WIP FPC-III support
[linux/fpc-iii.git] / drivers / nvme / target / core.c
blob8ce4d59cc9e7599b0a386cb270c6744ba990b1c3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
16 #include "nvmet.h"
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
23 * This read/write semaphore is used to synchronize access to configuration
24 * information on a target system that will result in discovery log page
25 * information change for at least one host.
26 * The full list of resources to protected by this semaphore is:
28 * - subsystems list
29 * - per-subsystem allowed hosts list
30 * - allow_any_host subsystem attribute
31 * - nvmet_genctr
32 * - the nvmet_transports array
34 * When updating any of those lists/structures write lock should be obtained,
35 * while when reading (popolating discovery log page or checking host-subsystem
36 * link) read lock is obtained to allow concurrent reads.
38 DECLARE_RWSEM(nvmet_config_sem);
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
46 u16 status;
48 switch (errno) {
49 case 0:
50 status = NVME_SC_SUCCESS;
51 break;
52 case -ENOSPC:
53 req->error_loc = offsetof(struct nvme_rw_command, length);
54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 break;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 break;
60 case -EOPNOTSUPP:
61 req->error_loc = offsetof(struct nvme_common_command, opcode);
62 switch (req->cmd->common.opcode) {
63 case nvme_cmd_dsm:
64 case nvme_cmd_write_zeroes:
65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 break;
67 default:
68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70 break;
71 case -ENODATA:
72 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 status = NVME_SC_ACCESS_DENIED;
74 break;
75 case -EIO:
76 fallthrough;
77 default:
78 req->error_loc = offsetof(struct nvme_common_command, opcode);
79 status = NVME_SC_INTERNAL | NVME_SC_DNR;
82 return status;
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 const char *subsysnqn);
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 size_t len)
91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 req->error_loc = offsetof(struct nvme_common_command, dptr);
93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
95 return 0;
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 req->error_loc = offsetof(struct nvme_common_command, dptr);
102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
104 return 0;
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 req->error_loc = offsetof(struct nvme_common_command, dptr);
111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
113 return 0;
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
118 unsigned long nsid = 0;
119 struct nvmet_ns *cur;
120 unsigned long idx;
122 xa_for_each(&subsys->namespaces, idx, cur)
123 nsid = cur->nsid;
125 return nsid;
128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 struct nvmet_req *req;
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, status);
143 mutex_lock(&ctrl->lock);
145 mutex_unlock(&ctrl->lock);
148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
160 list_del(&aen->entry);
161 kfree(aen);
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
168 mutex_unlock(&ctrl->lock);
171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
173 struct nvmet_async_event *aen, *tmp;
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
180 mutex_unlock(&ctrl->lock);
183 static void nvmet_async_event_work(struct work_struct *work)
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
188 nvmet_async_events_process(ctrl);
191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
194 struct nvmet_async_event *aen;
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
208 schedule_work(&ctrl->async_event_work);
211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
213 u32 i;
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
237 struct nvmet_ctrl *ctrl;
239 lockdep_assert_held(&subsys->lock);
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
254 struct nvmet_ctrl *ctrl;
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
265 mutex_unlock(&subsys->lock);
268 void nvmet_port_send_ana_event(struct nvmet_port *port)
270 struct nvmet_subsys_link *p;
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
280 int ret = 0;
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
289 return ret;
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
303 struct nvmet_ctrl *ctrl;
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
310 mutex_unlock(&subsys->lock);
313 int nvmet_enable_port(struct nvmet_port *port)
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
318 lockdep_assert_held(&nvmet_config_sem);
320 ops = nvmet_transports[port->disc_addr.trtype];
321 if (!ops) {
322 up_write(&nvmet_config_sem);
323 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 down_write(&nvmet_config_sem);
325 ops = nvmet_transports[port->disc_addr.trtype];
326 if (!ops) {
327 pr_err("transport type %d not supported\n",
328 port->disc_addr.trtype);
329 return -EINVAL;
333 if (!try_module_get(ops->owner))
334 return -EINVAL;
337 * If the user requested PI support and the transport isn't pi capable,
338 * don't enable the port.
340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 pr_err("T10-PI is not supported by transport type %d\n",
342 port->disc_addr.trtype);
343 ret = -EINVAL;
344 goto out_put;
347 ret = ops->add_port(port);
348 if (ret)
349 goto out_put;
351 /* If the transport didn't set inline_data_size, then disable it. */
352 if (port->inline_data_size < 0)
353 port->inline_data_size = 0;
355 port->enabled = true;
356 port->tr_ops = ops;
357 return 0;
359 out_put:
360 module_put(ops->owner);
361 return ret;
364 void nvmet_disable_port(struct nvmet_port *port)
366 const struct nvmet_fabrics_ops *ops;
368 lockdep_assert_held(&nvmet_config_sem);
370 port->enabled = false;
371 port->tr_ops = NULL;
373 ops = nvmet_transports[port->disc_addr.trtype];
374 ops->remove_port(port);
375 module_put(ops->owner);
378 static void nvmet_keep_alive_timer(struct work_struct *work)
380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 struct nvmet_ctrl, ka_work);
382 bool cmd_seen = ctrl->cmd_seen;
384 ctrl->cmd_seen = false;
385 if (cmd_seen) {
386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 ctrl->cntlid);
388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 return;
392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 ctrl->cntlid, ctrl->kato);
395 nvmet_ctrl_fatal_error(ctrl);
398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
400 if (unlikely(ctrl->kato == 0))
401 return;
403 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 ctrl->cntlid, ctrl->kato);
406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
412 if (unlikely(ctrl->kato == 0))
413 return;
415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
417 cancel_delayed_work_sync(&ctrl->ka_work);
420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
422 struct nvmet_ns *ns;
424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
425 if (ns)
426 percpu_ref_get(&ns->ref);
428 return ns;
431 static void nvmet_destroy_namespace(struct percpu_ref *ref)
433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
435 complete(&ns->disable_done);
438 void nvmet_put_namespace(struct nvmet_ns *ns)
440 percpu_ref_put(&ns->ref);
443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
445 nvmet_bdev_ns_disable(ns);
446 nvmet_file_ns_disable(ns);
449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
451 int ret;
452 struct pci_dev *p2p_dev;
454 if (!ns->use_p2pmem)
455 return 0;
457 if (!ns->bdev) {
458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
459 return -EINVAL;
462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
464 ns->device_path);
465 return -EINVAL;
468 if (ns->p2p_dev) {
469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
470 if (ret < 0)
471 return -EINVAL;
472 } else {
474 * Right now we just check that there is p2pmem available so
475 * we can report an error to the user right away if there
476 * is not. We'll find the actual device to use once we
477 * setup the controller when the port's device is available.
480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
481 if (!p2p_dev) {
482 pr_err("no peer-to-peer memory is available for %s\n",
483 ns->device_path);
484 return -EINVAL;
487 pci_dev_put(p2p_dev);
490 return 0;
494 * Note: ctrl->subsys->lock should be held when calling this function
496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
497 struct nvmet_ns *ns)
499 struct device *clients[2];
500 struct pci_dev *p2p_dev;
501 int ret;
503 if (!ctrl->p2p_client || !ns->use_p2pmem)
504 return;
506 if (ns->p2p_dev) {
507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
508 if (ret < 0)
509 return;
511 p2p_dev = pci_dev_get(ns->p2p_dev);
512 } else {
513 clients[0] = ctrl->p2p_client;
514 clients[1] = nvmet_ns_dev(ns);
516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
517 if (!p2p_dev) {
518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
519 dev_name(ctrl->p2p_client), ns->device_path);
520 return;
524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
525 if (ret < 0)
526 pci_dev_put(p2p_dev);
528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
529 ns->nsid);
532 void nvmet_ns_revalidate(struct nvmet_ns *ns)
534 loff_t oldsize = ns->size;
536 if (ns->bdev)
537 nvmet_bdev_ns_revalidate(ns);
538 else
539 nvmet_file_ns_revalidate(ns);
541 if (oldsize != ns->size)
542 nvmet_ns_changed(ns->subsys, ns->nsid);
545 int nvmet_ns_enable(struct nvmet_ns *ns)
547 struct nvmet_subsys *subsys = ns->subsys;
548 struct nvmet_ctrl *ctrl;
549 int ret;
551 mutex_lock(&subsys->lock);
552 ret = 0;
554 if (nvmet_passthru_ctrl(subsys)) {
555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
556 goto out_unlock;
559 if (ns->enabled)
560 goto out_unlock;
562 ret = -EMFILE;
563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
564 goto out_unlock;
566 ret = nvmet_bdev_ns_enable(ns);
567 if (ret == -ENOTBLK)
568 ret = nvmet_file_ns_enable(ns);
569 if (ret)
570 goto out_unlock;
572 ret = nvmet_p2pmem_ns_enable(ns);
573 if (ret)
574 goto out_dev_disable;
576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
580 0, GFP_KERNEL);
581 if (ret)
582 goto out_dev_put;
584 if (ns->nsid > subsys->max_nsid)
585 subsys->max_nsid = ns->nsid;
587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
588 if (ret)
589 goto out_restore_subsys_maxnsid;
591 subsys->nr_namespaces++;
593 nvmet_ns_changed(subsys, ns->nsid);
594 ns->enabled = true;
595 ret = 0;
596 out_unlock:
597 mutex_unlock(&subsys->lock);
598 return ret;
600 out_restore_subsys_maxnsid:
601 subsys->max_nsid = nvmet_max_nsid(subsys);
602 percpu_ref_exit(&ns->ref);
603 out_dev_put:
604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
606 out_dev_disable:
607 nvmet_ns_dev_disable(ns);
608 goto out_unlock;
611 void nvmet_ns_disable(struct nvmet_ns *ns)
613 struct nvmet_subsys *subsys = ns->subsys;
614 struct nvmet_ctrl *ctrl;
616 mutex_lock(&subsys->lock);
617 if (!ns->enabled)
618 goto out_unlock;
620 ns->enabled = false;
621 xa_erase(&ns->subsys->namespaces, ns->nsid);
622 if (ns->nsid == subsys->max_nsid)
623 subsys->max_nsid = nvmet_max_nsid(subsys);
625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
628 mutex_unlock(&subsys->lock);
631 * Now that we removed the namespaces from the lookup list, we
632 * can kill the per_cpu ref and wait for any remaining references
633 * to be dropped, as well as a RCU grace period for anyone only
634 * using the namepace under rcu_read_lock(). Note that we can't
635 * use call_rcu here as we need to ensure the namespaces have
636 * been fully destroyed before unloading the module.
638 percpu_ref_kill(&ns->ref);
639 synchronize_rcu();
640 wait_for_completion(&ns->disable_done);
641 percpu_ref_exit(&ns->ref);
643 mutex_lock(&subsys->lock);
645 subsys->nr_namespaces--;
646 nvmet_ns_changed(subsys, ns->nsid);
647 nvmet_ns_dev_disable(ns);
648 out_unlock:
649 mutex_unlock(&subsys->lock);
652 void nvmet_ns_free(struct nvmet_ns *ns)
654 nvmet_ns_disable(ns);
656 down_write(&nvmet_ana_sem);
657 nvmet_ana_group_enabled[ns->anagrpid]--;
658 up_write(&nvmet_ana_sem);
660 kfree(ns->device_path);
661 kfree(ns);
664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
666 struct nvmet_ns *ns;
668 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
669 if (!ns)
670 return NULL;
672 init_completion(&ns->disable_done);
674 ns->nsid = nsid;
675 ns->subsys = subsys;
677 down_write(&nvmet_ana_sem);
678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
679 nvmet_ana_group_enabled[ns->anagrpid]++;
680 up_write(&nvmet_ana_sem);
682 uuid_gen(&ns->uuid);
683 ns->buffered_io = false;
685 return ns;
688 static void nvmet_update_sq_head(struct nvmet_req *req)
690 if (req->sq->size) {
691 u32 old_sqhd, new_sqhd;
693 do {
694 old_sqhd = req->sq->sqhd;
695 new_sqhd = (old_sqhd + 1) % req->sq->size;
696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
697 old_sqhd);
699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
702 static void nvmet_set_error(struct nvmet_req *req, u16 status)
704 struct nvmet_ctrl *ctrl = req->sq->ctrl;
705 struct nvme_error_slot *new_error_slot;
706 unsigned long flags;
708 req->cqe->status = cpu_to_le16(status << 1);
710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
711 return;
713 spin_lock_irqsave(&ctrl->error_lock, flags);
714 ctrl->err_counter++;
715 new_error_slot =
716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
719 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
721 new_error_slot->status_field = cpu_to_le16(status << 1);
722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
723 new_error_slot->lba = cpu_to_le64(req->error_slba);
724 new_error_slot->nsid = req->cmd->common.nsid;
725 spin_unlock_irqrestore(&ctrl->error_lock, flags);
727 /* set the more bit for this request */
728 req->cqe->status |= cpu_to_le16(1 << 14);
731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
733 if (!req->sq->sqhd_disabled)
734 nvmet_update_sq_head(req);
735 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
736 req->cqe->command_id = req->cmd->common.command_id;
738 if (unlikely(status))
739 nvmet_set_error(req, status);
741 trace_nvmet_req_complete(req);
743 if (req->ns)
744 nvmet_put_namespace(req->ns);
745 req->ops->queue_response(req);
748 void nvmet_req_complete(struct nvmet_req *req, u16 status)
750 __nvmet_req_complete(req, status);
751 percpu_ref_put(&req->sq->ref);
753 EXPORT_SYMBOL_GPL(nvmet_req_complete);
755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
756 u16 qid, u16 size)
758 cq->qid = qid;
759 cq->size = size;
762 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
763 u16 qid, u16 size)
765 sq->sqhd = 0;
766 sq->qid = qid;
767 sq->size = size;
769 ctrl->sqs[qid] = sq;
772 static void nvmet_confirm_sq(struct percpu_ref *ref)
774 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
776 complete(&sq->confirm_done);
779 void nvmet_sq_destroy(struct nvmet_sq *sq)
781 struct nvmet_ctrl *ctrl = sq->ctrl;
784 * If this is the admin queue, complete all AERs so that our
785 * queue doesn't have outstanding requests on it.
787 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
788 nvmet_async_events_failall(ctrl);
789 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
790 wait_for_completion(&sq->confirm_done);
791 wait_for_completion(&sq->free_done);
792 percpu_ref_exit(&sq->ref);
794 if (ctrl) {
795 nvmet_ctrl_put(ctrl);
796 sq->ctrl = NULL; /* allows reusing the queue later */
799 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
801 static void nvmet_sq_free(struct percpu_ref *ref)
803 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
805 complete(&sq->free_done);
808 int nvmet_sq_init(struct nvmet_sq *sq)
810 int ret;
812 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
813 if (ret) {
814 pr_err("percpu_ref init failed!\n");
815 return ret;
817 init_completion(&sq->free_done);
818 init_completion(&sq->confirm_done);
820 return 0;
822 EXPORT_SYMBOL_GPL(nvmet_sq_init);
824 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
825 struct nvmet_ns *ns)
827 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
829 if (unlikely(state == NVME_ANA_INACCESSIBLE))
830 return NVME_SC_ANA_INACCESSIBLE;
831 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
832 return NVME_SC_ANA_PERSISTENT_LOSS;
833 if (unlikely(state == NVME_ANA_CHANGE))
834 return NVME_SC_ANA_TRANSITION;
835 return 0;
838 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
840 if (unlikely(req->ns->readonly)) {
841 switch (req->cmd->common.opcode) {
842 case nvme_cmd_read:
843 case nvme_cmd_flush:
844 break;
845 default:
846 return NVME_SC_NS_WRITE_PROTECTED;
850 return 0;
853 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
855 struct nvme_command *cmd = req->cmd;
856 u16 ret;
858 ret = nvmet_check_ctrl_status(req, cmd);
859 if (unlikely(ret))
860 return ret;
862 if (nvmet_req_passthru_ctrl(req))
863 return nvmet_parse_passthru_io_cmd(req);
865 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
866 if (unlikely(!req->ns)) {
867 req->error_loc = offsetof(struct nvme_common_command, nsid);
868 return NVME_SC_INVALID_NS | NVME_SC_DNR;
870 ret = nvmet_check_ana_state(req->port, req->ns);
871 if (unlikely(ret)) {
872 req->error_loc = offsetof(struct nvme_common_command, nsid);
873 return ret;
875 ret = nvmet_io_cmd_check_access(req);
876 if (unlikely(ret)) {
877 req->error_loc = offsetof(struct nvme_common_command, nsid);
878 return ret;
881 if (req->ns->file)
882 return nvmet_file_parse_io_cmd(req);
883 else
884 return nvmet_bdev_parse_io_cmd(req);
887 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
888 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
890 u8 flags = req->cmd->common.flags;
891 u16 status;
893 req->cq = cq;
894 req->sq = sq;
895 req->ops = ops;
896 req->sg = NULL;
897 req->metadata_sg = NULL;
898 req->sg_cnt = 0;
899 req->metadata_sg_cnt = 0;
900 req->transfer_len = 0;
901 req->metadata_len = 0;
902 req->cqe->status = 0;
903 req->cqe->sq_head = 0;
904 req->ns = NULL;
905 req->error_loc = NVMET_NO_ERROR_LOC;
906 req->error_slba = 0;
908 /* no support for fused commands yet */
909 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
910 req->error_loc = offsetof(struct nvme_common_command, flags);
911 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
912 goto fail;
916 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
917 * contains an address of a single contiguous physical buffer that is
918 * byte aligned.
920 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
921 req->error_loc = offsetof(struct nvme_common_command, flags);
922 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
923 goto fail;
926 if (unlikely(!req->sq->ctrl))
927 /* will return an error for any non-connect command: */
928 status = nvmet_parse_connect_cmd(req);
929 else if (likely(req->sq->qid != 0))
930 status = nvmet_parse_io_cmd(req);
931 else
932 status = nvmet_parse_admin_cmd(req);
934 if (status)
935 goto fail;
937 trace_nvmet_req_init(req, req->cmd);
939 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
940 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
941 goto fail;
944 if (sq->ctrl)
945 sq->ctrl->cmd_seen = true;
947 return true;
949 fail:
950 __nvmet_req_complete(req, status);
951 return false;
953 EXPORT_SYMBOL_GPL(nvmet_req_init);
955 void nvmet_req_uninit(struct nvmet_req *req)
957 percpu_ref_put(&req->sq->ref);
958 if (req->ns)
959 nvmet_put_namespace(req->ns);
961 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
963 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
965 if (unlikely(len != req->transfer_len)) {
966 req->error_loc = offsetof(struct nvme_common_command, dptr);
967 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
968 return false;
971 return true;
973 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
975 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
977 if (unlikely(data_len > req->transfer_len)) {
978 req->error_loc = offsetof(struct nvme_common_command, dptr);
979 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
980 return false;
983 return true;
986 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
988 return req->transfer_len - req->metadata_len;
991 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
993 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
994 nvmet_data_transfer_len(req));
995 if (!req->sg)
996 goto out_err;
998 if (req->metadata_len) {
999 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
1000 &req->metadata_sg_cnt, req->metadata_len);
1001 if (!req->metadata_sg)
1002 goto out_free_sg;
1004 return 0;
1005 out_free_sg:
1006 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1007 out_err:
1008 return -ENOMEM;
1011 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1013 if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1014 return false;
1016 if (req->sq->ctrl && req->sq->qid && req->ns) {
1017 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1018 req->ns->nsid);
1019 if (req->p2p_dev)
1020 return true;
1023 req->p2p_dev = NULL;
1024 return false;
1027 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1029 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1030 return 0;
1032 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1033 &req->sg_cnt);
1034 if (unlikely(!req->sg))
1035 goto out;
1037 if (req->metadata_len) {
1038 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1039 &req->metadata_sg_cnt);
1040 if (unlikely(!req->metadata_sg))
1041 goto out_free;
1044 return 0;
1045 out_free:
1046 sgl_free(req->sg);
1047 out:
1048 return -ENOMEM;
1050 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1052 void nvmet_req_free_sgls(struct nvmet_req *req)
1054 if (req->p2p_dev) {
1055 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1056 if (req->metadata_sg)
1057 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1058 } else {
1059 sgl_free(req->sg);
1060 if (req->metadata_sg)
1061 sgl_free(req->metadata_sg);
1064 req->sg = NULL;
1065 req->metadata_sg = NULL;
1066 req->sg_cnt = 0;
1067 req->metadata_sg_cnt = 0;
1069 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1071 static inline bool nvmet_cc_en(u32 cc)
1073 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1076 static inline u8 nvmet_cc_css(u32 cc)
1078 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1081 static inline u8 nvmet_cc_mps(u32 cc)
1083 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1086 static inline u8 nvmet_cc_ams(u32 cc)
1088 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1091 static inline u8 nvmet_cc_shn(u32 cc)
1093 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1096 static inline u8 nvmet_cc_iosqes(u32 cc)
1098 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1101 static inline u8 nvmet_cc_iocqes(u32 cc)
1103 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1106 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1108 lockdep_assert_held(&ctrl->lock);
1110 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1111 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1112 nvmet_cc_mps(ctrl->cc) != 0 ||
1113 nvmet_cc_ams(ctrl->cc) != 0 ||
1114 nvmet_cc_css(ctrl->cc) != 0) {
1115 ctrl->csts = NVME_CSTS_CFS;
1116 return;
1119 ctrl->csts = NVME_CSTS_RDY;
1122 * Controllers that are not yet enabled should not really enforce the
1123 * keep alive timeout, but we still want to track a timeout and cleanup
1124 * in case a host died before it enabled the controller. Hence, simply
1125 * reset the keep alive timer when the controller is enabled.
1127 if (ctrl->kato)
1128 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1131 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1133 lockdep_assert_held(&ctrl->lock);
1135 /* XXX: tear down queues? */
1136 ctrl->csts &= ~NVME_CSTS_RDY;
1137 ctrl->cc = 0;
1140 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1142 u32 old;
1144 mutex_lock(&ctrl->lock);
1145 old = ctrl->cc;
1146 ctrl->cc = new;
1148 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1149 nvmet_start_ctrl(ctrl);
1150 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1151 nvmet_clear_ctrl(ctrl);
1152 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1153 nvmet_clear_ctrl(ctrl);
1154 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1156 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1157 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1158 mutex_unlock(&ctrl->lock);
1161 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1163 /* command sets supported: NVMe command set: */
1164 ctrl->cap = (1ULL << 37);
1165 /* CC.EN timeout in 500msec units: */
1166 ctrl->cap |= (15ULL << 24);
1167 /* maximum queue entries supported: */
1168 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1171 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1172 struct nvmet_req *req, struct nvmet_ctrl **ret)
1174 struct nvmet_subsys *subsys;
1175 struct nvmet_ctrl *ctrl;
1176 u16 status = 0;
1178 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1179 if (!subsys) {
1180 pr_warn("connect request for invalid subsystem %s!\n",
1181 subsysnqn);
1182 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1183 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1186 mutex_lock(&subsys->lock);
1187 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1188 if (ctrl->cntlid == cntlid) {
1189 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1190 pr_warn("hostnqn mismatch.\n");
1191 continue;
1193 if (!kref_get_unless_zero(&ctrl->ref))
1194 continue;
1196 *ret = ctrl;
1197 goto out;
1201 pr_warn("could not find controller %d for subsys %s / host %s\n",
1202 cntlid, subsysnqn, hostnqn);
1203 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1204 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1206 out:
1207 mutex_unlock(&subsys->lock);
1208 nvmet_subsys_put(subsys);
1209 return status;
1212 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1214 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1215 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1216 cmd->common.opcode, req->sq->qid);
1217 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1220 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1221 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1222 cmd->common.opcode, req->sq->qid);
1223 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1225 return 0;
1228 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1230 struct nvmet_host_link *p;
1232 lockdep_assert_held(&nvmet_config_sem);
1234 if (subsys->allow_any_host)
1235 return true;
1237 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1238 return true;
1240 list_for_each_entry(p, &subsys->hosts, entry) {
1241 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1242 return true;
1245 return false;
1249 * Note: ctrl->subsys->lock should be held when calling this function
1251 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1252 struct nvmet_req *req)
1254 struct nvmet_ns *ns;
1255 unsigned long idx;
1257 if (!req->p2p_client)
1258 return;
1260 ctrl->p2p_client = get_device(req->p2p_client);
1262 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1263 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1267 * Note: ctrl->subsys->lock should be held when calling this function
1269 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1271 struct radix_tree_iter iter;
1272 void __rcu **slot;
1274 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1275 pci_dev_put(radix_tree_deref_slot(slot));
1277 put_device(ctrl->p2p_client);
1280 static void nvmet_fatal_error_handler(struct work_struct *work)
1282 struct nvmet_ctrl *ctrl =
1283 container_of(work, struct nvmet_ctrl, fatal_err_work);
1285 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1286 ctrl->ops->delete_ctrl(ctrl);
1289 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1290 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1292 struct nvmet_subsys *subsys;
1293 struct nvmet_ctrl *ctrl;
1294 int ret;
1295 u16 status;
1297 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1298 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1299 if (!subsys) {
1300 pr_warn("connect request for invalid subsystem %s!\n",
1301 subsysnqn);
1302 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1303 goto out;
1306 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1307 down_read(&nvmet_config_sem);
1308 if (!nvmet_host_allowed(subsys, hostnqn)) {
1309 pr_info("connect by host %s for subsystem %s not allowed\n",
1310 hostnqn, subsysnqn);
1311 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1312 up_read(&nvmet_config_sem);
1313 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1314 goto out_put_subsystem;
1316 up_read(&nvmet_config_sem);
1318 status = NVME_SC_INTERNAL;
1319 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1320 if (!ctrl)
1321 goto out_put_subsystem;
1322 mutex_init(&ctrl->lock);
1324 nvmet_init_cap(ctrl);
1326 ctrl->port = req->port;
1328 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1329 INIT_LIST_HEAD(&ctrl->async_events);
1330 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1331 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1333 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1334 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1336 kref_init(&ctrl->ref);
1337 ctrl->subsys = subsys;
1338 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1340 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1341 sizeof(__le32), GFP_KERNEL);
1342 if (!ctrl->changed_ns_list)
1343 goto out_free_ctrl;
1345 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1346 sizeof(struct nvmet_sq *),
1347 GFP_KERNEL);
1348 if (!ctrl->sqs)
1349 goto out_free_changed_ns_list;
1351 if (subsys->cntlid_min > subsys->cntlid_max)
1352 goto out_free_changed_ns_list;
1354 ret = ida_simple_get(&cntlid_ida,
1355 subsys->cntlid_min, subsys->cntlid_max,
1356 GFP_KERNEL);
1357 if (ret < 0) {
1358 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1359 goto out_free_sqs;
1361 ctrl->cntlid = ret;
1363 ctrl->ops = req->ops;
1366 * Discovery controllers may use some arbitrary high value
1367 * in order to cleanup stale discovery sessions
1369 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1370 kato = NVMET_DISC_KATO_MS;
1372 /* keep-alive timeout in seconds */
1373 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1375 ctrl->err_counter = 0;
1376 spin_lock_init(&ctrl->error_lock);
1378 nvmet_start_keep_alive_timer(ctrl);
1380 mutex_lock(&subsys->lock);
1381 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1382 nvmet_setup_p2p_ns_map(ctrl, req);
1383 mutex_unlock(&subsys->lock);
1385 *ctrlp = ctrl;
1386 return 0;
1388 out_free_sqs:
1389 kfree(ctrl->sqs);
1390 out_free_changed_ns_list:
1391 kfree(ctrl->changed_ns_list);
1392 out_free_ctrl:
1393 kfree(ctrl);
1394 out_put_subsystem:
1395 nvmet_subsys_put(subsys);
1396 out:
1397 return status;
1400 static void nvmet_ctrl_free(struct kref *ref)
1402 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1403 struct nvmet_subsys *subsys = ctrl->subsys;
1405 mutex_lock(&subsys->lock);
1406 nvmet_release_p2p_ns_map(ctrl);
1407 list_del(&ctrl->subsys_entry);
1408 mutex_unlock(&subsys->lock);
1410 nvmet_stop_keep_alive_timer(ctrl);
1412 flush_work(&ctrl->async_event_work);
1413 cancel_work_sync(&ctrl->fatal_err_work);
1415 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1417 nvmet_async_events_free(ctrl);
1418 kfree(ctrl->sqs);
1419 kfree(ctrl->changed_ns_list);
1420 kfree(ctrl);
1422 nvmet_subsys_put(subsys);
1425 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1427 kref_put(&ctrl->ref, nvmet_ctrl_free);
1430 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1432 mutex_lock(&ctrl->lock);
1433 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1434 ctrl->csts |= NVME_CSTS_CFS;
1435 schedule_work(&ctrl->fatal_err_work);
1437 mutex_unlock(&ctrl->lock);
1439 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1441 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1442 const char *subsysnqn)
1444 struct nvmet_subsys_link *p;
1446 if (!port)
1447 return NULL;
1449 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1450 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1451 return NULL;
1452 return nvmet_disc_subsys;
1455 down_read(&nvmet_config_sem);
1456 list_for_each_entry(p, &port->subsystems, entry) {
1457 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1458 NVMF_NQN_SIZE)) {
1459 if (!kref_get_unless_zero(&p->subsys->ref))
1460 break;
1461 up_read(&nvmet_config_sem);
1462 return p->subsys;
1465 up_read(&nvmet_config_sem);
1466 return NULL;
1469 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1470 enum nvme_subsys_type type)
1472 struct nvmet_subsys *subsys;
1474 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1475 if (!subsys)
1476 return ERR_PTR(-ENOMEM);
1478 subsys->ver = NVMET_DEFAULT_VS;
1479 /* generate a random serial number as our controllers are ephemeral: */
1480 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1482 switch (type) {
1483 case NVME_NQN_NVME:
1484 subsys->max_qid = NVMET_NR_QUEUES;
1485 break;
1486 case NVME_NQN_DISC:
1487 subsys->max_qid = 0;
1488 break;
1489 default:
1490 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1491 kfree(subsys);
1492 return ERR_PTR(-EINVAL);
1494 subsys->type = type;
1495 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1496 GFP_KERNEL);
1497 if (!subsys->subsysnqn) {
1498 kfree(subsys);
1499 return ERR_PTR(-ENOMEM);
1501 subsys->cntlid_min = NVME_CNTLID_MIN;
1502 subsys->cntlid_max = NVME_CNTLID_MAX;
1503 kref_init(&subsys->ref);
1505 mutex_init(&subsys->lock);
1506 xa_init(&subsys->namespaces);
1507 INIT_LIST_HEAD(&subsys->ctrls);
1508 INIT_LIST_HEAD(&subsys->hosts);
1510 return subsys;
1513 static void nvmet_subsys_free(struct kref *ref)
1515 struct nvmet_subsys *subsys =
1516 container_of(ref, struct nvmet_subsys, ref);
1518 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1520 xa_destroy(&subsys->namespaces);
1521 nvmet_passthru_subsys_free(subsys);
1523 kfree(subsys->subsysnqn);
1524 kfree_rcu(subsys->model, rcuhead);
1525 kfree(subsys);
1528 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1530 struct nvmet_ctrl *ctrl;
1532 mutex_lock(&subsys->lock);
1533 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1534 ctrl->ops->delete_ctrl(ctrl);
1535 mutex_unlock(&subsys->lock);
1538 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1540 kref_put(&subsys->ref, nvmet_subsys_free);
1543 static int __init nvmet_init(void)
1545 int error;
1547 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1549 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1550 WQ_MEM_RECLAIM, 0);
1551 if (!buffered_io_wq) {
1552 error = -ENOMEM;
1553 goto out;
1556 error = nvmet_init_discovery();
1557 if (error)
1558 goto out_free_work_queue;
1560 error = nvmet_init_configfs();
1561 if (error)
1562 goto out_exit_discovery;
1563 return 0;
1565 out_exit_discovery:
1566 nvmet_exit_discovery();
1567 out_free_work_queue:
1568 destroy_workqueue(buffered_io_wq);
1569 out:
1570 return error;
1573 static void __exit nvmet_exit(void)
1575 nvmet_exit_configfs();
1576 nvmet_exit_discovery();
1577 ida_destroy(&cntlid_ida);
1578 destroy_workqueue(buffered_io_wq);
1580 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1581 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1584 module_init(nvmet_init);
1585 module_exit(nvmet_exit);
1587 MODULE_LICENSE("GPL v2");