WIP FPC-III support
[linux/fpc-iii.git] / drivers / nvme / host / rdma.c
blobcf6c49d09c820aeddbd02fe49974c7644f7f062e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
27 #include "nvme.h"
28 #include "fabrics.h"
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
102 struct nvme_rdma_ctrl {
103 /* read only in the hot path */
104 struct nvme_rdma_queue *queues;
106 /* other member variables */
107 struct blk_mq_tag_set tag_set;
108 struct work_struct err_work;
110 struct nvme_rdma_qe async_event_sqe;
112 struct delayed_work reconnect_work;
114 struct list_head list;
116 struct blk_mq_tag_set admin_tag_set;
117 struct nvme_rdma_device *device;
119 u32 max_fr_pages;
121 struct sockaddr_storage addr;
122 struct sockaddr_storage src_addr;
124 struct nvme_ctrl ctrl;
125 bool use_inline_data;
126 u32 io_queues[HCTX_MAX_TYPES];
129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 static LIST_HEAD(device_list);
135 static DEFINE_MUTEX(device_list_mutex);
137 static LIST_HEAD(nvme_rdma_ctrl_list);
138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141 * Disabling this option makes small I/O goes faster, but is fundamentally
142 * unsafe. With it turned off we will have to register a global rkey that
143 * allows read and write access to all physical memory.
145 static bool register_always = true;
146 module_param(register_always, bool, 0444);
147 MODULE_PARM_DESC(register_always,
148 "Use memory registration even for contiguous memory regions");
150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
151 struct rdma_cm_event *event);
152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153 static void nvme_rdma_complete_rq(struct request *rq);
155 static const struct blk_mq_ops nvme_rdma_mq_ops;
156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 return queue - queue->ctrl->queues;
163 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 return nvme_rdma_queue_idx(queue) >
166 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
167 queue->ctrl->io_queues[HCTX_TYPE_READ];
170 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 size_t capsule_size, enum dma_data_direction dir)
178 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
179 kfree(qe->data);
182 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
183 size_t capsule_size, enum dma_data_direction dir)
185 qe->data = kzalloc(capsule_size, GFP_KERNEL);
186 if (!qe->data)
187 return -ENOMEM;
189 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
190 if (ib_dma_mapping_error(ibdev, qe->dma)) {
191 kfree(qe->data);
192 qe->data = NULL;
193 return -ENOMEM;
196 return 0;
199 static void nvme_rdma_free_ring(struct ib_device *ibdev,
200 struct nvme_rdma_qe *ring, size_t ib_queue_size,
201 size_t capsule_size, enum dma_data_direction dir)
203 int i;
205 for (i = 0; i < ib_queue_size; i++)
206 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207 kfree(ring);
210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
211 size_t ib_queue_size, size_t capsule_size,
212 enum dma_data_direction dir)
214 struct nvme_rdma_qe *ring;
215 int i;
217 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218 if (!ring)
219 return NULL;
222 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
223 * lifetime. It's safe, since any chage in the underlying RDMA device
224 * will issue error recovery and queue re-creation.
226 for (i = 0; i < ib_queue_size; i++) {
227 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
228 goto out_free_ring;
231 return ring;
233 out_free_ring:
234 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
235 return NULL;
238 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 pr_debug("QP event %s (%d)\n",
241 ib_event_msg(event->event), event->event);
245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 int ret;
249 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251 if (ret < 0)
252 return ret;
253 if (ret == 0)
254 return -ETIMEDOUT;
255 WARN_ON_ONCE(queue->cm_error > 0);
256 return queue->cm_error;
259 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 struct nvme_rdma_device *dev = queue->device;
262 struct ib_qp_init_attr init_attr;
263 int ret;
265 memset(&init_attr, 0, sizeof(init_attr));
266 init_attr.event_handler = nvme_rdma_qp_event;
267 /* +1 for drain */
268 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
269 /* +1 for drain */
270 init_attr.cap.max_recv_wr = queue->queue_size + 1;
271 init_attr.cap.max_recv_sge = 1;
272 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
273 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
274 init_attr.qp_type = IB_QPT_RC;
275 init_attr.send_cq = queue->ib_cq;
276 init_attr.recv_cq = queue->ib_cq;
277 if (queue->pi_support)
278 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
279 init_attr.qp_context = queue;
281 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 queue->qp = queue->cm_id->qp;
284 return ret;
287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
288 struct request *rq, unsigned int hctx_idx)
290 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 kfree(req->sqe.data);
295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
296 struct request *rq, unsigned int hctx_idx,
297 unsigned int numa_node)
299 struct nvme_rdma_ctrl *ctrl = set->driver_data;
300 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
301 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
302 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 nvme_req(rq)->ctrl = &ctrl->ctrl;
305 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
306 if (!req->sqe.data)
307 return -ENOMEM;
309 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
310 if (queue->pi_support)
311 req->metadata_sgl = (void *)nvme_req(rq) +
312 sizeof(struct nvme_rdma_request) +
313 NVME_RDMA_DATA_SGL_SIZE;
315 req->queue = queue;
317 return 0;
320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
321 unsigned int hctx_idx)
323 struct nvme_rdma_ctrl *ctrl = data;
324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328 hctx->driver_data = queue;
329 return 0;
332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
333 unsigned int hctx_idx)
335 struct nvme_rdma_ctrl *ctrl = data;
336 struct nvme_rdma_queue *queue = &ctrl->queues[0];
338 BUG_ON(hctx_idx != 0);
340 hctx->driver_data = queue;
341 return 0;
344 static void nvme_rdma_free_dev(struct kref *ref)
346 struct nvme_rdma_device *ndev =
347 container_of(ref, struct nvme_rdma_device, ref);
349 mutex_lock(&device_list_mutex);
350 list_del(&ndev->entry);
351 mutex_unlock(&device_list_mutex);
353 ib_dealloc_pd(ndev->pd);
354 kfree(ndev);
357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 kref_put(&dev->ref, nvme_rdma_free_dev);
362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 return kref_get_unless_zero(&dev->ref);
367 static struct nvme_rdma_device *
368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 struct nvme_rdma_device *ndev;
372 mutex_lock(&device_list_mutex);
373 list_for_each_entry(ndev, &device_list, entry) {
374 if (ndev->dev->node_guid == cm_id->device->node_guid &&
375 nvme_rdma_dev_get(ndev))
376 goto out_unlock;
379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
380 if (!ndev)
381 goto out_err;
383 ndev->dev = cm_id->device;
384 kref_init(&ndev->ref);
386 ndev->pd = ib_alloc_pd(ndev->dev,
387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
388 if (IS_ERR(ndev->pd))
389 goto out_free_dev;
391 if (!(ndev->dev->attrs.device_cap_flags &
392 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
393 dev_err(&ndev->dev->dev,
394 "Memory registrations not supported.\n");
395 goto out_free_pd;
398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
399 ndev->dev->attrs.max_send_sge - 1);
400 list_add(&ndev->entry, &device_list);
401 out_unlock:
402 mutex_unlock(&device_list_mutex);
403 return ndev;
405 out_free_pd:
406 ib_dealloc_pd(ndev->pd);
407 out_free_dev:
408 kfree(ndev);
409 out_err:
410 mutex_unlock(&device_list_mutex);
411 return NULL;
414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 if (nvme_rdma_poll_queue(queue))
417 ib_free_cq(queue->ib_cq);
418 else
419 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 struct nvme_rdma_device *dev;
425 struct ib_device *ibdev;
427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
428 return;
430 dev = queue->device;
431 ibdev = dev->dev;
433 if (queue->pi_support)
434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
438 * The cm_id object might have been destroyed during RDMA connection
439 * establishment error flow to avoid getting other cma events, thus
440 * the destruction of the QP shouldn't use rdma_cm API.
442 ib_destroy_qp(queue->qp);
443 nvme_rdma_free_cq(queue);
445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448 nvme_rdma_dev_put(dev);
451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 u32 max_page_list_len;
455 if (pi_support)
456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 else
458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
463 static int nvme_rdma_create_cq(struct ib_device *ibdev,
464 struct nvme_rdma_queue *queue)
466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
467 enum ib_poll_context poll_ctx;
470 * Spread I/O queues completion vectors according their queue index.
471 * Admin queues can always go on completion vector 0.
473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 /* Polling queues need direct cq polling context */
476 if (nvme_rdma_poll_queue(queue)) {
477 poll_ctx = IB_POLL_DIRECT;
478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
479 comp_vector, poll_ctx);
480 } else {
481 poll_ctx = IB_POLL_SOFTIRQ;
482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
483 comp_vector, poll_ctx);
486 if (IS_ERR(queue->ib_cq)) {
487 ret = PTR_ERR(queue->ib_cq);
488 return ret;
491 return 0;
494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 struct ib_device *ibdev;
497 const int send_wr_factor = 3; /* MR, SEND, INV */
498 const int cq_factor = send_wr_factor + 1; /* + RECV */
499 int ret, pages_per_mr;
501 queue->device = nvme_rdma_find_get_device(queue->cm_id);
502 if (!queue->device) {
503 dev_err(queue->cm_id->device->dev.parent,
504 "no client data found!\n");
505 return -ECONNREFUSED;
507 ibdev = queue->device->dev;
509 /* +1 for ib_stop_cq */
510 queue->cq_size = cq_factor * queue->queue_size + 1;
512 ret = nvme_rdma_create_cq(ibdev, queue);
513 if (ret)
514 goto out_put_dev;
516 ret = nvme_rdma_create_qp(queue, send_wr_factor);
517 if (ret)
518 goto out_destroy_ib_cq;
520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
521 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
522 if (!queue->rsp_ring) {
523 ret = -ENOMEM;
524 goto out_destroy_qp;
528 * Currently we don't use SG_GAPS MR's so if the first entry is
529 * misaligned we'll end up using two entries for a single data page,
530 * so one additional entry is required.
532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
534 queue->queue_size,
535 IB_MR_TYPE_MEM_REG,
536 pages_per_mr, 0);
537 if (ret) {
538 dev_err(queue->ctrl->ctrl.device,
539 "failed to initialize MR pool sized %d for QID %d\n",
540 queue->queue_size, nvme_rdma_queue_idx(queue));
541 goto out_destroy_ring;
544 if (queue->pi_support) {
545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
546 queue->queue_size, IB_MR_TYPE_INTEGRITY,
547 pages_per_mr, pages_per_mr);
548 if (ret) {
549 dev_err(queue->ctrl->ctrl.device,
550 "failed to initialize PI MR pool sized %d for QID %d\n",
551 queue->queue_size, nvme_rdma_queue_idx(queue));
552 goto out_destroy_mr_pool;
556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558 return 0;
560 out_destroy_mr_pool:
561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
562 out_destroy_ring:
563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
564 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
565 out_destroy_qp:
566 rdma_destroy_qp(queue->cm_id);
567 out_destroy_ib_cq:
568 nvme_rdma_free_cq(queue);
569 out_put_dev:
570 nvme_rdma_dev_put(queue->device);
571 return ret;
574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
575 int idx, size_t queue_size)
577 struct nvme_rdma_queue *queue;
578 struct sockaddr *src_addr = NULL;
579 int ret;
581 queue = &ctrl->queues[idx];
582 queue->ctrl = ctrl;
583 if (idx && ctrl->ctrl.max_integrity_segments)
584 queue->pi_support = true;
585 else
586 queue->pi_support = false;
587 init_completion(&queue->cm_done);
589 if (idx > 0)
590 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
591 else
592 queue->cmnd_capsule_len = sizeof(struct nvme_command);
594 queue->queue_size = queue_size;
596 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
597 RDMA_PS_TCP, IB_QPT_RC);
598 if (IS_ERR(queue->cm_id)) {
599 dev_info(ctrl->ctrl.device,
600 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
601 return PTR_ERR(queue->cm_id);
604 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
605 src_addr = (struct sockaddr *)&ctrl->src_addr;
607 queue->cm_error = -ETIMEDOUT;
608 ret = rdma_resolve_addr(queue->cm_id, src_addr,
609 (struct sockaddr *)&ctrl->addr,
610 NVME_RDMA_CONNECT_TIMEOUT_MS);
611 if (ret) {
612 dev_info(ctrl->ctrl.device,
613 "rdma_resolve_addr failed (%d).\n", ret);
614 goto out_destroy_cm_id;
617 ret = nvme_rdma_wait_for_cm(queue);
618 if (ret) {
619 dev_info(ctrl->ctrl.device,
620 "rdma connection establishment failed (%d)\n", ret);
621 goto out_destroy_cm_id;
624 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
626 return 0;
628 out_destroy_cm_id:
629 rdma_destroy_id(queue->cm_id);
630 nvme_rdma_destroy_queue_ib(queue);
631 return ret;
634 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
636 rdma_disconnect(queue->cm_id);
637 ib_drain_qp(queue->qp);
640 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
642 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
643 return;
644 __nvme_rdma_stop_queue(queue);
647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
649 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 return;
652 nvme_rdma_destroy_queue_ib(queue);
653 rdma_destroy_id(queue->cm_id);
656 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 int i;
660 for (i = 1; i < ctrl->ctrl.queue_count; i++)
661 nvme_rdma_free_queue(&ctrl->queues[i]);
664 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 int i;
668 for (i = 1; i < ctrl->ctrl.queue_count; i++)
669 nvme_rdma_stop_queue(&ctrl->queues[i]);
672 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
675 bool poll = nvme_rdma_poll_queue(queue);
676 int ret;
678 if (idx)
679 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
680 else
681 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
683 if (!ret) {
684 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685 } else {
686 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
687 __nvme_rdma_stop_queue(queue);
688 dev_info(ctrl->ctrl.device,
689 "failed to connect queue: %d ret=%d\n", idx, ret);
691 return ret;
694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
696 int i, ret = 0;
698 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
699 ret = nvme_rdma_start_queue(ctrl, i);
700 if (ret)
701 goto out_stop_queues;
704 return 0;
706 out_stop_queues:
707 for (i--; i >= 1; i--)
708 nvme_rdma_stop_queue(&ctrl->queues[i]);
709 return ret;
712 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
715 struct ib_device *ibdev = ctrl->device->dev;
716 unsigned int nr_io_queues, nr_default_queues;
717 unsigned int nr_read_queues, nr_poll_queues;
718 int i, ret;
720 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
721 min(opts->nr_io_queues, num_online_cpus()));
722 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
723 min(opts->nr_write_queues, num_online_cpus()));
724 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
725 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
727 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
728 if (ret)
729 return ret;
731 ctrl->ctrl.queue_count = nr_io_queues + 1;
732 if (ctrl->ctrl.queue_count < 2)
733 return 0;
735 dev_info(ctrl->ctrl.device,
736 "creating %d I/O queues.\n", nr_io_queues);
738 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
740 * separate read/write queues
741 * hand out dedicated default queues only after we have
742 * sufficient read queues.
744 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
745 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
746 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
747 min(nr_default_queues, nr_io_queues);
748 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
749 } else {
751 * shared read/write queues
752 * either no write queues were requested, or we don't have
753 * sufficient queue count to have dedicated default queues.
755 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
756 min(nr_read_queues, nr_io_queues);
757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
760 if (opts->nr_poll_queues && nr_io_queues) {
761 /* map dedicated poll queues only if we have queues left */
762 ctrl->io_queues[HCTX_TYPE_POLL] =
763 min(nr_poll_queues, nr_io_queues);
766 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
767 ret = nvme_rdma_alloc_queue(ctrl, i,
768 ctrl->ctrl.sqsize + 1);
769 if (ret)
770 goto out_free_queues;
773 return 0;
775 out_free_queues:
776 for (i--; i >= 1; i--)
777 nvme_rdma_free_queue(&ctrl->queues[i]);
779 return ret;
782 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
783 bool admin)
785 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
786 struct blk_mq_tag_set *set;
787 int ret;
789 if (admin) {
790 set = &ctrl->admin_tag_set;
791 memset(set, 0, sizeof(*set));
792 set->ops = &nvme_rdma_admin_mq_ops;
793 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
794 set->reserved_tags = 2; /* connect + keep-alive */
795 set->numa_node = nctrl->numa_node;
796 set->cmd_size = sizeof(struct nvme_rdma_request) +
797 NVME_RDMA_DATA_SGL_SIZE;
798 set->driver_data = ctrl;
799 set->nr_hw_queues = 1;
800 set->timeout = NVME_ADMIN_TIMEOUT;
801 set->flags = BLK_MQ_F_NO_SCHED;
802 } else {
803 set = &ctrl->tag_set;
804 memset(set, 0, sizeof(*set));
805 set->ops = &nvme_rdma_mq_ops;
806 set->queue_depth = nctrl->sqsize + 1;
807 set->reserved_tags = 1; /* fabric connect */
808 set->numa_node = nctrl->numa_node;
809 set->flags = BLK_MQ_F_SHOULD_MERGE;
810 set->cmd_size = sizeof(struct nvme_rdma_request) +
811 NVME_RDMA_DATA_SGL_SIZE;
812 if (nctrl->max_integrity_segments)
813 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
814 NVME_RDMA_METADATA_SGL_SIZE;
815 set->driver_data = ctrl;
816 set->nr_hw_queues = nctrl->queue_count - 1;
817 set->timeout = NVME_IO_TIMEOUT;
818 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
821 ret = blk_mq_alloc_tag_set(set);
822 if (ret)
823 return ERR_PTR(ret);
825 return set;
828 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
829 bool remove)
831 if (remove) {
832 blk_cleanup_queue(ctrl->ctrl.admin_q);
833 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
834 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
836 if (ctrl->async_event_sqe.data) {
837 cancel_work_sync(&ctrl->ctrl.async_event_work);
838 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
839 sizeof(struct nvme_command), DMA_TO_DEVICE);
840 ctrl->async_event_sqe.data = NULL;
842 nvme_rdma_free_queue(&ctrl->queues[0]);
845 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
846 bool new)
848 bool pi_capable = false;
849 int error;
851 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
852 if (error)
853 return error;
855 ctrl->device = ctrl->queues[0].device;
856 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
858 /* T10-PI support */
859 if (ctrl->device->dev->attrs.device_cap_flags &
860 IB_DEVICE_INTEGRITY_HANDOVER)
861 pi_capable = true;
863 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
864 pi_capable);
867 * Bind the async event SQE DMA mapping to the admin queue lifetime.
868 * It's safe, since any chage in the underlying RDMA device will issue
869 * error recovery and queue re-creation.
871 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
872 sizeof(struct nvme_command), DMA_TO_DEVICE);
873 if (error)
874 goto out_free_queue;
876 if (new) {
877 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
878 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
879 error = PTR_ERR(ctrl->ctrl.admin_tagset);
880 goto out_free_async_qe;
883 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
884 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
885 error = PTR_ERR(ctrl->ctrl.fabrics_q);
886 goto out_free_tagset;
889 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
890 if (IS_ERR(ctrl->ctrl.admin_q)) {
891 error = PTR_ERR(ctrl->ctrl.admin_q);
892 goto out_cleanup_fabrics_q;
896 error = nvme_rdma_start_queue(ctrl, 0);
897 if (error)
898 goto out_cleanup_queue;
900 error = nvme_enable_ctrl(&ctrl->ctrl);
901 if (error)
902 goto out_stop_queue;
904 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
905 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
906 if (pi_capable)
907 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
908 else
909 ctrl->ctrl.max_integrity_segments = 0;
911 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
913 error = nvme_init_identify(&ctrl->ctrl);
914 if (error)
915 goto out_stop_queue;
917 return 0;
919 out_stop_queue:
920 nvme_rdma_stop_queue(&ctrl->queues[0]);
921 out_cleanup_queue:
922 if (new)
923 blk_cleanup_queue(ctrl->ctrl.admin_q);
924 out_cleanup_fabrics_q:
925 if (new)
926 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
927 out_free_tagset:
928 if (new)
929 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
930 out_free_async_qe:
931 if (ctrl->async_event_sqe.data) {
932 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
933 sizeof(struct nvme_command), DMA_TO_DEVICE);
934 ctrl->async_event_sqe.data = NULL;
936 out_free_queue:
937 nvme_rdma_free_queue(&ctrl->queues[0]);
938 return error;
941 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
942 bool remove)
944 if (remove) {
945 blk_cleanup_queue(ctrl->ctrl.connect_q);
946 blk_mq_free_tag_set(ctrl->ctrl.tagset);
948 nvme_rdma_free_io_queues(ctrl);
951 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
953 int ret;
955 ret = nvme_rdma_alloc_io_queues(ctrl);
956 if (ret)
957 return ret;
959 if (new) {
960 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
961 if (IS_ERR(ctrl->ctrl.tagset)) {
962 ret = PTR_ERR(ctrl->ctrl.tagset);
963 goto out_free_io_queues;
966 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
967 if (IS_ERR(ctrl->ctrl.connect_q)) {
968 ret = PTR_ERR(ctrl->ctrl.connect_q);
969 goto out_free_tag_set;
973 ret = nvme_rdma_start_io_queues(ctrl);
974 if (ret)
975 goto out_cleanup_connect_q;
977 if (!new) {
978 nvme_start_queues(&ctrl->ctrl);
979 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
981 * If we timed out waiting for freeze we are likely to
982 * be stuck. Fail the controller initialization just
983 * to be safe.
985 ret = -ENODEV;
986 goto out_wait_freeze_timed_out;
988 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
989 ctrl->ctrl.queue_count - 1);
990 nvme_unfreeze(&ctrl->ctrl);
993 return 0;
995 out_wait_freeze_timed_out:
996 nvme_stop_queues(&ctrl->ctrl);
997 nvme_rdma_stop_io_queues(ctrl);
998 out_cleanup_connect_q:
999 if (new)
1000 blk_cleanup_queue(ctrl->ctrl.connect_q);
1001 out_free_tag_set:
1002 if (new)
1003 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1004 out_free_io_queues:
1005 nvme_rdma_free_io_queues(ctrl);
1006 return ret;
1009 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1010 bool remove)
1012 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1013 blk_sync_queue(ctrl->ctrl.admin_q);
1014 nvme_rdma_stop_queue(&ctrl->queues[0]);
1015 if (ctrl->ctrl.admin_tagset) {
1016 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1017 nvme_cancel_request, &ctrl->ctrl);
1018 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1020 if (remove)
1021 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1022 nvme_rdma_destroy_admin_queue(ctrl, remove);
1025 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1026 bool remove)
1028 if (ctrl->ctrl.queue_count > 1) {
1029 nvme_start_freeze(&ctrl->ctrl);
1030 nvme_stop_queues(&ctrl->ctrl);
1031 nvme_sync_io_queues(&ctrl->ctrl);
1032 nvme_rdma_stop_io_queues(ctrl);
1033 if (ctrl->ctrl.tagset) {
1034 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1035 nvme_cancel_request, &ctrl->ctrl);
1036 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1038 if (remove)
1039 nvme_start_queues(&ctrl->ctrl);
1040 nvme_rdma_destroy_io_queues(ctrl, remove);
1044 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1046 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1048 if (list_empty(&ctrl->list))
1049 goto free_ctrl;
1051 mutex_lock(&nvme_rdma_ctrl_mutex);
1052 list_del(&ctrl->list);
1053 mutex_unlock(&nvme_rdma_ctrl_mutex);
1055 nvmf_free_options(nctrl->opts);
1056 free_ctrl:
1057 kfree(ctrl->queues);
1058 kfree(ctrl);
1061 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1063 /* If we are resetting/deleting then do nothing */
1064 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1065 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1066 ctrl->ctrl.state == NVME_CTRL_LIVE);
1067 return;
1070 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1071 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1072 ctrl->ctrl.opts->reconnect_delay);
1073 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1074 ctrl->ctrl.opts->reconnect_delay * HZ);
1075 } else {
1076 nvme_delete_ctrl(&ctrl->ctrl);
1080 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1082 int ret = -EINVAL;
1083 bool changed;
1085 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1086 if (ret)
1087 return ret;
1089 if (ctrl->ctrl.icdoff) {
1090 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1091 goto destroy_admin;
1094 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1095 dev_err(ctrl->ctrl.device,
1096 "Mandatory keyed sgls are not supported!\n");
1097 goto destroy_admin;
1100 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1101 dev_warn(ctrl->ctrl.device,
1102 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1103 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1106 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1107 dev_warn(ctrl->ctrl.device,
1108 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1109 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1110 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1113 if (ctrl->ctrl.sgls & (1 << 20))
1114 ctrl->use_inline_data = true;
1116 if (ctrl->ctrl.queue_count > 1) {
1117 ret = nvme_rdma_configure_io_queues(ctrl, new);
1118 if (ret)
1119 goto destroy_admin;
1122 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1123 if (!changed) {
1125 * state change failure is ok if we started ctrl delete,
1126 * unless we're during creation of a new controller to
1127 * avoid races with teardown flow.
1129 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1130 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1131 WARN_ON_ONCE(new);
1132 ret = -EINVAL;
1133 goto destroy_io;
1136 nvme_start_ctrl(&ctrl->ctrl);
1137 return 0;
1139 destroy_io:
1140 if (ctrl->ctrl.queue_count > 1)
1141 nvme_rdma_destroy_io_queues(ctrl, new);
1142 destroy_admin:
1143 nvme_rdma_stop_queue(&ctrl->queues[0]);
1144 nvme_rdma_destroy_admin_queue(ctrl, new);
1145 return ret;
1148 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1150 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1151 struct nvme_rdma_ctrl, reconnect_work);
1153 ++ctrl->ctrl.nr_reconnects;
1155 if (nvme_rdma_setup_ctrl(ctrl, false))
1156 goto requeue;
1158 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1159 ctrl->ctrl.nr_reconnects);
1161 ctrl->ctrl.nr_reconnects = 0;
1163 return;
1165 requeue:
1166 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1167 ctrl->ctrl.nr_reconnects);
1168 nvme_rdma_reconnect_or_remove(ctrl);
1171 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1173 struct nvme_rdma_ctrl *ctrl = container_of(work,
1174 struct nvme_rdma_ctrl, err_work);
1176 nvme_stop_keep_alive(&ctrl->ctrl);
1177 nvme_rdma_teardown_io_queues(ctrl, false);
1178 nvme_start_queues(&ctrl->ctrl);
1179 nvme_rdma_teardown_admin_queue(ctrl, false);
1180 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1182 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1183 /* state change failure is ok if we started ctrl delete */
1184 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1185 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1186 return;
1189 nvme_rdma_reconnect_or_remove(ctrl);
1192 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1194 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1195 return;
1197 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1198 queue_work(nvme_reset_wq, &ctrl->err_work);
1201 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1203 struct request *rq = blk_mq_rq_from_pdu(req);
1205 if (!refcount_dec_and_test(&req->ref))
1206 return;
1207 if (!nvme_try_complete_req(rq, req->status, req->result))
1208 nvme_rdma_complete_rq(rq);
1211 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1212 const char *op)
1214 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1215 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1217 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1218 dev_info(ctrl->ctrl.device,
1219 "%s for CQE 0x%p failed with status %s (%d)\n",
1220 op, wc->wr_cqe,
1221 ib_wc_status_msg(wc->status), wc->status);
1222 nvme_rdma_error_recovery(ctrl);
1225 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1227 if (unlikely(wc->status != IB_WC_SUCCESS))
1228 nvme_rdma_wr_error(cq, wc, "MEMREG");
1231 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1233 struct nvme_rdma_request *req =
1234 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1236 if (unlikely(wc->status != IB_WC_SUCCESS))
1237 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1238 else
1239 nvme_rdma_end_request(req);
1242 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1243 struct nvme_rdma_request *req)
1245 struct ib_send_wr wr = {
1246 .opcode = IB_WR_LOCAL_INV,
1247 .next = NULL,
1248 .num_sge = 0,
1249 .send_flags = IB_SEND_SIGNALED,
1250 .ex.invalidate_rkey = req->mr->rkey,
1253 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1254 wr.wr_cqe = &req->reg_cqe;
1256 return ib_post_send(queue->qp, &wr, NULL);
1259 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1260 struct request *rq)
1262 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1263 struct nvme_rdma_device *dev = queue->device;
1264 struct ib_device *ibdev = dev->dev;
1265 struct list_head *pool = &queue->qp->rdma_mrs;
1267 if (!blk_rq_nr_phys_segments(rq))
1268 return;
1270 if (blk_integrity_rq(rq)) {
1271 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1272 req->metadata_sgl->nents, rq_dma_dir(rq));
1273 sg_free_table_chained(&req->metadata_sgl->sg_table,
1274 NVME_INLINE_METADATA_SG_CNT);
1277 if (req->use_sig_mr)
1278 pool = &queue->qp->sig_mrs;
1280 if (req->mr) {
1281 ib_mr_pool_put(queue->qp, pool, req->mr);
1282 req->mr = NULL;
1285 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1286 rq_dma_dir(rq));
1287 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1290 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1292 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1294 sg->addr = 0;
1295 put_unaligned_le24(0, sg->length);
1296 put_unaligned_le32(0, sg->key);
1297 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1298 return 0;
1301 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1302 struct nvme_rdma_request *req, struct nvme_command *c,
1303 int count)
1305 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1306 struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1307 struct ib_sge *sge = &req->sge[1];
1308 u32 len = 0;
1309 int i;
1311 for (i = 0; i < count; i++, sgl++, sge++) {
1312 sge->addr = sg_dma_address(sgl);
1313 sge->length = sg_dma_len(sgl);
1314 sge->lkey = queue->device->pd->local_dma_lkey;
1315 len += sge->length;
1318 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1319 sg->length = cpu_to_le32(len);
1320 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1322 req->num_sge += count;
1323 return 0;
1326 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1327 struct nvme_rdma_request *req, struct nvme_command *c)
1329 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1331 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1332 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1333 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1334 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1335 return 0;
1338 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1339 struct nvme_rdma_request *req, struct nvme_command *c,
1340 int count)
1342 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1343 int nr;
1345 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1346 if (WARN_ON_ONCE(!req->mr))
1347 return -EAGAIN;
1350 * Align the MR to a 4K page size to match the ctrl page size and
1351 * the block virtual boundary.
1353 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1354 SZ_4K);
1355 if (unlikely(nr < count)) {
1356 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1357 req->mr = NULL;
1358 if (nr < 0)
1359 return nr;
1360 return -EINVAL;
1363 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1365 req->reg_cqe.done = nvme_rdma_memreg_done;
1366 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1367 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1368 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1369 req->reg_wr.wr.num_sge = 0;
1370 req->reg_wr.mr = req->mr;
1371 req->reg_wr.key = req->mr->rkey;
1372 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1373 IB_ACCESS_REMOTE_READ |
1374 IB_ACCESS_REMOTE_WRITE;
1376 sg->addr = cpu_to_le64(req->mr->iova);
1377 put_unaligned_le24(req->mr->length, sg->length);
1378 put_unaligned_le32(req->mr->rkey, sg->key);
1379 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1380 NVME_SGL_FMT_INVALIDATE;
1382 return 0;
1385 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1386 struct nvme_command *cmd, struct ib_sig_domain *domain,
1387 u16 control, u8 pi_type)
1389 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1390 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1391 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1392 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1393 if (control & NVME_RW_PRINFO_PRCHK_REF)
1394 domain->sig.dif.ref_remap = true;
1396 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1397 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1398 domain->sig.dif.app_escape = true;
1399 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1400 domain->sig.dif.ref_escape = true;
1403 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1404 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1405 u8 pi_type)
1407 u16 control = le16_to_cpu(cmd->rw.control);
1409 memset(sig_attrs, 0, sizeof(*sig_attrs));
1410 if (control & NVME_RW_PRINFO_PRACT) {
1411 /* for WRITE_INSERT/READ_STRIP no memory domain */
1412 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1413 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1414 pi_type);
1415 /* Clear the PRACT bit since HCA will generate/verify the PI */
1416 control &= ~NVME_RW_PRINFO_PRACT;
1417 cmd->rw.control = cpu_to_le16(control);
1418 } else {
1419 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1420 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1421 pi_type);
1422 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1423 pi_type);
1427 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1429 *mask = 0;
1430 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1431 *mask |= IB_SIG_CHECK_REFTAG;
1432 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1433 *mask |= IB_SIG_CHECK_GUARD;
1436 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1438 if (unlikely(wc->status != IB_WC_SUCCESS))
1439 nvme_rdma_wr_error(cq, wc, "SIG");
1442 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1443 struct nvme_rdma_request *req, struct nvme_command *c,
1444 int count, int pi_count)
1446 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1447 struct ib_reg_wr *wr = &req->reg_wr;
1448 struct request *rq = blk_mq_rq_from_pdu(req);
1449 struct nvme_ns *ns = rq->q->queuedata;
1450 struct bio *bio = rq->bio;
1451 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1452 int nr;
1454 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1455 if (WARN_ON_ONCE(!req->mr))
1456 return -EAGAIN;
1458 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1459 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1460 SZ_4K);
1461 if (unlikely(nr))
1462 goto mr_put;
1464 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1465 req->mr->sig_attrs, ns->pi_type);
1466 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1468 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1470 req->reg_cqe.done = nvme_rdma_sig_done;
1471 memset(wr, 0, sizeof(*wr));
1472 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1473 wr->wr.wr_cqe = &req->reg_cqe;
1474 wr->wr.num_sge = 0;
1475 wr->wr.send_flags = 0;
1476 wr->mr = req->mr;
1477 wr->key = req->mr->rkey;
1478 wr->access = IB_ACCESS_LOCAL_WRITE |
1479 IB_ACCESS_REMOTE_READ |
1480 IB_ACCESS_REMOTE_WRITE;
1482 sg->addr = cpu_to_le64(req->mr->iova);
1483 put_unaligned_le24(req->mr->length, sg->length);
1484 put_unaligned_le32(req->mr->rkey, sg->key);
1485 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1487 return 0;
1489 mr_put:
1490 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1491 req->mr = NULL;
1492 if (nr < 0)
1493 return nr;
1494 return -EINVAL;
1497 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1498 struct request *rq, struct nvme_command *c)
1500 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1501 struct nvme_rdma_device *dev = queue->device;
1502 struct ib_device *ibdev = dev->dev;
1503 int pi_count = 0;
1504 int count, ret;
1506 req->num_sge = 1;
1507 refcount_set(&req->ref, 2); /* send and recv completions */
1509 c->common.flags |= NVME_CMD_SGL_METABUF;
1511 if (!blk_rq_nr_phys_segments(rq))
1512 return nvme_rdma_set_sg_null(c);
1514 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1515 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1516 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1517 NVME_INLINE_SG_CNT);
1518 if (ret)
1519 return -ENOMEM;
1521 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1522 req->data_sgl.sg_table.sgl);
1524 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1525 req->data_sgl.nents, rq_dma_dir(rq));
1526 if (unlikely(count <= 0)) {
1527 ret = -EIO;
1528 goto out_free_table;
1531 if (blk_integrity_rq(rq)) {
1532 req->metadata_sgl->sg_table.sgl =
1533 (struct scatterlist *)(req->metadata_sgl + 1);
1534 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1535 blk_rq_count_integrity_sg(rq->q, rq->bio),
1536 req->metadata_sgl->sg_table.sgl,
1537 NVME_INLINE_METADATA_SG_CNT);
1538 if (unlikely(ret)) {
1539 ret = -ENOMEM;
1540 goto out_unmap_sg;
1543 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1544 rq->bio, req->metadata_sgl->sg_table.sgl);
1545 pi_count = ib_dma_map_sg(ibdev,
1546 req->metadata_sgl->sg_table.sgl,
1547 req->metadata_sgl->nents,
1548 rq_dma_dir(rq));
1549 if (unlikely(pi_count <= 0)) {
1550 ret = -EIO;
1551 goto out_free_pi_table;
1555 if (req->use_sig_mr) {
1556 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1557 goto out;
1560 if (count <= dev->num_inline_segments) {
1561 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1562 queue->ctrl->use_inline_data &&
1563 blk_rq_payload_bytes(rq) <=
1564 nvme_rdma_inline_data_size(queue)) {
1565 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1566 goto out;
1569 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1570 ret = nvme_rdma_map_sg_single(queue, req, c);
1571 goto out;
1575 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1576 out:
1577 if (unlikely(ret))
1578 goto out_unmap_pi_sg;
1580 return 0;
1582 out_unmap_pi_sg:
1583 if (blk_integrity_rq(rq))
1584 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1585 req->metadata_sgl->nents, rq_dma_dir(rq));
1586 out_free_pi_table:
1587 if (blk_integrity_rq(rq))
1588 sg_free_table_chained(&req->metadata_sgl->sg_table,
1589 NVME_INLINE_METADATA_SG_CNT);
1590 out_unmap_sg:
1591 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1592 rq_dma_dir(rq));
1593 out_free_table:
1594 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1595 return ret;
1598 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1600 struct nvme_rdma_qe *qe =
1601 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1602 struct nvme_rdma_request *req =
1603 container_of(qe, struct nvme_rdma_request, sqe);
1605 if (unlikely(wc->status != IB_WC_SUCCESS))
1606 nvme_rdma_wr_error(cq, wc, "SEND");
1607 else
1608 nvme_rdma_end_request(req);
1611 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1612 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1613 struct ib_send_wr *first)
1615 struct ib_send_wr wr;
1616 int ret;
1618 sge->addr = qe->dma;
1619 sge->length = sizeof(struct nvme_command);
1620 sge->lkey = queue->device->pd->local_dma_lkey;
1622 wr.next = NULL;
1623 wr.wr_cqe = &qe->cqe;
1624 wr.sg_list = sge;
1625 wr.num_sge = num_sge;
1626 wr.opcode = IB_WR_SEND;
1627 wr.send_flags = IB_SEND_SIGNALED;
1629 if (first)
1630 first->next = &wr;
1631 else
1632 first = &wr;
1634 ret = ib_post_send(queue->qp, first, NULL);
1635 if (unlikely(ret)) {
1636 dev_err(queue->ctrl->ctrl.device,
1637 "%s failed with error code %d\n", __func__, ret);
1639 return ret;
1642 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1643 struct nvme_rdma_qe *qe)
1645 struct ib_recv_wr wr;
1646 struct ib_sge list;
1647 int ret;
1649 list.addr = qe->dma;
1650 list.length = sizeof(struct nvme_completion);
1651 list.lkey = queue->device->pd->local_dma_lkey;
1653 qe->cqe.done = nvme_rdma_recv_done;
1655 wr.next = NULL;
1656 wr.wr_cqe = &qe->cqe;
1657 wr.sg_list = &list;
1658 wr.num_sge = 1;
1660 ret = ib_post_recv(queue->qp, &wr, NULL);
1661 if (unlikely(ret)) {
1662 dev_err(queue->ctrl->ctrl.device,
1663 "%s failed with error code %d\n", __func__, ret);
1665 return ret;
1668 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1670 u32 queue_idx = nvme_rdma_queue_idx(queue);
1672 if (queue_idx == 0)
1673 return queue->ctrl->admin_tag_set.tags[queue_idx];
1674 return queue->ctrl->tag_set.tags[queue_idx - 1];
1677 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1679 if (unlikely(wc->status != IB_WC_SUCCESS))
1680 nvme_rdma_wr_error(cq, wc, "ASYNC");
1683 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1685 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1686 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1687 struct ib_device *dev = queue->device->dev;
1688 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1689 struct nvme_command *cmd = sqe->data;
1690 struct ib_sge sge;
1691 int ret;
1693 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1695 memset(cmd, 0, sizeof(*cmd));
1696 cmd->common.opcode = nvme_admin_async_event;
1697 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1698 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1699 nvme_rdma_set_sg_null(cmd);
1701 sqe->cqe.done = nvme_rdma_async_done;
1703 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1704 DMA_TO_DEVICE);
1706 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1707 WARN_ON_ONCE(ret);
1710 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1711 struct nvme_completion *cqe, struct ib_wc *wc)
1713 struct request *rq;
1714 struct nvme_rdma_request *req;
1716 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1717 if (!rq) {
1718 dev_err(queue->ctrl->ctrl.device,
1719 "tag 0x%x on QP %#x not found\n",
1720 cqe->command_id, queue->qp->qp_num);
1721 nvme_rdma_error_recovery(queue->ctrl);
1722 return;
1724 req = blk_mq_rq_to_pdu(rq);
1726 req->status = cqe->status;
1727 req->result = cqe->result;
1729 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1730 if (unlikely(!req->mr ||
1731 wc->ex.invalidate_rkey != req->mr->rkey)) {
1732 dev_err(queue->ctrl->ctrl.device,
1733 "Bogus remote invalidation for rkey %#x\n",
1734 req->mr ? req->mr->rkey : 0);
1735 nvme_rdma_error_recovery(queue->ctrl);
1737 } else if (req->mr) {
1738 int ret;
1740 ret = nvme_rdma_inv_rkey(queue, req);
1741 if (unlikely(ret < 0)) {
1742 dev_err(queue->ctrl->ctrl.device,
1743 "Queueing INV WR for rkey %#x failed (%d)\n",
1744 req->mr->rkey, ret);
1745 nvme_rdma_error_recovery(queue->ctrl);
1747 /* the local invalidation completion will end the request */
1748 return;
1751 nvme_rdma_end_request(req);
1754 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1756 struct nvme_rdma_qe *qe =
1757 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1758 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1759 struct ib_device *ibdev = queue->device->dev;
1760 struct nvme_completion *cqe = qe->data;
1761 const size_t len = sizeof(struct nvme_completion);
1763 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1764 nvme_rdma_wr_error(cq, wc, "RECV");
1765 return;
1768 /* sanity checking for received data length */
1769 if (unlikely(wc->byte_len < len)) {
1770 dev_err(queue->ctrl->ctrl.device,
1771 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1772 nvme_rdma_error_recovery(queue->ctrl);
1773 return;
1776 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1778 * AEN requests are special as they don't time out and can
1779 * survive any kind of queue freeze and often don't respond to
1780 * aborts. We don't even bother to allocate a struct request
1781 * for them but rather special case them here.
1783 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1784 cqe->command_id)))
1785 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1786 &cqe->result);
1787 else
1788 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1789 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1791 nvme_rdma_post_recv(queue, qe);
1794 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1796 int ret, i;
1798 for (i = 0; i < queue->queue_size; i++) {
1799 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1800 if (ret)
1801 goto out_destroy_queue_ib;
1804 return 0;
1806 out_destroy_queue_ib:
1807 nvme_rdma_destroy_queue_ib(queue);
1808 return ret;
1811 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1812 struct rdma_cm_event *ev)
1814 struct rdma_cm_id *cm_id = queue->cm_id;
1815 int status = ev->status;
1816 const char *rej_msg;
1817 const struct nvme_rdma_cm_rej *rej_data;
1818 u8 rej_data_len;
1820 rej_msg = rdma_reject_msg(cm_id, status);
1821 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1823 if (rej_data && rej_data_len >= sizeof(u16)) {
1824 u16 sts = le16_to_cpu(rej_data->sts);
1826 dev_err(queue->ctrl->ctrl.device,
1827 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1828 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1829 } else {
1830 dev_err(queue->ctrl->ctrl.device,
1831 "Connect rejected: status %d (%s).\n", status, rej_msg);
1834 return -ECONNRESET;
1837 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1839 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1840 int ret;
1842 ret = nvme_rdma_create_queue_ib(queue);
1843 if (ret)
1844 return ret;
1846 if (ctrl->opts->tos >= 0)
1847 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1848 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1849 if (ret) {
1850 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1851 queue->cm_error);
1852 goto out_destroy_queue;
1855 return 0;
1857 out_destroy_queue:
1858 nvme_rdma_destroy_queue_ib(queue);
1859 return ret;
1862 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1864 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1865 struct rdma_conn_param param = { };
1866 struct nvme_rdma_cm_req priv = { };
1867 int ret;
1869 param.qp_num = queue->qp->qp_num;
1870 param.flow_control = 1;
1872 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1873 /* maximum retry count */
1874 param.retry_count = 7;
1875 param.rnr_retry_count = 7;
1876 param.private_data = &priv;
1877 param.private_data_len = sizeof(priv);
1879 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1880 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1882 * set the admin queue depth to the minimum size
1883 * specified by the Fabrics standard.
1885 if (priv.qid == 0) {
1886 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1887 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1888 } else {
1890 * current interpretation of the fabrics spec
1891 * is at minimum you make hrqsize sqsize+1, or a
1892 * 1's based representation of sqsize.
1894 priv.hrqsize = cpu_to_le16(queue->queue_size);
1895 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1898 ret = rdma_connect_locked(queue->cm_id, &param);
1899 if (ret) {
1900 dev_err(ctrl->ctrl.device,
1901 "rdma_connect_locked failed (%d).\n", ret);
1902 goto out_destroy_queue_ib;
1905 return 0;
1907 out_destroy_queue_ib:
1908 nvme_rdma_destroy_queue_ib(queue);
1909 return ret;
1912 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1913 struct rdma_cm_event *ev)
1915 struct nvme_rdma_queue *queue = cm_id->context;
1916 int cm_error = 0;
1918 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1919 rdma_event_msg(ev->event), ev->event,
1920 ev->status, cm_id);
1922 switch (ev->event) {
1923 case RDMA_CM_EVENT_ADDR_RESOLVED:
1924 cm_error = nvme_rdma_addr_resolved(queue);
1925 break;
1926 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1927 cm_error = nvme_rdma_route_resolved(queue);
1928 break;
1929 case RDMA_CM_EVENT_ESTABLISHED:
1930 queue->cm_error = nvme_rdma_conn_established(queue);
1931 /* complete cm_done regardless of success/failure */
1932 complete(&queue->cm_done);
1933 return 0;
1934 case RDMA_CM_EVENT_REJECTED:
1935 cm_error = nvme_rdma_conn_rejected(queue, ev);
1936 break;
1937 case RDMA_CM_EVENT_ROUTE_ERROR:
1938 case RDMA_CM_EVENT_CONNECT_ERROR:
1939 case RDMA_CM_EVENT_UNREACHABLE:
1940 nvme_rdma_destroy_queue_ib(queue);
1941 fallthrough;
1942 case RDMA_CM_EVENT_ADDR_ERROR:
1943 dev_dbg(queue->ctrl->ctrl.device,
1944 "CM error event %d\n", ev->event);
1945 cm_error = -ECONNRESET;
1946 break;
1947 case RDMA_CM_EVENT_DISCONNECTED:
1948 case RDMA_CM_EVENT_ADDR_CHANGE:
1949 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1950 dev_dbg(queue->ctrl->ctrl.device,
1951 "disconnect received - connection closed\n");
1952 nvme_rdma_error_recovery(queue->ctrl);
1953 break;
1954 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1955 /* device removal is handled via the ib_client API */
1956 break;
1957 default:
1958 dev_err(queue->ctrl->ctrl.device,
1959 "Unexpected RDMA CM event (%d)\n", ev->event);
1960 nvme_rdma_error_recovery(queue->ctrl);
1961 break;
1964 if (cm_error) {
1965 queue->cm_error = cm_error;
1966 complete(&queue->cm_done);
1969 return 0;
1972 static void nvme_rdma_complete_timed_out(struct request *rq)
1974 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1975 struct nvme_rdma_queue *queue = req->queue;
1977 nvme_rdma_stop_queue(queue);
1978 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1979 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1980 blk_mq_complete_request(rq);
1984 static enum blk_eh_timer_return
1985 nvme_rdma_timeout(struct request *rq, bool reserved)
1987 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1988 struct nvme_rdma_queue *queue = req->queue;
1989 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1991 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1992 rq->tag, nvme_rdma_queue_idx(queue));
1994 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1996 * If we are resetting, connecting or deleting we should
1997 * complete immediately because we may block controller
1998 * teardown or setup sequence
1999 * - ctrl disable/shutdown fabrics requests
2000 * - connect requests
2001 * - initialization admin requests
2002 * - I/O requests that entered after unquiescing and
2003 * the controller stopped responding
2005 * All other requests should be cancelled by the error
2006 * recovery work, so it's fine that we fail it here.
2008 nvme_rdma_complete_timed_out(rq);
2009 return BLK_EH_DONE;
2013 * LIVE state should trigger the normal error recovery which will
2014 * handle completing this request.
2016 nvme_rdma_error_recovery(ctrl);
2017 return BLK_EH_RESET_TIMER;
2020 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2021 const struct blk_mq_queue_data *bd)
2023 struct nvme_ns *ns = hctx->queue->queuedata;
2024 struct nvme_rdma_queue *queue = hctx->driver_data;
2025 struct request *rq = bd->rq;
2026 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2027 struct nvme_rdma_qe *sqe = &req->sqe;
2028 struct nvme_command *c = sqe->data;
2029 struct ib_device *dev;
2030 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2031 blk_status_t ret;
2032 int err;
2034 WARN_ON_ONCE(rq->tag < 0);
2036 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2037 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2039 dev = queue->device->dev;
2041 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2042 sizeof(struct nvme_command),
2043 DMA_TO_DEVICE);
2044 err = ib_dma_mapping_error(dev, req->sqe.dma);
2045 if (unlikely(err))
2046 return BLK_STS_RESOURCE;
2048 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2049 sizeof(struct nvme_command), DMA_TO_DEVICE);
2051 ret = nvme_setup_cmd(ns, rq, c);
2052 if (ret)
2053 goto unmap_qe;
2055 blk_mq_start_request(rq);
2057 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2058 queue->pi_support &&
2059 (c->common.opcode == nvme_cmd_write ||
2060 c->common.opcode == nvme_cmd_read) &&
2061 nvme_ns_has_pi(ns))
2062 req->use_sig_mr = true;
2063 else
2064 req->use_sig_mr = false;
2066 err = nvme_rdma_map_data(queue, rq, c);
2067 if (unlikely(err < 0)) {
2068 dev_err(queue->ctrl->ctrl.device,
2069 "Failed to map data (%d)\n", err);
2070 goto err;
2073 sqe->cqe.done = nvme_rdma_send_done;
2075 ib_dma_sync_single_for_device(dev, sqe->dma,
2076 sizeof(struct nvme_command), DMA_TO_DEVICE);
2078 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2079 req->mr ? &req->reg_wr.wr : NULL);
2080 if (unlikely(err))
2081 goto err_unmap;
2083 return BLK_STS_OK;
2085 err_unmap:
2086 nvme_rdma_unmap_data(queue, rq);
2087 err:
2088 if (err == -ENOMEM || err == -EAGAIN)
2089 ret = BLK_STS_RESOURCE;
2090 else
2091 ret = BLK_STS_IOERR;
2092 nvme_cleanup_cmd(rq);
2093 unmap_qe:
2094 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2095 DMA_TO_DEVICE);
2096 return ret;
2099 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2101 struct nvme_rdma_queue *queue = hctx->driver_data;
2103 return ib_process_cq_direct(queue->ib_cq, -1);
2106 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2108 struct request *rq = blk_mq_rq_from_pdu(req);
2109 struct ib_mr_status mr_status;
2110 int ret;
2112 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2113 if (ret) {
2114 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2115 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2116 return;
2119 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2120 switch (mr_status.sig_err.err_type) {
2121 case IB_SIG_BAD_GUARD:
2122 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2123 break;
2124 case IB_SIG_BAD_REFTAG:
2125 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2126 break;
2127 case IB_SIG_BAD_APPTAG:
2128 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2129 break;
2131 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2132 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2133 mr_status.sig_err.actual);
2137 static void nvme_rdma_complete_rq(struct request *rq)
2139 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2140 struct nvme_rdma_queue *queue = req->queue;
2141 struct ib_device *ibdev = queue->device->dev;
2143 if (req->use_sig_mr)
2144 nvme_rdma_check_pi_status(req);
2146 nvme_rdma_unmap_data(queue, rq);
2147 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2148 DMA_TO_DEVICE);
2149 nvme_complete_rq(rq);
2152 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2154 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2155 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2157 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2158 /* separate read/write queues */
2159 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2160 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2161 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2162 set->map[HCTX_TYPE_READ].nr_queues =
2163 ctrl->io_queues[HCTX_TYPE_READ];
2164 set->map[HCTX_TYPE_READ].queue_offset =
2165 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2166 } else {
2167 /* shared read/write queues */
2168 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2169 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2170 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2171 set->map[HCTX_TYPE_READ].nr_queues =
2172 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2173 set->map[HCTX_TYPE_READ].queue_offset = 0;
2175 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2176 ctrl->device->dev, 0);
2177 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2178 ctrl->device->dev, 0);
2180 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2181 /* map dedicated poll queues only if we have queues left */
2182 set->map[HCTX_TYPE_POLL].nr_queues =
2183 ctrl->io_queues[HCTX_TYPE_POLL];
2184 set->map[HCTX_TYPE_POLL].queue_offset =
2185 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2186 ctrl->io_queues[HCTX_TYPE_READ];
2187 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2190 dev_info(ctrl->ctrl.device,
2191 "mapped %d/%d/%d default/read/poll queues.\n",
2192 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2193 ctrl->io_queues[HCTX_TYPE_READ],
2194 ctrl->io_queues[HCTX_TYPE_POLL]);
2196 return 0;
2199 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2200 .queue_rq = nvme_rdma_queue_rq,
2201 .complete = nvme_rdma_complete_rq,
2202 .init_request = nvme_rdma_init_request,
2203 .exit_request = nvme_rdma_exit_request,
2204 .init_hctx = nvme_rdma_init_hctx,
2205 .timeout = nvme_rdma_timeout,
2206 .map_queues = nvme_rdma_map_queues,
2207 .poll = nvme_rdma_poll,
2210 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2211 .queue_rq = nvme_rdma_queue_rq,
2212 .complete = nvme_rdma_complete_rq,
2213 .init_request = nvme_rdma_init_request,
2214 .exit_request = nvme_rdma_exit_request,
2215 .init_hctx = nvme_rdma_init_admin_hctx,
2216 .timeout = nvme_rdma_timeout,
2219 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2221 cancel_work_sync(&ctrl->err_work);
2222 cancel_delayed_work_sync(&ctrl->reconnect_work);
2224 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2225 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2226 if (shutdown)
2227 nvme_shutdown_ctrl(&ctrl->ctrl);
2228 else
2229 nvme_disable_ctrl(&ctrl->ctrl);
2230 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2233 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2235 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2238 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2240 struct nvme_rdma_ctrl *ctrl =
2241 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2243 nvme_stop_ctrl(&ctrl->ctrl);
2244 nvme_rdma_shutdown_ctrl(ctrl, false);
2246 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2247 /* state change failure should never happen */
2248 WARN_ON_ONCE(1);
2249 return;
2252 if (nvme_rdma_setup_ctrl(ctrl, false))
2253 goto out_fail;
2255 return;
2257 out_fail:
2258 ++ctrl->ctrl.nr_reconnects;
2259 nvme_rdma_reconnect_or_remove(ctrl);
2262 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2263 .name = "rdma",
2264 .module = THIS_MODULE,
2265 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2266 .reg_read32 = nvmf_reg_read32,
2267 .reg_read64 = nvmf_reg_read64,
2268 .reg_write32 = nvmf_reg_write32,
2269 .free_ctrl = nvme_rdma_free_ctrl,
2270 .submit_async_event = nvme_rdma_submit_async_event,
2271 .delete_ctrl = nvme_rdma_delete_ctrl,
2272 .get_address = nvmf_get_address,
2276 * Fails a connection request if it matches an existing controller
2277 * (association) with the same tuple:
2278 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2280 * if local address is not specified in the request, it will match an
2281 * existing controller with all the other parameters the same and no
2282 * local port address specified as well.
2284 * The ports don't need to be compared as they are intrinsically
2285 * already matched by the port pointers supplied.
2287 static bool
2288 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2290 struct nvme_rdma_ctrl *ctrl;
2291 bool found = false;
2293 mutex_lock(&nvme_rdma_ctrl_mutex);
2294 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2295 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2296 if (found)
2297 break;
2299 mutex_unlock(&nvme_rdma_ctrl_mutex);
2301 return found;
2304 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2305 struct nvmf_ctrl_options *opts)
2307 struct nvme_rdma_ctrl *ctrl;
2308 int ret;
2309 bool changed;
2311 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2312 if (!ctrl)
2313 return ERR_PTR(-ENOMEM);
2314 ctrl->ctrl.opts = opts;
2315 INIT_LIST_HEAD(&ctrl->list);
2317 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2318 opts->trsvcid =
2319 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2320 if (!opts->trsvcid) {
2321 ret = -ENOMEM;
2322 goto out_free_ctrl;
2324 opts->mask |= NVMF_OPT_TRSVCID;
2327 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2328 opts->traddr, opts->trsvcid, &ctrl->addr);
2329 if (ret) {
2330 pr_err("malformed address passed: %s:%s\n",
2331 opts->traddr, opts->trsvcid);
2332 goto out_free_ctrl;
2335 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2336 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2337 opts->host_traddr, NULL, &ctrl->src_addr);
2338 if (ret) {
2339 pr_err("malformed src address passed: %s\n",
2340 opts->host_traddr);
2341 goto out_free_ctrl;
2345 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2346 ret = -EALREADY;
2347 goto out_free_ctrl;
2350 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2351 nvme_rdma_reconnect_ctrl_work);
2352 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2353 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2355 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2356 opts->nr_poll_queues + 1;
2357 ctrl->ctrl.sqsize = opts->queue_size - 1;
2358 ctrl->ctrl.kato = opts->kato;
2360 ret = -ENOMEM;
2361 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2362 GFP_KERNEL);
2363 if (!ctrl->queues)
2364 goto out_free_ctrl;
2366 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2367 0 /* no quirks, we're perfect! */);
2368 if (ret)
2369 goto out_kfree_queues;
2371 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2372 WARN_ON_ONCE(!changed);
2374 ret = nvme_rdma_setup_ctrl(ctrl, true);
2375 if (ret)
2376 goto out_uninit_ctrl;
2378 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2379 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2381 mutex_lock(&nvme_rdma_ctrl_mutex);
2382 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2383 mutex_unlock(&nvme_rdma_ctrl_mutex);
2385 return &ctrl->ctrl;
2387 out_uninit_ctrl:
2388 nvme_uninit_ctrl(&ctrl->ctrl);
2389 nvme_put_ctrl(&ctrl->ctrl);
2390 if (ret > 0)
2391 ret = -EIO;
2392 return ERR_PTR(ret);
2393 out_kfree_queues:
2394 kfree(ctrl->queues);
2395 out_free_ctrl:
2396 kfree(ctrl);
2397 return ERR_PTR(ret);
2400 static struct nvmf_transport_ops nvme_rdma_transport = {
2401 .name = "rdma",
2402 .module = THIS_MODULE,
2403 .required_opts = NVMF_OPT_TRADDR,
2404 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2405 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2406 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2407 NVMF_OPT_TOS,
2408 .create_ctrl = nvme_rdma_create_ctrl,
2411 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2413 struct nvme_rdma_ctrl *ctrl;
2414 struct nvme_rdma_device *ndev;
2415 bool found = false;
2417 mutex_lock(&device_list_mutex);
2418 list_for_each_entry(ndev, &device_list, entry) {
2419 if (ndev->dev == ib_device) {
2420 found = true;
2421 break;
2424 mutex_unlock(&device_list_mutex);
2426 if (!found)
2427 return;
2429 /* Delete all controllers using this device */
2430 mutex_lock(&nvme_rdma_ctrl_mutex);
2431 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2432 if (ctrl->device->dev != ib_device)
2433 continue;
2434 nvme_delete_ctrl(&ctrl->ctrl);
2436 mutex_unlock(&nvme_rdma_ctrl_mutex);
2438 flush_workqueue(nvme_delete_wq);
2441 static struct ib_client nvme_rdma_ib_client = {
2442 .name = "nvme_rdma",
2443 .remove = nvme_rdma_remove_one
2446 static int __init nvme_rdma_init_module(void)
2448 int ret;
2450 ret = ib_register_client(&nvme_rdma_ib_client);
2451 if (ret)
2452 return ret;
2454 ret = nvmf_register_transport(&nvme_rdma_transport);
2455 if (ret)
2456 goto err_unreg_client;
2458 return 0;
2460 err_unreg_client:
2461 ib_unregister_client(&nvme_rdma_ib_client);
2462 return ret;
2465 static void __exit nvme_rdma_cleanup_module(void)
2467 struct nvme_rdma_ctrl *ctrl;
2469 nvmf_unregister_transport(&nvme_rdma_transport);
2470 ib_unregister_client(&nvme_rdma_ib_client);
2472 mutex_lock(&nvme_rdma_ctrl_mutex);
2473 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2474 nvme_delete_ctrl(&ctrl->ctrl);
2475 mutex_unlock(&nvme_rdma_ctrl_mutex);
2476 flush_workqueue(nvme_delete_wq);
2479 module_init(nvme_rdma_init_module);
2480 module_exit(nvme_rdma_cleanup_module);
2482 MODULE_LICENSE("GPL v2");