1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28 #include <linux/firmware.h>
29 #include <linux/string.h>
30 #include <linux/debugfs.h>
31 #include <linux/rculist.h>
32 #include <linux/remoteproc.h>
33 #include <linux/iommu.h>
34 #include <linux/idr.h>
35 #include <linux/elf.h>
36 #include <linux/crc32.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
43 #include "remoteproc_internal.h"
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 static DEFINE_MUTEX(rproc_list_mutex
);
48 static LIST_HEAD(rproc_list
);
49 static struct notifier_block rproc_panic_nb
;
51 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
52 void *, int offset
, int avail
);
54 static int rproc_alloc_carveout(struct rproc
*rproc
,
55 struct rproc_mem_entry
*mem
);
56 static int rproc_release_carveout(struct rproc
*rproc
,
57 struct rproc_mem_entry
*mem
);
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index
);
62 static const char * const rproc_crash_names
[] = {
63 [RPROC_MMUFAULT
] = "mmufault",
64 [RPROC_WATCHDOG
] = "watchdog",
65 [RPROC_FATAL_ERROR
] = "fatal error",
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
71 if (type
< ARRAY_SIZE(rproc_crash_names
))
72 return rproc_crash_names
[type
];
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
84 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
85 unsigned long iova
, int flags
, void *token
)
87 struct rproc
*rproc
= token
;
89 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
91 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
100 static int rproc_enable_iommu(struct rproc
*rproc
)
102 struct iommu_domain
*domain
;
103 struct device
*dev
= rproc
->dev
.parent
;
106 if (!rproc
->has_iommu
) {
107 dev_dbg(dev
, "iommu not present\n");
111 domain
= iommu_domain_alloc(dev
->bus
);
113 dev_err(dev
, "can't alloc iommu domain\n");
117 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
119 ret
= iommu_attach_device(domain
, dev
);
121 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
125 rproc
->domain
= domain
;
130 iommu_domain_free(domain
);
134 static void rproc_disable_iommu(struct rproc
*rproc
)
136 struct iommu_domain
*domain
= rproc
->domain
;
137 struct device
*dev
= rproc
->dev
.parent
;
142 iommu_detach_device(domain
, dev
);
143 iommu_domain_free(domain
);
146 phys_addr_t
rproc_va_to_pa(void *cpu_addr
)
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
153 if (is_vmalloc_addr(cpu_addr
)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr
)) +
155 offset_in_page(cpu_addr
);
158 WARN_ON(!virt_addr_valid(cpu_addr
));
159 return virt_to_phys(cpu_addr
);
161 EXPORT_SYMBOL(rproc_va_to_pa
);
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
185 * The function returns a valid kernel address on success or NULL on failure.
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
192 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
)
194 struct rproc_mem_entry
*carveout
;
197 if (rproc
->ops
->da_to_va
) {
198 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
);
203 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
204 int offset
= da
- carveout
->da
;
206 /* Verify that carveout is allocated */
210 /* try next carveout if da is too small */
214 /* try next carveout if da is too large */
215 if (offset
+ len
> carveout
->len
)
218 ptr
= carveout
->va
+ offset
;
226 EXPORT_SYMBOL(rproc_da_to_va
);
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
247 struct rproc_mem_entry
*
248 rproc_find_carveout_by_name(struct rproc
*rproc
, const char *name
, ...)
252 struct rproc_mem_entry
*carveout
, *mem
= NULL
;
257 va_start(args
, name
);
258 vsnprintf(_name
, sizeof(_name
), name
, args
);
261 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
262 /* Compare carveout and requested names */
263 if (!strcmp(carveout
->name
, _name
)) {
273 * rproc_check_carveout_da() - Check specified carveout da configuration
274 * @rproc: handle of a remote processor
275 * @mem: pointer on carveout to check
276 * @da: area device address
277 * @len: associated area size
279 * This function is a helper function to verify requested device area (couple
280 * da, len) is part of specified carveout.
281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
284 * Return: 0 if carveout matches request else error
286 static int rproc_check_carveout_da(struct rproc
*rproc
,
287 struct rproc_mem_entry
*mem
, u32 da
, u32 len
)
289 struct device
*dev
= &rproc
->dev
;
292 /* Check requested resource length */
293 if (len
> mem
->len
) {
294 dev_err(dev
, "Registered carveout doesn't fit len request\n");
298 if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
== FW_RSC_ADDR_ANY
) {
299 /* Address doesn't match registered carveout configuration */
301 } else if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
!= FW_RSC_ADDR_ANY
) {
302 delta
= da
- mem
->da
;
304 /* Check requested resource belongs to registered carveout */
307 "Registered carveout doesn't fit da request\n");
311 if (delta
+ len
> mem
->len
) {
313 "Registered carveout doesn't fit len request\n");
321 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
323 struct rproc
*rproc
= rvdev
->rproc
;
324 struct device
*dev
= &rproc
->dev
;
325 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
326 struct fw_rsc_vdev
*rsc
;
328 struct rproc_mem_entry
*mem
;
331 /* actual size of vring (in bytes) */
332 size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
334 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
336 /* Search for pre-registered carveout */
337 mem
= rproc_find_carveout_by_name(rproc
, "vdev%dvring%d", rvdev
->index
,
340 if (rproc_check_carveout_da(rproc
, mem
, rsc
->vring
[i
].da
, size
))
343 /* Register carveout in in list */
344 mem
= rproc_mem_entry_init(dev
, NULL
, 0,
345 size
, rsc
->vring
[i
].da
,
346 rproc_alloc_carveout
,
347 rproc_release_carveout
,
351 dev_err(dev
, "Can't allocate memory entry structure\n");
355 rproc_add_carveout(rproc
, mem
);
359 * Assign an rproc-wide unique index for this vring
360 * TODO: assign a notifyid for rvdev updates as well
361 * TODO: support predefined notifyids (via resource table)
363 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
365 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
370 /* Potentially bump max_notifyid */
371 if (notifyid
> rproc
->max_notifyid
)
372 rproc
->max_notifyid
= notifyid
;
374 rvring
->notifyid
= notifyid
;
376 /* Let the rproc know the notifyid of this vring.*/
377 rsc
->vring
[i
].notifyid
= notifyid
;
382 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
384 struct rproc
*rproc
= rvdev
->rproc
;
385 struct device
*dev
= &rproc
->dev
;
386 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
387 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
389 dev_dbg(dev
, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 i
, vring
->da
, vring
->num
, vring
->align
);
392 /* verify queue size and vring alignment are sane */
393 if (!vring
->num
|| !vring
->align
) {
394 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
395 vring
->num
, vring
->align
);
399 rvring
->len
= vring
->num
;
400 rvring
->align
= vring
->align
;
401 rvring
->rvdev
= rvdev
;
406 void rproc_free_vring(struct rproc_vring
*rvring
)
408 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
409 int idx
= rvring
- rvring
->rvdev
->vring
;
410 struct fw_rsc_vdev
*rsc
;
412 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
415 * At this point rproc_stop() has been called and the installed resource
416 * table in the remote processor memory may no longer be accessible. As
417 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 * resource table (rproc->cached_table). The cached resource table is
419 * only available when a remote processor has been booted by the
420 * remoteproc core, otherwise it is NULL.
422 * Based on the above, reset the virtio device section in the cached
423 * resource table only if there is one to work with.
425 if (rproc
->table_ptr
) {
426 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
427 rsc
->vring
[idx
].da
= 0;
428 rsc
->vring
[idx
].notifyid
= -1;
432 static int rproc_vdev_do_start(struct rproc_subdev
*subdev
)
434 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
436 return rproc_add_virtio_dev(rvdev
, rvdev
->id
);
439 static void rproc_vdev_do_stop(struct rproc_subdev
*subdev
, bool crashed
)
441 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
444 ret
= device_for_each_child(&rvdev
->dev
, NULL
, rproc_remove_virtio_dev
);
446 dev_warn(&rvdev
->dev
, "can't remove vdev child device: %d\n", ret
);
450 * rproc_rvdev_release() - release the existence of a rvdev
452 * @dev: the subdevice's dev
454 static void rproc_rvdev_release(struct device
*dev
)
456 struct rproc_vdev
*rvdev
= container_of(dev
, struct rproc_vdev
, dev
);
458 of_reserved_mem_device_release(dev
);
463 static int copy_dma_range_map(struct device
*to
, struct device
*from
)
465 const struct bus_dma_region
*map
= from
->dma_range_map
, *new_map
, *r
;
471 for (r
= map
; r
->size
; r
++)
474 new_map
= kmemdup(map
, array_size(num_ranges
+ 1, sizeof(*map
)),
478 to
->dma_range_map
= new_map
;
483 * rproc_handle_vdev() - handle a vdev fw resource
484 * @rproc: the remote processor
485 * @rsc: the vring resource descriptor
486 * @offset: offset of the resource entry
487 * @avail: size of available data (for sanity checking the image)
489 * This resource entry requests the host to statically register a virtio
490 * device (vdev), and setup everything needed to support it. It contains
491 * everything needed to make it possible: the virtio device id, virtio
492 * device features, vrings information, virtio config space, etc...
494 * Before registering the vdev, the vrings are allocated from non-cacheable
495 * physically contiguous memory. Currently we only support two vrings per
496 * remote processor (temporary limitation). We might also want to consider
497 * doing the vring allocation only later when ->find_vqs() is invoked, and
498 * then release them upon ->del_vqs().
500 * Note: @da is currently not really handled correctly: we dynamically
501 * allocate it using the DMA API, ignoring requested hard coded addresses,
502 * and we don't take care of any required IOMMU programming. This is all
503 * going to be taken care of when the generic iommu-based DMA API will be
504 * merged. Meanwhile, statically-addressed iommu-based firmware images should
505 * use RSC_DEVMEM resource entries to map their required @da to the physical
506 * address of their base CMA region (ouch, hacky!).
508 * Returns 0 on success, or an appropriate error code otherwise
510 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
511 int offset
, int avail
)
513 struct device
*dev
= &rproc
->dev
;
514 struct rproc_vdev
*rvdev
;
518 /* make sure resource isn't truncated */
519 if (struct_size(rsc
, vring
, rsc
->num_of_vrings
) + rsc
->config_len
>
521 dev_err(dev
, "vdev rsc is truncated\n");
525 /* make sure reserved bytes are zeroes */
526 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
527 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
531 dev_dbg(dev
, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
534 /* we currently support only two vrings per rvdev */
535 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
536 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
540 rvdev
= kzalloc(sizeof(*rvdev
), GFP_KERNEL
);
544 kref_init(&rvdev
->refcount
);
547 rvdev
->rproc
= rproc
;
548 rvdev
->index
= rproc
->nb_vdev
++;
550 /* Initialise vdev subdevice */
551 snprintf(name
, sizeof(name
), "vdev%dbuffer", rvdev
->index
);
552 rvdev
->dev
.parent
= &rproc
->dev
;
553 ret
= copy_dma_range_map(&rvdev
->dev
, rproc
->dev
.parent
);
556 rvdev
->dev
.release
= rproc_rvdev_release
;
557 dev_set_name(&rvdev
->dev
, "%s#%s", dev_name(rvdev
->dev
.parent
), name
);
558 dev_set_drvdata(&rvdev
->dev
, rvdev
);
560 ret
= device_register(&rvdev
->dev
);
562 put_device(&rvdev
->dev
);
565 /* Make device dma capable by inheriting from parent's capabilities */
566 set_dma_ops(&rvdev
->dev
, get_dma_ops(rproc
->dev
.parent
));
568 ret
= dma_coerce_mask_and_coherent(&rvdev
->dev
,
569 dma_get_mask(rproc
->dev
.parent
));
572 "Failed to set DMA mask %llx. Trying to continue... %x\n",
573 dma_get_mask(rproc
->dev
.parent
), ret
);
576 /* parse the vrings */
577 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
578 ret
= rproc_parse_vring(rvdev
, rsc
, i
);
583 /* remember the resource offset*/
584 rvdev
->rsc_offset
= offset
;
586 /* allocate the vring resources */
587 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
588 ret
= rproc_alloc_vring(rvdev
, i
);
590 goto unwind_vring_allocations
;
593 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
595 rvdev
->subdev
.start
= rproc_vdev_do_start
;
596 rvdev
->subdev
.stop
= rproc_vdev_do_stop
;
598 rproc_add_subdev(rproc
, &rvdev
->subdev
);
602 unwind_vring_allocations
:
603 for (i
--; i
>= 0; i
--)
604 rproc_free_vring(&rvdev
->vring
[i
]);
606 device_unregister(&rvdev
->dev
);
610 void rproc_vdev_release(struct kref
*ref
)
612 struct rproc_vdev
*rvdev
= container_of(ref
, struct rproc_vdev
, refcount
);
613 struct rproc_vring
*rvring
;
614 struct rproc
*rproc
= rvdev
->rproc
;
617 for (id
= 0; id
< ARRAY_SIZE(rvdev
->vring
); id
++) {
618 rvring
= &rvdev
->vring
[id
];
619 rproc_free_vring(rvring
);
622 rproc_remove_subdev(rproc
, &rvdev
->subdev
);
623 list_del(&rvdev
->node
);
624 device_unregister(&rvdev
->dev
);
628 * rproc_handle_trace() - handle a shared trace buffer resource
629 * @rproc: the remote processor
630 * @rsc: the trace resource descriptor
631 * @offset: offset of the resource entry
632 * @avail: size of available data (for sanity checking the image)
634 * In case the remote processor dumps trace logs into memory,
635 * export it via debugfs.
637 * Currently, the 'da' member of @rsc should contain the device address
638 * where the remote processor is dumping the traces. Later we could also
639 * support dynamically allocating this address using the generic
640 * DMA API (but currently there isn't a use case for that).
642 * Returns 0 on success, or an appropriate error code otherwise
644 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
645 int offset
, int avail
)
647 struct rproc_debug_trace
*trace
;
648 struct device
*dev
= &rproc
->dev
;
651 if (sizeof(*rsc
) > avail
) {
652 dev_err(dev
, "trace rsc is truncated\n");
656 /* make sure reserved bytes are zeroes */
658 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
662 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
666 /* set the trace buffer dma properties */
667 trace
->trace_mem
.len
= rsc
->len
;
668 trace
->trace_mem
.da
= rsc
->da
;
670 /* set pointer on rproc device */
671 trace
->rproc
= rproc
;
673 /* make sure snprintf always null terminates, even if truncating */
674 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
676 /* create the debugfs entry */
677 trace
->tfile
= rproc_create_trace_file(name
, rproc
, trace
);
683 list_add_tail(&trace
->node
, &rproc
->traces
);
687 dev_dbg(dev
, "%s added: da 0x%x, len 0x%x\n",
688 name
, rsc
->da
, rsc
->len
);
694 * rproc_handle_devmem() - handle devmem resource entry
695 * @rproc: remote processor handle
696 * @rsc: the devmem resource entry
697 * @offset: offset of the resource entry
698 * @avail: size of available data (for sanity checking the image)
700 * Remote processors commonly need to access certain on-chip peripherals.
702 * Some of these remote processors access memory via an iommu device,
703 * and might require us to configure their iommu before they can access
704 * the on-chip peripherals they need.
706 * This resource entry is a request to map such a peripheral device.
708 * These devmem entries will contain the physical address of the device in
709 * the 'pa' member. If a specific device address is expected, then 'da' will
710 * contain it (currently this is the only use case supported). 'len' will
711 * contain the size of the physical region we need to map.
713 * Currently we just "trust" those devmem entries to contain valid physical
714 * addresses, but this is going to change: we want the implementations to
715 * tell us ranges of physical addresses the firmware is allowed to request,
716 * and not allow firmwares to request access to physical addresses that
717 * are outside those ranges.
719 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
720 int offset
, int avail
)
722 struct rproc_mem_entry
*mapping
;
723 struct device
*dev
= &rproc
->dev
;
726 /* no point in handling this resource without a valid iommu domain */
730 if (sizeof(*rsc
) > avail
) {
731 dev_err(dev
, "devmem rsc is truncated\n");
735 /* make sure reserved bytes are zeroes */
737 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
741 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
745 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
747 dev_err(dev
, "failed to map devmem: %d\n", ret
);
752 * We'll need this info later when we'll want to unmap everything
753 * (e.g. on shutdown).
755 * We can't trust the remote processor not to change the resource
756 * table, so we must maintain this info independently.
758 mapping
->da
= rsc
->da
;
759 mapping
->len
= rsc
->len
;
760 list_add_tail(&mapping
->node
, &rproc
->mappings
);
762 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
763 rsc
->pa
, rsc
->da
, rsc
->len
);
773 * rproc_alloc_carveout() - allocated specified carveout
774 * @rproc: rproc handle
775 * @mem: the memory entry to allocate
777 * This function allocate specified memory entry @mem using
778 * dma_alloc_coherent() as default allocator
780 static int rproc_alloc_carveout(struct rproc
*rproc
,
781 struct rproc_mem_entry
*mem
)
783 struct rproc_mem_entry
*mapping
= NULL
;
784 struct device
*dev
= &rproc
->dev
;
789 va
= dma_alloc_coherent(dev
->parent
, mem
->len
, &dma
, GFP_KERNEL
);
792 "failed to allocate dma memory: len 0x%zx\n",
797 dev_dbg(dev
, "carveout va %pK, dma %pad, len 0x%zx\n",
800 if (mem
->da
!= FW_RSC_ADDR_ANY
&& !rproc
->domain
) {
802 * Check requested da is equal to dma address
803 * and print a warn message in case of missalignment.
804 * Don't stop rproc_start sequence as coprocessor may
805 * build pa to da translation on its side.
807 if (mem
->da
!= (u32
)dma
)
808 dev_warn(dev
->parent
,
809 "Allocated carveout doesn't fit device address request\n");
813 * Ok, this is non-standard.
815 * Sometimes we can't rely on the generic iommu-based DMA API
816 * to dynamically allocate the device address and then set the IOMMU
817 * tables accordingly, because some remote processors might
818 * _require_ us to use hard coded device addresses that their
819 * firmware was compiled with.
821 * In this case, we must use the IOMMU API directly and map
822 * the memory to the device address as expected by the remote
825 * Obviously such remote processor devices should not be configured
826 * to use the iommu-based DMA API: we expect 'dma' to contain the
827 * physical address in this case.
829 if (mem
->da
!= FW_RSC_ADDR_ANY
&& rproc
->domain
) {
830 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
836 ret
= iommu_map(rproc
->domain
, mem
->da
, dma
, mem
->len
,
839 dev_err(dev
, "iommu_map failed: %d\n", ret
);
844 * We'll need this info later when we'll want to unmap
845 * everything (e.g. on shutdown).
847 * We can't trust the remote processor not to change the
848 * resource table, so we must maintain this info independently.
850 mapping
->da
= mem
->da
;
851 mapping
->len
= mem
->len
;
852 list_add_tail(&mapping
->node
, &rproc
->mappings
);
854 dev_dbg(dev
, "carveout mapped 0x%x to %pad\n",
858 if (mem
->da
== FW_RSC_ADDR_ANY
) {
859 /* Update device address as undefined by requester */
860 if ((u64
)dma
& HIGH_BITS_MASK
)
861 dev_warn(dev
, "DMA address cast in 32bit to fit resource table format\n");
874 dma_free_coherent(dev
->parent
, mem
->len
, va
, dma
);
879 * rproc_release_carveout() - release acquired carveout
880 * @rproc: rproc handle
881 * @mem: the memory entry to release
883 * This function releases specified memory entry @mem allocated via
884 * rproc_alloc_carveout() function by @rproc.
886 static int rproc_release_carveout(struct rproc
*rproc
,
887 struct rproc_mem_entry
*mem
)
889 struct device
*dev
= &rproc
->dev
;
891 /* clean up carveout allocations */
892 dma_free_coherent(dev
->parent
, mem
->len
, mem
->va
, mem
->dma
);
897 * rproc_handle_carveout() - handle phys contig memory allocation requests
898 * @rproc: rproc handle
899 * @rsc: the resource entry
900 * @offset: offset of the resource entry
901 * @avail: size of available data (for image validation)
903 * This function will handle firmware requests for allocation of physically
904 * contiguous memory regions.
906 * These request entries should come first in the firmware's resource table,
907 * as other firmware entries might request placing other data objects inside
908 * these memory regions (e.g. data/code segments, trace resource entries, ...).
910 * Allocating memory this way helps utilizing the reserved physical memory
911 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
912 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
913 * pressure is important; it may have a substantial impact on performance.
915 static int rproc_handle_carveout(struct rproc
*rproc
,
916 struct fw_rsc_carveout
*rsc
,
917 int offset
, int avail
)
919 struct rproc_mem_entry
*carveout
;
920 struct device
*dev
= &rproc
->dev
;
922 if (sizeof(*rsc
) > avail
) {
923 dev_err(dev
, "carveout rsc is truncated\n");
927 /* make sure reserved bytes are zeroes */
929 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
933 dev_dbg(dev
, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
934 rsc
->name
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
937 * Check carveout rsc already part of a registered carveout,
938 * Search by name, then check the da and length
940 carveout
= rproc_find_carveout_by_name(rproc
, rsc
->name
);
943 if (carveout
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
945 "Carveout already associated to resource table\n");
949 if (rproc_check_carveout_da(rproc
, carveout
, rsc
->da
, rsc
->len
))
952 /* Update memory carveout with resource table info */
953 carveout
->rsc_offset
= offset
;
954 carveout
->flags
= rsc
->flags
;
959 /* Register carveout in in list */
960 carveout
= rproc_mem_entry_init(dev
, NULL
, 0, rsc
->len
, rsc
->da
,
961 rproc_alloc_carveout
,
962 rproc_release_carveout
, rsc
->name
);
964 dev_err(dev
, "Can't allocate memory entry structure\n");
968 carveout
->flags
= rsc
->flags
;
969 carveout
->rsc_offset
= offset
;
970 rproc_add_carveout(rproc
, carveout
);
976 * rproc_add_carveout() - register an allocated carveout region
977 * @rproc: rproc handle
978 * @mem: memory entry to register
980 * This function registers specified memory entry in @rproc carveouts list.
981 * Specified carveout should have been allocated before registering.
983 void rproc_add_carveout(struct rproc
*rproc
, struct rproc_mem_entry
*mem
)
985 list_add_tail(&mem
->node
, &rproc
->carveouts
);
987 EXPORT_SYMBOL(rproc_add_carveout
);
990 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991 * @dev: pointer on device struct
992 * @va: virtual address
994 * @len: memory carveout length
995 * @da: device address
996 * @alloc: memory carveout allocation function
997 * @release: memory carveout release function
998 * @name: carveout name
1000 * This function allocates a rproc_mem_entry struct and fill it with parameters
1001 * provided by client.
1004 struct rproc_mem_entry
*
1005 rproc_mem_entry_init(struct device
*dev
,
1006 void *va
, dma_addr_t dma
, size_t len
, u32 da
,
1007 int (*alloc
)(struct rproc
*, struct rproc_mem_entry
*),
1008 int (*release
)(struct rproc
*, struct rproc_mem_entry
*),
1009 const char *name
, ...)
1011 struct rproc_mem_entry
*mem
;
1014 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
1023 mem
->release
= release
;
1024 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
1025 mem
->of_resm_idx
= -1;
1027 va_start(args
, name
);
1028 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
1033 EXPORT_SYMBOL(rproc_mem_entry_init
);
1036 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1037 * from a reserved memory phandle
1038 * @dev: pointer on device struct
1039 * @of_resm_idx: reserved memory phandle index in "memory-region"
1040 * @len: memory carveout length
1041 * @da: device address
1042 * @name: carveout name
1044 * This function allocates a rproc_mem_entry struct and fill it with parameters
1045 * provided by client.
1048 struct rproc_mem_entry
*
1049 rproc_of_resm_mem_entry_init(struct device
*dev
, u32 of_resm_idx
, size_t len
,
1050 u32 da
, const char *name
, ...)
1052 struct rproc_mem_entry
*mem
;
1055 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
1061 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
1062 mem
->of_resm_idx
= of_resm_idx
;
1064 va_start(args
, name
);
1065 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
1070 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init
);
1073 * rproc_of_parse_firmware() - parse and return the firmware-name
1074 * @dev: pointer on device struct representing a rproc
1075 * @index: index to use for the firmware-name retrieval
1076 * @fw_name: pointer to a character string, in which the firmware
1077 * name is returned on success and unmodified otherwise.
1079 * This is an OF helper function that parses a device's DT node for
1080 * the "firmware-name" property and returns the firmware name pointer
1081 * in @fw_name on success.
1083 * Return: 0 on success, or an appropriate failure.
1085 int rproc_of_parse_firmware(struct device
*dev
, int index
, const char **fw_name
)
1089 ret
= of_property_read_string_index(dev
->of_node
, "firmware-name",
1091 return ret
? ret
: 0;
1093 EXPORT_SYMBOL(rproc_of_parse_firmware
);
1096 * A lookup table for resource handlers. The indices are defined in
1097 * enum fw_resource_type.
1099 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
1100 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
1101 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
1102 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
1103 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_handle_vdev
,
1106 /* handle firmware resource entries before booting the remote processor */
1107 static int rproc_handle_resources(struct rproc
*rproc
,
1108 rproc_handle_resource_t handlers
[RSC_LAST
])
1110 struct device
*dev
= &rproc
->dev
;
1111 rproc_handle_resource_t handler
;
1114 if (!rproc
->table_ptr
)
1117 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
1118 int offset
= rproc
->table_ptr
->offset
[i
];
1119 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
1120 int avail
= rproc
->table_sz
- offset
- sizeof(*hdr
);
1121 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
1123 /* make sure table isn't truncated */
1125 dev_err(dev
, "rsc table is truncated\n");
1129 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
1131 if (hdr
->type
>= RSC_VENDOR_START
&&
1132 hdr
->type
<= RSC_VENDOR_END
) {
1133 ret
= rproc_handle_rsc(rproc
, hdr
->type
, rsc
,
1134 offset
+ sizeof(*hdr
), avail
);
1135 if (ret
== RSC_HANDLED
)
1140 dev_warn(dev
, "unsupported vendor resource %d\n",
1145 if (hdr
->type
>= RSC_LAST
) {
1146 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
1150 handler
= handlers
[hdr
->type
];
1154 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
1162 static int rproc_prepare_subdevices(struct rproc
*rproc
)
1164 struct rproc_subdev
*subdev
;
1167 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1168 if (subdev
->prepare
) {
1169 ret
= subdev
->prepare(subdev
);
1171 goto unroll_preparation
;
1178 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1179 if (subdev
->unprepare
)
1180 subdev
->unprepare(subdev
);
1186 static int rproc_start_subdevices(struct rproc
*rproc
)
1188 struct rproc_subdev
*subdev
;
1191 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1192 if (subdev
->start
) {
1193 ret
= subdev
->start(subdev
);
1195 goto unroll_registration
;
1201 unroll_registration
:
1202 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1204 subdev
->stop(subdev
, true);
1210 static void rproc_stop_subdevices(struct rproc
*rproc
, bool crashed
)
1212 struct rproc_subdev
*subdev
;
1214 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1216 subdev
->stop(subdev
, crashed
);
1220 static void rproc_unprepare_subdevices(struct rproc
*rproc
)
1222 struct rproc_subdev
*subdev
;
1224 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1225 if (subdev
->unprepare
)
1226 subdev
->unprepare(subdev
);
1231 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1233 * @rproc: the remote processor handle
1235 * This function parses registered carveout list, performs allocation
1236 * if alloc() ops registered and updates resource table information
1237 * if rsc_offset set.
1239 * Return: 0 on success
1241 static int rproc_alloc_registered_carveouts(struct rproc
*rproc
)
1243 struct rproc_mem_entry
*entry
, *tmp
;
1244 struct fw_rsc_carveout
*rsc
;
1245 struct device
*dev
= &rproc
->dev
;
1249 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1251 ret
= entry
->alloc(rproc
, entry
);
1253 dev_err(dev
, "Unable to allocate carveout %s: %d\n",
1259 if (entry
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
1260 /* update resource table */
1261 rsc
= (void *)rproc
->table_ptr
+ entry
->rsc_offset
;
1264 * Some remote processors might need to know the pa
1265 * even though they are behind an IOMMU. E.g., OMAP4's
1266 * remote M3 processor needs this so it can control
1267 * on-chip hardware accelerators that are not behind
1268 * the IOMMU, and therefor must know the pa.
1270 * Generally we don't want to expose physical addresses
1271 * if we don't have to (remote processors are generally
1272 * _not_ trusted), so we might want to do this only for
1273 * remote processor that _must_ have this (e.g. OMAP4's
1274 * dual M3 subsystem).
1276 * Non-IOMMU processors might also want to have this info.
1277 * In this case, the device address and the physical address
1281 /* Use va if defined else dma to generate pa */
1283 pa
= (u64
)rproc_va_to_pa(entry
->va
);
1285 pa
= (u64
)entry
->dma
;
1287 if (((u64
)pa
) & HIGH_BITS_MASK
)
1289 "Physical address cast in 32bit to fit resource table format\n");
1292 rsc
->da
= entry
->da
;
1293 rsc
->len
= entry
->len
;
1302 * rproc_resource_cleanup() - clean up and free all acquired resources
1303 * @rproc: rproc handle
1305 * This function will free all resources acquired for @rproc, and it
1306 * is called whenever @rproc either shuts down or fails to boot.
1308 void rproc_resource_cleanup(struct rproc
*rproc
)
1310 struct rproc_mem_entry
*entry
, *tmp
;
1311 struct rproc_debug_trace
*trace
, *ttmp
;
1312 struct rproc_vdev
*rvdev
, *rvtmp
;
1313 struct device
*dev
= &rproc
->dev
;
1315 /* clean up debugfs trace entries */
1316 list_for_each_entry_safe(trace
, ttmp
, &rproc
->traces
, node
) {
1317 rproc_remove_trace_file(trace
->tfile
);
1318 rproc
->num_traces
--;
1319 list_del(&trace
->node
);
1323 /* clean up iommu mapping entries */
1324 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
1327 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
1328 if (unmapped
!= entry
->len
) {
1329 /* nothing much to do besides complaining */
1330 dev_err(dev
, "failed to unmap %zx/%zu\n", entry
->len
,
1334 list_del(&entry
->node
);
1338 /* clean up carveout allocations */
1339 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1341 entry
->release(rproc
, entry
);
1342 list_del(&entry
->node
);
1346 /* clean up remote vdev entries */
1347 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
1348 kref_put(&rvdev
->refcount
, rproc_vdev_release
);
1350 rproc_coredump_cleanup(rproc
);
1352 EXPORT_SYMBOL(rproc_resource_cleanup
);
1354 static int rproc_start(struct rproc
*rproc
, const struct firmware
*fw
)
1356 struct resource_table
*loaded_table
;
1357 struct device
*dev
= &rproc
->dev
;
1360 /* load the ELF segments to memory */
1361 ret
= rproc_load_segments(rproc
, fw
);
1363 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1368 * The starting device has been given the rproc->cached_table as the
1369 * resource table. The address of the vring along with the other
1370 * allocated resources (carveouts etc) is stored in cached_table.
1371 * In order to pass this information to the remote device we must copy
1372 * this information to device memory. We also update the table_ptr so
1373 * that any subsequent changes will be applied to the loaded version.
1375 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
1377 memcpy(loaded_table
, rproc
->cached_table
, rproc
->table_sz
);
1378 rproc
->table_ptr
= loaded_table
;
1381 ret
= rproc_prepare_subdevices(rproc
);
1383 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1385 goto reset_table_ptr
;
1388 /* power up the remote processor */
1389 ret
= rproc
->ops
->start(rproc
);
1391 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1392 goto unprepare_subdevices
;
1395 /* Start any subdevices for the remote processor */
1396 ret
= rproc_start_subdevices(rproc
);
1398 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1403 rproc
->state
= RPROC_RUNNING
;
1405 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1410 rproc
->ops
->stop(rproc
);
1411 unprepare_subdevices
:
1412 rproc_unprepare_subdevices(rproc
);
1414 rproc
->table_ptr
= rproc
->cached_table
;
1419 static int rproc_attach(struct rproc
*rproc
)
1421 struct device
*dev
= &rproc
->dev
;
1424 ret
= rproc_prepare_subdevices(rproc
);
1426 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1431 /* Attach to the remote processor */
1432 ret
= rproc_attach_device(rproc
);
1434 dev_err(dev
, "can't attach to rproc %s: %d\n",
1436 goto unprepare_subdevices
;
1439 /* Start any subdevices for the remote processor */
1440 ret
= rproc_start_subdevices(rproc
);
1442 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1447 rproc
->state
= RPROC_RUNNING
;
1449 dev_info(dev
, "remote processor %s is now attached\n", rproc
->name
);
1454 rproc
->ops
->stop(rproc
);
1455 unprepare_subdevices
:
1456 rproc_unprepare_subdevices(rproc
);
1462 * take a firmware and boot a remote processor with it.
1464 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1466 struct device
*dev
= &rproc
->dev
;
1467 const char *name
= rproc
->firmware
;
1470 ret
= rproc_fw_sanity_check(rproc
, fw
);
1474 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1477 * if enabling an IOMMU isn't relevant for this rproc, this is
1480 ret
= rproc_enable_iommu(rproc
);
1482 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1486 /* Prepare rproc for firmware loading if needed */
1487 ret
= rproc_prepare_device(rproc
);
1489 dev_err(dev
, "can't prepare rproc %s: %d\n", rproc
->name
, ret
);
1493 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
1495 /* Load resource table, core dump segment list etc from the firmware */
1496 ret
= rproc_parse_fw(rproc
, fw
);
1498 goto unprepare_rproc
;
1500 /* reset max_notifyid */
1501 rproc
->max_notifyid
= -1;
1503 /* reset handled vdev */
1506 /* handle fw resources which are required to boot rproc */
1507 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1509 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1510 goto clean_up_resources
;
1513 /* Allocate carveout resources associated to rproc */
1514 ret
= rproc_alloc_registered_carveouts(rproc
);
1516 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1518 goto clean_up_resources
;
1521 ret
= rproc_start(rproc
, fw
);
1523 goto clean_up_resources
;
1528 rproc_resource_cleanup(rproc
);
1529 kfree(rproc
->cached_table
);
1530 rproc
->cached_table
= NULL
;
1531 rproc
->table_ptr
= NULL
;
1533 /* release HW resources if needed */
1534 rproc_unprepare_device(rproc
);
1536 rproc_disable_iommu(rproc
);
1541 * Attach to remote processor - similar to rproc_fw_boot() but without
1542 * the steps that deal with the firmware image.
1544 static int rproc_actuate(struct rproc
*rproc
)
1546 struct device
*dev
= &rproc
->dev
;
1550 * if enabling an IOMMU isn't relevant for this rproc, this is
1553 ret
= rproc_enable_iommu(rproc
);
1555 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1559 /* reset max_notifyid */
1560 rproc
->max_notifyid
= -1;
1562 /* reset handled vdev */
1566 * Handle firmware resources required to attach to a remote processor.
1567 * Because we are attaching rather than booting the remote processor,
1568 * we expect the platform driver to properly set rproc->table_ptr.
1570 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1572 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1576 /* Allocate carveout resources associated to rproc */
1577 ret
= rproc_alloc_registered_carveouts(rproc
);
1579 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1581 goto clean_up_resources
;
1584 ret
= rproc_attach(rproc
);
1586 goto clean_up_resources
;
1591 rproc_resource_cleanup(rproc
);
1593 rproc_disable_iommu(rproc
);
1598 * take a firmware and boot it up.
1600 * Note: this function is called asynchronously upon registration of the
1601 * remote processor (so we must wait until it completes before we try
1602 * to unregister the device. one other option is just to use kref here,
1603 * that might be cleaner).
1605 static void rproc_auto_boot_callback(const struct firmware
*fw
, void *context
)
1607 struct rproc
*rproc
= context
;
1611 release_firmware(fw
);
1614 static int rproc_trigger_auto_boot(struct rproc
*rproc
)
1619 * Since the remote processor is in a detached state, it has already
1620 * been booted by another entity. As such there is no point in waiting
1621 * for a firmware image to be loaded, we can simply initiate the process
1622 * of attaching to it immediately.
1624 if (rproc
->state
== RPROC_DETACHED
)
1625 return rproc_boot(rproc
);
1628 * We're initiating an asynchronous firmware loading, so we can
1629 * be built-in kernel code, without hanging the boot process.
1631 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
1632 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
1633 rproc
, rproc_auto_boot_callback
);
1635 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
1640 static int rproc_stop(struct rproc
*rproc
, bool crashed
)
1642 struct device
*dev
= &rproc
->dev
;
1645 /* Stop any subdevices for the remote processor */
1646 rproc_stop_subdevices(rproc
, crashed
);
1648 /* the installed resource table is no longer accessible */
1649 rproc
->table_ptr
= rproc
->cached_table
;
1651 /* power off the remote processor */
1652 ret
= rproc
->ops
->stop(rproc
);
1654 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1658 rproc_unprepare_subdevices(rproc
);
1660 rproc
->state
= RPROC_OFFLINE
;
1663 * The remote processor has been stopped and is now offline, which means
1664 * that the next time it is brought back online the remoteproc core will
1665 * be responsible to load its firmware. As such it is no longer
1668 rproc
->autonomous
= false;
1670 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1677 * rproc_trigger_recovery() - recover a remoteproc
1678 * @rproc: the remote processor
1680 * The recovery is done by resetting all the virtio devices, that way all the
1681 * rpmsg drivers will be reseted along with the remote processor making the
1682 * remoteproc functional again.
1684 * This function can sleep, so it cannot be called from atomic context.
1686 int rproc_trigger_recovery(struct rproc
*rproc
)
1688 const struct firmware
*firmware_p
;
1689 struct device
*dev
= &rproc
->dev
;
1692 ret
= mutex_lock_interruptible(&rproc
->lock
);
1696 /* State could have changed before we got the mutex */
1697 if (rproc
->state
!= RPROC_CRASHED
)
1700 dev_err(dev
, "recovering %s\n", rproc
->name
);
1702 ret
= rproc_stop(rproc
, true);
1706 /* generate coredump */
1707 rproc
->ops
->coredump(rproc
);
1710 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1712 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1716 /* boot the remote processor up again */
1717 ret
= rproc_start(rproc
, firmware_p
);
1719 release_firmware(firmware_p
);
1722 mutex_unlock(&rproc
->lock
);
1727 * rproc_crash_handler_work() - handle a crash
1728 * @work: work treating the crash
1730 * This function needs to handle everything related to a crash, like cpu
1731 * registers and stack dump, information to help to debug the fatal error, etc.
1733 static void rproc_crash_handler_work(struct work_struct
*work
)
1735 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1736 struct device
*dev
= &rproc
->dev
;
1738 dev_dbg(dev
, "enter %s\n", __func__
);
1740 mutex_lock(&rproc
->lock
);
1742 if (rproc
->state
== RPROC_CRASHED
|| rproc
->state
== RPROC_OFFLINE
) {
1743 /* handle only the first crash detected */
1744 mutex_unlock(&rproc
->lock
);
1748 rproc
->state
= RPROC_CRASHED
;
1749 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1752 mutex_unlock(&rproc
->lock
);
1754 if (!rproc
->recovery_disabled
)
1755 rproc_trigger_recovery(rproc
);
1757 pm_relax(rproc
->dev
.parent
);
1761 * rproc_boot() - boot a remote processor
1762 * @rproc: handle of a remote processor
1764 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1766 * If the remote processor is already powered on, this function immediately
1767 * returns (successfully).
1769 * Returns 0 on success, and an appropriate error value otherwise.
1771 int rproc_boot(struct rproc
*rproc
)
1773 const struct firmware
*firmware_p
;
1778 pr_err("invalid rproc handle\n");
1784 ret
= mutex_lock_interruptible(&rproc
->lock
);
1786 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1790 if (rproc
->state
== RPROC_DELETED
) {
1792 dev_err(dev
, "can't boot deleted rproc %s\n", rproc
->name
);
1796 /* skip the boot or attach process if rproc is already powered up */
1797 if (atomic_inc_return(&rproc
->power
) > 1) {
1802 if (rproc
->state
== RPROC_DETACHED
) {
1803 dev_info(dev
, "attaching to %s\n", rproc
->name
);
1805 ret
= rproc_actuate(rproc
);
1807 dev_info(dev
, "powering up %s\n", rproc
->name
);
1810 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1812 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1816 ret
= rproc_fw_boot(rproc
, firmware_p
);
1818 release_firmware(firmware_p
);
1823 atomic_dec(&rproc
->power
);
1825 mutex_unlock(&rproc
->lock
);
1828 EXPORT_SYMBOL(rproc_boot
);
1831 * rproc_shutdown() - power off the remote processor
1832 * @rproc: the remote processor
1834 * Power off a remote processor (previously booted with rproc_boot()).
1836 * In case @rproc is still being used by an additional user(s), then
1837 * this function will just decrement the power refcount and exit,
1838 * without really powering off the device.
1840 * Every call to rproc_boot() must (eventually) be accompanied by a call
1841 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1844 * - we're not decrementing the rproc's refcount, only the power refcount.
1845 * which means that the @rproc handle stays valid even after rproc_shutdown()
1846 * returns, and users can still use it with a subsequent rproc_boot(), if
1849 void rproc_shutdown(struct rproc
*rproc
)
1851 struct device
*dev
= &rproc
->dev
;
1854 ret
= mutex_lock_interruptible(&rproc
->lock
);
1856 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1860 /* if the remote proc is still needed, bail out */
1861 if (!atomic_dec_and_test(&rproc
->power
))
1864 ret
= rproc_stop(rproc
, false);
1866 atomic_inc(&rproc
->power
);
1870 /* clean up all acquired resources */
1871 rproc_resource_cleanup(rproc
);
1873 /* release HW resources if needed */
1874 rproc_unprepare_device(rproc
);
1876 rproc_disable_iommu(rproc
);
1878 /* Free the copy of the resource table */
1879 kfree(rproc
->cached_table
);
1880 rproc
->cached_table
= NULL
;
1881 rproc
->table_ptr
= NULL
;
1883 mutex_unlock(&rproc
->lock
);
1885 EXPORT_SYMBOL(rproc_shutdown
);
1888 * rproc_get_by_phandle() - find a remote processor by phandle
1889 * @phandle: phandle to the rproc
1891 * Finds an rproc handle using the remote processor's phandle, and then
1892 * return a handle to the rproc.
1894 * This function increments the remote processor's refcount, so always
1895 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1897 * Returns the rproc handle on success, and NULL on failure.
1900 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1902 struct rproc
*rproc
= NULL
, *r
;
1903 struct device_node
*np
;
1905 np
= of_find_node_by_phandle(phandle
);
1910 list_for_each_entry_rcu(r
, &rproc_list
, node
) {
1911 if (r
->dev
.parent
&& r
->dev
.parent
->of_node
== np
) {
1912 /* prevent underlying implementation from being removed */
1913 if (!try_module_get(r
->dev
.parent
->driver
->owner
)) {
1914 dev_err(&r
->dev
, "can't get owner\n");
1919 get_device(&rproc
->dev
);
1930 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1935 EXPORT_SYMBOL(rproc_get_by_phandle
);
1938 * rproc_set_firmware() - assign a new firmware
1939 * @rproc: rproc handle to which the new firmware is being assigned
1940 * @fw_name: new firmware name to be assigned
1942 * This function allows remoteproc drivers or clients to configure a custom
1943 * firmware name that is different from the default name used during remoteproc
1944 * registration. The function does not trigger a remote processor boot,
1945 * only sets the firmware name used for a subsequent boot. This function
1946 * should also be called only when the remote processor is offline.
1948 * This allows either the userspace to configure a different name through
1949 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
1950 * a specific firmware when it is controlling the boot and shutdown of the
1953 * Return: 0 on success or a negative value upon failure
1955 int rproc_set_firmware(struct rproc
*rproc
, const char *fw_name
)
1961 if (!rproc
|| !fw_name
)
1964 dev
= rproc
->dev
.parent
;
1966 ret
= mutex_lock_interruptible(&rproc
->lock
);
1968 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1972 if (rproc
->state
!= RPROC_OFFLINE
) {
1973 dev_err(dev
, "can't change firmware while running\n");
1978 len
= strcspn(fw_name
, "\n");
1980 dev_err(dev
, "can't provide empty string for firmware name\n");
1985 p
= kstrndup(fw_name
, len
, GFP_KERNEL
);
1991 kfree(rproc
->firmware
);
1992 rproc
->firmware
= p
;
1995 mutex_unlock(&rproc
->lock
);
1998 EXPORT_SYMBOL(rproc_set_firmware
);
2000 static int rproc_validate(struct rproc
*rproc
)
2002 switch (rproc
->state
) {
2005 * An offline processor without a start()
2006 * function makes no sense.
2008 if (!rproc
->ops
->start
)
2011 case RPROC_DETACHED
:
2013 * A remote processor in a detached state without an
2014 * attach() function makes not sense.
2016 if (!rproc
->ops
->attach
)
2019 * When attaching to a remote processor the device memory
2020 * is already available and as such there is no need to have a
2023 if (rproc
->cached_table
)
2028 * When adding a remote processor, the state of the device
2029 * can be offline or detached, nothing else.
2038 * rproc_add() - register a remote processor
2039 * @rproc: the remote processor handle to register
2041 * Registers @rproc with the remoteproc framework, after it has been
2042 * allocated with rproc_alloc().
2044 * This is called by the platform-specific rproc implementation, whenever
2045 * a new remote processor device is probed.
2047 * Returns 0 on success and an appropriate error code otherwise.
2049 * Note: this function initiates an asynchronous firmware loading
2050 * context, which will look for virtio devices supported by the rproc's
2053 * If found, those virtio devices will be created and added, so as a result
2054 * of registering this remote processor, additional virtio drivers might be
2057 int rproc_add(struct rproc
*rproc
)
2059 struct device
*dev
= &rproc
->dev
;
2062 ret
= device_add(dev
);
2066 ret
= rproc_validate(rproc
);
2070 dev_info(dev
, "%s is available\n", rproc
->name
);
2072 /* create debugfs entries */
2073 rproc_create_debug_dir(rproc
);
2075 /* add char device for this remoteproc */
2076 ret
= rproc_char_device_add(rproc
);
2081 * Remind ourselves the remote processor has been attached to rather
2082 * than booted by the remoteproc core. This is important because the
2083 * RPROC_DETACHED state will be lost as soon as the remote processor
2084 * has been attached to. Used in firmware_show() and reset in
2087 if (rproc
->state
== RPROC_DETACHED
)
2088 rproc
->autonomous
= true;
2090 /* if rproc is marked always-on, request it to boot */
2091 if (rproc
->auto_boot
) {
2092 ret
= rproc_trigger_auto_boot(rproc
);
2097 /* expose to rproc_get_by_phandle users */
2098 mutex_lock(&rproc_list_mutex
);
2099 list_add_rcu(&rproc
->node
, &rproc_list
);
2100 mutex_unlock(&rproc_list_mutex
);
2104 EXPORT_SYMBOL(rproc_add
);
2106 static void devm_rproc_remove(void *rproc
)
2112 * devm_rproc_add() - resource managed rproc_add()
2113 * @dev: the underlying device
2114 * @rproc: the remote processor handle to register
2116 * This function performs like rproc_add() but the registered rproc device will
2117 * automatically be removed on driver detach.
2119 * Returns: 0 on success, negative errno on failure
2121 int devm_rproc_add(struct device
*dev
, struct rproc
*rproc
)
2125 err
= rproc_add(rproc
);
2129 return devm_add_action_or_reset(dev
, devm_rproc_remove
, rproc
);
2131 EXPORT_SYMBOL(devm_rproc_add
);
2134 * rproc_type_release() - release a remote processor instance
2135 * @dev: the rproc's device
2137 * This function should _never_ be called directly.
2139 * It will be called by the driver core when no one holds a valid pointer
2142 static void rproc_type_release(struct device
*dev
)
2144 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
2146 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
2148 idr_destroy(&rproc
->notifyids
);
2150 if (rproc
->index
>= 0)
2151 ida_simple_remove(&rproc_dev_index
, rproc
->index
);
2153 kfree_const(rproc
->firmware
);
2154 kfree_const(rproc
->name
);
2159 static const struct device_type rproc_type
= {
2160 .name
= "remoteproc",
2161 .release
= rproc_type_release
,
2164 static int rproc_alloc_firmware(struct rproc
*rproc
,
2165 const char *name
, const char *firmware
)
2170 * Allocate a firmware name if the caller gave us one to work
2171 * with. Otherwise construct a new one using a default pattern.
2174 p
= kstrdup_const(firmware
, GFP_KERNEL
);
2176 p
= kasprintf(GFP_KERNEL
, "rproc-%s-fw", name
);
2181 rproc
->firmware
= p
;
2186 static int rproc_alloc_ops(struct rproc
*rproc
, const struct rproc_ops
*ops
)
2188 rproc
->ops
= kmemdup(ops
, sizeof(*ops
), GFP_KERNEL
);
2192 /* Default to rproc_coredump if no coredump function is specified */
2193 if (!rproc
->ops
->coredump
)
2194 rproc
->ops
->coredump
= rproc_coredump
;
2196 if (rproc
->ops
->load
)
2199 /* Default to ELF loader if no load function is specified */
2200 rproc
->ops
->load
= rproc_elf_load_segments
;
2201 rproc
->ops
->parse_fw
= rproc_elf_load_rsc_table
;
2202 rproc
->ops
->find_loaded_rsc_table
= rproc_elf_find_loaded_rsc_table
;
2203 rproc
->ops
->sanity_check
= rproc_elf_sanity_check
;
2204 rproc
->ops
->get_boot_addr
= rproc_elf_get_boot_addr
;
2210 * rproc_alloc() - allocate a remote processor handle
2211 * @dev: the underlying device
2212 * @name: name of this remote processor
2213 * @ops: platform-specific handlers (mainly start/stop)
2214 * @firmware: name of firmware file to load, can be NULL
2215 * @len: length of private data needed by the rproc driver (in bytes)
2217 * Allocates a new remote processor handle, but does not register
2218 * it yet. if @firmware is NULL, a default name is used.
2220 * This function should be used by rproc implementations during initialization
2221 * of the remote processor.
2223 * After creating an rproc handle using this function, and when ready,
2224 * implementations should then call rproc_add() to complete
2225 * the registration of the remote processor.
2227 * On success the new rproc is returned, and on failure, NULL.
2229 * Note: _never_ directly deallocate @rproc, even if it was not registered
2230 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2232 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
2233 const struct rproc_ops
*ops
,
2234 const char *firmware
, int len
)
2236 struct rproc
*rproc
;
2238 if (!dev
|| !name
|| !ops
)
2241 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
2245 rproc
->priv
= &rproc
[1];
2246 rproc
->auto_boot
= true;
2247 rproc
->elf_class
= ELFCLASSNONE
;
2248 rproc
->elf_machine
= EM_NONE
;
2250 device_initialize(&rproc
->dev
);
2251 rproc
->dev
.parent
= dev
;
2252 rproc
->dev
.type
= &rproc_type
;
2253 rproc
->dev
.class = &rproc_class
;
2254 rproc
->dev
.driver_data
= rproc
;
2255 idr_init(&rproc
->notifyids
);
2257 rproc
->name
= kstrdup_const(name
, GFP_KERNEL
);
2261 if (rproc_alloc_firmware(rproc
, name
, firmware
))
2264 if (rproc_alloc_ops(rproc
, ops
))
2267 /* Assign a unique device index and name */
2268 rproc
->index
= ida_simple_get(&rproc_dev_index
, 0, 0, GFP_KERNEL
);
2269 if (rproc
->index
< 0) {
2270 dev_err(dev
, "ida_simple_get failed: %d\n", rproc
->index
);
2274 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
2276 atomic_set(&rproc
->power
, 0);
2278 mutex_init(&rproc
->lock
);
2280 INIT_LIST_HEAD(&rproc
->carveouts
);
2281 INIT_LIST_HEAD(&rproc
->mappings
);
2282 INIT_LIST_HEAD(&rproc
->traces
);
2283 INIT_LIST_HEAD(&rproc
->rvdevs
);
2284 INIT_LIST_HEAD(&rproc
->subdevs
);
2285 INIT_LIST_HEAD(&rproc
->dump_segments
);
2287 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
2289 rproc
->state
= RPROC_OFFLINE
;
2294 put_device(&rproc
->dev
);
2297 EXPORT_SYMBOL(rproc_alloc
);
2300 * rproc_free() - unroll rproc_alloc()
2301 * @rproc: the remote processor handle
2303 * This function decrements the rproc dev refcount.
2305 * If no one holds any reference to rproc anymore, then its refcount would
2306 * now drop to zero, and it would be freed.
2308 void rproc_free(struct rproc
*rproc
)
2310 put_device(&rproc
->dev
);
2312 EXPORT_SYMBOL(rproc_free
);
2315 * rproc_put() - release rproc reference
2316 * @rproc: the remote processor handle
2318 * This function decrements the rproc dev refcount.
2320 * If no one holds any reference to rproc anymore, then its refcount would
2321 * now drop to zero, and it would be freed.
2323 void rproc_put(struct rproc
*rproc
)
2325 module_put(rproc
->dev
.parent
->driver
->owner
);
2326 put_device(&rproc
->dev
);
2328 EXPORT_SYMBOL(rproc_put
);
2331 * rproc_del() - unregister a remote processor
2332 * @rproc: rproc handle to unregister
2334 * This function should be called when the platform specific rproc
2335 * implementation decides to remove the rproc device. it should
2336 * _only_ be called if a previous invocation of rproc_add()
2337 * has completed successfully.
2339 * After rproc_del() returns, @rproc isn't freed yet, because
2340 * of the outstanding reference created by rproc_alloc. To decrement that
2341 * one last refcount, one still needs to call rproc_free().
2343 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2345 int rproc_del(struct rproc
*rproc
)
2350 /* if rproc is marked always-on, rproc_add() booted it */
2351 /* TODO: make sure this works with rproc->power > 1 */
2352 if (rproc
->auto_boot
)
2353 rproc_shutdown(rproc
);
2355 mutex_lock(&rproc
->lock
);
2356 rproc
->state
= RPROC_DELETED
;
2357 mutex_unlock(&rproc
->lock
);
2359 rproc_delete_debug_dir(rproc
);
2360 rproc_char_device_remove(rproc
);
2362 /* the rproc is downref'ed as soon as it's removed from the klist */
2363 mutex_lock(&rproc_list_mutex
);
2364 list_del_rcu(&rproc
->node
);
2365 mutex_unlock(&rproc_list_mutex
);
2367 /* Ensure that no readers of rproc_list are still active */
2370 device_del(&rproc
->dev
);
2374 EXPORT_SYMBOL(rproc_del
);
2376 static void devm_rproc_free(struct device
*dev
, void *res
)
2378 rproc_free(*(struct rproc
**)res
);
2382 * devm_rproc_alloc() - resource managed rproc_alloc()
2383 * @dev: the underlying device
2384 * @name: name of this remote processor
2385 * @ops: platform-specific handlers (mainly start/stop)
2386 * @firmware: name of firmware file to load, can be NULL
2387 * @len: length of private data needed by the rproc driver (in bytes)
2389 * This function performs like rproc_alloc() but the acquired rproc device will
2390 * automatically be released on driver detach.
2392 * Returns: new rproc instance, or NULL on failure
2394 struct rproc
*devm_rproc_alloc(struct device
*dev
, const char *name
,
2395 const struct rproc_ops
*ops
,
2396 const char *firmware
, int len
)
2398 struct rproc
**ptr
, *rproc
;
2400 ptr
= devres_alloc(devm_rproc_free
, sizeof(*ptr
), GFP_KERNEL
);
2404 rproc
= rproc_alloc(dev
, name
, ops
, firmware
, len
);
2407 devres_add(dev
, ptr
);
2414 EXPORT_SYMBOL(devm_rproc_alloc
);
2417 * rproc_add_subdev() - add a subdevice to a remoteproc
2418 * @rproc: rproc handle to add the subdevice to
2419 * @subdev: subdev handle to register
2421 * Caller is responsible for populating optional subdevice function pointers.
2423 void rproc_add_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2425 list_add_tail(&subdev
->node
, &rproc
->subdevs
);
2427 EXPORT_SYMBOL(rproc_add_subdev
);
2430 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2431 * @rproc: rproc handle to remove the subdevice from
2432 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2434 void rproc_remove_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2436 list_del(&subdev
->node
);
2438 EXPORT_SYMBOL(rproc_remove_subdev
);
2441 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2442 * @dev: child device to find ancestor of
2444 * Returns the ancestor rproc instance, or NULL if not found.
2446 struct rproc
*rproc_get_by_child(struct device
*dev
)
2448 for (dev
= dev
->parent
; dev
; dev
= dev
->parent
) {
2449 if (dev
->type
== &rproc_type
)
2450 return dev
->driver_data
;
2455 EXPORT_SYMBOL(rproc_get_by_child
);
2458 * rproc_report_crash() - rproc crash reporter function
2459 * @rproc: remote processor
2462 * This function must be called every time a crash is detected by the low-level
2463 * drivers implementing a specific remoteproc. This should not be called from a
2464 * non-remoteproc driver.
2466 * This function can be called from atomic/interrupt context.
2468 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
2471 pr_err("NULL rproc pointer\n");
2475 /* Prevent suspend while the remoteproc is being recovered */
2476 pm_stay_awake(rproc
->dev
.parent
);
2478 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
2479 rproc
->name
, rproc_crash_to_string(type
));
2481 /* create a new task to handle the error */
2482 schedule_work(&rproc
->crash_handler
);
2484 EXPORT_SYMBOL(rproc_report_crash
);
2486 static int rproc_panic_handler(struct notifier_block
*nb
, unsigned long event
,
2489 unsigned int longest
= 0;
2490 struct rproc
*rproc
;
2494 list_for_each_entry_rcu(rproc
, &rproc_list
, node
) {
2495 if (!rproc
->ops
->panic
|| rproc
->state
!= RPROC_RUNNING
)
2498 d
= rproc
->ops
->panic(rproc
);
2499 longest
= max(longest
, d
);
2504 * Delay for the longest requested duration before returning. This can
2505 * be used by the remoteproc drivers to give the remote processor time
2506 * to perform any requested operations (such as flush caches), when
2507 * it's not possible to signal the Linux side due to the panic.
2514 static void __init
rproc_init_panic(void)
2516 rproc_panic_nb
.notifier_call
= rproc_panic_handler
;
2517 atomic_notifier_chain_register(&panic_notifier_list
, &rproc_panic_nb
);
2520 static void __exit
rproc_exit_panic(void)
2522 atomic_notifier_chain_unregister(&panic_notifier_list
, &rproc_panic_nb
);
2525 static int __init
remoteproc_init(void)
2528 rproc_init_debugfs();
2534 subsys_initcall(remoteproc_init
);
2536 static void __exit
remoteproc_exit(void)
2538 ida_destroy(&rproc_dev_index
);
2541 rproc_exit_debugfs();
2544 module_exit(remoteproc_exit
);
2546 MODULE_LICENSE("GPL v2");
2547 MODULE_DESCRIPTION("Generic Remote Processor Framework");