1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/acpi.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/sed-opal.h>
27 #include <linux/pci-p2pdma.h>
32 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
33 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38 * These can be higher, but we need to ensure that any command doesn't
39 * require an sg allocation that needs more than a page of data.
41 #define NVME_MAX_KB_SZ 4096
42 #define NVME_MAX_SEGS 127
44 static int use_threaded_interrupts
;
45 module_param(use_threaded_interrupts
, int, 0);
47 static bool use_cmb_sqes
= true;
48 module_param(use_cmb_sqes
, bool, 0444);
49 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
51 static unsigned int max_host_mem_size_mb
= 128;
52 module_param(max_host_mem_size_mb
, uint
, 0444);
53 MODULE_PARM_DESC(max_host_mem_size_mb
,
54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 static unsigned int sgl_threshold
= SZ_32K
;
57 module_param(sgl_threshold
, uint
, 0644);
58 MODULE_PARM_DESC(sgl_threshold
,
59 "Use SGLs when average request segment size is larger or equal to "
60 "this size. Use 0 to disable SGLs.");
62 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
63 static const struct kernel_param_ops io_queue_depth_ops
= {
64 .set
= io_queue_depth_set
,
65 .get
= param_get_uint
,
68 static unsigned int io_queue_depth
= 1024;
69 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
70 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
72 static int io_queue_count_set(const char *val
, const struct kernel_param
*kp
)
77 ret
= kstrtouint(val
, 10, &n
);
78 if (ret
!= 0 || n
> num_possible_cpus())
80 return param_set_uint(val
, kp
);
83 static const struct kernel_param_ops io_queue_count_ops
= {
84 .set
= io_queue_count_set
,
85 .get
= param_get_uint
,
88 static unsigned int write_queues
;
89 module_param_cb(write_queues
, &io_queue_count_ops
, &write_queues
, 0644);
90 MODULE_PARM_DESC(write_queues
,
91 "Number of queues to use for writes. If not set, reads and writes "
92 "will share a queue set.");
94 static unsigned int poll_queues
;
95 module_param_cb(poll_queues
, &io_queue_count_ops
, &poll_queues
, 0644);
96 MODULE_PARM_DESC(poll_queues
, "Number of queues to use for polled IO.");
99 module_param(noacpi
, bool, 0444);
100 MODULE_PARM_DESC(noacpi
, "disable acpi bios quirks");
105 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
106 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
);
109 * Represents an NVM Express device. Each nvme_dev is a PCI function.
112 struct nvme_queue
*queues
;
113 struct blk_mq_tag_set tagset
;
114 struct blk_mq_tag_set admin_tagset
;
117 struct dma_pool
*prp_page_pool
;
118 struct dma_pool
*prp_small_pool
;
119 unsigned online_queues
;
121 unsigned io_queues
[HCTX_MAX_TYPES
];
122 unsigned int num_vecs
;
127 unsigned long bar_mapped_size
;
128 struct work_struct remove_work
;
129 struct mutex shutdown_lock
;
135 struct nvme_ctrl ctrl
;
138 mempool_t
*iod_mempool
;
140 /* shadow doorbell buffer support: */
142 dma_addr_t dbbuf_dbs_dma_addr
;
144 dma_addr_t dbbuf_eis_dma_addr
;
146 /* host memory buffer support: */
148 u32 nr_host_mem_descs
;
149 dma_addr_t host_mem_descs_dma
;
150 struct nvme_host_mem_buf_desc
*host_mem_descs
;
151 void **host_mem_desc_bufs
;
152 unsigned int nr_allocated_queues
;
153 unsigned int nr_write_queues
;
154 unsigned int nr_poll_queues
;
157 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
162 ret
= kstrtou32(val
, 10, &n
);
163 if (ret
!= 0 || n
< 2)
166 return param_set_uint(val
, kp
);
169 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
171 return qid
* 2 * stride
;
174 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
176 return (qid
* 2 + 1) * stride
;
179 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
181 return container_of(ctrl
, struct nvme_dev
, ctrl
);
185 * An NVM Express queue. Each device has at least two (one for admin
186 * commands and one for I/O commands).
189 struct nvme_dev
*dev
;
192 /* only used for poll queues: */
193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp
;
194 struct nvme_completion
*cqes
;
195 dma_addr_t sq_dma_addr
;
196 dma_addr_t cq_dma_addr
;
207 #define NVMEQ_ENABLED 0
208 #define NVMEQ_SQ_CMB 1
209 #define NVMEQ_DELETE_ERROR 2
210 #define NVMEQ_POLLED 3
215 struct completion delete_done
;
219 * The nvme_iod describes the data in an I/O.
221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222 * to the actual struct scatterlist.
225 struct nvme_request req
;
226 struct nvme_queue
*nvmeq
;
229 int npages
; /* In the PRP list. 0 means small pool in use */
230 int nents
; /* Used in scatterlist */
231 dma_addr_t first_dma
;
232 unsigned int dma_len
; /* length of single DMA segment mapping */
234 struct scatterlist
*sg
;
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev
*dev
)
239 return dev
->nr_allocated_queues
* 8 * dev
->db_stride
;
242 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
244 unsigned int mem_size
= nvme_dbbuf_size(dev
);
249 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
250 &dev
->dbbuf_dbs_dma_addr
,
254 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
255 &dev
->dbbuf_eis_dma_addr
,
257 if (!dev
->dbbuf_eis
) {
258 dma_free_coherent(dev
->dev
, mem_size
,
259 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
260 dev
->dbbuf_dbs
= NULL
;
267 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
269 unsigned int mem_size
= nvme_dbbuf_size(dev
);
271 if (dev
->dbbuf_dbs
) {
272 dma_free_coherent(dev
->dev
, mem_size
,
273 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
274 dev
->dbbuf_dbs
= NULL
;
276 if (dev
->dbbuf_eis
) {
277 dma_free_coherent(dev
->dev
, mem_size
,
278 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
279 dev
->dbbuf_eis
= NULL
;
283 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
284 struct nvme_queue
*nvmeq
, int qid
)
286 if (!dev
->dbbuf_dbs
|| !qid
)
289 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
290 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
291 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
292 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
295 static void nvme_dbbuf_free(struct nvme_queue
*nvmeq
)
300 nvmeq
->dbbuf_sq_db
= NULL
;
301 nvmeq
->dbbuf_cq_db
= NULL
;
302 nvmeq
->dbbuf_sq_ei
= NULL
;
303 nvmeq
->dbbuf_cq_ei
= NULL
;
306 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
308 struct nvme_command c
;
314 memset(&c
, 0, sizeof(c
));
315 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
316 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
317 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
319 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
320 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
321 /* Free memory and continue on */
322 nvme_dbbuf_dma_free(dev
);
324 for (i
= 1; i
<= dev
->online_queues
; i
++)
325 nvme_dbbuf_free(&dev
->queues
[i
]);
329 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
331 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
334 /* Update dbbuf and return true if an MMIO is required */
335 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
336 volatile u32
*dbbuf_ei
)
342 * Ensure that the queue is written before updating
343 * the doorbell in memory
347 old_value
= *dbbuf_db
;
351 * Ensure that the doorbell is updated before reading the event
352 * index from memory. The controller needs to provide similar
353 * ordering to ensure the envent index is updated before reading
358 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
366 * Will slightly overestimate the number of pages needed. This is OK
367 * as it only leads to a small amount of wasted memory for the lifetime of
370 static int nvme_pci_npages_prp(void)
372 unsigned nprps
= DIV_ROUND_UP(NVME_MAX_KB_SZ
+ NVME_CTRL_PAGE_SIZE
,
373 NVME_CTRL_PAGE_SIZE
);
374 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
378 * Calculates the number of pages needed for the SGL segments. For example a 4k
379 * page can accommodate 256 SGL descriptors.
381 static int nvme_pci_npages_sgl(void)
383 return DIV_ROUND_UP(NVME_MAX_SEGS
* sizeof(struct nvme_sgl_desc
),
387 static size_t nvme_pci_iod_alloc_size(void)
389 size_t npages
= max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
391 return sizeof(__le64
*) * npages
+
392 sizeof(struct scatterlist
) * NVME_MAX_SEGS
;
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
396 unsigned int hctx_idx
)
398 struct nvme_dev
*dev
= data
;
399 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
401 WARN_ON(hctx_idx
!= 0);
402 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
404 hctx
->driver_data
= nvmeq
;
408 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
409 unsigned int hctx_idx
)
411 struct nvme_dev
*dev
= data
;
412 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
414 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
415 hctx
->driver_data
= nvmeq
;
419 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
420 unsigned int hctx_idx
, unsigned int numa_node
)
422 struct nvme_dev
*dev
= set
->driver_data
;
423 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
424 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
425 struct nvme_queue
*nvmeq
= &dev
->queues
[queue_idx
];
430 nvme_req(req
)->ctrl
= &dev
->ctrl
;
434 static int queue_irq_offset(struct nvme_dev
*dev
)
436 /* if we have more than 1 vec, admin queue offsets us by 1 */
437 if (dev
->num_vecs
> 1)
443 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
445 struct nvme_dev
*dev
= set
->driver_data
;
448 offset
= queue_irq_offset(dev
);
449 for (i
= 0, qoff
= 0; i
< set
->nr_maps
; i
++) {
450 struct blk_mq_queue_map
*map
= &set
->map
[i
];
452 map
->nr_queues
= dev
->io_queues
[i
];
453 if (!map
->nr_queues
) {
454 BUG_ON(i
== HCTX_TYPE_DEFAULT
);
459 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 * affinity), so use the regular blk-mq cpu mapping
462 map
->queue_offset
= qoff
;
463 if (i
!= HCTX_TYPE_POLL
&& offset
)
464 blk_mq_pci_map_queues(map
, to_pci_dev(dev
->dev
), offset
);
466 blk_mq_map_queues(map
);
467 qoff
+= map
->nr_queues
;
468 offset
+= map
->nr_queues
;
475 * Write sq tail if we are asked to, or if the next command would wrap.
477 static inline void nvme_write_sq_db(struct nvme_queue
*nvmeq
, bool write_sq
)
480 u16 next_tail
= nvmeq
->sq_tail
+ 1;
482 if (next_tail
== nvmeq
->q_depth
)
484 if (next_tail
!= nvmeq
->last_sq_tail
)
488 if (nvme_dbbuf_update_and_check_event(nvmeq
->sq_tail
,
489 nvmeq
->dbbuf_sq_db
, nvmeq
->dbbuf_sq_ei
))
490 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
491 nvmeq
->last_sq_tail
= nvmeq
->sq_tail
;
495 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
496 * @nvmeq: The queue to use
497 * @cmd: The command to send
498 * @write_sq: whether to write to the SQ doorbell
500 static void nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
,
503 spin_lock(&nvmeq
->sq_lock
);
504 memcpy(nvmeq
->sq_cmds
+ (nvmeq
->sq_tail
<< nvmeq
->sqes
),
506 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
508 nvme_write_sq_db(nvmeq
, write_sq
);
509 spin_unlock(&nvmeq
->sq_lock
);
512 static void nvme_commit_rqs(struct blk_mq_hw_ctx
*hctx
)
514 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
516 spin_lock(&nvmeq
->sq_lock
);
517 if (nvmeq
->sq_tail
!= nvmeq
->last_sq_tail
)
518 nvme_write_sq_db(nvmeq
, true);
519 spin_unlock(&nvmeq
->sq_lock
);
522 static void **nvme_pci_iod_list(struct request
*req
)
524 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
525 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
528 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
530 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
531 int nseg
= blk_rq_nr_phys_segments(req
);
532 unsigned int avg_seg_size
;
534 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
536 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
538 if (!iod
->nvmeq
->qid
)
540 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
545 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
547 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
548 const int last_prp
= NVME_CTRL_PAGE_SIZE
/ sizeof(__le64
) - 1;
549 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
553 dma_unmap_page(dev
->dev
, dma_addr
, iod
->dma_len
,
558 WARN_ON_ONCE(!iod
->nents
);
560 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
561 pci_p2pdma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
,
564 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, rq_dma_dir(req
));
567 if (iod
->npages
== 0)
568 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
571 for (i
= 0; i
< iod
->npages
; i
++) {
572 void *addr
= nvme_pci_iod_list(req
)[i
];
575 struct nvme_sgl_desc
*sg_list
= addr
;
578 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
580 __le64
*prp_list
= addr
;
582 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
585 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
586 dma_addr
= next_dma_addr
;
589 mempool_free(iod
->sg
, dev
->iod_mempool
);
592 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
595 struct scatterlist
*sg
;
597 for_each_sg(sgl
, sg
, nents
, i
) {
598 dma_addr_t phys
= sg_phys(sg
);
599 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
600 "dma_address:%pad dma_length:%d\n",
601 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
606 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
607 struct request
*req
, struct nvme_rw_command
*cmnd
)
609 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
610 struct dma_pool
*pool
;
611 int length
= blk_rq_payload_bytes(req
);
612 struct scatterlist
*sg
= iod
->sg
;
613 int dma_len
= sg_dma_len(sg
);
614 u64 dma_addr
= sg_dma_address(sg
);
615 int offset
= dma_addr
& (NVME_CTRL_PAGE_SIZE
- 1);
617 void **list
= nvme_pci_iod_list(req
);
621 length
-= (NVME_CTRL_PAGE_SIZE
- offset
);
627 dma_len
-= (NVME_CTRL_PAGE_SIZE
- offset
);
629 dma_addr
+= (NVME_CTRL_PAGE_SIZE
- offset
);
632 dma_addr
= sg_dma_address(sg
);
633 dma_len
= sg_dma_len(sg
);
636 if (length
<= NVME_CTRL_PAGE_SIZE
) {
637 iod
->first_dma
= dma_addr
;
641 nprps
= DIV_ROUND_UP(length
, NVME_CTRL_PAGE_SIZE
);
642 if (nprps
<= (256 / 8)) {
643 pool
= dev
->prp_small_pool
;
646 pool
= dev
->prp_page_pool
;
650 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
652 iod
->first_dma
= dma_addr
;
654 return BLK_STS_RESOURCE
;
657 iod
->first_dma
= prp_dma
;
660 if (i
== NVME_CTRL_PAGE_SIZE
>> 3) {
661 __le64
*old_prp_list
= prp_list
;
662 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
664 return BLK_STS_RESOURCE
;
665 list
[iod
->npages
++] = prp_list
;
666 prp_list
[0] = old_prp_list
[i
- 1];
667 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
670 prp_list
[i
++] = cpu_to_le64(dma_addr
);
671 dma_len
-= NVME_CTRL_PAGE_SIZE
;
672 dma_addr
+= NVME_CTRL_PAGE_SIZE
;
673 length
-= NVME_CTRL_PAGE_SIZE
;
678 if (unlikely(dma_len
< 0))
681 dma_addr
= sg_dma_address(sg
);
682 dma_len
= sg_dma_len(sg
);
686 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
687 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
692 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
693 "Invalid SGL for payload:%d nents:%d\n",
694 blk_rq_payload_bytes(req
), iod
->nents
);
695 return BLK_STS_IOERR
;
698 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
699 struct scatterlist
*sg
)
701 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
702 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
703 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
706 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
707 dma_addr_t dma_addr
, int entries
)
709 sge
->addr
= cpu_to_le64(dma_addr
);
710 if (entries
< SGES_PER_PAGE
) {
711 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
712 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
714 sge
->length
= cpu_to_le32(PAGE_SIZE
);
715 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
719 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
720 struct request
*req
, struct nvme_rw_command
*cmd
, int entries
)
722 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
723 struct dma_pool
*pool
;
724 struct nvme_sgl_desc
*sg_list
;
725 struct scatterlist
*sg
= iod
->sg
;
729 /* setting the transfer type as SGL */
730 cmd
->flags
= NVME_CMD_SGL_METABUF
;
733 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
737 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
738 pool
= dev
->prp_small_pool
;
741 pool
= dev
->prp_page_pool
;
745 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
748 return BLK_STS_RESOURCE
;
751 nvme_pci_iod_list(req
)[0] = sg_list
;
752 iod
->first_dma
= sgl_dma
;
754 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
757 if (i
== SGES_PER_PAGE
) {
758 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
759 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
761 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
763 return BLK_STS_RESOURCE
;
766 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
767 sg_list
[i
++] = *link
;
768 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
771 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
773 } while (--entries
> 0);
778 static blk_status_t
nvme_setup_prp_simple(struct nvme_dev
*dev
,
779 struct request
*req
, struct nvme_rw_command
*cmnd
,
782 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
783 unsigned int offset
= bv
->bv_offset
& (NVME_CTRL_PAGE_SIZE
- 1);
784 unsigned int first_prp_len
= NVME_CTRL_PAGE_SIZE
- offset
;
786 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
787 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
788 return BLK_STS_RESOURCE
;
789 iod
->dma_len
= bv
->bv_len
;
791 cmnd
->dptr
.prp1
= cpu_to_le64(iod
->first_dma
);
792 if (bv
->bv_len
> first_prp_len
)
793 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
+ first_prp_len
);
797 static blk_status_t
nvme_setup_sgl_simple(struct nvme_dev
*dev
,
798 struct request
*req
, struct nvme_rw_command
*cmnd
,
801 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
803 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
804 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
805 return BLK_STS_RESOURCE
;
806 iod
->dma_len
= bv
->bv_len
;
808 cmnd
->flags
= NVME_CMD_SGL_METABUF
;
809 cmnd
->dptr
.sgl
.addr
= cpu_to_le64(iod
->first_dma
);
810 cmnd
->dptr
.sgl
.length
= cpu_to_le32(iod
->dma_len
);
811 cmnd
->dptr
.sgl
.type
= NVME_SGL_FMT_DATA_DESC
<< 4;
815 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
816 struct nvme_command
*cmnd
)
818 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
819 blk_status_t ret
= BLK_STS_RESOURCE
;
822 if (blk_rq_nr_phys_segments(req
) == 1) {
823 struct bio_vec bv
= req_bvec(req
);
825 if (!is_pci_p2pdma_page(bv
.bv_page
)) {
826 if (bv
.bv_offset
+ bv
.bv_len
<= NVME_CTRL_PAGE_SIZE
* 2)
827 return nvme_setup_prp_simple(dev
, req
,
830 if (iod
->nvmeq
->qid
&&
831 dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1)))
832 return nvme_setup_sgl_simple(dev
, req
,
838 iod
->sg
= mempool_alloc(dev
->iod_mempool
, GFP_ATOMIC
);
840 return BLK_STS_RESOURCE
;
841 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
842 iod
->nents
= blk_rq_map_sg(req
->q
, req
, iod
->sg
);
846 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
847 nr_mapped
= pci_p2pdma_map_sg_attrs(dev
->dev
, iod
->sg
,
848 iod
->nents
, rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
850 nr_mapped
= dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
,
851 rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
855 iod
->use_sgl
= nvme_pci_use_sgls(dev
, req
);
857 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
, nr_mapped
);
859 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
861 if (ret
!= BLK_STS_OK
)
862 nvme_unmap_data(dev
, req
);
866 static blk_status_t
nvme_map_metadata(struct nvme_dev
*dev
, struct request
*req
,
867 struct nvme_command
*cmnd
)
869 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
871 iod
->meta_dma
= dma_map_bvec(dev
->dev
, rq_integrity_vec(req
),
873 if (dma_mapping_error(dev
->dev
, iod
->meta_dma
))
874 return BLK_STS_IOERR
;
875 cmnd
->rw
.metadata
= cpu_to_le64(iod
->meta_dma
);
880 * NOTE: ns is NULL when called on the admin queue.
882 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
883 const struct blk_mq_queue_data
*bd
)
885 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
886 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
887 struct nvme_dev
*dev
= nvmeq
->dev
;
888 struct request
*req
= bd
->rq
;
889 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
890 struct nvme_command cmnd
;
898 * We should not need to do this, but we're still using this to
899 * ensure we can drain requests on a dying queue.
901 if (unlikely(!test_bit(NVMEQ_ENABLED
, &nvmeq
->flags
)))
902 return BLK_STS_IOERR
;
904 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
908 if (blk_rq_nr_phys_segments(req
)) {
909 ret
= nvme_map_data(dev
, req
, &cmnd
);
914 if (blk_integrity_rq(req
)) {
915 ret
= nvme_map_metadata(dev
, req
, &cmnd
);
920 blk_mq_start_request(req
);
921 nvme_submit_cmd(nvmeq
, &cmnd
, bd
->last
);
924 nvme_unmap_data(dev
, req
);
926 nvme_cleanup_cmd(req
);
930 static void nvme_pci_complete_rq(struct request
*req
)
932 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
933 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
935 if (blk_integrity_rq(req
))
936 dma_unmap_page(dev
->dev
, iod
->meta_dma
,
937 rq_integrity_vec(req
)->bv_len
, rq_data_dir(req
));
938 if (blk_rq_nr_phys_segments(req
))
939 nvme_unmap_data(dev
, req
);
940 nvme_complete_rq(req
);
943 /* We read the CQE phase first to check if the rest of the entry is valid */
944 static inline bool nvme_cqe_pending(struct nvme_queue
*nvmeq
)
946 struct nvme_completion
*hcqe
= &nvmeq
->cqes
[nvmeq
->cq_head
];
948 return (le16_to_cpu(READ_ONCE(hcqe
->status
)) & 1) == nvmeq
->cq_phase
;
951 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
953 u16 head
= nvmeq
->cq_head
;
955 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
957 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
960 static inline struct blk_mq_tags
*nvme_queue_tagset(struct nvme_queue
*nvmeq
)
963 return nvmeq
->dev
->admin_tagset
.tags
[0];
964 return nvmeq
->dev
->tagset
.tags
[nvmeq
->qid
- 1];
967 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
, u16 idx
)
969 struct nvme_completion
*cqe
= &nvmeq
->cqes
[idx
];
970 __u16 command_id
= READ_ONCE(cqe
->command_id
);
974 * AEN requests are special as they don't time out and can
975 * survive any kind of queue freeze and often don't respond to
976 * aborts. We don't even bother to allocate a struct request
977 * for them but rather special case them here.
979 if (unlikely(nvme_is_aen_req(nvmeq
->qid
, command_id
))) {
980 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
981 cqe
->status
, &cqe
->result
);
985 req
= blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq
), command_id
);
986 if (unlikely(!req
)) {
987 dev_warn(nvmeq
->dev
->ctrl
.device
,
988 "invalid id %d completed on queue %d\n",
989 command_id
, le16_to_cpu(cqe
->sq_id
));
993 trace_nvme_sq(req
, cqe
->sq_head
, nvmeq
->sq_tail
);
994 if (!nvme_try_complete_req(req
, cqe
->status
, cqe
->result
))
995 nvme_pci_complete_rq(req
);
998 static inline void nvme_update_cq_head(struct nvme_queue
*nvmeq
)
1000 u16 tmp
= nvmeq
->cq_head
+ 1;
1002 if (tmp
== nvmeq
->q_depth
) {
1004 nvmeq
->cq_phase
^= 1;
1006 nvmeq
->cq_head
= tmp
;
1010 static inline int nvme_process_cq(struct nvme_queue
*nvmeq
)
1014 while (nvme_cqe_pending(nvmeq
)) {
1017 * load-load control dependency between phase and the rest of
1018 * the cqe requires a full read memory barrier
1021 nvme_handle_cqe(nvmeq
, nvmeq
->cq_head
);
1022 nvme_update_cq_head(nvmeq
);
1026 nvme_ring_cq_doorbell(nvmeq
);
1030 static irqreturn_t
nvme_irq(int irq
, void *data
)
1032 struct nvme_queue
*nvmeq
= data
;
1033 irqreturn_t ret
= IRQ_NONE
;
1036 * The rmb/wmb pair ensures we see all updates from a previous run of
1037 * the irq handler, even if that was on another CPU.
1040 if (nvme_process_cq(nvmeq
))
1047 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1049 struct nvme_queue
*nvmeq
= data
;
1051 if (nvme_cqe_pending(nvmeq
))
1052 return IRQ_WAKE_THREAD
;
1057 * Poll for completions for any interrupt driven queue
1058 * Can be called from any context.
1060 static void nvme_poll_irqdisable(struct nvme_queue
*nvmeq
)
1062 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1064 WARN_ON_ONCE(test_bit(NVMEQ_POLLED
, &nvmeq
->flags
));
1066 disable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1067 nvme_process_cq(nvmeq
);
1068 enable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1071 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
)
1073 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1076 if (!nvme_cqe_pending(nvmeq
))
1079 spin_lock(&nvmeq
->cq_poll_lock
);
1080 found
= nvme_process_cq(nvmeq
);
1081 spin_unlock(&nvmeq
->cq_poll_lock
);
1086 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1088 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1089 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1090 struct nvme_command c
;
1092 memset(&c
, 0, sizeof(c
));
1093 c
.common
.opcode
= nvme_admin_async_event
;
1094 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1095 nvme_submit_cmd(nvmeq
, &c
, true);
1098 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1100 struct nvme_command c
;
1102 memset(&c
, 0, sizeof(c
));
1103 c
.delete_queue
.opcode
= opcode
;
1104 c
.delete_queue
.qid
= cpu_to_le16(id
);
1106 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1109 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1110 struct nvme_queue
*nvmeq
, s16 vector
)
1112 struct nvme_command c
;
1113 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1115 if (!test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1116 flags
|= NVME_CQ_IRQ_ENABLED
;
1119 * Note: we (ab)use the fact that the prp fields survive if no data
1120 * is attached to the request.
1122 memset(&c
, 0, sizeof(c
));
1123 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1124 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1125 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1126 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1127 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1128 c
.create_cq
.irq_vector
= cpu_to_le16(vector
);
1130 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1133 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1134 struct nvme_queue
*nvmeq
)
1136 struct nvme_ctrl
*ctrl
= &dev
->ctrl
;
1137 struct nvme_command c
;
1138 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1141 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1142 * set. Since URGENT priority is zeroes, it makes all queues
1145 if (ctrl
->quirks
& NVME_QUIRK_MEDIUM_PRIO_SQ
)
1146 flags
|= NVME_SQ_PRIO_MEDIUM
;
1149 * Note: we (ab)use the fact that the prp fields survive if no data
1150 * is attached to the request.
1152 memset(&c
, 0, sizeof(c
));
1153 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1154 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1155 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1156 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1157 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1158 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1160 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1163 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1165 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1168 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1170 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1173 static void abort_endio(struct request
*req
, blk_status_t error
)
1175 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1176 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1178 dev_warn(nvmeq
->dev
->ctrl
.device
,
1179 "Abort status: 0x%x", nvme_req(req
)->status
);
1180 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1181 blk_mq_free_request(req
);
1184 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1186 /* If true, indicates loss of adapter communication, possibly by a
1187 * NVMe Subsystem reset.
1189 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1191 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1192 switch (dev
->ctrl
.state
) {
1193 case NVME_CTRL_RESETTING
:
1194 case NVME_CTRL_CONNECTING
:
1200 /* We shouldn't reset unless the controller is on fatal error state
1201 * _or_ if we lost the communication with it.
1203 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1209 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1211 /* Read a config register to help see what died. */
1215 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1217 if (result
== PCIBIOS_SUCCESSFUL
)
1218 dev_warn(dev
->ctrl
.device
,
1219 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1222 dev_warn(dev
->ctrl
.device
,
1223 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1227 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1229 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1230 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1231 struct nvme_dev
*dev
= nvmeq
->dev
;
1232 struct request
*abort_req
;
1233 struct nvme_command cmd
;
1234 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1236 /* If PCI error recovery process is happening, we cannot reset or
1237 * the recovery mechanism will surely fail.
1240 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1241 return BLK_EH_RESET_TIMER
;
1244 * Reset immediately if the controller is failed
1246 if (nvme_should_reset(dev
, csts
)) {
1247 nvme_warn_reset(dev
, csts
);
1248 nvme_dev_disable(dev
, false);
1249 nvme_reset_ctrl(&dev
->ctrl
);
1254 * Did we miss an interrupt?
1256 if (test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1257 nvme_poll(req
->mq_hctx
);
1259 nvme_poll_irqdisable(nvmeq
);
1261 if (blk_mq_request_completed(req
)) {
1262 dev_warn(dev
->ctrl
.device
,
1263 "I/O %d QID %d timeout, completion polled\n",
1264 req
->tag
, nvmeq
->qid
);
1269 * Shutdown immediately if controller times out while starting. The
1270 * reset work will see the pci device disabled when it gets the forced
1271 * cancellation error. All outstanding requests are completed on
1272 * shutdown, so we return BLK_EH_DONE.
1274 switch (dev
->ctrl
.state
) {
1275 case NVME_CTRL_CONNECTING
:
1276 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1278 case NVME_CTRL_DELETING
:
1279 dev_warn_ratelimited(dev
->ctrl
.device
,
1280 "I/O %d QID %d timeout, disable controller\n",
1281 req
->tag
, nvmeq
->qid
);
1282 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1283 nvme_dev_disable(dev
, true);
1285 case NVME_CTRL_RESETTING
:
1286 return BLK_EH_RESET_TIMER
;
1292 * Shutdown the controller immediately and schedule a reset if the
1293 * command was already aborted once before and still hasn't been
1294 * returned to the driver, or if this is the admin queue.
1296 if (!nvmeq
->qid
|| iod
->aborted
) {
1297 dev_warn(dev
->ctrl
.device
,
1298 "I/O %d QID %d timeout, reset controller\n",
1299 req
->tag
, nvmeq
->qid
);
1300 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1301 nvme_dev_disable(dev
, false);
1302 nvme_reset_ctrl(&dev
->ctrl
);
1307 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1308 atomic_inc(&dev
->ctrl
.abort_limit
);
1309 return BLK_EH_RESET_TIMER
;
1313 memset(&cmd
, 0, sizeof(cmd
));
1314 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1315 cmd
.abort
.cid
= req
->tag
;
1316 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1318 dev_warn(nvmeq
->dev
->ctrl
.device
,
1319 "I/O %d QID %d timeout, aborting\n",
1320 req
->tag
, nvmeq
->qid
);
1322 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1324 if (IS_ERR(abort_req
)) {
1325 atomic_inc(&dev
->ctrl
.abort_limit
);
1326 return BLK_EH_RESET_TIMER
;
1329 abort_req
->end_io_data
= NULL
;
1330 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1333 * The aborted req will be completed on receiving the abort req.
1334 * We enable the timer again. If hit twice, it'll cause a device reset,
1335 * as the device then is in a faulty state.
1337 return BLK_EH_RESET_TIMER
;
1340 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1342 dma_free_coherent(nvmeq
->dev
->dev
, CQ_SIZE(nvmeq
),
1343 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1344 if (!nvmeq
->sq_cmds
)
1347 if (test_and_clear_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
)) {
1348 pci_free_p2pmem(to_pci_dev(nvmeq
->dev
->dev
),
1349 nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1351 dma_free_coherent(nvmeq
->dev
->dev
, SQ_SIZE(nvmeq
),
1352 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1356 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1360 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1361 dev
->ctrl
.queue_count
--;
1362 nvme_free_queue(&dev
->queues
[i
]);
1367 * nvme_suspend_queue - put queue into suspended state
1368 * @nvmeq: queue to suspend
1370 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1372 if (!test_and_clear_bit(NVMEQ_ENABLED
, &nvmeq
->flags
))
1375 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1378 nvmeq
->dev
->online_queues
--;
1379 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1380 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1381 if (!test_and_clear_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1382 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), nvmeq
->cq_vector
, nvmeq
);
1386 static void nvme_suspend_io_queues(struct nvme_dev
*dev
)
1390 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--)
1391 nvme_suspend_queue(&dev
->queues
[i
]);
1394 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1396 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1399 nvme_shutdown_ctrl(&dev
->ctrl
);
1401 nvme_disable_ctrl(&dev
->ctrl
);
1403 nvme_poll_irqdisable(nvmeq
);
1407 * Called only on a device that has been disabled and after all other threads
1408 * that can check this device's completion queues have synced, except
1409 * nvme_poll(). This is the last chance for the driver to see a natural
1410 * completion before nvme_cancel_request() terminates all incomplete requests.
1412 static void nvme_reap_pending_cqes(struct nvme_dev
*dev
)
1416 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--) {
1417 spin_lock(&dev
->queues
[i
].cq_poll_lock
);
1418 nvme_process_cq(&dev
->queues
[i
]);
1419 spin_unlock(&dev
->queues
[i
].cq_poll_lock
);
1423 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1426 int q_depth
= dev
->q_depth
;
1427 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1428 NVME_CTRL_PAGE_SIZE
);
1430 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1431 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1433 mem_per_q
= round_down(mem_per_q
, NVME_CTRL_PAGE_SIZE
);
1434 q_depth
= div_u64(mem_per_q
, entry_size
);
1437 * Ensure the reduced q_depth is above some threshold where it
1438 * would be better to map queues in system memory with the
1448 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1451 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1453 if (qid
&& dev
->cmb_use_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1454 nvmeq
->sq_cmds
= pci_alloc_p2pmem(pdev
, SQ_SIZE(nvmeq
));
1455 if (nvmeq
->sq_cmds
) {
1456 nvmeq
->sq_dma_addr
= pci_p2pmem_virt_to_bus(pdev
,
1458 if (nvmeq
->sq_dma_addr
) {
1459 set_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
);
1463 pci_free_p2pmem(pdev
, nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1467 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(nvmeq
),
1468 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1469 if (!nvmeq
->sq_cmds
)
1474 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
, int depth
)
1476 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1478 if (dev
->ctrl
.queue_count
> qid
)
1481 nvmeq
->sqes
= qid
? dev
->io_sqes
: NVME_ADM_SQES
;
1482 nvmeq
->q_depth
= depth
;
1483 nvmeq
->cqes
= dma_alloc_coherent(dev
->dev
, CQ_SIZE(nvmeq
),
1484 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1488 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
))
1492 spin_lock_init(&nvmeq
->sq_lock
);
1493 spin_lock_init(&nvmeq
->cq_poll_lock
);
1495 nvmeq
->cq_phase
= 1;
1496 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1498 dev
->ctrl
.queue_count
++;
1503 dma_free_coherent(dev
->dev
, CQ_SIZE(nvmeq
), (void *)nvmeq
->cqes
,
1504 nvmeq
->cq_dma_addr
);
1509 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1511 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1512 int nr
= nvmeq
->dev
->ctrl
.instance
;
1514 if (use_threaded_interrupts
) {
1515 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1516 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1518 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1519 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1523 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1525 struct nvme_dev
*dev
= nvmeq
->dev
;
1528 nvmeq
->last_sq_tail
= 0;
1530 nvmeq
->cq_phase
= 1;
1531 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1532 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
));
1533 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1534 dev
->online_queues
++;
1535 wmb(); /* ensure the first interrupt sees the initialization */
1538 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
, bool polled
)
1540 struct nvme_dev
*dev
= nvmeq
->dev
;
1544 clear_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
1547 * A queue's vector matches the queue identifier unless the controller
1548 * has only one vector available.
1551 vector
= dev
->num_vecs
== 1 ? 0 : qid
;
1553 set_bit(NVMEQ_POLLED
, &nvmeq
->flags
);
1555 result
= adapter_alloc_cq(dev
, qid
, nvmeq
, vector
);
1559 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1565 nvmeq
->cq_vector
= vector
;
1566 nvme_init_queue(nvmeq
, qid
);
1569 result
= queue_request_irq(nvmeq
);
1574 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1578 dev
->online_queues
--;
1579 adapter_delete_sq(dev
, qid
);
1581 adapter_delete_cq(dev
, qid
);
1585 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1586 .queue_rq
= nvme_queue_rq
,
1587 .complete
= nvme_pci_complete_rq
,
1588 .init_hctx
= nvme_admin_init_hctx
,
1589 .init_request
= nvme_init_request
,
1590 .timeout
= nvme_timeout
,
1593 static const struct blk_mq_ops nvme_mq_ops
= {
1594 .queue_rq
= nvme_queue_rq
,
1595 .complete
= nvme_pci_complete_rq
,
1596 .commit_rqs
= nvme_commit_rqs
,
1597 .init_hctx
= nvme_init_hctx
,
1598 .init_request
= nvme_init_request
,
1599 .map_queues
= nvme_pci_map_queues
,
1600 .timeout
= nvme_timeout
,
1604 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1606 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1608 * If the controller was reset during removal, it's possible
1609 * user requests may be waiting on a stopped queue. Start the
1610 * queue to flush these to completion.
1612 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1613 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1614 blk_mq_free_tag_set(&dev
->admin_tagset
);
1618 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1620 if (!dev
->ctrl
.admin_q
) {
1621 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1622 dev
->admin_tagset
.nr_hw_queues
= 1;
1624 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1625 dev
->admin_tagset
.timeout
= NVME_ADMIN_TIMEOUT
;
1626 dev
->admin_tagset
.numa_node
= dev
->ctrl
.numa_node
;
1627 dev
->admin_tagset
.cmd_size
= sizeof(struct nvme_iod
);
1628 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1629 dev
->admin_tagset
.driver_data
= dev
;
1631 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1633 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1635 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1636 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1637 blk_mq_free_tag_set(&dev
->admin_tagset
);
1640 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1641 nvme_dev_remove_admin(dev
);
1642 dev
->ctrl
.admin_q
= NULL
;
1646 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1651 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1653 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1656 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1658 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1660 if (size
<= dev
->bar_mapped_size
)
1662 if (size
> pci_resource_len(pdev
, 0))
1666 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1668 dev
->bar_mapped_size
= 0;
1671 dev
->bar_mapped_size
= size
;
1672 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1677 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1681 struct nvme_queue
*nvmeq
;
1683 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1687 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1688 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1690 if (dev
->subsystem
&&
1691 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1692 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1694 result
= nvme_disable_ctrl(&dev
->ctrl
);
1698 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1702 dev
->ctrl
.numa_node
= dev_to_node(dev
->dev
);
1704 nvmeq
= &dev
->queues
[0];
1705 aqa
= nvmeq
->q_depth
- 1;
1708 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1709 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1710 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1712 result
= nvme_enable_ctrl(&dev
->ctrl
);
1716 nvmeq
->cq_vector
= 0;
1717 nvme_init_queue(nvmeq
, 0);
1718 result
= queue_request_irq(nvmeq
);
1720 dev
->online_queues
--;
1724 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1728 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1730 unsigned i
, max
, rw_queues
;
1733 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1734 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1740 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1741 if (max
!= 1 && dev
->io_queues
[HCTX_TYPE_POLL
]) {
1742 rw_queues
= dev
->io_queues
[HCTX_TYPE_DEFAULT
] +
1743 dev
->io_queues
[HCTX_TYPE_READ
];
1748 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1749 bool polled
= i
> rw_queues
;
1751 ret
= nvme_create_queue(&dev
->queues
[i
], i
, polled
);
1757 * Ignore failing Create SQ/CQ commands, we can continue with less
1758 * than the desired amount of queues, and even a controller without
1759 * I/O queues can still be used to issue admin commands. This might
1760 * be useful to upgrade a buggy firmware for example.
1762 return ret
>= 0 ? 0 : ret
;
1765 static ssize_t
nvme_cmb_show(struct device
*dev
,
1766 struct device_attribute
*attr
,
1769 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1771 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1772 ndev
->cmbloc
, ndev
->cmbsz
);
1774 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1776 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1778 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1780 return 1ULL << (12 + 4 * szu
);
1783 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1785 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1788 static void nvme_map_cmb(struct nvme_dev
*dev
)
1791 resource_size_t bar_size
;
1792 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1798 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1801 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1803 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1804 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1805 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1806 bar_size
= pci_resource_len(pdev
, bar
);
1808 if (offset
> bar_size
)
1812 * Controllers may support a CMB size larger than their BAR,
1813 * for example, due to being behind a bridge. Reduce the CMB to
1814 * the reported size of the BAR
1816 if (size
> bar_size
- offset
)
1817 size
= bar_size
- offset
;
1819 if (pci_p2pdma_add_resource(pdev
, bar
, size
, offset
)) {
1820 dev_warn(dev
->ctrl
.device
,
1821 "failed to register the CMB\n");
1825 dev
->cmb_size
= size
;
1826 dev
->cmb_use_sqes
= use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
);
1828 if ((dev
->cmbsz
& (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
)) ==
1829 (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
))
1830 pci_p2pmem_publish(pdev
, true);
1832 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1833 &dev_attr_cmb
.attr
, NULL
))
1834 dev_warn(dev
->ctrl
.device
,
1835 "failed to add sysfs attribute for CMB\n");
1838 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1840 if (dev
->cmb_size
) {
1841 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1842 &dev_attr_cmb
.attr
, NULL
);
1847 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1849 u32 host_mem_size
= dev
->host_mem_size
>> NVME_CTRL_PAGE_SHIFT
;
1850 u64 dma_addr
= dev
->host_mem_descs_dma
;
1851 struct nvme_command c
;
1854 memset(&c
, 0, sizeof(c
));
1855 c
.features
.opcode
= nvme_admin_set_features
;
1856 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1857 c
.features
.dword11
= cpu_to_le32(bits
);
1858 c
.features
.dword12
= cpu_to_le32(host_mem_size
);
1859 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1860 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1861 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1863 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1865 dev_warn(dev
->ctrl
.device
,
1866 "failed to set host mem (err %d, flags %#x).\n",
1872 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1876 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1877 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1878 size_t size
= le32_to_cpu(desc
->size
) * NVME_CTRL_PAGE_SIZE
;
1880 dma_free_attrs(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1881 le64_to_cpu(desc
->addr
),
1882 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1885 kfree(dev
->host_mem_desc_bufs
);
1886 dev
->host_mem_desc_bufs
= NULL
;
1887 dma_free_coherent(dev
->dev
,
1888 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1889 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1890 dev
->host_mem_descs
= NULL
;
1891 dev
->nr_host_mem_descs
= 0;
1894 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1897 struct nvme_host_mem_buf_desc
*descs
;
1898 u32 max_entries
, len
;
1899 dma_addr_t descs_dma
;
1904 tmp
= (preferred
+ chunk_size
- 1);
1905 do_div(tmp
, chunk_size
);
1908 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1909 max_entries
= dev
->ctrl
.hmmaxd
;
1911 descs
= dma_alloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1912 &descs_dma
, GFP_KERNEL
);
1916 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1918 goto out_free_descs
;
1920 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1921 dma_addr_t dma_addr
;
1923 len
= min_t(u64
, chunk_size
, preferred
- size
);
1924 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1925 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1929 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1930 descs
[i
].size
= cpu_to_le32(len
/ NVME_CTRL_PAGE_SIZE
);
1937 dev
->nr_host_mem_descs
= i
;
1938 dev
->host_mem_size
= size
;
1939 dev
->host_mem_descs
= descs
;
1940 dev
->host_mem_descs_dma
= descs_dma
;
1941 dev
->host_mem_desc_bufs
= bufs
;
1946 size_t size
= le32_to_cpu(descs
[i
].size
) * NVME_CTRL_PAGE_SIZE
;
1948 dma_free_attrs(dev
->dev
, size
, bufs
[i
],
1949 le64_to_cpu(descs
[i
].addr
),
1950 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1955 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1958 dev
->host_mem_descs
= NULL
;
1962 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1964 u64 min_chunk
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1965 u64 hmminds
= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1968 /* start big and work our way down */
1969 for (chunk_size
= min_chunk
; chunk_size
>= hmminds
; chunk_size
/= 2) {
1970 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1971 if (!min
|| dev
->host_mem_size
>= min
)
1973 nvme_free_host_mem(dev
);
1980 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1982 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1983 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1984 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1985 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1988 preferred
= min(preferred
, max
);
1990 dev_warn(dev
->ctrl
.device
,
1991 "min host memory (%lld MiB) above limit (%d MiB).\n",
1992 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1993 nvme_free_host_mem(dev
);
1998 * If we already have a buffer allocated check if we can reuse it.
2000 if (dev
->host_mem_descs
) {
2001 if (dev
->host_mem_size
>= min
)
2002 enable_bits
|= NVME_HOST_MEM_RETURN
;
2004 nvme_free_host_mem(dev
);
2007 if (!dev
->host_mem_descs
) {
2008 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
2009 dev_warn(dev
->ctrl
.device
,
2010 "failed to allocate host memory buffer.\n");
2011 return 0; /* controller must work without HMB */
2014 dev_info(dev
->ctrl
.device
,
2015 "allocated %lld MiB host memory buffer.\n",
2016 dev
->host_mem_size
>> ilog2(SZ_1M
));
2019 ret
= nvme_set_host_mem(dev
, enable_bits
);
2021 nvme_free_host_mem(dev
);
2026 * nirqs is the number of interrupts available for write and read
2027 * queues. The core already reserved an interrupt for the admin queue.
2029 static void nvme_calc_irq_sets(struct irq_affinity
*affd
, unsigned int nrirqs
)
2031 struct nvme_dev
*dev
= affd
->priv
;
2032 unsigned int nr_read_queues
, nr_write_queues
= dev
->nr_write_queues
;
2035 * If there is no interrupt available for queues, ensure that
2036 * the default queue is set to 1. The affinity set size is
2037 * also set to one, but the irq core ignores it for this case.
2039 * If only one interrupt is available or 'write_queue' == 0, combine
2040 * write and read queues.
2042 * If 'write_queues' > 0, ensure it leaves room for at least one read
2048 } else if (nrirqs
== 1 || !nr_write_queues
) {
2050 } else if (nr_write_queues
>= nrirqs
) {
2053 nr_read_queues
= nrirqs
- nr_write_queues
;
2056 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2057 affd
->set_size
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2058 dev
->io_queues
[HCTX_TYPE_READ
] = nr_read_queues
;
2059 affd
->set_size
[HCTX_TYPE_READ
] = nr_read_queues
;
2060 affd
->nr_sets
= nr_read_queues
? 2 : 1;
2063 static int nvme_setup_irqs(struct nvme_dev
*dev
, unsigned int nr_io_queues
)
2065 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2066 struct irq_affinity affd
= {
2068 .calc_sets
= nvme_calc_irq_sets
,
2071 unsigned int irq_queues
, poll_queues
;
2074 * Poll queues don't need interrupts, but we need at least one I/O queue
2075 * left over for non-polled I/O.
2077 poll_queues
= min(dev
->nr_poll_queues
, nr_io_queues
- 1);
2078 dev
->io_queues
[HCTX_TYPE_POLL
] = poll_queues
;
2081 * Initialize for the single interrupt case, will be updated in
2082 * nvme_calc_irq_sets().
2084 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = 1;
2085 dev
->io_queues
[HCTX_TYPE_READ
] = 0;
2088 * We need interrupts for the admin queue and each non-polled I/O queue,
2089 * but some Apple controllers require all queues to use the first
2093 if (!(dev
->ctrl
.quirks
& NVME_QUIRK_SINGLE_VECTOR
))
2094 irq_queues
+= (nr_io_queues
- poll_queues
);
2095 return pci_alloc_irq_vectors_affinity(pdev
, 1, irq_queues
,
2096 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
, &affd
);
2099 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2101 if (__nvme_disable_io_queues(dev
, nvme_admin_delete_sq
))
2102 __nvme_disable_io_queues(dev
, nvme_admin_delete_cq
);
2105 static unsigned int nvme_max_io_queues(struct nvme_dev
*dev
)
2108 * If tags are shared with admin queue (Apple bug), then
2109 * make sure we only use one IO queue.
2111 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2113 return num_possible_cpus() + dev
->nr_write_queues
+ dev
->nr_poll_queues
;
2116 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2118 struct nvme_queue
*adminq
= &dev
->queues
[0];
2119 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2120 unsigned int nr_io_queues
;
2125 * Sample the module parameters once at reset time so that we have
2126 * stable values to work with.
2128 dev
->nr_write_queues
= write_queues
;
2129 dev
->nr_poll_queues
= poll_queues
;
2131 nr_io_queues
= dev
->nr_allocated_queues
- 1;
2132 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
2136 if (nr_io_queues
== 0)
2139 clear_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2141 if (dev
->cmb_use_sqes
) {
2142 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
2143 sizeof(struct nvme_command
));
2145 dev
->q_depth
= result
;
2147 dev
->cmb_use_sqes
= false;
2151 size
= db_bar_size(dev
, nr_io_queues
);
2152 result
= nvme_remap_bar(dev
, size
);
2155 if (!--nr_io_queues
)
2158 adminq
->q_db
= dev
->dbs
;
2161 /* Deregister the admin queue's interrupt */
2162 pci_free_irq(pdev
, 0, adminq
);
2165 * If we enable msix early due to not intx, disable it again before
2166 * setting up the full range we need.
2168 pci_free_irq_vectors(pdev
);
2170 result
= nvme_setup_irqs(dev
, nr_io_queues
);
2174 dev
->num_vecs
= result
;
2175 result
= max(result
- 1, 1);
2176 dev
->max_qid
= result
+ dev
->io_queues
[HCTX_TYPE_POLL
];
2179 * Should investigate if there's a performance win from allocating
2180 * more queues than interrupt vectors; it might allow the submission
2181 * path to scale better, even if the receive path is limited by the
2182 * number of interrupts.
2184 result
= queue_request_irq(adminq
);
2187 set_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2189 result
= nvme_create_io_queues(dev
);
2190 if (result
|| dev
->online_queues
< 2)
2193 if (dev
->online_queues
- 1 < dev
->max_qid
) {
2194 nr_io_queues
= dev
->online_queues
- 1;
2195 nvme_disable_io_queues(dev
);
2196 nvme_suspend_io_queues(dev
);
2199 dev_info(dev
->ctrl
.device
, "%d/%d/%d default/read/poll queues\n",
2200 dev
->io_queues
[HCTX_TYPE_DEFAULT
],
2201 dev
->io_queues
[HCTX_TYPE_READ
],
2202 dev
->io_queues
[HCTX_TYPE_POLL
]);
2206 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
2208 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2210 blk_mq_free_request(req
);
2211 complete(&nvmeq
->delete_done
);
2214 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
2216 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2219 set_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
2221 nvme_del_queue_end(req
, error
);
2224 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2226 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2227 struct request
*req
;
2228 struct nvme_command cmd
;
2230 memset(&cmd
, 0, sizeof(cmd
));
2231 cmd
.delete_queue
.opcode
= opcode
;
2232 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2234 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
);
2236 return PTR_ERR(req
);
2238 req
->end_io_data
= nvmeq
;
2240 init_completion(&nvmeq
->delete_done
);
2241 blk_execute_rq_nowait(q
, NULL
, req
, false,
2242 opcode
== nvme_admin_delete_cq
?
2243 nvme_del_cq_end
: nvme_del_queue_end
);
2247 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
)
2249 int nr_queues
= dev
->online_queues
- 1, sent
= 0;
2250 unsigned long timeout
;
2253 timeout
= NVME_ADMIN_TIMEOUT
;
2254 while (nr_queues
> 0) {
2255 if (nvme_delete_queue(&dev
->queues
[nr_queues
], opcode
))
2261 struct nvme_queue
*nvmeq
= &dev
->queues
[nr_queues
+ sent
];
2263 timeout
= wait_for_completion_io_timeout(&nvmeq
->delete_done
,
2275 static void nvme_dev_add(struct nvme_dev
*dev
)
2279 if (!dev
->ctrl
.tagset
) {
2280 dev
->tagset
.ops
= &nvme_mq_ops
;
2281 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2282 dev
->tagset
.nr_maps
= 2; /* default + read */
2283 if (dev
->io_queues
[HCTX_TYPE_POLL
])
2284 dev
->tagset
.nr_maps
++;
2285 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2286 dev
->tagset
.numa_node
= dev
->ctrl
.numa_node
;
2287 dev
->tagset
.queue_depth
= min_t(unsigned int, dev
->q_depth
,
2288 BLK_MQ_MAX_DEPTH
) - 1;
2289 dev
->tagset
.cmd_size
= sizeof(struct nvme_iod
);
2290 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2291 dev
->tagset
.driver_data
= dev
;
2294 * Some Apple controllers requires tags to be unique
2295 * across admin and IO queue, so reserve the first 32
2296 * tags of the IO queue.
2298 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2299 dev
->tagset
.reserved_tags
= NVME_AQ_DEPTH
;
2301 ret
= blk_mq_alloc_tag_set(&dev
->tagset
);
2303 dev_warn(dev
->ctrl
.device
,
2304 "IO queues tagset allocation failed %d\n", ret
);
2307 dev
->ctrl
.tagset
= &dev
->tagset
;
2309 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2311 /* Free previously allocated queues that are no longer usable */
2312 nvme_free_queues(dev
, dev
->online_queues
);
2315 nvme_dbbuf_set(dev
);
2318 static int nvme_pci_enable(struct nvme_dev
*dev
)
2320 int result
= -ENOMEM
;
2321 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2323 if (pci_enable_device_mem(pdev
))
2326 pci_set_master(pdev
);
2328 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)))
2331 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2337 * Some devices and/or platforms don't advertise or work with INTx
2338 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2339 * adjust this later.
2341 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2345 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2347 dev
->q_depth
= min_t(u32
, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2349 dev
->ctrl
.sqsize
= dev
->q_depth
- 1; /* 0's based queue depth */
2350 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2351 dev
->dbs
= dev
->bar
+ 4096;
2354 * Some Apple controllers require a non-standard SQE size.
2355 * Interestingly they also seem to ignore the CC:IOSQES register
2356 * so we don't bother updating it here.
2358 if (dev
->ctrl
.quirks
& NVME_QUIRK_128_BYTES_SQES
)
2361 dev
->io_sqes
= NVME_NVM_IOSQES
;
2364 * Temporary fix for the Apple controller found in the MacBook8,1 and
2365 * some MacBook7,1 to avoid controller resets and data loss.
2367 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2369 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2370 "set queue depth=%u to work around controller resets\n",
2372 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2373 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2374 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2376 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2377 "set queue depth=%u\n", dev
->q_depth
);
2381 * Controllers with the shared tags quirk need the IO queue to be
2382 * big enough so that we get 32 tags for the admin queue
2384 if ((dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
) &&
2385 (dev
->q_depth
< (NVME_AQ_DEPTH
+ 2))) {
2386 dev
->q_depth
= NVME_AQ_DEPTH
+ 2;
2387 dev_warn(dev
->ctrl
.device
, "IO queue depth clamped to %d\n",
2394 pci_enable_pcie_error_reporting(pdev
);
2395 pci_save_state(pdev
);
2399 pci_disable_device(pdev
);
2403 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2407 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2410 static void nvme_pci_disable(struct nvme_dev
*dev
)
2412 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2414 pci_free_irq_vectors(pdev
);
2416 if (pci_is_enabled(pdev
)) {
2417 pci_disable_pcie_error_reporting(pdev
);
2418 pci_disable_device(pdev
);
2422 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2424 bool dead
= true, freeze
= false;
2425 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2427 mutex_lock(&dev
->shutdown_lock
);
2428 if (pci_is_enabled(pdev
)) {
2429 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2431 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2432 dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
2434 nvme_start_freeze(&dev
->ctrl
);
2436 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2437 pdev
->error_state
!= pci_channel_io_normal
);
2441 * Give the controller a chance to complete all entered requests if
2442 * doing a safe shutdown.
2444 if (!dead
&& shutdown
&& freeze
)
2445 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2447 nvme_stop_queues(&dev
->ctrl
);
2449 if (!dead
&& dev
->ctrl
.queue_count
> 0) {
2450 nvme_disable_io_queues(dev
);
2451 nvme_disable_admin_queue(dev
, shutdown
);
2453 nvme_suspend_io_queues(dev
);
2454 nvme_suspend_queue(&dev
->queues
[0]);
2455 nvme_pci_disable(dev
);
2456 nvme_reap_pending_cqes(dev
);
2458 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2459 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2460 blk_mq_tagset_wait_completed_request(&dev
->tagset
);
2461 blk_mq_tagset_wait_completed_request(&dev
->admin_tagset
);
2464 * The driver will not be starting up queues again if shutting down so
2465 * must flush all entered requests to their failed completion to avoid
2466 * deadlocking blk-mq hot-cpu notifier.
2469 nvme_start_queues(&dev
->ctrl
);
2470 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
))
2471 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
2473 mutex_unlock(&dev
->shutdown_lock
);
2476 static int nvme_disable_prepare_reset(struct nvme_dev
*dev
, bool shutdown
)
2478 if (!nvme_wait_reset(&dev
->ctrl
))
2480 nvme_dev_disable(dev
, shutdown
);
2484 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2486 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2487 NVME_CTRL_PAGE_SIZE
,
2488 NVME_CTRL_PAGE_SIZE
, 0);
2489 if (!dev
->prp_page_pool
)
2492 /* Optimisation for I/Os between 4k and 128k */
2493 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2495 if (!dev
->prp_small_pool
) {
2496 dma_pool_destroy(dev
->prp_page_pool
);
2502 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2504 dma_pool_destroy(dev
->prp_page_pool
);
2505 dma_pool_destroy(dev
->prp_small_pool
);
2508 static void nvme_free_tagset(struct nvme_dev
*dev
)
2510 if (dev
->tagset
.tags
)
2511 blk_mq_free_tag_set(&dev
->tagset
);
2512 dev
->ctrl
.tagset
= NULL
;
2515 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2517 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2519 nvme_dbbuf_dma_free(dev
);
2520 nvme_free_tagset(dev
);
2521 if (dev
->ctrl
.admin_q
)
2522 blk_put_queue(dev
->ctrl
.admin_q
);
2523 free_opal_dev(dev
->ctrl
.opal_dev
);
2524 mempool_destroy(dev
->iod_mempool
);
2525 put_device(dev
->dev
);
2530 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
)
2533 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2534 * may be holding this pci_dev's device lock.
2536 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2537 nvme_get_ctrl(&dev
->ctrl
);
2538 nvme_dev_disable(dev
, false);
2539 nvme_kill_queues(&dev
->ctrl
);
2540 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2541 nvme_put_ctrl(&dev
->ctrl
);
2544 static void nvme_reset_work(struct work_struct
*work
)
2546 struct nvme_dev
*dev
=
2547 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2548 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2551 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
)) {
2557 * If we're called to reset a live controller first shut it down before
2560 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2561 nvme_dev_disable(dev
, false);
2562 nvme_sync_queues(&dev
->ctrl
);
2564 mutex_lock(&dev
->shutdown_lock
);
2565 result
= nvme_pci_enable(dev
);
2569 result
= nvme_pci_configure_admin_queue(dev
);
2573 result
= nvme_alloc_admin_tags(dev
);
2578 * Limit the max command size to prevent iod->sg allocations going
2579 * over a single page.
2581 dev
->ctrl
.max_hw_sectors
= min_t(u32
,
2582 NVME_MAX_KB_SZ
<< 1, dma_max_mapping_size(dev
->dev
) >> 9);
2583 dev
->ctrl
.max_segments
= NVME_MAX_SEGS
;
2586 * Don't limit the IOMMU merged segment size.
2588 dma_set_max_seg_size(dev
->dev
, 0xffffffff);
2590 mutex_unlock(&dev
->shutdown_lock
);
2593 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2594 * initializing procedure here.
2596 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2597 dev_warn(dev
->ctrl
.device
,
2598 "failed to mark controller CONNECTING\n");
2604 * We do not support an SGL for metadata (yet), so we are limited to a
2605 * single integrity segment for the separate metadata pointer.
2607 dev
->ctrl
.max_integrity_segments
= 1;
2609 result
= nvme_init_identify(&dev
->ctrl
);
2613 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2614 if (!dev
->ctrl
.opal_dev
)
2615 dev
->ctrl
.opal_dev
=
2616 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2617 else if (was_suspend
)
2618 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2620 free_opal_dev(dev
->ctrl
.opal_dev
);
2621 dev
->ctrl
.opal_dev
= NULL
;
2624 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2625 result
= nvme_dbbuf_dma_alloc(dev
);
2628 "unable to allocate dma for dbbuf\n");
2631 if (dev
->ctrl
.hmpre
) {
2632 result
= nvme_setup_host_mem(dev
);
2637 result
= nvme_setup_io_queues(dev
);
2642 * Keep the controller around but remove all namespaces if we don't have
2643 * any working I/O queue.
2645 if (dev
->online_queues
< 2) {
2646 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2647 nvme_kill_queues(&dev
->ctrl
);
2648 nvme_remove_namespaces(&dev
->ctrl
);
2649 nvme_free_tagset(dev
);
2651 nvme_start_queues(&dev
->ctrl
);
2652 nvme_wait_freeze(&dev
->ctrl
);
2654 nvme_unfreeze(&dev
->ctrl
);
2658 * If only admin queue live, keep it to do further investigation or
2661 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
2662 dev_warn(dev
->ctrl
.device
,
2663 "failed to mark controller live state\n");
2668 nvme_start_ctrl(&dev
->ctrl
);
2672 mutex_unlock(&dev
->shutdown_lock
);
2675 dev_warn(dev
->ctrl
.device
,
2676 "Removing after probe failure status: %d\n", result
);
2677 nvme_remove_dead_ctrl(dev
);
2680 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2682 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2683 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2685 if (pci_get_drvdata(pdev
))
2686 device_release_driver(&pdev
->dev
);
2687 nvme_put_ctrl(&dev
->ctrl
);
2690 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2692 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2696 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2698 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2702 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2704 *val
= lo_hi_readq(to_nvme_dev(ctrl
)->bar
+ off
);
2708 static int nvme_pci_get_address(struct nvme_ctrl
*ctrl
, char *buf
, int size
)
2710 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
2712 return snprintf(buf
, size
, "%s\n", dev_name(&pdev
->dev
));
2715 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2717 .module
= THIS_MODULE
,
2718 .flags
= NVME_F_METADATA_SUPPORTED
|
2720 .reg_read32
= nvme_pci_reg_read32
,
2721 .reg_write32
= nvme_pci_reg_write32
,
2722 .reg_read64
= nvme_pci_reg_read64
,
2723 .free_ctrl
= nvme_pci_free_ctrl
,
2724 .submit_async_event
= nvme_pci_submit_async_event
,
2725 .get_address
= nvme_pci_get_address
,
2728 static int nvme_dev_map(struct nvme_dev
*dev
)
2730 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2732 if (pci_request_mem_regions(pdev
, "nvme"))
2735 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2740 pci_release_mem_regions(pdev
);
2744 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2746 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2748 * Several Samsung devices seem to drop off the PCIe bus
2749 * randomly when APST is on and uses the deepest sleep state.
2750 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2751 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2752 * 950 PRO 256GB", but it seems to be restricted to two Dell
2755 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2756 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2757 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2758 return NVME_QUIRK_NO_DEEPEST_PS
;
2759 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2761 * Samsung SSD 960 EVO drops off the PCIe bus after system
2762 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2763 * within few minutes after bootup on a Coffee Lake board -
2766 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2767 (dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A") ||
2768 dmi_match(DMI_BOARD_NAME
, "PRIME Z370-A")))
2769 return NVME_QUIRK_NO_APST
;
2770 } else if ((pdev
->vendor
== 0x144d && (pdev
->device
== 0xa801 ||
2771 pdev
->device
== 0xa808 || pdev
->device
== 0xa809)) ||
2772 (pdev
->vendor
== 0x1e0f && pdev
->device
== 0x0001)) {
2774 * Forcing to use host managed nvme power settings for
2775 * lowest idle power with quick resume latency on
2776 * Samsung and Toshiba SSDs based on suspend behavior
2777 * on Coffee Lake board for LENOVO C640
2779 if ((dmi_match(DMI_BOARD_VENDOR
, "LENOVO")) &&
2780 dmi_match(DMI_BOARD_NAME
, "LNVNB161216"))
2781 return NVME_QUIRK_SIMPLE_SUSPEND
;
2788 static bool nvme_acpi_storage_d3(struct pci_dev
*dev
)
2790 struct acpi_device
*adev
;
2791 struct pci_dev
*root
;
2797 * Look for _DSD property specifying that the storage device on the port
2798 * must use D3 to support deep platform power savings during
2801 root
= pcie_find_root_port(dev
);
2805 adev
= ACPI_COMPANION(&root
->dev
);
2810 * The property is defined in the PXSX device for South complex ports
2811 * and in the PEGP device for North complex ports.
2813 status
= acpi_get_handle(adev
->handle
, "PXSX", &handle
);
2814 if (ACPI_FAILURE(status
)) {
2815 status
= acpi_get_handle(adev
->handle
, "PEGP", &handle
);
2816 if (ACPI_FAILURE(status
))
2820 if (acpi_bus_get_device(handle
, &adev
))
2823 if (fwnode_property_read_u8(acpi_fwnode_handle(adev
), "StorageD3Enable",
2829 static inline bool nvme_acpi_storage_d3(struct pci_dev
*dev
)
2833 #endif /* CONFIG_ACPI */
2835 static void nvme_async_probe(void *data
, async_cookie_t cookie
)
2837 struct nvme_dev
*dev
= data
;
2839 flush_work(&dev
->ctrl
.reset_work
);
2840 flush_work(&dev
->ctrl
.scan_work
);
2841 nvme_put_ctrl(&dev
->ctrl
);
2844 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2846 int node
, result
= -ENOMEM
;
2847 struct nvme_dev
*dev
;
2848 unsigned long quirks
= id
->driver_data
;
2851 node
= dev_to_node(&pdev
->dev
);
2852 if (node
== NUMA_NO_NODE
)
2853 set_dev_node(&pdev
->dev
, first_memory_node
);
2855 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2859 dev
->nr_write_queues
= write_queues
;
2860 dev
->nr_poll_queues
= poll_queues
;
2861 dev
->nr_allocated_queues
= nvme_max_io_queues(dev
) + 1;
2862 dev
->queues
= kcalloc_node(dev
->nr_allocated_queues
,
2863 sizeof(struct nvme_queue
), GFP_KERNEL
, node
);
2867 dev
->dev
= get_device(&pdev
->dev
);
2868 pci_set_drvdata(pdev
, dev
);
2870 result
= nvme_dev_map(dev
);
2874 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2875 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2876 mutex_init(&dev
->shutdown_lock
);
2878 result
= nvme_setup_prp_pools(dev
);
2882 quirks
|= check_vendor_combination_bug(pdev
);
2884 if (!noacpi
&& nvme_acpi_storage_d3(pdev
)) {
2886 * Some systems use a bios work around to ask for D3 on
2887 * platforms that support kernel managed suspend.
2889 dev_info(&pdev
->dev
,
2890 "platform quirk: setting simple suspend\n");
2891 quirks
|= NVME_QUIRK_SIMPLE_SUSPEND
;
2895 * Double check that our mempool alloc size will cover the biggest
2896 * command we support.
2898 alloc_size
= nvme_pci_iod_alloc_size();
2899 WARN_ON_ONCE(alloc_size
> PAGE_SIZE
);
2901 dev
->iod_mempool
= mempool_create_node(1, mempool_kmalloc
,
2903 (void *) alloc_size
,
2905 if (!dev
->iod_mempool
) {
2910 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2913 goto release_mempool
;
2915 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2917 nvme_reset_ctrl(&dev
->ctrl
);
2918 async_schedule(nvme_async_probe
, dev
);
2923 mempool_destroy(dev
->iod_mempool
);
2925 nvme_release_prp_pools(dev
);
2927 nvme_dev_unmap(dev
);
2929 put_device(dev
->dev
);
2936 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2938 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2941 * We don't need to check the return value from waiting for the reset
2942 * state as pci_dev device lock is held, making it impossible to race
2945 nvme_disable_prepare_reset(dev
, false);
2946 nvme_sync_queues(&dev
->ctrl
);
2949 static void nvme_reset_done(struct pci_dev
*pdev
)
2951 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2953 if (!nvme_try_sched_reset(&dev
->ctrl
))
2954 flush_work(&dev
->ctrl
.reset_work
);
2957 static void nvme_shutdown(struct pci_dev
*pdev
)
2959 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2961 nvme_disable_prepare_reset(dev
, true);
2965 * The driver's remove may be called on a device in a partially initialized
2966 * state. This function must not have any dependencies on the device state in
2969 static void nvme_remove(struct pci_dev
*pdev
)
2971 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2973 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2974 pci_set_drvdata(pdev
, NULL
);
2976 if (!pci_device_is_present(pdev
)) {
2977 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2978 nvme_dev_disable(dev
, true);
2979 nvme_dev_remove_admin(dev
);
2982 flush_work(&dev
->ctrl
.reset_work
);
2983 nvme_stop_ctrl(&dev
->ctrl
);
2984 nvme_remove_namespaces(&dev
->ctrl
);
2985 nvme_dev_disable(dev
, true);
2986 nvme_release_cmb(dev
);
2987 nvme_free_host_mem(dev
);
2988 nvme_dev_remove_admin(dev
);
2989 nvme_free_queues(dev
, 0);
2990 nvme_release_prp_pools(dev
);
2991 nvme_dev_unmap(dev
);
2992 nvme_uninit_ctrl(&dev
->ctrl
);
2995 #ifdef CONFIG_PM_SLEEP
2996 static int nvme_get_power_state(struct nvme_ctrl
*ctrl
, u32
*ps
)
2998 return nvme_get_features(ctrl
, NVME_FEAT_POWER_MGMT
, 0, NULL
, 0, ps
);
3001 static int nvme_set_power_state(struct nvme_ctrl
*ctrl
, u32 ps
)
3003 return nvme_set_features(ctrl
, NVME_FEAT_POWER_MGMT
, ps
, NULL
, 0, NULL
);
3006 static int nvme_resume(struct device
*dev
)
3008 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
3009 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
3011 if (ndev
->last_ps
== U32_MAX
||
3012 nvme_set_power_state(ctrl
, ndev
->last_ps
) != 0)
3013 return nvme_try_sched_reset(&ndev
->ctrl
);
3017 static int nvme_suspend(struct device
*dev
)
3019 struct pci_dev
*pdev
= to_pci_dev(dev
);
3020 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3021 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
3024 ndev
->last_ps
= U32_MAX
;
3027 * The platform does not remove power for a kernel managed suspend so
3028 * use host managed nvme power settings for lowest idle power if
3029 * possible. This should have quicker resume latency than a full device
3030 * shutdown. But if the firmware is involved after the suspend or the
3031 * device does not support any non-default power states, shut down the
3034 * If ASPM is not enabled for the device, shut down the device and allow
3035 * the PCI bus layer to put it into D3 in order to take the PCIe link
3036 * down, so as to allow the platform to achieve its minimum low-power
3037 * state (which may not be possible if the link is up).
3039 * If a host memory buffer is enabled, shut down the device as the NVMe
3040 * specification allows the device to access the host memory buffer in
3041 * host DRAM from all power states, but hosts will fail access to DRAM
3044 if (pm_suspend_via_firmware() || !ctrl
->npss
||
3045 !pcie_aspm_enabled(pdev
) ||
3046 ndev
->nr_host_mem_descs
||
3047 (ndev
->ctrl
.quirks
& NVME_QUIRK_SIMPLE_SUSPEND
))
3048 return nvme_disable_prepare_reset(ndev
, true);
3050 nvme_start_freeze(ctrl
);
3051 nvme_wait_freeze(ctrl
);
3052 nvme_sync_queues(ctrl
);
3054 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3057 ret
= nvme_get_power_state(ctrl
, &ndev
->last_ps
);
3062 * A saved state prevents pci pm from generically controlling the
3063 * device's power. If we're using protocol specific settings, we don't
3064 * want pci interfering.
3066 pci_save_state(pdev
);
3068 ret
= nvme_set_power_state(ctrl
, ctrl
->npss
);
3073 /* discard the saved state */
3074 pci_load_saved_state(pdev
, NULL
);
3077 * Clearing npss forces a controller reset on resume. The
3078 * correct value will be rediscovered then.
3080 ret
= nvme_disable_prepare_reset(ndev
, true);
3084 nvme_unfreeze(ctrl
);
3088 static int nvme_simple_suspend(struct device
*dev
)
3090 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
3092 return nvme_disable_prepare_reset(ndev
, true);
3095 static int nvme_simple_resume(struct device
*dev
)
3097 struct pci_dev
*pdev
= to_pci_dev(dev
);
3098 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3100 return nvme_try_sched_reset(&ndev
->ctrl
);
3103 static const struct dev_pm_ops nvme_dev_pm_ops
= {
3104 .suspend
= nvme_suspend
,
3105 .resume
= nvme_resume
,
3106 .freeze
= nvme_simple_suspend
,
3107 .thaw
= nvme_simple_resume
,
3108 .poweroff
= nvme_simple_suspend
,
3109 .restore
= nvme_simple_resume
,
3111 #endif /* CONFIG_PM_SLEEP */
3113 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
3114 pci_channel_state_t state
)
3116 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3119 * A frozen channel requires a reset. When detected, this method will
3120 * shutdown the controller to quiesce. The controller will be restarted
3121 * after the slot reset through driver's slot_reset callback.
3124 case pci_channel_io_normal
:
3125 return PCI_ERS_RESULT_CAN_RECOVER
;
3126 case pci_channel_io_frozen
:
3127 dev_warn(dev
->ctrl
.device
,
3128 "frozen state error detected, reset controller\n");
3129 nvme_dev_disable(dev
, false);
3130 return PCI_ERS_RESULT_NEED_RESET
;
3131 case pci_channel_io_perm_failure
:
3132 dev_warn(dev
->ctrl
.device
,
3133 "failure state error detected, request disconnect\n");
3134 return PCI_ERS_RESULT_DISCONNECT
;
3136 return PCI_ERS_RESULT_NEED_RESET
;
3139 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
3141 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3143 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
3144 pci_restore_state(pdev
);
3145 nvme_reset_ctrl(&dev
->ctrl
);
3146 return PCI_ERS_RESULT_RECOVERED
;
3149 static void nvme_error_resume(struct pci_dev
*pdev
)
3151 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3153 flush_work(&dev
->ctrl
.reset_work
);
3156 static const struct pci_error_handlers nvme_err_handler
= {
3157 .error_detected
= nvme_error_detected
,
3158 .slot_reset
= nvme_slot_reset
,
3159 .resume
= nvme_error_resume
,
3160 .reset_prepare
= nvme_reset_prepare
,
3161 .reset_done
= nvme_reset_done
,
3164 static const struct pci_device_id nvme_id_table
[] = {
3165 { PCI_VDEVICE(INTEL
, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3166 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3167 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3168 { PCI_VDEVICE(INTEL
, 0x0a53), /* Intel P3520 */
3169 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3170 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3171 { PCI_VDEVICE(INTEL
, 0x0a54), /* Intel P4500/P4600 */
3172 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3173 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3174 { PCI_VDEVICE(INTEL
, 0x0a55), /* Dell Express Flash P4600 */
3175 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3176 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3177 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
3178 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3179 NVME_QUIRK_MEDIUM_PRIO_SQ
|
3180 NVME_QUIRK_NO_TEMP_THRESH_CHANGE
|
3181 NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3182 { PCI_VDEVICE(INTEL
, 0xf1a6), /* Intel 760p/Pro 7600p */
3183 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3184 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
3185 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
|
3186 NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3187 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3188 .driver_data
= NVME_QUIRK_NO_NS_DESC_LIST
, },
3189 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3190 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3191 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3192 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3193 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3194 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3195 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3196 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3197 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3198 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3199 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3200 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
|
3201 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3202 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3203 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3204 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3205 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3206 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3207 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3208 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3209 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3210 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3211 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3212 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3213 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3214 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3215 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3216 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3217 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001),
3218 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
},
3219 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
3220 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2005),
3221 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
|
3222 NVME_QUIRK_128_BYTES_SQES
|
3223 NVME_QUIRK_SHARED_TAGS
},
3225 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
3228 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
3230 static struct pci_driver nvme_driver
= {
3232 .id_table
= nvme_id_table
,
3233 .probe
= nvme_probe
,
3234 .remove
= nvme_remove
,
3235 .shutdown
= nvme_shutdown
,
3236 #ifdef CONFIG_PM_SLEEP
3238 .pm
= &nvme_dev_pm_ops
,
3241 .sriov_configure
= pci_sriov_configure_simple
,
3242 .err_handler
= &nvme_err_handler
,
3245 static int __init
nvme_init(void)
3247 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
3248 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
3249 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
3250 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS
< 2);
3252 return pci_register_driver(&nvme_driver
);
3255 static void __exit
nvme_exit(void)
3257 pci_unregister_driver(&nvme_driver
);
3258 flush_workqueue(nvme_wq
);
3261 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3262 MODULE_LICENSE("GPL");
3263 MODULE_VERSION("1.0");
3264 module_init(nvme_init
);
3265 module_exit(nvme_exit
);