WIP FPC-III support
[linux/fpc-iii.git] / drivers / nvme / target / rdma.c
blobbdfc22eb2a10fa95847411b047a4e0ea9a2f676a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 #include <rdma/ib_cm.h>
25 #include <linux/nvme-rdma.h>
26 #include "nvmet.h"
29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
32 #define NVMET_RDMA_MAX_INLINE_SGE 4
33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35 /* Assume mpsmin == device_page_size == 4KB */
36 #define NVMET_RDMA_MAX_MDTS 8
37 #define NVMET_RDMA_MAX_METADATA_MDTS 5
39 struct nvmet_rdma_srq;
41 struct nvmet_rdma_cmd {
42 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43 struct ib_cqe cqe;
44 struct ib_recv_wr wr;
45 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46 struct nvme_command *nvme_cmd;
47 struct nvmet_rdma_queue *queue;
48 struct nvmet_rdma_srq *nsrq;
51 enum {
52 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
53 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
56 struct nvmet_rdma_rsp {
57 struct ib_sge send_sge;
58 struct ib_cqe send_cqe;
59 struct ib_send_wr send_wr;
61 struct nvmet_rdma_cmd *cmd;
62 struct nvmet_rdma_queue *queue;
64 struct ib_cqe read_cqe;
65 struct ib_cqe write_cqe;
66 struct rdma_rw_ctx rw;
68 struct nvmet_req req;
70 bool allocated;
71 u8 n_rdma;
72 u32 flags;
73 u32 invalidate_rkey;
75 struct list_head wait_list;
76 struct list_head free_list;
79 enum nvmet_rdma_queue_state {
80 NVMET_RDMA_Q_CONNECTING,
81 NVMET_RDMA_Q_LIVE,
82 NVMET_RDMA_Q_DISCONNECTING,
85 struct nvmet_rdma_queue {
86 struct rdma_cm_id *cm_id;
87 struct ib_qp *qp;
88 struct nvmet_port *port;
89 struct ib_cq *cq;
90 atomic_t sq_wr_avail;
91 struct nvmet_rdma_device *dev;
92 struct nvmet_rdma_srq *nsrq;
93 spinlock_t state_lock;
94 enum nvmet_rdma_queue_state state;
95 struct nvmet_cq nvme_cq;
96 struct nvmet_sq nvme_sq;
98 struct nvmet_rdma_rsp *rsps;
99 struct list_head free_rsps;
100 spinlock_t rsps_lock;
101 struct nvmet_rdma_cmd *cmds;
103 struct work_struct release_work;
104 struct list_head rsp_wait_list;
105 struct list_head rsp_wr_wait_list;
106 spinlock_t rsp_wr_wait_lock;
108 int idx;
109 int host_qid;
110 int comp_vector;
111 int recv_queue_size;
112 int send_queue_size;
114 struct list_head queue_list;
117 struct nvmet_rdma_port {
118 struct nvmet_port *nport;
119 struct sockaddr_storage addr;
120 struct rdma_cm_id *cm_id;
121 struct delayed_work repair_work;
124 struct nvmet_rdma_srq {
125 struct ib_srq *srq;
126 struct nvmet_rdma_cmd *cmds;
127 struct nvmet_rdma_device *ndev;
130 struct nvmet_rdma_device {
131 struct ib_device *device;
132 struct ib_pd *pd;
133 struct nvmet_rdma_srq **srqs;
134 int srq_count;
135 size_t srq_size;
136 struct kref ref;
137 struct list_head entry;
138 int inline_data_size;
139 int inline_page_count;
142 static bool nvmet_rdma_use_srq;
143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
146 static int srq_size_set(const char *val, const struct kernel_param *kp);
147 static const struct kernel_param_ops srq_size_ops = {
148 .set = srq_size_set,
149 .get = param_get_int,
152 static int nvmet_rdma_srq_size = 1024;
153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
156 static DEFINE_IDA(nvmet_rdma_queue_ida);
157 static LIST_HEAD(nvmet_rdma_queue_list);
158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
160 static LIST_HEAD(device_list);
161 static DEFINE_MUTEX(device_list_mutex);
163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171 struct nvmet_rdma_rsp *r);
172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173 struct nvmet_rdma_rsp *r);
175 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
177 static int srq_size_set(const char *val, const struct kernel_param *kp)
179 int n = 0, ret;
181 ret = kstrtoint(val, 10, &n);
182 if (ret != 0 || n < 256)
183 return -EINVAL;
185 return param_set_int(val, kp);
188 static int num_pages(int len)
190 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
195 return nvme_is_write(rsp->req.cmd) &&
196 rsp->req.transfer_len &&
197 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
202 return !nvme_is_write(rsp->req.cmd) &&
203 rsp->req.transfer_len &&
204 !rsp->req.cqe->status &&
205 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
208 static inline struct nvmet_rdma_rsp *
209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
211 struct nvmet_rdma_rsp *rsp;
212 unsigned long flags;
214 spin_lock_irqsave(&queue->rsps_lock, flags);
215 rsp = list_first_entry_or_null(&queue->free_rsps,
216 struct nvmet_rdma_rsp, free_list);
217 if (likely(rsp))
218 list_del(&rsp->free_list);
219 spin_unlock_irqrestore(&queue->rsps_lock, flags);
221 if (unlikely(!rsp)) {
222 int ret;
224 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225 if (unlikely(!rsp))
226 return NULL;
227 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228 if (unlikely(ret)) {
229 kfree(rsp);
230 return NULL;
233 rsp->allocated = true;
236 return rsp;
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242 unsigned long flags;
244 if (unlikely(rsp->allocated)) {
245 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246 kfree(rsp);
247 return;
250 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256 struct nvmet_rdma_cmd *c)
258 struct scatterlist *sg;
259 struct ib_sge *sge;
260 int i;
262 if (!ndev->inline_data_size)
263 return;
265 sg = c->inline_sg;
266 sge = &c->sge[1];
268 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269 if (sge->length)
270 ib_dma_unmap_page(ndev->device, sge->addr,
271 sge->length, DMA_FROM_DEVICE);
272 if (sg_page(sg))
273 __free_page(sg_page(sg));
277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278 struct nvmet_rdma_cmd *c)
280 struct scatterlist *sg;
281 struct ib_sge *sge;
282 struct page *pg;
283 int len;
284 int i;
286 if (!ndev->inline_data_size)
287 return 0;
289 sg = c->inline_sg;
290 sg_init_table(sg, ndev->inline_page_count);
291 sge = &c->sge[1];
292 len = ndev->inline_data_size;
294 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295 pg = alloc_page(GFP_KERNEL);
296 if (!pg)
297 goto out_err;
298 sg_assign_page(sg, pg);
299 sge->addr = ib_dma_map_page(ndev->device,
300 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301 if (ib_dma_mapping_error(ndev->device, sge->addr))
302 goto out_err;
303 sge->length = min_t(int, len, PAGE_SIZE);
304 sge->lkey = ndev->pd->local_dma_lkey;
305 len -= sge->length;
308 return 0;
309 out_err:
310 for (; i >= 0; i--, sg--, sge--) {
311 if (sge->length)
312 ib_dma_unmap_page(ndev->device, sge->addr,
313 sge->length, DMA_FROM_DEVICE);
314 if (sg_page(sg))
315 __free_page(sg_page(sg));
317 return -ENOMEM;
320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321 struct nvmet_rdma_cmd *c, bool admin)
323 /* NVMe command / RDMA RECV */
324 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325 if (!c->nvme_cmd)
326 goto out;
328 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331 goto out_free_cmd;
333 c->sge[0].length = sizeof(*c->nvme_cmd);
334 c->sge[0].lkey = ndev->pd->local_dma_lkey;
336 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337 goto out_unmap_cmd;
339 c->cqe.done = nvmet_rdma_recv_done;
341 c->wr.wr_cqe = &c->cqe;
342 c->wr.sg_list = c->sge;
343 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
345 return 0;
347 out_unmap_cmd:
348 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350 out_free_cmd:
351 kfree(c->nvme_cmd);
353 out:
354 return -ENOMEM;
357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358 struct nvmet_rdma_cmd *c, bool admin)
360 if (!admin)
361 nvmet_rdma_free_inline_pages(ndev, c);
362 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364 kfree(c->nvme_cmd);
367 static struct nvmet_rdma_cmd *
368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369 int nr_cmds, bool admin)
371 struct nvmet_rdma_cmd *cmds;
372 int ret = -EINVAL, i;
374 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375 if (!cmds)
376 goto out;
378 for (i = 0; i < nr_cmds; i++) {
379 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380 if (ret)
381 goto out_free;
384 return cmds;
386 out_free:
387 while (--i >= 0)
388 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389 kfree(cmds);
390 out:
391 return ERR_PTR(ret);
394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
397 int i;
399 for (i = 0; i < nr_cmds; i++)
400 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401 kfree(cmds);
404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405 struct nvmet_rdma_rsp *r)
407 /* NVMe CQE / RDMA SEND */
408 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409 if (!r->req.cqe)
410 goto out;
412 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413 sizeof(*r->req.cqe), DMA_TO_DEVICE);
414 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415 goto out_free_rsp;
417 if (!ib_uses_virt_dma(ndev->device))
418 r->req.p2p_client = &ndev->device->dev;
419 r->send_sge.length = sizeof(*r->req.cqe);
420 r->send_sge.lkey = ndev->pd->local_dma_lkey;
422 r->send_cqe.done = nvmet_rdma_send_done;
424 r->send_wr.wr_cqe = &r->send_cqe;
425 r->send_wr.sg_list = &r->send_sge;
426 r->send_wr.num_sge = 1;
427 r->send_wr.send_flags = IB_SEND_SIGNALED;
429 /* Data In / RDMA READ */
430 r->read_cqe.done = nvmet_rdma_read_data_done;
431 /* Data Out / RDMA WRITE */
432 r->write_cqe.done = nvmet_rdma_write_data_done;
434 return 0;
436 out_free_rsp:
437 kfree(r->req.cqe);
438 out:
439 return -ENOMEM;
442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
443 struct nvmet_rdma_rsp *r)
445 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446 sizeof(*r->req.cqe), DMA_TO_DEVICE);
447 kfree(r->req.cqe);
450 static int
451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
453 struct nvmet_rdma_device *ndev = queue->dev;
454 int nr_rsps = queue->recv_queue_size * 2;
455 int ret = -EINVAL, i;
457 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
458 GFP_KERNEL);
459 if (!queue->rsps)
460 goto out;
462 for (i = 0; i < nr_rsps; i++) {
463 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
466 if (ret)
467 goto out_free;
469 list_add_tail(&rsp->free_list, &queue->free_rsps);
472 return 0;
474 out_free:
475 while (--i >= 0) {
476 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
478 list_del(&rsp->free_list);
479 nvmet_rdma_free_rsp(ndev, rsp);
481 kfree(queue->rsps);
482 out:
483 return ret;
486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
488 struct nvmet_rdma_device *ndev = queue->dev;
489 int i, nr_rsps = queue->recv_queue_size * 2;
491 for (i = 0; i < nr_rsps; i++) {
492 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
494 list_del(&rsp->free_list);
495 nvmet_rdma_free_rsp(ndev, rsp);
497 kfree(queue->rsps);
500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
501 struct nvmet_rdma_cmd *cmd)
503 int ret;
505 ib_dma_sync_single_for_device(ndev->device,
506 cmd->sge[0].addr, cmd->sge[0].length,
507 DMA_FROM_DEVICE);
509 if (cmd->nsrq)
510 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511 else
512 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
514 if (unlikely(ret))
515 pr_err("post_recv cmd failed\n");
517 return ret;
520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
522 spin_lock(&queue->rsp_wr_wait_lock);
523 while (!list_empty(&queue->rsp_wr_wait_list)) {
524 struct nvmet_rdma_rsp *rsp;
525 bool ret;
527 rsp = list_entry(queue->rsp_wr_wait_list.next,
528 struct nvmet_rdma_rsp, wait_list);
529 list_del(&rsp->wait_list);
531 spin_unlock(&queue->rsp_wr_wait_lock);
532 ret = nvmet_rdma_execute_command(rsp);
533 spin_lock(&queue->rsp_wr_wait_lock);
535 if (!ret) {
536 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
537 break;
540 spin_unlock(&queue->rsp_wr_wait_lock);
543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
545 struct ib_mr_status mr_status;
546 int ret;
547 u16 status = 0;
549 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
550 if (ret) {
551 pr_err("ib_check_mr_status failed, ret %d\n", ret);
552 return NVME_SC_INVALID_PI;
555 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
556 switch (mr_status.sig_err.err_type) {
557 case IB_SIG_BAD_GUARD:
558 status = NVME_SC_GUARD_CHECK;
559 break;
560 case IB_SIG_BAD_REFTAG:
561 status = NVME_SC_REFTAG_CHECK;
562 break;
563 case IB_SIG_BAD_APPTAG:
564 status = NVME_SC_APPTAG_CHECK;
565 break;
567 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
568 mr_status.sig_err.err_type,
569 mr_status.sig_err.expected,
570 mr_status.sig_err.actual);
573 return status;
576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
577 struct nvme_command *cmd, struct ib_sig_domain *domain,
578 u16 control, u8 pi_type)
580 domain->sig_type = IB_SIG_TYPE_T10_DIF;
581 domain->sig.dif.bg_type = IB_T10DIF_CRC;
582 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
583 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
584 if (control & NVME_RW_PRINFO_PRCHK_REF)
585 domain->sig.dif.ref_remap = true;
587 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
588 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
589 domain->sig.dif.app_escape = true;
590 if (pi_type == NVME_NS_DPS_PI_TYPE3)
591 domain->sig.dif.ref_escape = true;
594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
595 struct ib_sig_attrs *sig_attrs)
597 struct nvme_command *cmd = req->cmd;
598 u16 control = le16_to_cpu(cmd->rw.control);
599 u8 pi_type = req->ns->pi_type;
600 struct blk_integrity *bi;
602 bi = bdev_get_integrity(req->ns->bdev);
604 memset(sig_attrs, 0, sizeof(*sig_attrs));
606 if (control & NVME_RW_PRINFO_PRACT) {
607 /* for WRITE_INSERT/READ_STRIP no wire domain */
608 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
609 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
610 pi_type);
611 /* Clear the PRACT bit since HCA will generate/verify the PI */
612 control &= ~NVME_RW_PRINFO_PRACT;
613 cmd->rw.control = cpu_to_le16(control);
614 /* PI is added by the HW */
615 req->transfer_len += req->metadata_len;
616 } else {
617 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
618 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
619 pi_type);
620 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
621 pi_type);
624 if (control & NVME_RW_PRINFO_PRCHK_REF)
625 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
626 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
627 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
628 if (control & NVME_RW_PRINFO_PRCHK_APP)
629 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
633 struct ib_sig_attrs *sig_attrs)
635 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
636 struct nvmet_req *req = &rsp->req;
637 int ret;
639 if (req->metadata_len)
640 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
641 cm_id->port_num, req->sg, req->sg_cnt,
642 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
643 addr, key, nvmet_data_dir(req));
644 else
645 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
646 req->sg, req->sg_cnt, 0, addr, key,
647 nvmet_data_dir(req));
649 return ret;
652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
654 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
655 struct nvmet_req *req = &rsp->req;
657 if (req->metadata_len)
658 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
659 cm_id->port_num, req->sg, req->sg_cnt,
660 req->metadata_sg, req->metadata_sg_cnt,
661 nvmet_data_dir(req));
662 else
663 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
664 req->sg, req->sg_cnt, nvmet_data_dir(req));
667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
669 struct nvmet_rdma_queue *queue = rsp->queue;
671 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
673 if (rsp->n_rdma)
674 nvmet_rdma_rw_ctx_destroy(rsp);
676 if (rsp->req.sg != rsp->cmd->inline_sg)
677 nvmet_req_free_sgls(&rsp->req);
679 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
680 nvmet_rdma_process_wr_wait_list(queue);
682 nvmet_rdma_put_rsp(rsp);
685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
687 if (queue->nvme_sq.ctrl) {
688 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
689 } else {
691 * we didn't setup the controller yet in case
692 * of admin connect error, just disconnect and
693 * cleanup the queue
695 nvmet_rdma_queue_disconnect(queue);
699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
701 struct nvmet_rdma_rsp *rsp =
702 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703 struct nvmet_rdma_queue *queue = cq->cq_context;
705 nvmet_rdma_release_rsp(rsp);
707 if (unlikely(wc->status != IB_WC_SUCCESS &&
708 wc->status != IB_WC_WR_FLUSH_ERR)) {
709 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
710 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711 nvmet_rdma_error_comp(queue);
715 static void nvmet_rdma_queue_response(struct nvmet_req *req)
717 struct nvmet_rdma_rsp *rsp =
718 container_of(req, struct nvmet_rdma_rsp, req);
719 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720 struct ib_send_wr *first_wr;
722 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
723 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
724 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
725 } else {
726 rsp->send_wr.opcode = IB_WR_SEND;
729 if (nvmet_rdma_need_data_out(rsp)) {
730 if (rsp->req.metadata_len)
731 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
732 cm_id->port_num, &rsp->write_cqe, NULL);
733 else
734 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735 cm_id->port_num, NULL, &rsp->send_wr);
736 } else {
737 first_wr = &rsp->send_wr;
740 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
742 ib_dma_sync_single_for_device(rsp->queue->dev->device,
743 rsp->send_sge.addr, rsp->send_sge.length,
744 DMA_TO_DEVICE);
746 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747 pr_err("sending cmd response failed\n");
748 nvmet_rdma_release_rsp(rsp);
752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
754 struct nvmet_rdma_rsp *rsp =
755 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757 u16 status = 0;
759 WARN_ON(rsp->n_rdma <= 0);
760 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
761 rsp->n_rdma = 0;
763 if (unlikely(wc->status != IB_WC_SUCCESS)) {
764 nvmet_rdma_rw_ctx_destroy(rsp);
765 nvmet_req_uninit(&rsp->req);
766 nvmet_rdma_release_rsp(rsp);
767 if (wc->status != IB_WC_WR_FLUSH_ERR) {
768 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
769 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
770 nvmet_rdma_error_comp(queue);
772 return;
775 if (rsp->req.metadata_len)
776 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
777 nvmet_rdma_rw_ctx_destroy(rsp);
779 if (unlikely(status))
780 nvmet_req_complete(&rsp->req, status);
781 else
782 rsp->req.execute(&rsp->req);
785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
787 struct nvmet_rdma_rsp *rsp =
788 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
789 struct nvmet_rdma_queue *queue = cq->cq_context;
790 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
791 u16 status;
793 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
794 return;
796 WARN_ON(rsp->n_rdma <= 0);
797 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
798 rsp->n_rdma = 0;
800 if (unlikely(wc->status != IB_WC_SUCCESS)) {
801 nvmet_rdma_rw_ctx_destroy(rsp);
802 nvmet_req_uninit(&rsp->req);
803 nvmet_rdma_release_rsp(rsp);
804 if (wc->status != IB_WC_WR_FLUSH_ERR) {
805 pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
806 wc->wr_cqe, ib_wc_status_msg(wc->status),
807 wc->status);
808 nvmet_rdma_error_comp(queue);
810 return;
814 * Upon RDMA completion check the signature status
815 * - if succeeded send good NVMe response
816 * - if failed send bad NVMe response with appropriate error
818 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819 if (unlikely(status))
820 rsp->req.cqe->status = cpu_to_le16(status << 1);
821 nvmet_rdma_rw_ctx_destroy(rsp);
823 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824 pr_err("sending cmd response failed\n");
825 nvmet_rdma_release_rsp(rsp);
829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
830 u64 off)
832 int sg_count = num_pages(len);
833 struct scatterlist *sg;
834 int i;
836 sg = rsp->cmd->inline_sg;
837 for (i = 0; i < sg_count; i++, sg++) {
838 if (i < sg_count - 1)
839 sg_unmark_end(sg);
840 else
841 sg_mark_end(sg);
842 sg->offset = off;
843 sg->length = min_t(int, len, PAGE_SIZE - off);
844 len -= sg->length;
845 if (!i)
846 off = 0;
849 rsp->req.sg = rsp->cmd->inline_sg;
850 rsp->req.sg_cnt = sg_count;
853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
855 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856 u64 off = le64_to_cpu(sgl->addr);
857 u32 len = le32_to_cpu(sgl->length);
859 if (!nvme_is_write(rsp->req.cmd)) {
860 rsp->req.error_loc =
861 offsetof(struct nvme_common_command, opcode);
862 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
865 if (off + len > rsp->queue->dev->inline_data_size) {
866 pr_err("invalid inline data offset!\n");
867 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
870 /* no data command? */
871 if (!len)
872 return 0;
874 nvmet_rdma_use_inline_sg(rsp, len, off);
875 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876 rsp->req.transfer_len += len;
877 return 0;
880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
883 u64 addr = le64_to_cpu(sgl->addr);
884 u32 key = get_unaligned_le32(sgl->key);
885 struct ib_sig_attrs sig_attrs;
886 int ret;
888 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
890 /* no data command? */
891 if (!rsp->req.transfer_len)
892 return 0;
894 if (rsp->req.metadata_len)
895 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
897 ret = nvmet_req_alloc_sgls(&rsp->req);
898 if (unlikely(ret < 0))
899 goto error_out;
901 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902 if (unlikely(ret < 0))
903 goto error_out;
904 rsp->n_rdma += ret;
906 if (invalidate) {
907 rsp->invalidate_rkey = key;
908 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
911 return 0;
913 error_out:
914 rsp->req.transfer_len = 0;
915 return NVME_SC_INTERNAL;
918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
920 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
922 switch (sgl->type >> 4) {
923 case NVME_SGL_FMT_DATA_DESC:
924 switch (sgl->type & 0xf) {
925 case NVME_SGL_FMT_OFFSET:
926 return nvmet_rdma_map_sgl_inline(rsp);
927 default:
928 pr_err("invalid SGL subtype: %#x\n", sgl->type);
929 rsp->req.error_loc =
930 offsetof(struct nvme_common_command, dptr);
931 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
933 case NVME_KEY_SGL_FMT_DATA_DESC:
934 switch (sgl->type & 0xf) {
935 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937 case NVME_SGL_FMT_ADDRESS:
938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
939 default:
940 pr_err("invalid SGL subtype: %#x\n", sgl->type);
941 rsp->req.error_loc =
942 offsetof(struct nvme_common_command, dptr);
943 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
945 default:
946 pr_err("invalid SGL type: %#x\n", sgl->type);
947 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
954 struct nvmet_rdma_queue *queue = rsp->queue;
956 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957 &queue->sq_wr_avail) < 0)) {
958 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959 1 + rsp->n_rdma, queue->idx,
960 queue->nvme_sq.ctrl->cntlid);
961 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
962 return false;
965 if (nvmet_rdma_need_data_in(rsp)) {
966 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967 queue->cm_id->port_num, &rsp->read_cqe, NULL))
968 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
969 } else {
970 rsp->req.execute(&rsp->req);
973 return true;
976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977 struct nvmet_rdma_rsp *cmd)
979 u16 status;
981 ib_dma_sync_single_for_cpu(queue->dev->device,
982 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
983 DMA_FROM_DEVICE);
984 ib_dma_sync_single_for_cpu(queue->dev->device,
985 cmd->send_sge.addr, cmd->send_sge.length,
986 DMA_TO_DEVICE);
988 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989 &queue->nvme_sq, &nvmet_rdma_ops))
990 return;
992 status = nvmet_rdma_map_sgl(cmd);
993 if (status)
994 goto out_err;
996 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997 spin_lock(&queue->rsp_wr_wait_lock);
998 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999 spin_unlock(&queue->rsp_wr_wait_lock);
1002 return;
1004 out_err:
1005 nvmet_req_complete(&cmd->req, status);
1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1010 struct nvmet_rdma_cmd *cmd =
1011 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013 struct nvmet_rdma_rsp *rsp;
1015 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018 wc->wr_cqe, ib_wc_status_msg(wc->status),
1019 wc->status);
1020 nvmet_rdma_error_comp(queue);
1022 return;
1025 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027 nvmet_rdma_error_comp(queue);
1028 return;
1031 cmd->queue = queue;
1032 rsp = nvmet_rdma_get_rsp(queue);
1033 if (unlikely(!rsp)) {
1035 * we get here only under memory pressure,
1036 * silently drop and have the host retry
1037 * as we can't even fail it.
1039 nvmet_rdma_post_recv(queue->dev, cmd);
1040 return;
1042 rsp->queue = queue;
1043 rsp->cmd = cmd;
1044 rsp->flags = 0;
1045 rsp->req.cmd = cmd->nvme_cmd;
1046 rsp->req.port = queue->port;
1047 rsp->n_rdma = 0;
1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050 unsigned long flags;
1052 spin_lock_irqsave(&queue->state_lock, flags);
1053 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1055 else
1056 nvmet_rdma_put_rsp(rsp);
1057 spin_unlock_irqrestore(&queue->state_lock, flags);
1058 return;
1061 nvmet_rdma_handle_command(queue, rsp);
1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1067 false);
1068 ib_destroy_srq(nsrq->srq);
1070 kfree(nsrq);
1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1075 int i;
1077 if (!ndev->srqs)
1078 return;
1080 for (i = 0; i < ndev->srq_count; i++)
1081 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1083 kfree(ndev->srqs);
1086 static struct nvmet_rdma_srq *
1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1089 struct ib_srq_init_attr srq_attr = { NULL, };
1090 size_t srq_size = ndev->srq_size;
1091 struct nvmet_rdma_srq *nsrq;
1092 struct ib_srq *srq;
1093 int ret, i;
1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1096 if (!nsrq)
1097 return ERR_PTR(-ENOMEM);
1099 srq_attr.attr.max_wr = srq_size;
1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101 srq_attr.attr.srq_limit = 0;
1102 srq_attr.srq_type = IB_SRQT_BASIC;
1103 srq = ib_create_srq(ndev->pd, &srq_attr);
1104 if (IS_ERR(srq)) {
1105 ret = PTR_ERR(srq);
1106 goto out_free;
1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110 if (IS_ERR(nsrq->cmds)) {
1111 ret = PTR_ERR(nsrq->cmds);
1112 goto out_destroy_srq;
1115 nsrq->srq = srq;
1116 nsrq->ndev = ndev;
1118 for (i = 0; i < srq_size; i++) {
1119 nsrq->cmds[i].nsrq = nsrq;
1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121 if (ret)
1122 goto out_free_cmds;
1125 return nsrq;
1127 out_free_cmds:
1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129 out_destroy_srq:
1130 ib_destroy_srq(srq);
1131 out_free:
1132 kfree(nsrq);
1133 return ERR_PTR(ret);
1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1138 int i, ret;
1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1142 * If SRQs aren't supported we just go ahead and use normal
1143 * non-shared receive queues.
1145 pr_info("SRQ requested but not supported.\n");
1146 return 0;
1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150 nvmet_rdma_srq_size);
1151 ndev->srq_count = min(ndev->device->num_comp_vectors,
1152 ndev->device->attrs.max_srq);
1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1155 if (!ndev->srqs)
1156 return -ENOMEM;
1158 for (i = 0; i < ndev->srq_count; i++) {
1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160 if (IS_ERR(ndev->srqs[i])) {
1161 ret = PTR_ERR(ndev->srqs[i]);
1162 goto err_srq;
1166 return 0;
1168 err_srq:
1169 while (--i >= 0)
1170 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1171 kfree(ndev->srqs);
1172 return ret;
1175 static void nvmet_rdma_free_dev(struct kref *ref)
1177 struct nvmet_rdma_device *ndev =
1178 container_of(ref, struct nvmet_rdma_device, ref);
1180 mutex_lock(&device_list_mutex);
1181 list_del(&ndev->entry);
1182 mutex_unlock(&device_list_mutex);
1184 nvmet_rdma_destroy_srqs(ndev);
1185 ib_dealloc_pd(ndev->pd);
1187 kfree(ndev);
1190 static struct nvmet_rdma_device *
1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1193 struct nvmet_rdma_port *port = cm_id->context;
1194 struct nvmet_port *nport = port->nport;
1195 struct nvmet_rdma_device *ndev;
1196 int inline_page_count;
1197 int inline_sge_count;
1198 int ret;
1200 mutex_lock(&device_list_mutex);
1201 list_for_each_entry(ndev, &device_list, entry) {
1202 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203 kref_get_unless_zero(&ndev->ref))
1204 goto out_unlock;
1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1208 if (!ndev)
1209 goto out_err;
1211 inline_page_count = num_pages(nport->inline_data_size);
1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213 cm_id->device->attrs.max_recv_sge) - 1;
1214 if (inline_page_count > inline_sge_count) {
1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216 nport->inline_data_size, cm_id->device->name,
1217 inline_sge_count * PAGE_SIZE);
1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219 inline_page_count = inline_sge_count;
1221 ndev->inline_data_size = nport->inline_data_size;
1222 ndev->inline_page_count = inline_page_count;
1223 ndev->device = cm_id->device;
1224 kref_init(&ndev->ref);
1226 ndev->pd = ib_alloc_pd(ndev->device, 0);
1227 if (IS_ERR(ndev->pd))
1228 goto out_free_dev;
1230 if (nvmet_rdma_use_srq) {
1231 ret = nvmet_rdma_init_srqs(ndev);
1232 if (ret)
1233 goto out_free_pd;
1236 list_add(&ndev->entry, &device_list);
1237 out_unlock:
1238 mutex_unlock(&device_list_mutex);
1239 pr_debug("added %s.\n", ndev->device->name);
1240 return ndev;
1242 out_free_pd:
1243 ib_dealloc_pd(ndev->pd);
1244 out_free_dev:
1245 kfree(ndev);
1246 out_err:
1247 mutex_unlock(&device_list_mutex);
1248 return NULL;
1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1253 struct ib_qp_init_attr qp_attr;
1254 struct nvmet_rdma_device *ndev = queue->dev;
1255 int nr_cqe, ret, i, factor;
1258 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1260 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1262 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1263 queue->comp_vector, IB_POLL_WORKQUEUE);
1264 if (IS_ERR(queue->cq)) {
1265 ret = PTR_ERR(queue->cq);
1266 pr_err("failed to create CQ cqe= %d ret= %d\n",
1267 nr_cqe + 1, ret);
1268 goto out;
1271 memset(&qp_attr, 0, sizeof(qp_attr));
1272 qp_attr.qp_context = queue;
1273 qp_attr.event_handler = nvmet_rdma_qp_event;
1274 qp_attr.send_cq = queue->cq;
1275 qp_attr.recv_cq = queue->cq;
1276 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1277 qp_attr.qp_type = IB_QPT_RC;
1278 /* +1 for drain */
1279 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1280 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1281 1 << NVMET_RDMA_MAX_MDTS);
1282 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1283 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1284 ndev->device->attrs.max_send_sge);
1286 if (queue->nsrq) {
1287 qp_attr.srq = queue->nsrq->srq;
1288 } else {
1289 /* +1 for drain */
1290 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1291 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1294 if (queue->port->pi_enable && queue->host_qid)
1295 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1297 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1298 if (ret) {
1299 pr_err("failed to create_qp ret= %d\n", ret);
1300 goto err_destroy_cq;
1302 queue->qp = queue->cm_id->qp;
1304 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1306 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1307 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1308 qp_attr.cap.max_send_wr, queue->cm_id);
1310 if (!queue->nsrq) {
1311 for (i = 0; i < queue->recv_queue_size; i++) {
1312 queue->cmds[i].queue = queue;
1313 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1314 if (ret)
1315 goto err_destroy_qp;
1319 out:
1320 return ret;
1322 err_destroy_qp:
1323 rdma_destroy_qp(queue->cm_id);
1324 err_destroy_cq:
1325 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1326 goto out;
1329 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1331 ib_drain_qp(queue->qp);
1332 if (queue->cm_id)
1333 rdma_destroy_id(queue->cm_id);
1334 ib_destroy_qp(queue->qp);
1335 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1336 queue->send_queue_size + 1);
1339 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1341 pr_debug("freeing queue %d\n", queue->idx);
1343 nvmet_sq_destroy(&queue->nvme_sq);
1345 nvmet_rdma_destroy_queue_ib(queue);
1346 if (!queue->nsrq) {
1347 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1348 queue->recv_queue_size,
1349 !queue->host_qid);
1351 nvmet_rdma_free_rsps(queue);
1352 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1353 kfree(queue);
1356 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1358 struct nvmet_rdma_queue *queue =
1359 container_of(w, struct nvmet_rdma_queue, release_work);
1360 struct nvmet_rdma_device *dev = queue->dev;
1362 nvmet_rdma_free_queue(queue);
1364 kref_put(&dev->ref, nvmet_rdma_free_dev);
1367 static int
1368 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1369 struct nvmet_rdma_queue *queue)
1371 struct nvme_rdma_cm_req *req;
1373 req = (struct nvme_rdma_cm_req *)conn->private_data;
1374 if (!req || conn->private_data_len == 0)
1375 return NVME_RDMA_CM_INVALID_LEN;
1377 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1378 return NVME_RDMA_CM_INVALID_RECFMT;
1380 queue->host_qid = le16_to_cpu(req->qid);
1383 * req->hsqsize corresponds to our recv queue size plus 1
1384 * req->hrqsize corresponds to our send queue size
1386 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1387 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1389 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1390 return NVME_RDMA_CM_INVALID_HSQSIZE;
1392 /* XXX: Should we enforce some kind of max for IO queues? */
1394 return 0;
1397 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1398 enum nvme_rdma_cm_status status)
1400 struct nvme_rdma_cm_rej rej;
1402 pr_debug("rejecting connect request: status %d (%s)\n",
1403 status, nvme_rdma_cm_msg(status));
1405 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1406 rej.sts = cpu_to_le16(status);
1408 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1409 IB_CM_REJ_CONSUMER_DEFINED);
1412 static struct nvmet_rdma_queue *
1413 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1414 struct rdma_cm_id *cm_id,
1415 struct rdma_cm_event *event)
1417 struct nvmet_rdma_port *port = cm_id->context;
1418 struct nvmet_rdma_queue *queue;
1419 int ret;
1421 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1422 if (!queue) {
1423 ret = NVME_RDMA_CM_NO_RSC;
1424 goto out_reject;
1427 ret = nvmet_sq_init(&queue->nvme_sq);
1428 if (ret) {
1429 ret = NVME_RDMA_CM_NO_RSC;
1430 goto out_free_queue;
1433 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1434 if (ret)
1435 goto out_destroy_sq;
1438 * Schedules the actual release because calling rdma_destroy_id from
1439 * inside a CM callback would trigger a deadlock. (great API design..)
1441 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1442 queue->dev = ndev;
1443 queue->cm_id = cm_id;
1444 queue->port = port->nport;
1446 spin_lock_init(&queue->state_lock);
1447 queue->state = NVMET_RDMA_Q_CONNECTING;
1448 INIT_LIST_HEAD(&queue->rsp_wait_list);
1449 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1450 spin_lock_init(&queue->rsp_wr_wait_lock);
1451 INIT_LIST_HEAD(&queue->free_rsps);
1452 spin_lock_init(&queue->rsps_lock);
1453 INIT_LIST_HEAD(&queue->queue_list);
1455 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1456 if (queue->idx < 0) {
1457 ret = NVME_RDMA_CM_NO_RSC;
1458 goto out_destroy_sq;
1462 * Spread the io queues across completion vectors,
1463 * but still keep all admin queues on vector 0.
1465 queue->comp_vector = !queue->host_qid ? 0 :
1466 queue->idx % ndev->device->num_comp_vectors;
1469 ret = nvmet_rdma_alloc_rsps(queue);
1470 if (ret) {
1471 ret = NVME_RDMA_CM_NO_RSC;
1472 goto out_ida_remove;
1475 if (ndev->srqs) {
1476 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1477 } else {
1478 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1479 queue->recv_queue_size,
1480 !queue->host_qid);
1481 if (IS_ERR(queue->cmds)) {
1482 ret = NVME_RDMA_CM_NO_RSC;
1483 goto out_free_responses;
1487 ret = nvmet_rdma_create_queue_ib(queue);
1488 if (ret) {
1489 pr_err("%s: creating RDMA queue failed (%d).\n",
1490 __func__, ret);
1491 ret = NVME_RDMA_CM_NO_RSC;
1492 goto out_free_cmds;
1495 return queue;
1497 out_free_cmds:
1498 if (!queue->nsrq) {
1499 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1500 queue->recv_queue_size,
1501 !queue->host_qid);
1503 out_free_responses:
1504 nvmet_rdma_free_rsps(queue);
1505 out_ida_remove:
1506 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1507 out_destroy_sq:
1508 nvmet_sq_destroy(&queue->nvme_sq);
1509 out_free_queue:
1510 kfree(queue);
1511 out_reject:
1512 nvmet_rdma_cm_reject(cm_id, ret);
1513 return NULL;
1516 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1518 struct nvmet_rdma_queue *queue = priv;
1520 switch (event->event) {
1521 case IB_EVENT_COMM_EST:
1522 rdma_notify(queue->cm_id, event->event);
1523 break;
1524 case IB_EVENT_QP_LAST_WQE_REACHED:
1525 pr_debug("received last WQE reached event for queue=0x%p\n",
1526 queue);
1527 break;
1528 default:
1529 pr_err("received IB QP event: %s (%d)\n",
1530 ib_event_msg(event->event), event->event);
1531 break;
1535 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1536 struct nvmet_rdma_queue *queue,
1537 struct rdma_conn_param *p)
1539 struct rdma_conn_param param = { };
1540 struct nvme_rdma_cm_rep priv = { };
1541 int ret = -ENOMEM;
1543 param.rnr_retry_count = 7;
1544 param.flow_control = 1;
1545 param.initiator_depth = min_t(u8, p->initiator_depth,
1546 queue->dev->device->attrs.max_qp_init_rd_atom);
1547 param.private_data = &priv;
1548 param.private_data_len = sizeof(priv);
1549 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1550 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1552 ret = rdma_accept(cm_id, &param);
1553 if (ret)
1554 pr_err("rdma_accept failed (error code = %d)\n", ret);
1556 return ret;
1559 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1560 struct rdma_cm_event *event)
1562 struct nvmet_rdma_device *ndev;
1563 struct nvmet_rdma_queue *queue;
1564 int ret = -EINVAL;
1566 ndev = nvmet_rdma_find_get_device(cm_id);
1567 if (!ndev) {
1568 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1569 return -ECONNREFUSED;
1572 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1573 if (!queue) {
1574 ret = -ENOMEM;
1575 goto put_device;
1578 if (queue->host_qid == 0) {
1579 /* Let inflight controller teardown complete */
1580 flush_scheduled_work();
1583 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1584 if (ret) {
1586 * Don't destroy the cm_id in free path, as we implicitly
1587 * destroy the cm_id here with non-zero ret code.
1589 queue->cm_id = NULL;
1590 goto free_queue;
1593 mutex_lock(&nvmet_rdma_queue_mutex);
1594 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1595 mutex_unlock(&nvmet_rdma_queue_mutex);
1597 return 0;
1599 free_queue:
1600 nvmet_rdma_free_queue(queue);
1601 put_device:
1602 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1604 return ret;
1607 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1609 unsigned long flags;
1611 spin_lock_irqsave(&queue->state_lock, flags);
1612 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1613 pr_warn("trying to establish a connected queue\n");
1614 goto out_unlock;
1616 queue->state = NVMET_RDMA_Q_LIVE;
1618 while (!list_empty(&queue->rsp_wait_list)) {
1619 struct nvmet_rdma_rsp *cmd;
1621 cmd = list_first_entry(&queue->rsp_wait_list,
1622 struct nvmet_rdma_rsp, wait_list);
1623 list_del(&cmd->wait_list);
1625 spin_unlock_irqrestore(&queue->state_lock, flags);
1626 nvmet_rdma_handle_command(queue, cmd);
1627 spin_lock_irqsave(&queue->state_lock, flags);
1630 out_unlock:
1631 spin_unlock_irqrestore(&queue->state_lock, flags);
1634 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1636 bool disconnect = false;
1637 unsigned long flags;
1639 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1641 spin_lock_irqsave(&queue->state_lock, flags);
1642 switch (queue->state) {
1643 case NVMET_RDMA_Q_CONNECTING:
1644 while (!list_empty(&queue->rsp_wait_list)) {
1645 struct nvmet_rdma_rsp *rsp;
1647 rsp = list_first_entry(&queue->rsp_wait_list,
1648 struct nvmet_rdma_rsp,
1649 wait_list);
1650 list_del(&rsp->wait_list);
1651 nvmet_rdma_put_rsp(rsp);
1653 fallthrough;
1654 case NVMET_RDMA_Q_LIVE:
1655 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1656 disconnect = true;
1657 break;
1658 case NVMET_RDMA_Q_DISCONNECTING:
1659 break;
1661 spin_unlock_irqrestore(&queue->state_lock, flags);
1663 if (disconnect) {
1664 rdma_disconnect(queue->cm_id);
1665 schedule_work(&queue->release_work);
1669 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1671 bool disconnect = false;
1673 mutex_lock(&nvmet_rdma_queue_mutex);
1674 if (!list_empty(&queue->queue_list)) {
1675 list_del_init(&queue->queue_list);
1676 disconnect = true;
1678 mutex_unlock(&nvmet_rdma_queue_mutex);
1680 if (disconnect)
1681 __nvmet_rdma_queue_disconnect(queue);
1684 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1685 struct nvmet_rdma_queue *queue)
1687 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1689 mutex_lock(&nvmet_rdma_queue_mutex);
1690 if (!list_empty(&queue->queue_list))
1691 list_del_init(&queue->queue_list);
1692 mutex_unlock(&nvmet_rdma_queue_mutex);
1694 pr_err("failed to connect queue %d\n", queue->idx);
1695 schedule_work(&queue->release_work);
1699 * nvme_rdma_device_removal() - Handle RDMA device removal
1700 * @cm_id: rdma_cm id, used for nvmet port
1701 * @queue: nvmet rdma queue (cm id qp_context)
1703 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1704 * to unplug. Note that this event can be generated on a normal
1705 * queue cm_id and/or a device bound listener cm_id (where in this
1706 * case queue will be null).
1708 * We registered an ib_client to handle device removal for queues,
1709 * so we only need to handle the listening port cm_ids. In this case
1710 * we nullify the priv to prevent double cm_id destruction and destroying
1711 * the cm_id implicitely by returning a non-zero rc to the callout.
1713 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1714 struct nvmet_rdma_queue *queue)
1716 struct nvmet_rdma_port *port;
1718 if (queue) {
1720 * This is a queue cm_id. we have registered
1721 * an ib_client to handle queues removal
1722 * so don't interfear and just return.
1724 return 0;
1727 port = cm_id->context;
1730 * This is a listener cm_id. Make sure that
1731 * future remove_port won't invoke a double
1732 * cm_id destroy. use atomic xchg to make sure
1733 * we don't compete with remove_port.
1735 if (xchg(&port->cm_id, NULL) != cm_id)
1736 return 0;
1739 * We need to return 1 so that the core will destroy
1740 * it's own ID. What a great API design..
1742 return 1;
1745 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1746 struct rdma_cm_event *event)
1748 struct nvmet_rdma_queue *queue = NULL;
1749 int ret = 0;
1751 if (cm_id->qp)
1752 queue = cm_id->qp->qp_context;
1754 pr_debug("%s (%d): status %d id %p\n",
1755 rdma_event_msg(event->event), event->event,
1756 event->status, cm_id);
1758 switch (event->event) {
1759 case RDMA_CM_EVENT_CONNECT_REQUEST:
1760 ret = nvmet_rdma_queue_connect(cm_id, event);
1761 break;
1762 case RDMA_CM_EVENT_ESTABLISHED:
1763 nvmet_rdma_queue_established(queue);
1764 break;
1765 case RDMA_CM_EVENT_ADDR_CHANGE:
1766 if (!queue) {
1767 struct nvmet_rdma_port *port = cm_id->context;
1769 schedule_delayed_work(&port->repair_work, 0);
1770 break;
1772 fallthrough;
1773 case RDMA_CM_EVENT_DISCONNECTED:
1774 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1775 nvmet_rdma_queue_disconnect(queue);
1776 break;
1777 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1778 ret = nvmet_rdma_device_removal(cm_id, queue);
1779 break;
1780 case RDMA_CM_EVENT_REJECTED:
1781 pr_debug("Connection rejected: %s\n",
1782 rdma_reject_msg(cm_id, event->status));
1783 fallthrough;
1784 case RDMA_CM_EVENT_UNREACHABLE:
1785 case RDMA_CM_EVENT_CONNECT_ERROR:
1786 nvmet_rdma_queue_connect_fail(cm_id, queue);
1787 break;
1788 default:
1789 pr_err("received unrecognized RDMA CM event %d\n",
1790 event->event);
1791 break;
1794 return ret;
1797 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1799 struct nvmet_rdma_queue *queue;
1801 restart:
1802 mutex_lock(&nvmet_rdma_queue_mutex);
1803 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1804 if (queue->nvme_sq.ctrl == ctrl) {
1805 list_del_init(&queue->queue_list);
1806 mutex_unlock(&nvmet_rdma_queue_mutex);
1808 __nvmet_rdma_queue_disconnect(queue);
1809 goto restart;
1812 mutex_unlock(&nvmet_rdma_queue_mutex);
1815 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1817 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1819 if (cm_id)
1820 rdma_destroy_id(cm_id);
1823 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1825 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1826 struct rdma_cm_id *cm_id;
1827 int ret;
1829 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1830 RDMA_PS_TCP, IB_QPT_RC);
1831 if (IS_ERR(cm_id)) {
1832 pr_err("CM ID creation failed\n");
1833 return PTR_ERR(cm_id);
1837 * Allow both IPv4 and IPv6 sockets to bind a single port
1838 * at the same time.
1840 ret = rdma_set_afonly(cm_id, 1);
1841 if (ret) {
1842 pr_err("rdma_set_afonly failed (%d)\n", ret);
1843 goto out_destroy_id;
1846 ret = rdma_bind_addr(cm_id, addr);
1847 if (ret) {
1848 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1849 goto out_destroy_id;
1852 ret = rdma_listen(cm_id, 128);
1853 if (ret) {
1854 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1855 goto out_destroy_id;
1858 if (port->nport->pi_enable &&
1859 !(cm_id->device->attrs.device_cap_flags &
1860 IB_DEVICE_INTEGRITY_HANDOVER)) {
1861 pr_err("T10-PI is not supported for %pISpcs\n", addr);
1862 ret = -EINVAL;
1863 goto out_destroy_id;
1866 port->cm_id = cm_id;
1867 return 0;
1869 out_destroy_id:
1870 rdma_destroy_id(cm_id);
1871 return ret;
1874 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1876 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1877 struct nvmet_rdma_port, repair_work);
1878 int ret;
1880 nvmet_rdma_disable_port(port);
1881 ret = nvmet_rdma_enable_port(port);
1882 if (ret)
1883 schedule_delayed_work(&port->repair_work, 5 * HZ);
1886 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1888 struct nvmet_rdma_port *port;
1889 __kernel_sa_family_t af;
1890 int ret;
1892 port = kzalloc(sizeof(*port), GFP_KERNEL);
1893 if (!port)
1894 return -ENOMEM;
1896 nport->priv = port;
1897 port->nport = nport;
1898 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1900 switch (nport->disc_addr.adrfam) {
1901 case NVMF_ADDR_FAMILY_IP4:
1902 af = AF_INET;
1903 break;
1904 case NVMF_ADDR_FAMILY_IP6:
1905 af = AF_INET6;
1906 break;
1907 default:
1908 pr_err("address family %d not supported\n",
1909 nport->disc_addr.adrfam);
1910 ret = -EINVAL;
1911 goto out_free_port;
1914 if (nport->inline_data_size < 0) {
1915 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1916 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1917 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1918 nport->inline_data_size,
1919 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1920 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1923 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1924 nport->disc_addr.trsvcid, &port->addr);
1925 if (ret) {
1926 pr_err("malformed ip/port passed: %s:%s\n",
1927 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1928 goto out_free_port;
1931 ret = nvmet_rdma_enable_port(port);
1932 if (ret)
1933 goto out_free_port;
1935 pr_info("enabling port %d (%pISpcs)\n",
1936 le16_to_cpu(nport->disc_addr.portid),
1937 (struct sockaddr *)&port->addr);
1939 return 0;
1941 out_free_port:
1942 kfree(port);
1943 return ret;
1946 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1948 struct nvmet_rdma_port *port = nport->priv;
1950 cancel_delayed_work_sync(&port->repair_work);
1951 nvmet_rdma_disable_port(port);
1952 kfree(port);
1955 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1956 struct nvmet_port *nport, char *traddr)
1958 struct nvmet_rdma_port *port = nport->priv;
1959 struct rdma_cm_id *cm_id = port->cm_id;
1961 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1962 struct nvmet_rdma_rsp *rsp =
1963 container_of(req, struct nvmet_rdma_rsp, req);
1964 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1965 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1967 sprintf(traddr, "%pISc", addr);
1968 } else {
1969 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1973 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1975 if (ctrl->pi_support)
1976 return NVMET_RDMA_MAX_METADATA_MDTS;
1977 return NVMET_RDMA_MAX_MDTS;
1980 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1981 .owner = THIS_MODULE,
1982 .type = NVMF_TRTYPE_RDMA,
1983 .msdbd = 1,
1984 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1985 .add_port = nvmet_rdma_add_port,
1986 .remove_port = nvmet_rdma_remove_port,
1987 .queue_response = nvmet_rdma_queue_response,
1988 .delete_ctrl = nvmet_rdma_delete_ctrl,
1989 .disc_traddr = nvmet_rdma_disc_port_addr,
1990 .get_mdts = nvmet_rdma_get_mdts,
1993 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1995 struct nvmet_rdma_queue *queue, *tmp;
1996 struct nvmet_rdma_device *ndev;
1997 bool found = false;
1999 mutex_lock(&device_list_mutex);
2000 list_for_each_entry(ndev, &device_list, entry) {
2001 if (ndev->device == ib_device) {
2002 found = true;
2003 break;
2006 mutex_unlock(&device_list_mutex);
2008 if (!found)
2009 return;
2012 * IB Device that is used by nvmet controllers is being removed,
2013 * delete all queues using this device.
2015 mutex_lock(&nvmet_rdma_queue_mutex);
2016 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2017 queue_list) {
2018 if (queue->dev->device != ib_device)
2019 continue;
2021 pr_info("Removing queue %d\n", queue->idx);
2022 list_del_init(&queue->queue_list);
2023 __nvmet_rdma_queue_disconnect(queue);
2025 mutex_unlock(&nvmet_rdma_queue_mutex);
2027 flush_scheduled_work();
2030 static struct ib_client nvmet_rdma_ib_client = {
2031 .name = "nvmet_rdma",
2032 .remove = nvmet_rdma_remove_one
2035 static int __init nvmet_rdma_init(void)
2037 int ret;
2039 ret = ib_register_client(&nvmet_rdma_ib_client);
2040 if (ret)
2041 return ret;
2043 ret = nvmet_register_transport(&nvmet_rdma_ops);
2044 if (ret)
2045 goto err_ib_client;
2047 return 0;
2049 err_ib_client:
2050 ib_unregister_client(&nvmet_rdma_ib_client);
2051 return ret;
2054 static void __exit nvmet_rdma_exit(void)
2056 nvmet_unregister_transport(&nvmet_rdma_ops);
2057 ib_unregister_client(&nvmet_rdma_ib_client);
2058 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2059 ida_destroy(&nvmet_rdma_queue_ida);
2062 module_init(nvmet_rdma_init);
2063 module_exit(nvmet_rdma_exit);
2065 MODULE_LICENSE("GPL v2");
2066 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */