_OPAL */
2324 static const struct block_device_operations nvme_bdev_ops = {
2325 .owner = THIS_MODULE,
2326 .ioctl = nvme_ioctl,
2327 .compat_ioctl = nvme_compat_ioctl,
2328 .open = nvme_open,
2329 .release = nvme_release,
2330 .getgeo = nvme_getgeo,
2331 .report_zones = nvme_report_zones,
2332 .pr_ops = &nvme_pr_ops,
2335 #ifdef CONFIG_NVME_MULTIPATH
2336 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2338 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2340 if (!kref_get_unless_zero(&head->ref))
2341 return -ENXIO;
2342 return 0;
2345 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2347 nvme_put_ns_head(disk->private_data);
2350 const struct block_device_operations nvme_ns_head_ops = {
2351 .owner = THIS_MODULE,
2352 .submit_bio = nvme_ns_head_submit_bio,
2353 .open = nvme_ns_head_open,
2354 .release = nvme_ns_head_release,
2355 .ioctl = nvme_ioctl,
2356 .compat_ioctl = nvme_compat_ioctl,
2357 .getgeo = nvme_getgeo,
2358 .report_zones = nvme_report_zones,
2359 .pr_ops = &nvme_pr_ops,
2361 #endif /* CONFIG_NVME_MULTIPATH */
2363 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2365 unsigned long timeout =
2366 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2367 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2368 int ret;
2370 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2371 if (csts == ~0)
2372 return -ENODEV;
2373 if ((csts & NVME_CSTS_RDY) == bit)
2374 break;
2376 usleep_range(1000, 2000);
2377 if (fatal_signal_pending(current))
2378 return -EINTR;
2379 if (time_after(jiffies, timeout)) {
2380 dev_err(ctrl->device,
2381 "Device not ready; aborting %s, CSTS=0x%x\n",
2382 enabled ? "initialisation" : "reset", csts);
2383 return -ENODEV;
2387 return ret;
2391 * If the device has been passed off to us in an enabled state, just clear
2392 * the enabled bit. The spec says we should set the 'shutdown notification
2393 * bits', but doing so may cause the device to complete commands to the
2394 * admin queue ... and we don't know what memory that might be pointing at!
2396 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2398 int ret;
2400 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2401 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2403 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2404 if (ret)
2405 return ret;
2407 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2408 msleep(NVME_QUIRK_DELAY_AMOUNT);
2410 return nvme_wait_ready(ctrl, ctrl->cap, false);
2412 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2414 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2416 unsigned dev_page_min;
2417 int ret;
2419 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2420 if (ret) {
2421 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2422 return ret;
2424 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2426 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2427 dev_err(ctrl->device,
2428 "Minimum device page size %u too large for host (%u)\n",
2429 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2430 return -ENODEV;
2433 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2434 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2435 else
2436 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2437 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2438 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2439 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2440 ctrl->ctrl_config |= NVME_CC_ENABLE;
2442 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2443 if (ret)
2444 return ret;
2445 return nvme_wait_ready(ctrl, ctrl->cap, true);
2447 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2449 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2451 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2452 u32 csts;
2453 int ret;
2455 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2456 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2458 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2459 if (ret)
2460 return ret;
2462 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2463 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2464 break;
2466 msleep(100);
2467 if (fatal_signal_pending(current))
2468 return -EINTR;
2469 if (time_after(jiffies, timeout)) {
2470 dev_err(ctrl->device,
2471 "Device shutdown incomplete; abort shutdown\n");
2472 return -ENODEV;
2476 return ret;
2478 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2480 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2482 __le64 ts;
2483 int ret;
2485 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2486 return 0;
2488 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2489 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2490 NULL);
2491 if (ret)
2492 dev_warn_once(ctrl->device,
2493 "could not set timestamp (%d)\n", ret);
2494 return ret;
2497 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2499 struct nvme_feat_host_behavior *host;
2500 int ret;
2502 /* Don't bother enabling the feature if retry delay is not reported */
2503 if (!ctrl->crdt[0])
2504 return 0;
2506 host = kzalloc(sizeof(*host), GFP_KERNEL);
2507 if (!host)
2508 return 0;
2510 host->acre = NVME_ENABLE_ACRE;
2511 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2512 host, sizeof(*host), NULL);
2513 kfree(host);
2514 return ret;
2517 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2520 * APST (Autonomous Power State Transition) lets us program a
2521 * table of power state transitions that the controller will
2522 * perform automatically. We configure it with a simple
2523 * heuristic: we are willing to spend at most 2% of the time
2524 * transitioning between power states. Therefore, when running
2525 * in any given state, we will enter the next lower-power
2526 * non-operational state after waiting 50 * (enlat + exlat)
2527 * microseconds, as long as that state's exit latency is under
2528 * the requested maximum latency.
2530 * We will not autonomously enter any non-operational state for
2531 * which the total latency exceeds ps_max_latency_us. Users
2532 * can set ps_max_latency_us to zero to turn off APST.
2535 unsigned apste;
2536 struct nvme_feat_auto_pst *table;
2537 u64 max_lat_us = 0;
2538 int max_ps = -1;
2539 int ret;
2542 * If APST isn't supported or if we haven't been initialized yet,
2543 * then don't do anything.
2545 if (!ctrl->apsta)
2546 return 0;
2548 if (ctrl->npss > 31) {
2549 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2550 return 0;
2553 table = kzalloc(sizeof(*table), GFP_KERNEL);
2554 if (!table)
2555 return 0;
2557 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2558 /* Turn off APST. */
2559 apste = 0;
2560 dev_dbg(ctrl->device, "APST disabled\n");
2561 } else {
2562 __le64 target = cpu_to_le64(0);
2563 int state;
2566 * Walk through all states from lowest- to highest-power.
2567 * According to the spec, lower-numbered states use more
2568 * power. NPSS, despite the name, is the index of the
2569 * lowest-power state, not the number of states.
2571 for (state = (int)ctrl->npss; state >= 0; state--) {
2572 u64 total_latency_us, exit_latency_us, transition_ms;
2574 if (target)
2575 table->entries[state] = target;
2578 * Don't allow transitions to the deepest state
2579 * if it's quirked off.
2581 if (state == ctrl->npss &&
2582 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2583 continue;
2586 * Is this state a useful non-operational state for
2587 * higher-power states to autonomously transition to?
2589 if (!(ctrl->psd[state].flags &
2590 NVME_PS_FLAGS_NON_OP_STATE))
2591 continue;
2593 exit_latency_us =
2594 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2595 if (exit_latency_us > ctrl->ps_max_latency_us)
2596 continue;
2598 total_latency_us =
2599 exit_latency_us +
2600 le32_to_cpu(ctrl->psd[state].entry_lat);
2603 * This state is good. Use it as the APST idle
2604 * target for higher power states.
2606 transition_ms = total_latency_us + 19;
2607 do_div(transition_ms, 20);
2608 if (transition_ms > (1 << 24) - 1)
2609 transition_ms = (1 << 24) - 1;
2611 target = cpu_to_le64((state << 3) |
2612 (transition_ms << 8));
2614 if (max_ps == -1)
2615 max_ps = state;
2617 if (total_latency_us > max_lat_us)
2618 max_lat_us = total_latency_us;
2621 apste = 1;
2623 if (max_ps == -1) {
2624 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2625 } else {
2626 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2627 max_ps, max_lat_us, (int)sizeof(*table), table);
2631 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2632 table, sizeof(*table), NULL);
2633 if (ret)
2634 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2636 kfree(table);
2637 return ret;
2640 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2642 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2643 u64 latency;
2645 switch (val) {
2646 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2647 case PM_QOS_LATENCY_ANY:
2648 latency = U64_MAX;
2649 break;
2651 default:
2652 latency = val;
2655 if (ctrl->ps_max_latency_us != latency) {
2656 ctrl->ps_max_latency_us = latency;
2657 nvme_configure_apst(ctrl);
2661 struct nvme_core_quirk_entry {
2663 * NVMe model and firmware strings are padded with spaces. For
2664 * simplicity, strings in the quirk table are padded with NULLs
2665 * instead.
2667 u16 vid;
2668 const char *mn;
2669 const char *fr;
2670 unsigned long quirks;
2673 static const struct nvme_core_quirk_entry core_quirks[] = {
2676 * This Toshiba device seems to die using any APST states. See:
2677 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2679 .vid = 0x1179,
2680 .mn = "THNSF5256GPUK TOSHIBA",
2681 .quirks = NVME_QUIRK_NO_APST,
2685 * This LiteON CL1-3D*-Q11 firmware version has a race
2686 * condition associated with actions related to suspend to idle
2687 * LiteON has resolved the problem in future firmware
2689 .vid = 0x14a4,
2690 .fr = "22301111",
2691 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2695 /* match is null-terminated but idstr is space-padded. */
2696 static bool string_matches(const char *idstr, const char *match, size_t len)
2698 size_t matchlen;
2700 if (!match)
2701 return true;
2703 matchlen = strlen(match);
2704 WARN_ON_ONCE(matchlen > len);
2706 if (memcmp(idstr, match, matchlen))
2707 return false;
2709 for (; matchlen < len; matchlen++)
2710 if (idstr[matchlen] != ' ')
2711 return false;
2713 return true;
2716 static bool quirk_matches(const struct nvme_id_ctrl *id,
2717 const struct nvme_core_quirk_entry *q)
2719 return q->vid == le16_to_cpu(id->vid) &&
2720 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2721 string_matches(id->fr, q->fr, sizeof(id->fr));
2724 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2725 struct nvme_id_ctrl *id)
2727 size_t nqnlen;
2728 int off;
2730 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2731 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2732 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2733 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2734 return;
2737 if (ctrl->vs >= NVME_VS(1, 2, 1))
2738 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2741 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2742 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2743 "nqn.2014.08.org.nvmexpress:%04x%04x",
2744 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2745 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2746 off += sizeof(id->sn);
2747 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2748 off += sizeof(id->mn);
2749 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2752 static void nvme_release_subsystem(struct device *dev)
2754 struct nvme_subsystem *subsys =
2755 container_of(dev, struct nvme_subsystem, dev);
2757 if (subsys->instance >= 0)
2758 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2759 kfree(subsys);
2762 static void nvme_destroy_subsystem(struct kref *ref)
2764 struct nvme_subsystem *subsys =
2765 container_of(ref, struct nvme_subsystem, ref);
2767 mutex_lock(&nvme_subsystems_lock);
2768 list_del(&subsys->entry);
2769 mutex_unlock(&nvme_subsystems_lock);
2771 ida_destroy(&subsys->ns_ida);
2772 device_del(&subsys->dev);
2773 put_device(&subsys->dev);
2776 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2778 kref_put(&subsys->ref, nvme_destroy_subsystem);
2781 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2783 struct nvme_subsystem *subsys;
2785 lockdep_assert_held(&nvme_subsystems_lock);
2788 * Fail matches for discovery subsystems. This results
2789 * in each discovery controller bound to a unique subsystem.
2790 * This avoids issues with validating controller values
2791 * that can only be true when there is a single unique subsystem.
2792 * There may be multiple and completely independent entities
2793 * that provide discovery controllers.
2795 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2796 return NULL;
2798 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2799 if (strcmp(subsys->subnqn, subsysnqn))
2800 continue;
2801 if (!kref_get_unless_zero(&subsys->ref))
2802 continue;
2803 return subsys;
2806 return NULL;
2809 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2810 struct device_attribute subsys_attr_##_name = \
2811 __ATTR(_name, _mode, _show, NULL)
2813 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2814 struct device_attribute *attr,
2815 char *buf)
2817 struct nvme_subsystem *subsys =
2818 container_of(dev, struct nvme_subsystem, dev);
2820 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2822 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2824 #define nvme_subsys_show_str_function(field) \
2825 static ssize_t subsys_##field##_show(struct device *dev, \
2826 struct device_attribute *attr, char *buf) \
2828 struct nvme_subsystem *subsys = \
2829 container_of(dev, struct nvme_subsystem, dev); \
2830 return sprintf(buf, "%.*s\n", \
2831 (int)sizeof(subsys->field), subsys->field); \
2833 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2835 nvme_subsys_show_str_function(model);
2836 nvme_subsys_show_str_function(serial);
2837 nvme_subsys_show_str_function(firmware_rev);
2839 static struct attribute *nvme_subsys_attrs[] = {
2840 &subsys_attr_model.attr,
2841 &subsys_attr_serial.attr,
2842 &subsys_attr_firmware_rev.attr,
2843 &subsys_attr_subsysnqn.attr,
2844 #ifdef CONFIG_NVME_MULTIPATH
2845 &subsys_attr_iopolicy.attr,
2846 #endif
2847 NULL,
2850 static struct attribute_group nvme_subsys_attrs_group = {
2851 .attrs = nvme_subsys_attrs,
2854 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2855 &nvme_subsys_attrs_group,
2856 NULL,
2859 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2860 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2862 struct nvme_ctrl *tmp;
2864 lockdep_assert_held(&nvme_subsystems_lock);
2866 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2867 if (nvme_state_terminal(tmp))
2868 continue;
2870 if (tmp->cntlid == ctrl->cntlid) {
2871 dev_err(ctrl->device,
2872 "Duplicate cntlid %u with %s, rejecting\n",
2873 ctrl->cntlid, dev_name(tmp->device));
2874 return false;
2877 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2878 (ctrl->opts && ctrl->opts->discovery_nqn))
2879 continue;
2881 dev_err(ctrl->device,
2882 "Subsystem does not support multiple controllers\n");
2883 return false;
2886 return true;
2889 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2891 struct nvme_subsystem *subsys, *found;
2892 int ret;
2894 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2895 if (!subsys)
2896 return -ENOMEM;
2898 subsys->instance = -1;
2899 mutex_init(&subsys->lock);
2900 kref_init(&subsys->ref);
2901 INIT_LIST_HEAD(&subsys->ctrls);
2902 INIT_LIST_HEAD(&subsys->nsheads);
2903 nvme_init_subnqn(subsys, ctrl, id);
2904 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2905 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2906 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2907 subsys->vendor_id = le16_to_cpu(id->vid);
2908 subsys->cmic = id->cmic;
2909 subsys->awupf = le16_to_cpu(id->awupf);
2910 #ifdef CONFIG_NVME_MULTIPATH
2911 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2912 #endif
2914 subsys->dev.class = nvme_subsys_class;
2915 subsys->dev.release = nvme_release_subsystem;
2916 subsys->dev.groups = nvme_subsys_attrs_groups;
2917 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2918 device_initialize(&subsys->dev);
2920 mutex_lock(&nvme_subsystems_lock);
2921 found = __nvme_find_get_subsystem(subsys->subnqn);
2922 if (found) {
2923 put_device(&subsys->dev);
2924 subsys = found;
2926 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2927 ret = -EINVAL;
2928 goto out_put_subsystem;
2930 } else {
2931 ret = device_add(&subsys->dev);
2932 if (ret) {
2933 dev_err(ctrl->device,
2934 "failed to register subsystem device.\n");
2935 put_device(&subsys->dev);
2936 goto out_unlock;
2938 ida_init(&subsys->ns_ida);
2939 list_add_tail(&subsys->entry, &nvme_subsystems);
2942 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2943 dev_name(ctrl->device));
2944 if (ret) {
2945 dev_err(ctrl->device,
2946 "failed to create sysfs link from subsystem.\n");
2947 goto out_put_subsystem;
2950 if (!found)
2951 subsys->instance = ctrl->instance;
2952 ctrl->subsys = subsys;
2953 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2954 mutex_unlock(&nvme_subsystems_lock);
2955 return 0;
2957 out_put_subsystem:
2958 nvme_put_subsystem(subsys);
2959 out_unlock:
2960 mutex_unlock(&nvme_subsystems_lock);
2961 return ret;
2964 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2965 void *log, size_t size, u64 offset)
2967 struct nvme_command c = { };
2968 u32 dwlen = nvme_bytes_to_numd(size);
2970 c.get_log_page.opcode = nvme_admin_get_log_page;
2971 c.get_log_page.nsid = cpu_to_le32(nsid);
2972 c.get_log_page.lid = log_page;
2973 c.get_log_page.lsp = lsp;
2974 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2975 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2976 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2977 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2978 c.get_log_page.csi = csi;
2980 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2983 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2984 struct nvme_effects_log **log)
2986 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2987 int ret;
2989 if (cel)
2990 goto out;
2992 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2993 if (!cel)
2994 return -ENOMEM;
2996 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2997 cel, sizeof(*cel), 0);
2998 if (ret) {
2999 kfree(cel);
3000 return ret;
3003 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3004 out:
3005 *log = cel;
3006 return 0;
3010 * Initialize the cached copies of the Identify data and various controller
3011 * register in our nvme_ctrl structure. This should be called as soon as
3012 * the admin queue is fully up and running.
3014 int nvme_init_identify(struct nvme_ctrl *ctrl)
3016 struct nvme_id_ctrl *id;
3017 int ret, page_shift;
3018 u32 max_hw_sectors;
3019 bool prev_apst_enabled;
3021 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3022 if (ret) {
3023 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3024 return ret;
3026 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3027 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3029 if (ctrl->vs >= NVME_VS(1, 1, 0))
3030 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3032 ret = nvme_identify_ctrl(ctrl, &id);
3033 if (ret) {
3034 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3035 return -EIO;
3038 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3039 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3040 if (ret < 0)
3041 goto out_free;
3044 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3045 ctrl->cntlid = le16_to_cpu(id->cntlid);
3047 if (!ctrl->identified) {
3048 int i;
3050 ret = nvme_init_subsystem(ctrl, id);
3051 if (ret)
3052 goto out_free;
3055 * Check for quirks. Quirk can depend on firmware version,
3056 * so, in principle, the set of quirks present can change
3057 * across a reset. As a possible future enhancement, we
3058 * could re-scan for quirks every time we reinitialize
3059 * the device, but we'd have to make sure that the driver
3060 * behaves intelligently if the quirks change.
3062 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3063 if (quirk_matches(id, &core_quirks[i]))
3064 ctrl->quirks |= core_quirks[i].quirks;
3068 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3069 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3070 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3073 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3074 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3075 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3077 ctrl->oacs = le16_to_cpu(id->oacs);
3078 ctrl->oncs = le16_to_cpu(id->oncs);
3079 ctrl->mtfa = le16_to_cpu(id->mtfa);
3080 ctrl->oaes = le32_to_cpu(id->oaes);
3081 ctrl->wctemp = le16_to_cpu(id->wctemp);
3082 ctrl->cctemp = le16_to_cpu(id->cctemp);
3084 atomic_set(&ctrl->abort_limit, id->acl + 1);
3085 ctrl->vwc = id->vwc;
3086 if (id->mdts)
3087 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3088 else
3089 max_hw_sectors = UINT_MAX;
3090 ctrl->max_hw_sectors =
3091 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3093 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3094 ctrl->sgls = le32_to_cpu(id->sgls);
3095 ctrl->kas = le16_to_cpu(id->kas);
3096 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3097 ctrl->ctratt = le32_to_cpu(id->ctratt);
3099 if (id->rtd3e) {
3100 /* us -> s */
3101 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3103 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3104 shutdown_timeout, 60);
3106 if (ctrl->shutdown_timeout != shutdown_timeout)
3107 dev_info(ctrl->device,
3108 "Shutdown timeout set to %u seconds\n",
3109 ctrl->shutdown_timeout);
3110 } else
3111 ctrl->shutdown_timeout = shutdown_timeout;
3113 ctrl->npss = id->npss;
3114 ctrl->apsta = id->apsta;
3115 prev_apst_enabled = ctrl->apst_enabled;
3116 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3117 if (force_apst && id->apsta) {
3118 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3119 ctrl->apst_enabled = true;
3120 } else {
3121 ctrl->apst_enabled = false;
3123 } else {
3124 ctrl->apst_enabled = id->apsta;
3126 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3128 if (ctrl->ops->flags & NVME_F_FABRICS) {
3129 ctrl->icdoff = le16_to_cpu(id->icdoff);
3130 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3131 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3132 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3135 * In fabrics we need to verify the cntlid matches the
3136 * admin connect
3138 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3139 dev_err(ctrl->device,
3140 "Mismatching cntlid: Connect %u vs Identify "
3141 "%u, rejecting\n",
3142 ctrl->cntlid, le16_to_cpu(id->cntlid));
3143 ret = -EINVAL;
3144 goto out_free;
3147 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3148 dev_err(ctrl->device,
3149 "keep-alive support is mandatory for fabrics\n");
3150 ret = -EINVAL;
3151 goto out_free;
3153 } else {
3154 ctrl->hmpre = le32_to_cpu(id->hmpre);
3155 ctrl->hmmin = le32_to_cpu(id->hmmin);
3156 ctrl->hmminds = le32_to_cpu(id->hmminds);
3157 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3160 ret = nvme_mpath_init(ctrl, id);
3161 kfree(id);
3163 if (ret < 0)
3164 return ret;
3166 if (ctrl->apst_enabled && !prev_apst_enabled)
3167 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3168 else if (!ctrl->apst_enabled && prev_apst_enabled)
3169 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3171 ret = nvme_configure_apst(ctrl);
3172 if (ret < 0)
3173 return ret;
3175 ret = nvme_configure_timestamp(ctrl);
3176 if (ret < 0)
3177 return ret;
3179 ret = nvme_configure_directives(ctrl);
3180 if (ret < 0)
3181 return ret;
3183 ret = nvme_configure_acre(ctrl);
3184 if (ret < 0)
3185 return ret;
3187 if (!ctrl->identified) {
3188 ret = nvme_hwmon_init(ctrl);
3189 if (ret < 0)
3190 return ret;
3193 ctrl->identified = true;
3195 return 0;
3197 out_free:
3198 kfree(id);
3199 return ret;
3201 EXPORT_SYMBOL_GPL(nvme_init_identify);
3203 static int nvme_dev_open(struct inode *inode, struct file *file)
3205 struct nvme_ctrl *ctrl =
3206 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3208 switch (ctrl->state) {
3209 case NVME_CTRL_LIVE:
3210 break;
3211 default:
3212 return -EWOULDBLOCK;
3215 nvme_get_ctrl(ctrl);
3216 if (!try_module_get(ctrl->ops->module)) {
3217 nvme_put_ctrl(ctrl);
3218 return -EINVAL;
3221 file->private_data = ctrl;
3222 return 0;
3225 static int nvme_dev_release(struct inode *inode, struct file *file)
3227 struct nvme_ctrl *ctrl =
3228 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3230 module_put(ctrl->ops->module);
3231 nvme_put_ctrl(ctrl);
3232 return 0;
3235 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3237 struct nvme_ns *ns;
3238 int ret;
3240 down_read(&ctrl->namespaces_rwsem);
3241 if (list_empty(&ctrl->namespaces)) {
3242 ret = -ENOTTY;
3243 goto out_unlock;
3246 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3247 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3248 dev_warn(ctrl->device,
3249 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3250 ret = -EINVAL;
3251 goto out_unlock;
3254 dev_warn(ctrl->device,
3255 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3256 kref_get(&ns->kref);
3257 up_read(&ctrl->namespaces_rwsem);
3259 ret = nvme_user_cmd(ctrl, ns, argp);
3260 nvme_put_ns(ns);
3261 return ret;
3263 out_unlock:
3264 up_read(&ctrl->namespaces_rwsem);
3265 return ret;
3268 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3269 unsigned long arg)
3271 struct nvme_ctrl *ctrl = file->private_data;
3272 void __user *argp = (void __user *)arg;
3274 switch (cmd) {
3275 case NVME_IOCTL_ADMIN_CMD:
3276 return nvme_user_cmd(ctrl, NULL, argp);
3277 case NVME_IOCTL_ADMIN64_CMD:
3278 return nvme_user_cmd64(ctrl, NULL, argp);
3279 case NVME_IOCTL_IO_CMD:
3280 return nvme_dev_user_cmd(ctrl, argp);
3281 case NVME_IOCTL_RESET:
3282 dev_warn(ctrl->device, "resetting controller\n");
3283 return nvme_reset_ctrl_sync(ctrl);
3284 case NVME_IOCTL_SUBSYS_RESET:
3285 return nvme_reset_subsystem(ctrl);
3286 case NVME_IOCTL_RESCAN:
3287 nvme_queue_scan(ctrl);
3288 return 0;
3289 default:
3290 return -ENOTTY;
3294 static const struct file_operations nvme_dev_fops = {
3295 .owner = THIS_MODULE,
3296 .open = nvme_dev_open,
3297 .release = nvme_dev_release,
3298 .unlocked_ioctl = nvme_dev_ioctl,
3299 .compat_ioctl = compat_ptr_ioctl,
3302 static ssize_t nvme_sysfs_reset(struct device *dev,
3303 struct device_attribute *attr, const char *buf,
3304 size_t count)
3306 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307 int ret;
3309 ret = nvme_reset_ctrl_sync(ctrl);
3310 if (ret < 0)
3311 return ret;
3312 return count;
3314 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3316 static ssize_t nvme_sysfs_rescan(struct device *dev,
3317 struct device_attribute *attr, const char *buf,
3318 size_t count)
3320 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3322 nvme_queue_scan(ctrl);
3323 return count;
3325 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3327 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3329 struct gendisk *disk = dev_to_disk(dev);
3331 if (disk->fops == &nvme_bdev_ops)
3332 return nvme_get_ns_from_dev(dev)->head;
3333 else
3334 return disk->private_data;
3337 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3338 char *buf)
3340 struct nvme_ns_head *head = dev_to_ns_head(dev);
3341 struct nvme_ns_ids *ids = &head->ids;
3342 struct nvme_subsystem *subsys = head->subsys;
3343 int serial_len = sizeof(subsys->serial);
3344 int model_len = sizeof(subsys->model);
3346 if (!uuid_is_null(&ids->uuid))
3347 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3349 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3350 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3352 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3353 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3355 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3356 subsys->serial[serial_len - 1] == '\0'))
3357 serial_len--;
3358 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3359 subsys->model[model_len - 1] == '\0'))
3360 model_len--;
3362 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3363 serial_len, subsys->serial, model_len, subsys->model,
3364 head->ns_id);
3366 static DEVICE_ATTR_RO(wwid);
3368 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3369 char *buf)
3371 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3373 static DEVICE_ATTR_RO(nguid);
3375 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3376 char *buf)
3378 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3380 /* For backward compatibility expose the NGUID to userspace if
3381 * we have no UUID set
3383 if (uuid_is_null(&ids->uuid)) {
3384 printk_ratelimited(KERN_WARNING
3385 "No UUID available providing old NGUID\n");
3386 return sprintf(buf, "%pU\n", ids->nguid);
3388 return sprintf(buf, "%pU\n", &ids->uuid);
3390 static DEVICE_ATTR_RO(uuid);
3392 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3393 char *buf)
3395 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3397 static DEVICE_ATTR_RO(eui);
3399 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3400 char *buf)
3402 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3404 static DEVICE_ATTR_RO(nsid);
3406 static struct attribute *nvme_ns_id_attrs[] = {
3407 &dev_attr_wwid.attr,
3408 &dev_attr_uuid.attr,
3409 &dev_attr_nguid.attr,
3410 &dev_attr_eui.attr,
3411 &dev_attr_nsid.attr,
3412 #ifdef CONFIG_NVME_MULTIPATH
3413 &dev_attr_ana_grpid.attr,
3414 &dev_attr_ana_state.attr,
3415 #endif
3416 NULL,
3419 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3420 struct attribute *a, int n)
3422 struct device *dev = container_of(kobj, struct device, kobj);
3423 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3425 if (a == &dev_attr_uuid.attr) {
3426 if (uuid_is_null(&ids->uuid) &&
3427 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3428 return 0;
3430 if (a == &dev_attr_nguid.attr) {
3431 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3432 return 0;
3434 if (a == &dev_attr_eui.attr) {
3435 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3436 return 0;
3438 #ifdef CONFIG_NVME_MULTIPATH
3439 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3440 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3441 return 0;
3442 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3443 return 0;
3445 #endif
3446 return a->mode;
3449 static const struct attribute_group nvme_ns_id_attr_group = {
3450 .attrs = nvme_ns_id_attrs,
3451 .is_visible = nvme_ns_id_attrs_are_visible,
3454 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3455 &nvme_ns_id_attr_group,
3456 #ifdef CONFIG_NVM
3457 &nvme_nvm_attr_group,
3458 #endif
3459 NULL,
3462 #define nvme_show_str_function(field) \
3463 static ssize_t field##_show(struct device *dev, \
3464 struct device_attribute *attr, char *buf) \
3466 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3467 return sprintf(buf, "%.*s\n", \
3468 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3470 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3472 nvme_show_str_function(model);
3473 nvme_show_str_function(serial);
3474 nvme_show_str_function(firmware_rev);
3476 #define nvme_show_int_function(field) \
3477 static ssize_t field##_show(struct device *dev, \
3478 struct device_attribute *attr, char *buf) \
3480 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3481 return sprintf(buf, "%d\n", ctrl->field); \
3483 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3485 nvme_show_int_function(cntlid);
3486 nvme_show_int_function(numa_node);
3487 nvme_show_int_function(queue_count);
3488 nvme_show_int_function(sqsize);
3490 static ssize_t nvme_sysfs_delete(struct device *dev,
3491 struct device_attribute *attr, const char *buf,
3492 size_t count)
3494 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3496 if (device_remove_file_self(dev, attr))
3497 nvme_delete_ctrl_sync(ctrl);
3498 return count;
3500 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3502 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3503 struct device_attribute *attr,
3504 char *buf)
3506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3508 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3510 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3512 static ssize_t nvme_sysfs_show_state(struct device *dev,
3513 struct device_attribute *attr,
3514 char *buf)
3516 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517 static const char *const state_name[] = {
3518 [NVME_CTRL_NEW] = "new",
3519 [NVME_CTRL_LIVE] = "live",
3520 [NVME_CTRL_RESETTING] = "resetting",
3521 [NVME_CTRL_CONNECTING] = "connecting",
3522 [NVME_CTRL_DELETING] = "deleting",
3523 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3524 [NVME_CTRL_DEAD] = "dead",
3527 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3528 state_name[ctrl->state])
3529 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3531 return sprintf(buf, "unknown state\n");
3534 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3536 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3537 struct device_attribute *attr,
3538 char *buf)
3540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3542 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3544 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3546 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3547 struct device_attribute *attr,
3548 char *buf)
3550 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3552 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3554 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3556 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3557 struct device_attribute *attr,
3558 char *buf)
3560 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3562 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3564 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3566 static ssize_t nvme_sysfs_show_address(struct device *dev,
3567 struct device_attribute *attr,
3568 char *buf)
3570 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3572 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3574 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3576 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3577 struct device_attribute *attr, char *buf)
3579 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3580 struct nvmf_ctrl_options *opts = ctrl->opts;
3582 if (ctrl->opts->max_reconnects == -1)
3583 return sprintf(buf, "off\n");
3584 return sprintf(buf, "%d\n",
3585 opts->max_reconnects * opts->reconnect_delay);
3588 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3589 struct device_attribute *attr, const char *buf, size_t count)
3591 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3592 struct nvmf_ctrl_options *opts = ctrl->opts;
3593 int ctrl_loss_tmo, err;
3595 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3596 if (err)
3597 return -EINVAL;
3599 else if (ctrl_loss_tmo < 0)
3600 opts->max_reconnects = -1;
3601 else
3602 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3603 opts->reconnect_delay);
3604 return count;
3606 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3607 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3609 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3610 struct device_attribute *attr, char *buf)
3612 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3614 if (ctrl->opts->reconnect_delay == -1)
3615 return sprintf(buf, "off\n");
3616 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3619 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3620 struct device_attribute *attr, const char *buf, size_t count)
3622 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3623 unsigned int v;
3624 int err;
3626 err = kstrtou32(buf, 10, &v);
3627 if (err)
3628 return err;
3630 ctrl->opts->reconnect_delay = v;
3631 return count;
3633 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3634 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3636 static struct attribute *nvme_dev_attrs[] = {
3637 &dev_attr_reset_controller.attr,
3638 &dev_attr_rescan_controller.attr,
3639 &dev_attr_model.attr,
3640 &dev_attr_serial.attr,
3641 &dev_attr_firmware_rev.attr,
3642 &dev_attr_cntlid.attr,
3643 &dev_attr_delete_controller.attr,
3644 &dev_attr_transport.attr,
3645 &dev_attr_subsysnqn.attr,
3646 &dev_attr_address.attr,
3647 &dev_attr_state.attr,
3648 &dev_attr_numa_node.attr,
3649 &dev_attr_queue_count.attr,
3650 &dev_attr_sqsize.attr,
3651 &dev_attr_hostnqn.attr,
3652 &dev_attr_hostid.attr,
3653 &dev_attr_ctrl_loss_tmo.attr,
3654 &dev_attr_reconnect_delay.attr,
3655 NULL
3658 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3659 struct attribute *a, int n)
3661 struct device *dev = container_of(kobj, struct device, kobj);
3662 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3664 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3665 return 0;
3666 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3667 return 0;
3668 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3669 return 0;
3670 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3671 return 0;
3672 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3673 return 0;
3674 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3675 return 0;
3677 return a->mode;
3680 static struct attribute_group nvme_dev_attrs_group = {
3681 .attrs = nvme_dev_attrs,
3682 .is_visible = nvme_dev_attrs_are_visible,
3685 static const struct attribute_group *nvme_dev_attr_groups[] = {
3686 &nvme_dev_attrs_group,
3687 NULL,
3690 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3691 unsigned nsid)
3693 struct nvme_ns_head *h;
3695 lockdep_assert_held(&subsys->lock);
3697 list_for_each_entry(h, &subsys->nsheads, entry) {
3698 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3699 return h;
3702 return NULL;
3705 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3706 struct nvme_ns_head *new)
3708 struct nvme_ns_head *h;
3710 lockdep_assert_held(&subsys->lock);
3712 list_for_each_entry(h, &subsys->nsheads, entry) {
3713 if (nvme_ns_ids_valid(&new->ids) &&
3714 nvme_ns_ids_equal(&new->ids, &h->ids))
3715 return -EINVAL;
3718 return 0;
3721 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3722 unsigned nsid, struct nvme_ns_ids *ids)
3724 struct nvme_ns_head *head;
3725 size_t size = sizeof(*head);
3726 int ret = -ENOMEM;
3728 #ifdef CONFIG_NVME_MULTIPATH
3729 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3730 #endif
3732 head = kzalloc(size, GFP_KERNEL);
3733 if (!head)
3734 goto out;
3735 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3736 if (ret < 0)
3737 goto out_free_head;
3738 head->instance = ret;
3739 INIT_LIST_HEAD(&head->list);
3740 ret = init_srcu_struct(&head->srcu);
3741 if (ret)
3742 goto out_ida_remove;
3743 head->subsys = ctrl->subsys;
3744 head->ns_id = nsid;
3745 head->ids = *ids;
3746 kref_init(&head->ref);
3748 ret = __nvme_check_ids(ctrl->subsys, head);
3749 if (ret) {
3750 dev_err(ctrl->device,
3751 "duplicate IDs for nsid %d\n", nsid);
3752 goto out_cleanup_srcu;
3755 if (head->ids.csi) {
3756 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3757 if (ret)
3758 goto out_cleanup_srcu;
3759 } else
3760 head->effects = ctrl->effects;
3762 ret = nvme_mpath_alloc_disk(ctrl, head);
3763 if (ret)
3764 goto out_cleanup_srcu;
3766 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3768 kref_get(&ctrl->subsys->ref);
3770 return head;
3771 out_cleanup_srcu:
3772 cleanup_srcu_struct(&head->srcu);
3773 out_ida_remove:
3774 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3775 out_free_head:
3776 kfree(head);
3777 out:
3778 if (ret > 0)
3779 ret = blk_status_to_errno(nvme_error_status(ret));
3780 return ERR_PTR(ret);
3783 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3784 struct nvme_ns_ids *ids, bool is_shared)
3786 struct nvme_ctrl *ctrl = ns->ctrl;
3787 struct nvme_ns_head *head = NULL;
3788 int ret = 0;
3790 mutex_lock(&ctrl->subsys->lock);
3791 head = nvme_find_ns_head(ctrl->subsys, nsid);
3792 if (!head) {
3793 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3794 if (IS_ERR(head)) {
3795 ret = PTR_ERR(head);
3796 goto out_unlock;
3798 head->shared = is_shared;
3799 } else {
3800 ret = -EINVAL;
3801 if (!is_shared || !head->shared) {
3802 dev_err(ctrl->device,
3803 "Duplicate unshared namespace %d\n", nsid);
3804 goto out_put_ns_head;
3806 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3807 dev_err(ctrl->device,
3808 "IDs don't match for shared namespace %d\n",
3809 nsid);
3810 goto out_put_ns_head;
3814 list_add_tail(&ns->siblings, &head->list);
3815 ns->head = head;
3816 mutex_unlock(&ctrl->subsys->lock);
3817 return 0;
3819 out_put_ns_head:
3820 nvme_put_ns_head(head);
3821 out_unlock:
3822 mutex_unlock(&ctrl->subsys->lock);
3823 return ret;
3826 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3828 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3829 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3831 return nsa->head->ns_id - nsb->head->ns_id;
3834 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3836 struct nvme_ns *ns, *ret = NULL;
3838 down_read(&ctrl->namespaces_rwsem);
3839 list_for_each_entry(ns, &ctrl->namespaces, list) {
3840 if (ns->head->ns_id == nsid) {
3841 if (!kref_get_unless_zero(&ns->kref))
3842 continue;
3843 ret = ns;
3844 break;
3846 if (ns->head->ns_id > nsid)
3847 break;
3849 up_read(&ctrl->namespaces_rwsem);
3850 return ret;
3852 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3854 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3855 struct nvme_ns_ids *ids)
3857 struct nvme_ns *ns;
3858 struct gendisk *disk;
3859 struct nvme_id_ns *id;
3860 char disk_name[DISK_NAME_LEN];
3861 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3863 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3864 return;
3866 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3867 if (!ns)
3868 goto out_free_id;
3870 ns->queue = blk_mq_init_queue(ctrl->tagset);
3871 if (IS_ERR(ns->queue))
3872 goto out_free_ns;
3874 if (ctrl->opts && ctrl->opts->data_digest)
3875 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3877 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3878 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3879 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3881 ns->queue->queuedata = ns;
3882 ns->ctrl = ctrl;
3883 kref_init(&ns->kref);
3885 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3886 goto out_free_queue;
3887 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3889 disk = alloc_disk_node(0, node);
3890 if (!disk)
3891 goto out_unlink_ns;
3893 disk->fops = &nvme_bdev_ops;
3894 disk->private_data = ns;
3895 disk->queue = ns->queue;
3896 disk->flags = flags;
3897 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3898 ns->disk = disk;
3900 if (nvme_update_ns_info(ns, id))
3901 goto out_put_disk;
3903 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3904 if (nvme_nvm_register(ns, disk_name, node)) {
3905 dev_warn(ctrl->device, "LightNVM init failure\n");
3906 goto out_put_disk;
3910 down_write(&ctrl->namespaces_rwsem);
3911 list_add_tail(&ns->list, &ctrl->namespaces);
3912 up_write(&ctrl->namespaces_rwsem);
3914 nvme_get_ctrl(ctrl);
3916 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3918 nvme_mpath_add_disk(ns, id);
3919 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3920 kfree(id);
3922 return;
3923 out_put_disk:
3924 /* prevent double queue cleanup */
3925 ns->disk->queue = NULL;
3926 put_disk(ns->disk);
3927 out_unlink_ns:
3928 mutex_lock(&ctrl->subsys->lock);
3929 list_del_rcu(&ns->siblings);
3930 if (list_empty(&ns->head->list))
3931 list_del_init(&ns->head->entry);
3932 mutex_unlock(&ctrl->subsys->lock);
3933 nvme_put_ns_head(ns->head);
3934 out_free_queue:
3935 blk_cleanup_queue(ns->queue);
3936 out_free_ns:
3937 kfree(ns);
3938 out_free_id:
3939 kfree(id);
3942 static void nvme_ns_remove(struct nvme_ns *ns)
3944 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3945 return;
3947 set_capacity(ns->disk, 0);
3948 nvme_fault_inject_fini(&ns->fault_inject);
3950 mutex_lock(&ns->ctrl->subsys->lock);
3951 list_del_rcu(&ns->siblings);
3952 if (list_empty(&ns->head->list))
3953 list_del_init(&ns->head->entry);
3954 mutex_unlock(&ns->ctrl->subsys->lock);
3956 synchronize_rcu(); /* guarantee not available in head->list */
3957 nvme_mpath_clear_current_path(ns);
3958 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3960 if (ns->disk->flags & GENHD_FL_UP) {
3961 del_gendisk(ns->disk);
3962 blk_cleanup_queue(ns->queue);
3963 if (blk_get_integrity(ns->disk))
3964 blk_integrity_unregister(ns->disk);
3967 down_write(&ns->ctrl->namespaces_rwsem);
3968 list_del_init(&ns->list);
3969 up_write(&ns->ctrl->namespaces_rwsem);
3971 nvme_mpath_check_last_path(ns);
3972 nvme_put_ns(ns);
3975 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3977 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3979 if (ns) {
3980 nvme_ns_remove(ns);
3981 nvme_put_ns(ns);
3985 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3987 struct nvme_id_ns *id;
3988 int ret = -ENODEV;
3990 if (test_bit(NVME_NS_DEAD, &ns->flags))
3991 goto out;
3993 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3994 if (ret)
3995 goto out;
3997 ret = -ENODEV;
3998 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3999 dev_err(ns->ctrl->device,
4000 "identifiers changed for nsid %d\n", ns->head->ns_id);
4001 goto out_free_id;
4004 ret = nvme_update_ns_info(ns, id);
4006 out_free_id:
4007 kfree(id);
4008 out:
4010 * Only remove the namespace if we got a fatal error back from the
4011 * device, otherwise ignore the error and just move on.
4013 * TODO: we should probably schedule a delayed retry here.
4015 if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4016 nvme_ns_remove(ns);
4019 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4021 struct nvme_ns_ids ids = { };
4022 struct nvme_ns *ns;
4024 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4025 return;
4027 ns = nvme_find_get_ns(ctrl, nsid);
4028 if (ns) {
4029 nvme_validate_ns(ns, &ids);
4030 nvme_put_ns(ns);
4031 return;
4034 switch (ids.csi) {
4035 case NVME_CSI_NVM:
4036 nvme_alloc_ns(ctrl, nsid, &ids);
4037 break;
4038 case NVME_CSI_ZNS:
4039 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4040 dev_warn(ctrl->device,
4041 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4042 nsid);
4043 break;
4045 nvme_alloc_ns(ctrl, nsid, &ids);
4046 break;
4047 default:
4048 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4049 ids.csi, nsid);
4050 break;
4054 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4055 unsigned nsid)
4057 struct nvme_ns *ns, *next;
4058 LIST_HEAD(rm_list);
4060 down_write(&ctrl->namespaces_rwsem);
4061 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4062 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4063 list_move_tail(&ns->list, &rm_list);
4065 up_write(&ctrl->namespaces_rwsem);
4067 list_for_each_entry_safe(ns, next, &rm_list, list)
4068 nvme_ns_remove(ns);
4072 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4074 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4075 __le32 *ns_list;
4076 u32 prev = 0;
4077 int ret = 0, i;
4079 if (nvme_ctrl_limited_cns(ctrl))
4080 return -EOPNOTSUPP;
4082 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4083 if (!ns_list)
4084 return -ENOMEM;
4086 for (;;) {
4087 struct nvme_command cmd = {
4088 .identify.opcode = nvme_admin_identify,
4089 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4090 .identify.nsid = cpu_to_le32(prev),
4093 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4094 NVME_IDENTIFY_DATA_SIZE);
4095 if (ret) {
4096 dev_warn(ctrl->device,
4097 "Identify NS List failed (status=0x%x)\n", ret);
4098 goto free;
4101 for (i = 0; i < nr_entries; i++) {
4102 u32 nsid = le32_to_cpu(ns_list[i]);
4104 if (!nsid) /* end of the list? */
4105 goto out;
4106 nvme_validate_or_alloc_ns(ctrl, nsid);
4107 while (++prev < nsid)
4108 nvme_ns_remove_by_nsid(ctrl, prev);
4111 out:
4112 nvme_remove_invalid_namespaces(ctrl, prev);
4113 free:
4114 kfree(ns_list);
4115 return ret;
4118 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4120 struct nvme_id_ctrl *id;
4121 u32 nn, i;
4123 if (nvme_identify_ctrl(ctrl, &id))
4124 return;
4125 nn = le32_to_cpu(id->nn);
4126 kfree(id);
4128 for (i = 1; i <= nn; i++)
4129 nvme_validate_or_alloc_ns(ctrl, i);
4131 nvme_remove_invalid_namespaces(ctrl, nn);
4134 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4136 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4137 __le32 *log;
4138 int error;
4140 log = kzalloc(log_size, GFP_KERNEL);
4141 if (!log)
4142 return;
4145 * We need to read the log to clear the AEN, but we don't want to rely
4146 * on it for the changed namespace information as userspace could have
4147 * raced with us in reading the log page, which could cause us to miss
4148 * updates.
4150 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4151 NVME_CSI_NVM, log, log_size, 0);
4152 if (error)
4153 dev_warn(ctrl->device,
4154 "reading changed ns log failed: %d\n", error);
4156 kfree(log);
4159 static void nvme_scan_work(struct work_struct *work)
4161 struct nvme_ctrl *ctrl =
4162 container_of(work, struct nvme_ctrl, scan_work);
4164 /* No tagset on a live ctrl means IO queues could not created */
4165 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4166 return;
4168 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4169 dev_info(ctrl->device, "rescanning namespaces.\n");
4170 nvme_clear_changed_ns_log(ctrl);
4173 mutex_lock(&ctrl->scan_lock);
4174 if (nvme_scan_ns_list(ctrl) != 0)
4175 nvme_scan_ns_sequential(ctrl);
4176 mutex_unlock(&ctrl->scan_lock);
4178 down_write(&ctrl->namespaces_rwsem);
4179 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4180 up_write(&ctrl->namespaces_rwsem);
4184 * This function iterates the namespace list unlocked to allow recovery from
4185 * controller failure. It is up to the caller to ensure the namespace list is
4186 * not modified by scan work while this function is executing.
4188 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4190 struct nvme_ns *ns, *next;
4191 LIST_HEAD(ns_list);
4194 * make sure to requeue I/O to all namespaces as these
4195 * might result from the scan itself and must complete
4196 * for the scan_work to make progress
4198 nvme_mpath_clear_ctrl_paths(ctrl);
4200 /* prevent racing with ns scanning */
4201 flush_work(&ctrl->scan_work);
4204 * The dead states indicates the controller was not gracefully
4205 * disconnected. In that case, we won't be able to flush any data while
4206 * removing the namespaces' disks; fail all the queues now to avoid
4207 * potentially having to clean up the failed sync later.
4209 if (ctrl->state == NVME_CTRL_DEAD)
4210 nvme_kill_queues(ctrl);
4212 /* this is a no-op when called from the controller reset handler */
4213 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4215 down_write(&ctrl->namespaces_rwsem);
4216 list_splice_init(&ctrl->namespaces, &ns_list);
4217 up_write(&ctrl->namespaces_rwsem);
4219 list_for_each_entry_safe(ns, next, &ns_list, list)
4220 nvme_ns_remove(ns);
4222 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4224 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4226 struct nvme_ctrl *ctrl =
4227 container_of(dev, struct nvme_ctrl, ctrl_device);
4228 struct nvmf_ctrl_options *opts = ctrl->opts;
4229 int ret;
4231 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4232 if (ret)
4233 return ret;
4235 if (opts) {
4236 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4237 if (ret)
4238 return ret;
4240 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4241 opts->trsvcid ?: "none");
4242 if (ret)
4243 return ret;
4245 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4246 opts->host_traddr ?: "none");
4248 return ret;
4251 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4253 char *envp[2] = { NULL, NULL };
4254 u32 aen_result = ctrl->aen_result;
4256 ctrl->aen_result = 0;
4257 if (!aen_result)
4258 return;
4260 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4261 if (!envp[0])
4262 return;
4263 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4264 kfree(envp[0]);
4267 static void nvme_async_event_work(struct work_struct *work)
4269 struct nvme_ctrl *ctrl =
4270 container_of(work, struct nvme_ctrl, async_event_work);
4272 nvme_aen_uevent(ctrl);
4273 ctrl->ops->submit_async_event(ctrl);
4276 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4279 u32 csts;
4281 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4282 return false;
4284 if (csts == ~0)
4285 return false;
4287 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4290 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4292 struct nvme_fw_slot_info_log *log;
4294 log = kmalloc(sizeof(*log), GFP_KERNEL);
4295 if (!log)
4296 return;
4298 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4299 log, sizeof(*log), 0))
4300 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4301 kfree(log);
4304 static void nvme_fw_act_work(struct work_struct *work)
4306 struct nvme_ctrl *ctrl = container_of(work,
4307 struct nvme_ctrl, fw_act_work);
4308 unsigned long fw_act_timeout;
4310 if (ctrl->mtfa)
4311 fw_act_timeout = jiffies +
4312 msecs_to_jiffies(ctrl->mtfa * 100);
4313 else
4314 fw_act_timeout = jiffies +
4315 msecs_to_jiffies(admin_timeout * 1000);
4317 nvme_stop_queues(ctrl);
4318 while (nvme_ctrl_pp_status(ctrl)) {
4319 if (time_after(jiffies, fw_act_timeout)) {
4320 dev_warn(ctrl->device,
4321 "Fw activation timeout, reset controller\n");
4322 nvme_try_sched_reset(ctrl);
4323 return;
4325 msleep(100);
4328 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4329 return;
4331 nvme_start_queues(ctrl);
4332 /* read FW slot information to clear the AER */
4333 nvme_get_fw_slot_info(ctrl);
4336 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4338 u32 aer_notice_type = (result & 0xff00) >> 8;
4340 trace_nvme_async_event(ctrl, aer_notice_type);
4342 switch (aer_notice_type) {
4343 case NVME_AER_NOTICE_NS_CHANGED:
4344 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4345 nvme_queue_scan(ctrl);
4346 break;
4347 case NVME_AER_NOTICE_FW_ACT_STARTING:
4349 * We are (ab)using the RESETTING state to prevent subsequent
4350 * recovery actions from interfering with the controller's
4351 * firmware activation.
4353 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4354 queue_work(nvme_wq, &ctrl->fw_act_work);
4355 break;
4356 #ifdef CONFIG_NVME_MULTIPATH
4357 case NVME_AER_NOTICE_ANA:
4358 if (!ctrl->ana_log_buf)
4359 break;
4360 queue_work(nvme_wq, &ctrl->ana_work);
4361 break;
4362 #endif
4363 case NVME_AER_NOTICE_DISC_CHANGED:
4364 ctrl->aen_result = result;
4365 break;
4366 default:
4367 dev_warn(ctrl->device, "async event result %08x\n", result);
4371 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4372 volatile union nvme_result *res)
4374 u32 result = le32_to_cpu(res->u32);
4375 u32 aer_type = result & 0x07;
4377 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4378 return;
4380 switch (aer_type) {
4381 case NVME_AER_NOTICE:
4382 nvme_handle_aen_notice(ctrl, result);
4383 break;
4384 case NVME_AER_ERROR:
4385 case NVME_AER_SMART:
4386 case NVME_AER_CSS:
4387 case NVME_AER_VS:
4388 trace_nvme_async_event(ctrl, aer_type);
4389 ctrl->aen_result = result;
4390 break;
4391 default:
4392 break;
4394 queue_work(nvme_wq, &ctrl->async_event_work);
4396 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4398 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4400 nvme_mpath_stop(ctrl);
4401 nvme_stop_keep_alive(ctrl);
4402 nvme_stop_failfast_work(ctrl);
4403 flush_work(&ctrl->async_event_work);
4404 cancel_work_sync(&ctrl->fw_act_work);
4406 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4408 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4410 nvme_start_keep_alive(ctrl);
4412 nvme_enable_aen(ctrl);
4414 if (ctrl->queue_count > 1) {
4415 nvme_queue_scan(ctrl);
4416 nvme_start_queues(ctrl);
4419 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4421 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4423 nvme_fault_inject_fini(&ctrl->fault_inject);
4424 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4425 cdev_device_del(&ctrl->cdev, ctrl->device);
4426 nvme_put_ctrl(ctrl);
4428 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4430 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4432 struct nvme_effects_log *cel;
4433 unsigned long i;
4435 xa_for_each (&ctrl->cels, i, cel) {
4436 xa_erase(&ctrl->cels, i);
4437 kfree(cel);
4440 xa_destroy(&ctrl->cels);
4443 static void nvme_free_ctrl(struct device *dev)
4445 struct nvme_ctrl *ctrl =
4446 container_of(dev, struct nvme_ctrl, ctrl_device);
4447 struct nvme_subsystem *subsys = ctrl->subsys;
4449 if (!subsys || ctrl->instance != subsys->instance)
4450 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4452 nvme_free_cels(ctrl);
4453 nvme_mpath_uninit(ctrl);
4454 __free_page(ctrl->discard_page);
4456 if (subsys) {
4457 mutex_lock(&nvme_subsystems_lock);
4458 list_del(&ctrl->subsys_entry);
4459 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4460 mutex_unlock(&nvme_subsystems_lock);
4463 ctrl->ops->free_ctrl(ctrl);
4465 if (subsys)
4466 nvme_put_subsystem(subsys);
4470 * Initialize a NVMe controller structures. This needs to be called during
4471 * earliest initialization so that we have the initialized structured around
4472 * during probing.
4474 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4475 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4477 int ret;
4479 ctrl->state = NVME_CTRL_NEW;
4480 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4481 spin_lock_init(&ctrl->lock);
4482 mutex_init(&ctrl->scan_lock);
4483 INIT_LIST_HEAD(&ctrl->namespaces);
4484 xa_init(&ctrl->cels);
4485 init_rwsem(&ctrl->namespaces_rwsem);
4486 ctrl->dev = dev;
4487 ctrl->ops = ops;
4488 ctrl->quirks = quirks;
4489 ctrl->numa_node = NUMA_NO_NODE;
4490 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4491 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4492 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4493 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4494 init_waitqueue_head(&ctrl->state_wq);
4496 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4497 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4498 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4499 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4501 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4502 PAGE_SIZE);
4503 ctrl->discard_page = alloc_page(GFP_KERNEL);
4504 if (!ctrl->discard_page) {
4505 ret = -ENOMEM;
4506 goto out;
4509 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4510 if (ret < 0)
4511 goto out;
4512 ctrl->instance = ret;
4514 device_initialize(&ctrl->ctrl_device);
4515 ctrl->device = &ctrl->ctrl_device;
4516 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4517 ctrl->instance);
4518 ctrl->device->class = nvme_class;
4519 ctrl->device->parent = ctrl->dev;
4520 ctrl->device->groups = nvme_dev_attr_groups;
4521 ctrl->device->release = nvme_free_ctrl;
4522 dev_set_drvdata(ctrl->device, ctrl);
4523 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4524 if (ret)
4525 goto out_release_instance;
4527 nvme_get_ctrl(ctrl);
4528 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4529 ctrl->cdev.owner = ops->module;
4530 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4531 if (ret)
4532 goto out_free_name;
4535 * Initialize latency tolerance controls. The sysfs files won't
4536 * be visible to userspace unless the device actually supports APST.
4538 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4539 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4540 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4542 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4544 return 0;
4545 out_free_name:
4546 nvme_put_ctrl(ctrl);
4547 kfree_const(ctrl->device->kobj.name);
4548 out_release_instance:
4549 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4550 out:
4551 if (ctrl->discard_page)
4552 __free_page(ctrl->discard_page);
4553 return ret;
4555 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4558 * nvme_kill_queues(): Ends all namespace queues
4559 * @ctrl: the dead controller that needs to end
4561 * Call this function when the driver determines it is unable to get the
4562 * controller in a state capable of servicing IO.
4564 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4566 struct nvme_ns *ns;
4568 down_read(&ctrl->namespaces_rwsem);
4570 /* Forcibly unquiesce queues to avoid blocking dispatch */
4571 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4572 blk_mq_unquiesce_queue(ctrl->admin_q);
4574 list_for_each_entry(ns, &ctrl->namespaces, list)
4575 nvme_set_queue_dying(ns);
4577 up_read(&ctrl->namespaces_rwsem);
4579 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4581 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4583 struct nvme_ns *ns;
4585 down_read(&ctrl->namespaces_rwsem);
4586 list_for_each_entry(ns, &ctrl->namespaces, list)
4587 blk_mq_unfreeze_queue(ns->queue);
4588 up_read(&ctrl->namespaces_rwsem);
4590 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4592 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4594 struct nvme_ns *ns;
4596 down_read(&ctrl->namespaces_rwsem);
4597 list_for_each_entry(ns, &ctrl->namespaces, list) {
4598 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4599 if (timeout <= 0)
4600 break;
4602 up_read(&ctrl->namespaces_rwsem);
4603 return timeout;
4605 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4607 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4609 struct nvme_ns *ns;
4611 down_read(&ctrl->namespaces_rwsem);
4612 list_for_each_entry(ns, &ctrl->namespaces, list)
4613 blk_mq_freeze_queue_wait(ns->queue);
4614 up_read(&ctrl->namespaces_rwsem);
4616 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4618 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4620 struct nvme_ns *ns;
4622 down_read(&ctrl->namespaces_rwsem);
4623 list_for_each_entry(ns, &ctrl->namespaces, list)
4624 blk_freeze_queue_start(ns->queue);
4625 up_read(&ctrl->namespaces_rwsem);
4627 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4629 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4631 struct nvme_ns *ns;
4633 down_read(&ctrl->namespaces_rwsem);
4634 list_for_each_entry(ns, &ctrl->namespaces, list)
4635 blk_mq_quiesce_queue(ns->queue);
4636 up_read(&ctrl->namespaces_rwsem);
4638 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4640 void nvme_start_queues(struct nvme_ctrl *ctrl)
4642 struct nvme_ns *ns;
4644 down_read(&ctrl->namespaces_rwsem);
4645 list_for_each_entry(ns, &ctrl->namespaces, list)
4646 blk_mq_unquiesce_queue(ns->queue);
4647 up_read(&ctrl->namespaces_rwsem);
4649 EXPORT_SYMBOL_GPL(nvme_start_queues);
4651 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4653 struct nvme_ns *ns;
4655 down_read(&ctrl->namespaces_rwsem);
4656 list_for_each_entry(ns, &ctrl->namespaces, list)
4657 blk_sync_queue(ns->queue);
4658 up_read(&ctrl->namespaces_rwsem);
4660 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4662 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4664 nvme_sync_io_queues(ctrl);
4665 if (ctrl->admin_q)
4666 blk_sync_queue(ctrl->admin_q);
4668 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4670 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4672 if (file->f_op != &nvme_dev_fops)
4673 return NULL;
4674 return file->private_data;
4676 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4679 * Check we didn't inadvertently grow the command structure sizes:
4681 static inline void _nvme_check_size(void)
4683 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4684 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4685 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4686 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4687 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4688 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4689 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4690 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4691 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4692 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4693 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4694 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4695 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4696 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4697 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4698 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4699 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4700 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4701 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4705 static int __init nvme_core_init(void)
4707 int result = -ENOMEM;
4709 _nvme_check_size();
4711 nvme_wq = alloc_workqueue("nvme-wq",
4712 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4713 if (!nvme_wq)
4714 goto out;
4716 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4717 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4718 if (!nvme_reset_wq)
4719 goto destroy_wq;
4721 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4722 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4723 if (!nvme_delete_wq)
4724 goto destroy_reset_wq;
4726 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4727 NVME_MINORS, "nvme");
4728 if (result < 0)
4729 goto destroy_delete_wq;
4731 nvme_class = class_create(THIS_MODULE, "nvme");
4732 if (IS_ERR(nvme_class)) {
4733 result = PTR_ERR(nvme_class);
4734 goto unregister_chrdev;
4736 nvme_class->dev_uevent = nvme_class_uevent;
4738 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4739 if (IS_ERR(nvme_subsys_class)) {
4740 result = PTR_ERR(nvme_subsys_class);
4741 goto destroy_class;
4743 return 0;
4745 destroy_class:
4746 class_destroy(nvme_class);
4747 unregister_chrdev:
4748 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4749 destroy_delete_wq:
4750 destroy_workqueue(nvme_delete_wq);
4751 destroy_reset_wq:
4752 destroy_workqueue(nvme_reset_wq);
4753 destroy_wq:
4754 destroy_workqueue(nvme_wq);
4755 out:
4756 return result;
4759 static void __exit nvme_core_exit(void)
4761 class_destroy(nvme_subsys_class);
4762 class_destroy(nvme_class);
4763 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4764 destroy_workqueue(nvme_delete_wq);
4765 destroy_workqueue(nvme_reset_wq);
4766 destroy_workqueue(nvme_wq);
4767 ida_destroy(&nvme_instance_ida);
4770 MODULE_LICENSE("GPL");
4771 MODULE_VERSION("1.0");
4772 module_init(nvme_core_init);
4773 module_exit(nvme_core_exit);