1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
39 #include <linux/of_platform.h>
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
58 static bool use_acpi_alarm
;
59 module_param(use_acpi_alarm
, bool, 0444);
61 static inline int cmos_use_acpi_alarm(void)
63 return use_acpi_alarm
;
65 #else /* !CONFIG_ACPI */
67 static inline int cmos_use_acpi_alarm(void)
74 struct rtc_device
*rtc
;
77 struct resource
*iomem
;
78 time64_t alarm_expires
;
80 void (*wake_on
)(struct device
*);
81 void (*wake_off
)(struct device
*);
86 /* newer hardware extends the original register set */
91 struct rtc_wkalrm saved_wkalrm
;
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
97 static const char driver_name
[] = "rtc_cmos";
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
105 static inline int is_intr(u8 rtc_intr
)
107 if (!(rtc_intr
& RTC_IRQF
))
109 return rtc_intr
& RTC_IRQMASK
;
112 /*----------------------------------------------------------------*/
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
128 static inline int is_hpet_enabled(void)
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
144 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
149 static inline int hpet_set_periodic_freq(unsigned long freq
)
154 static inline int hpet_rtc_dropped_irq(void)
159 static inline int hpet_rtc_timer_init(void)
164 extern irq_handler_t hpet_rtc_interrupt
;
166 static inline int hpet_register_irq_handler(irq_handler_t handler
)
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
184 /*----------------------------------------------------------------*/
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
192 #define can_bank2 true
194 static inline unsigned char cmos_read_bank2(unsigned char addr
)
196 outb(addr
, RTC_PORT(2));
197 return inb(RTC_PORT(3));
200 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
202 outb(addr
, RTC_PORT(2));
203 outb(val
, RTC_PORT(3));
208 #define can_bank2 false
210 static inline unsigned char cmos_read_bank2(unsigned char addr
)
215 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
221 /*----------------------------------------------------------------*/
223 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
229 if (!pm_trace_rtc_valid())
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
236 mc146818_get_time(t
);
240 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
242 /* REVISIT: set the "century" register if available
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
248 return mc146818_set_time(t
);
251 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
253 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
254 unsigned char rtc_control
;
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos
->irq
))
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
265 spin_lock_irq(&rtc_lock
);
266 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
267 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
268 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
270 if (cmos
->day_alrm
) {
271 /* ignore upper bits on readback per ACPI spec */
272 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
273 if (!t
->time
.tm_mday
)
274 t
->time
.tm_mday
= -1;
276 if (cmos
->mon_alrm
) {
277 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
283 rtc_control
= CMOS_READ(RTC_CONTROL
);
284 spin_unlock_irq(&rtc_lock
);
286 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
287 if (((unsigned)t
->time
.tm_sec
) < 0x60)
288 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
291 if (((unsigned)t
->time
.tm_min
) < 0x60)
292 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
295 if (((unsigned)t
->time
.tm_hour
) < 0x24)
296 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
298 t
->time
.tm_hour
= -1;
300 if (cmos
->day_alrm
) {
301 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
302 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
304 t
->time
.tm_mday
= -1;
306 if (cmos
->mon_alrm
) {
307 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
308 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
315 t
->enabled
= !!(rtc_control
& RTC_AIE
);
321 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
323 unsigned char rtc_intr
;
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
328 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
330 if (use_hpet_alarm())
333 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
334 if (is_intr(rtc_intr
))
335 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
338 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
340 unsigned char rtc_control
;
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
345 rtc_control
= CMOS_READ(RTC_CONTROL
);
346 cmos_checkintr(cmos
, rtc_control
);
349 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask
);
353 if ((mask
& RTC_AIE
) && cmos_use_acpi_alarm()) {
355 cmos
->wake_on(cmos
->dev
);
358 cmos_checkintr(cmos
, rtc_control
);
361 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
363 unsigned char rtc_control
;
365 rtc_control
= CMOS_READ(RTC_CONTROL
);
366 rtc_control
&= ~mask
;
367 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask
);
371 if ((mask
& RTC_AIE
) && cmos_use_acpi_alarm()) {
373 cmos
->wake_off(cmos
->dev
);
376 cmos_checkintr(cmos
, rtc_control
);
379 static int cmos_validate_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
381 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
384 cmos_read_time(dev
, &now
);
386 if (!cmos
->day_alrm
) {
390 t_max_date
= rtc_tm_to_time64(&now
);
391 t_max_date
+= 24 * 60 * 60 - 1;
392 t_alrm
= rtc_tm_to_time64(&t
->time
);
393 if (t_alrm
> t_max_date
) {
395 "Alarms can be up to one day in the future\n");
398 } else if (!cmos
->mon_alrm
) {
399 struct rtc_time max_date
= now
;
404 if (max_date
.tm_mon
== 11) {
406 max_date
.tm_year
+= 1;
408 max_date
.tm_mon
+= 1;
410 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
411 if (max_date
.tm_mday
> max_mday
)
412 max_date
.tm_mday
= max_mday
;
414 t_max_date
= rtc_tm_to_time64(&max_date
);
416 t_alrm
= rtc_tm_to_time64(&t
->time
);
417 if (t_alrm
> t_max_date
) {
419 "Alarms can be up to one month in the future\n");
423 struct rtc_time max_date
= now
;
428 max_date
.tm_year
+= 1;
429 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
430 if (max_date
.tm_mday
> max_mday
)
431 max_date
.tm_mday
= max_mday
;
433 t_max_date
= rtc_tm_to_time64(&max_date
);
435 t_alrm
= rtc_tm_to_time64(&t
->time
);
436 if (t_alrm
> t_max_date
) {
438 "Alarms can be up to one year in the future\n");
446 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
448 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
449 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos
->irq
))
456 ret
= cmos_validate_alarm(dev
, t
);
460 mon
= t
->time
.tm_mon
+ 1;
461 mday
= t
->time
.tm_mday
;
462 hrs
= t
->time
.tm_hour
;
463 min
= t
->time
.tm_min
;
464 sec
= t
->time
.tm_sec
;
466 rtc_control
= CMOS_READ(RTC_CONTROL
);
467 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
470 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
471 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
472 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
473 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
476 spin_lock_irq(&rtc_lock
);
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos
, RTC_AIE
);
482 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
483 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
484 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
486 /* the system may support an "enhanced" alarm */
487 if (cmos
->day_alrm
) {
488 CMOS_WRITE(mday
, cmos
->day_alrm
);
490 CMOS_WRITE(mon
, cmos
->mon_alrm
);
493 if (use_hpet_alarm()) {
495 * FIXME the HPET alarm glue currently ignores day_alrm
498 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
,
503 cmos_irq_enable(cmos
, RTC_AIE
);
505 spin_unlock_irq(&rtc_lock
);
507 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
512 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
514 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
517 spin_lock_irqsave(&rtc_lock
, flags
);
520 cmos_irq_enable(cmos
, RTC_AIE
);
522 cmos_irq_disable(cmos
, RTC_AIE
);
524 spin_unlock_irqrestore(&rtc_lock
, flags
);
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
530 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
532 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
533 unsigned char rtc_control
, valid
;
535 spin_lock_irq(&rtc_lock
);
536 rtc_control
= CMOS_READ(RTC_CONTROL
);
537 valid
= CMOS_READ(RTC_VALID
);
538 spin_unlock_irq(&rtc_lock
);
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
544 "periodic_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control
& RTC_PIE
) ? "yes" : "no",
553 (rtc_control
& RTC_UIE
) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
557 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
559 (valid
& RTC_VRT
) ? "okay" : "dead");
565 #define cmos_procfs NULL
568 static const struct rtc_class_ops cmos_rtc_ops
= {
569 .read_time
= cmos_read_time
,
570 .set_time
= cmos_set_time
,
571 .read_alarm
= cmos_read_alarm
,
572 .set_alarm
= cmos_set_alarm
,
574 .alarm_irq_enable
= cmos_alarm_irq_enable
,
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm
= {
578 .read_time
= cmos_read_time
,
579 .set_time
= cmos_set_time
,
583 /*----------------------------------------------------------------*/
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
591 #define NVRAM_OFFSET (RTC_REG_D + 1)
593 static int cmos_nvram_read(void *priv
, unsigned int off
, void *val
,
596 unsigned char *buf
= val
;
600 spin_lock_irq(&rtc_lock
);
601 for (retval
= 0; count
; count
--, off
++, retval
++) {
603 *buf
++ = CMOS_READ(off
);
605 *buf
++ = cmos_read_bank2(off
);
609 spin_unlock_irq(&rtc_lock
);
614 static int cmos_nvram_write(void *priv
, unsigned int off
, void *val
,
617 struct cmos_rtc
*cmos
= priv
;
618 unsigned char *buf
= val
;
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
627 spin_lock_irq(&rtc_lock
);
628 for (retval
= 0; count
; count
--, off
++, retval
++) {
629 /* don't trash RTC registers */
630 if (off
== cmos
->day_alrm
631 || off
== cmos
->mon_alrm
632 || off
== cmos
->century
)
635 CMOS_WRITE(*buf
++, off
);
637 cmos_write_bank2(*buf
++, off
);
641 spin_unlock_irq(&rtc_lock
);
646 /*----------------------------------------------------------------*/
648 static struct cmos_rtc cmos_rtc
;
650 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
656 spin_lock_irqsave(&rtc_lock
, flags
);
658 /* When the HPET interrupt handler calls us, the interrupt
659 * status is passed as arg1 instead of the irq number. But
660 * always clear irq status, even when HPET is in the way.
662 * Note that HPET and RTC are almost certainly out of phase,
663 * giving different IRQ status ...
665 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
666 rtc_control
= CMOS_READ(RTC_CONTROL
);
667 if (use_hpet_alarm())
668 irqstat
= (unsigned long)irq
& 0xF0;
670 /* If we were suspended, RTC_CONTROL may not be accurate since the
671 * bios may have cleared it.
673 if (!cmos_rtc
.suspend_ctrl
)
674 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
676 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
678 /* All Linux RTC alarms should be treated as if they were oneshot.
679 * Similar code may be needed in system wakeup paths, in case the
680 * alarm woke the system.
682 if (irqstat
& RTC_AIE
) {
683 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
684 rtc_control
&= ~RTC_AIE
;
685 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
686 if (use_hpet_alarm())
687 hpet_mask_rtc_irq_bit(RTC_AIE
);
688 CMOS_READ(RTC_INTR_FLAGS
);
690 spin_unlock_irqrestore(&rtc_lock
, flags
);
692 if (is_intr(irqstat
)) {
693 rtc_update_irq(p
, 1, irqstat
);
703 #define INITSECTION __init
706 static int INITSECTION
707 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
709 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
711 unsigned char rtc_control
;
712 unsigned address_space
;
714 struct nvmem_config nvmem_cfg
= {
715 .name
= "cmos_nvram",
718 .reg_read
= cmos_nvram_read
,
719 .reg_write
= cmos_nvram_write
,
723 /* there can be only one ... */
730 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
732 * REVISIT non-x86 systems may instead use memory space resources
733 * (needing ioremap etc), not i/o space resources like this ...
736 ports
= request_region(ports
->start
, resource_size(ports
),
739 ports
= request_mem_region(ports
->start
, resource_size(ports
),
742 dev_dbg(dev
, "i/o registers already in use\n");
746 cmos_rtc
.irq
= rtc_irq
;
747 cmos_rtc
.iomem
= ports
;
749 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
750 * driver did, but don't reject unknown configs. Old hardware
751 * won't address 128 bytes. Newer chips have multiple banks,
752 * though they may not be listed in one I/O resource.
754 #if defined(CONFIG_ATARI)
756 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 || defined(__sparc__) || defined(__mips__) \
758 || defined(__powerpc__)
761 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
764 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
767 /* For ACPI systems extension info comes from the FADT. On others,
768 * board specific setup provides it as appropriate. Systems where
769 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
770 * some almost-clones) can provide hooks to make that behave.
772 * Note that ACPI doesn't preclude putting these registers into
773 * "extended" areas of the chip, including some that we won't yet
774 * expect CMOS_READ and friends to handle.
779 if (info
->address_space
)
780 address_space
= info
->address_space
;
782 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
783 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
784 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
785 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
786 if (info
->rtc_century
&& info
->rtc_century
< 128)
787 cmos_rtc
.century
= info
->rtc_century
;
789 if (info
->wake_on
&& info
->wake_off
) {
790 cmos_rtc
.wake_on
= info
->wake_on
;
791 cmos_rtc
.wake_off
= info
->wake_off
;
796 dev_set_drvdata(dev
, &cmos_rtc
);
798 cmos_rtc
.rtc
= devm_rtc_allocate_device(dev
);
799 if (IS_ERR(cmos_rtc
.rtc
)) {
800 retval
= PTR_ERR(cmos_rtc
.rtc
);
804 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
806 spin_lock_irq(&rtc_lock
);
808 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
809 /* force periodic irq to CMOS reset default of 1024Hz;
811 * REVISIT it's been reported that at least one x86_64 ALI
812 * mobo doesn't use 32KHz here ... for portability we might
813 * need to do something about other clock frequencies.
815 cmos_rtc
.rtc
->irq_freq
= 1024;
816 if (use_hpet_alarm())
817 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
818 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
822 if (is_valid_irq(rtc_irq
))
823 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
825 rtc_control
= CMOS_READ(RTC_CONTROL
);
827 spin_unlock_irq(&rtc_lock
);
829 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
830 dev_warn(dev
, "only 24-hr supported\n");
835 if (use_hpet_alarm())
836 hpet_rtc_timer_init();
838 if (is_valid_irq(rtc_irq
)) {
839 irq_handler_t rtc_cmos_int_handler
;
841 if (use_hpet_alarm()) {
842 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
843 retval
= hpet_register_irq_handler(cmos_interrupt
);
845 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
846 dev_warn(dev
, "hpet_register_irq_handler "
847 " failed in rtc_init().");
851 rtc_cmos_int_handler
= cmos_interrupt
;
853 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
854 0, dev_name(&cmos_rtc
.rtc
->dev
),
857 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
861 cmos_rtc
.rtc
->ops
= &cmos_rtc_ops
;
863 cmos_rtc
.rtc
->ops
= &cmos_rtc_ops_no_alarm
;
866 retval
= devm_rtc_register_device(cmos_rtc
.rtc
);
870 /* Set the sync offset for the periodic 11min update correct */
871 cmos_rtc
.rtc
->set_offset_nsec
= NSEC_PER_SEC
/ 2;
873 /* export at least the first block of NVRAM */
874 nvmem_cfg
.size
= address_space
- NVRAM_OFFSET
;
875 devm_rtc_nvmem_register(cmos_rtc
.rtc
, &nvmem_cfg
);
877 dev_info(dev
, "%s%s, %d bytes nvram%s\n",
878 !is_valid_irq(rtc_irq
) ? "no alarms" :
879 cmos_rtc
.mon_alrm
? "alarms up to one year" :
880 cmos_rtc
.day_alrm
? "alarms up to one month" :
881 "alarms up to one day",
882 cmos_rtc
.century
? ", y3k" : "",
884 use_hpet_alarm() ? ", hpet irqs" : "");
889 if (is_valid_irq(rtc_irq
))
890 free_irq(rtc_irq
, cmos_rtc
.rtc
);
895 release_region(ports
->start
, resource_size(ports
));
897 release_mem_region(ports
->start
, resource_size(ports
));
901 static void cmos_do_shutdown(int rtc_irq
)
903 spin_lock_irq(&rtc_lock
);
904 if (is_valid_irq(rtc_irq
))
905 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
906 spin_unlock_irq(&rtc_lock
);
909 static void cmos_do_remove(struct device
*dev
)
911 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
912 struct resource
*ports
;
914 cmos_do_shutdown(cmos
->irq
);
916 if (is_valid_irq(cmos
->irq
)) {
917 free_irq(cmos
->irq
, cmos
->rtc
);
918 if (use_hpet_alarm())
919 hpet_unregister_irq_handler(cmos_interrupt
);
926 release_region(ports
->start
, resource_size(ports
));
928 release_mem_region(ports
->start
, resource_size(ports
));
934 static int cmos_aie_poweroff(struct device
*dev
)
936 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
940 unsigned char rtc_control
;
942 if (!cmos
->alarm_expires
)
945 spin_lock_irq(&rtc_lock
);
946 rtc_control
= CMOS_READ(RTC_CONTROL
);
947 spin_unlock_irq(&rtc_lock
);
949 /* We only care about the situation where AIE is disabled. */
950 if (rtc_control
& RTC_AIE
)
953 cmos_read_time(dev
, &now
);
954 t_now
= rtc_tm_to_time64(&now
);
957 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
958 * automatically right after shutdown on some buggy boxes.
959 * This automatic rebooting issue won't happen when the alarm
960 * time is larger than now+1 seconds.
962 * If the alarm time is equal to now+1 seconds, the issue can be
963 * prevented by cancelling the alarm.
965 if (cmos
->alarm_expires
== t_now
+ 1) {
966 struct rtc_wkalrm alarm
;
968 /* Cancel the AIE timer by configuring the past time. */
969 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
971 retval
= cmos_set_alarm(dev
, &alarm
);
972 } else if (cmos
->alarm_expires
> t_now
+ 1) {
979 static int cmos_suspend(struct device
*dev
)
981 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
984 /* only the alarm might be a wakeup event source */
985 spin_lock_irq(&rtc_lock
);
986 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
987 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
990 if (device_may_wakeup(dev
))
991 mask
= RTC_IRQMASK
& ~RTC_AIE
;
995 CMOS_WRITE(tmp
, RTC_CONTROL
);
996 if (use_hpet_alarm())
997 hpet_mask_rtc_irq_bit(mask
);
998 cmos_checkintr(cmos
, tmp
);
1000 spin_unlock_irq(&rtc_lock
);
1002 if ((tmp
& RTC_AIE
) && !cmos_use_acpi_alarm()) {
1003 cmos
->enabled_wake
= 1;
1007 enable_irq_wake(cmos
->irq
);
1010 memset(&cmos
->saved_wkalrm
, 0, sizeof(struct rtc_wkalrm
));
1011 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
1013 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
1014 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
1020 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1021 * after a detour through G3 "mechanical off", although the ACPI spec
1022 * says wakeup should only work from G1/S4 "hibernate". To most users,
1023 * distinctions between S4 and S5 are pointless. So when the hardware
1024 * allows, don't draw that distinction.
1026 static inline int cmos_poweroff(struct device
*dev
)
1028 if (!IS_ENABLED(CONFIG_PM
))
1031 return cmos_suspend(dev
);
1034 static void cmos_check_wkalrm(struct device
*dev
)
1036 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1037 struct rtc_wkalrm current_alarm
;
1039 time64_t t_current_expires
;
1040 time64_t t_saved_expires
;
1041 struct rtc_time now
;
1043 /* Check if we have RTC Alarm armed */
1044 if (!(cmos
->suspend_ctrl
& RTC_AIE
))
1047 cmos_read_time(dev
, &now
);
1048 t_now
= rtc_tm_to_time64(&now
);
1051 * ACPI RTC wake event is cleared after resume from STR,
1052 * ACK the rtc irq here
1054 if (t_now
>= cmos
->alarm_expires
&& cmos_use_acpi_alarm()) {
1055 cmos_interrupt(0, (void *)cmos
->rtc
);
1059 memset(¤t_alarm
, 0, sizeof(struct rtc_wkalrm
));
1060 cmos_read_alarm(dev
, ¤t_alarm
);
1061 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
1062 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
1063 if (t_current_expires
!= t_saved_expires
||
1064 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
1065 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
1069 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1070 unsigned char *rtc_control
);
1072 static int __maybe_unused
cmos_resume(struct device
*dev
)
1074 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1077 if (cmos
->enabled_wake
&& !cmos_use_acpi_alarm()) {
1079 cmos
->wake_off(dev
);
1081 disable_irq_wake(cmos
->irq
);
1082 cmos
->enabled_wake
= 0;
1085 /* The BIOS might have changed the alarm, restore it */
1086 cmos_check_wkalrm(dev
);
1088 spin_lock_irq(&rtc_lock
);
1089 tmp
= cmos
->suspend_ctrl
;
1090 cmos
->suspend_ctrl
= 0;
1091 /* re-enable any irqs previously active */
1092 if (tmp
& RTC_IRQMASK
) {
1095 if (device_may_wakeup(dev
) && use_hpet_alarm())
1096 hpet_rtc_timer_init();
1099 CMOS_WRITE(tmp
, RTC_CONTROL
);
1100 if (use_hpet_alarm())
1101 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
1103 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1104 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
1105 if (!use_hpet_alarm() || !is_intr(mask
))
1108 /* force one-shot behavior if HPET blocked
1109 * the wake alarm's irq
1111 rtc_update_irq(cmos
->rtc
, 1, mask
);
1113 hpet_mask_rtc_irq_bit(RTC_AIE
);
1114 } while (mask
& RTC_AIE
);
1117 cmos_check_acpi_rtc_status(dev
, &tmp
);
1119 spin_unlock_irq(&rtc_lock
);
1121 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
1128 /*----------------------------------------------------------------*/
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132 * probably list them in similar PNPBIOS tables; so PNP is more common.
1134 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1135 * predate even PNPBIOS should set up platform_bus devices.
1140 #include <linux/acpi.h>
1142 static u32
rtc_handler(void *context
)
1144 struct device
*dev
= context
;
1145 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1146 unsigned char rtc_control
= 0;
1147 unsigned char rtc_intr
;
1148 unsigned long flags
;
1152 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 * update rtc irq in that case.
1156 if (cmos_use_acpi_alarm())
1157 cmos_interrupt(0, (void *)cmos
->rtc
);
1159 /* Fix me: can we use cmos_interrupt() here as well? */
1160 spin_lock_irqsave(&rtc_lock
, flags
);
1161 if (cmos_rtc
.suspend_ctrl
)
1162 rtc_control
= CMOS_READ(RTC_CONTROL
);
1163 if (rtc_control
& RTC_AIE
) {
1164 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1165 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1166 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1167 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1169 spin_unlock_irqrestore(&rtc_lock
, flags
);
1172 pm_wakeup_hard_event(dev
);
1173 acpi_clear_event(ACPI_EVENT_RTC
);
1174 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1175 return ACPI_INTERRUPT_HANDLED
;
1178 static inline void rtc_wake_setup(struct device
*dev
)
1180 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1182 * After the RTC handler is installed, the Fixed_RTC event should
1183 * be disabled. Only when the RTC alarm is set will it be enabled.
1185 acpi_clear_event(ACPI_EVENT_RTC
);
1186 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1189 static void rtc_wake_on(struct device
*dev
)
1191 acpi_clear_event(ACPI_EVENT_RTC
);
1192 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1195 static void rtc_wake_off(struct device
*dev
)
1197 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1204 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
1207 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_LOW_POWER_S0
))
1210 if (!is_hpet_enabled())
1213 if (dmi_get_bios_year() < 2015)
1216 use_acpi_alarm
= true;
1219 static inline void use_acpi_alarm_quirks(void) { }
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1223 * its device node and pass extra config data. This helps its driver use
1224 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225 * that this board's RTC is wakeup-capable (per ACPI spec).
1227 static struct cmos_rtc_board_info acpi_rtc_info
;
1229 static void cmos_wake_setup(struct device
*dev
)
1234 use_acpi_alarm_quirks();
1236 rtc_wake_setup(dev
);
1237 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1238 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1240 /* workaround bug in some ACPI tables */
1241 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1242 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1243 acpi_gbl_FADT
.month_alarm
);
1244 acpi_gbl_FADT
.month_alarm
= 0;
1247 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1248 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1249 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1251 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1252 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1253 dev_info(dev
, "RTC can wake from S4\n");
1255 dev
->platform_data
= &acpi_rtc_info
;
1257 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 device_init_wakeup(dev
, 1);
1261 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1262 unsigned char *rtc_control
)
1264 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1265 acpi_event_status rtc_status
;
1268 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1271 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1272 if (ACPI_FAILURE(status
)) {
1273 dev_err(dev
, "Could not get RTC status\n");
1274 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1276 *rtc_control
&= ~RTC_AIE
;
1277 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1278 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1279 rtc_update_irq(cmos
->rtc
, 1, mask
);
1285 static void cmos_wake_setup(struct device
*dev
)
1289 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1290 unsigned char *rtc_control
)
1298 #include <linux/pnp.h>
1300 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1302 cmos_wake_setup(&pnp
->dev
);
1304 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0)) {
1305 unsigned int irq
= 0;
1307 /* Some machines contain a PNP entry for the RTC, but
1308 * don't define the IRQ. It should always be safe to
1309 * hardcode it on systems with a legacy PIC.
1311 if (nr_legacy_irqs())
1314 return cmos_do_probe(&pnp
->dev
,
1315 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), irq
);
1317 return cmos_do_probe(&pnp
->dev
,
1318 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1323 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1325 cmos_do_remove(&pnp
->dev
);
1328 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1330 struct device
*dev
= &pnp
->dev
;
1331 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1333 if (system_state
== SYSTEM_POWER_OFF
) {
1334 int retval
= cmos_poweroff(dev
);
1336 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1340 cmos_do_shutdown(cmos
->irq
);
1343 static const struct pnp_device_id rtc_ids
[] = {
1344 { .id
= "PNP0b00", },
1345 { .id
= "PNP0b01", },
1346 { .id
= "PNP0b02", },
1349 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1351 static struct pnp_driver cmos_pnp_driver
= {
1352 .name
= driver_name
,
1353 .id_table
= rtc_ids
,
1354 .probe
= cmos_pnp_probe
,
1355 .remove
= cmos_pnp_remove
,
1356 .shutdown
= cmos_pnp_shutdown
,
1358 /* flag ensures resume() gets called, and stops syslog spam */
1359 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1365 #endif /* CONFIG_PNP */
1368 static const struct of_device_id of_cmos_match
[] = {
1370 .compatible
= "motorola,mc146818",
1374 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1376 static __init
void cmos_of_init(struct platform_device
*pdev
)
1378 struct device_node
*node
= pdev
->dev
.of_node
;
1384 val
= of_get_property(node
, "ctrl-reg", NULL
);
1386 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1388 val
= of_get_property(node
, "freq-reg", NULL
);
1390 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1393 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1395 /*----------------------------------------------------------------*/
1397 /* Platform setup should have set up an RTC device, when PNP is
1398 * unavailable ... this could happen even on (older) PCs.
1401 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1403 struct resource
*resource
;
1407 cmos_wake_setup(&pdev
->dev
);
1410 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1412 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1413 irq
= platform_get_irq(pdev
, 0);
1417 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1420 static int cmos_platform_remove(struct platform_device
*pdev
)
1422 cmos_do_remove(&pdev
->dev
);
1426 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1428 struct device
*dev
= &pdev
->dev
;
1429 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1431 if (system_state
== SYSTEM_POWER_OFF
) {
1432 int retval
= cmos_poweroff(dev
);
1434 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1438 cmos_do_shutdown(cmos
->irq
);
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1444 static struct platform_driver cmos_platform_driver
= {
1445 .remove
= cmos_platform_remove
,
1446 .shutdown
= cmos_platform_shutdown
,
1448 .name
= driver_name
,
1450 .of_match_table
= of_match_ptr(of_cmos_match
),
1455 static bool pnp_driver_registered
;
1457 static bool platform_driver_registered
;
1459 static int __init
cmos_init(void)
1464 retval
= pnp_register_driver(&cmos_pnp_driver
);
1466 pnp_driver_registered
= true;
1469 if (!cmos_rtc
.dev
) {
1470 retval
= platform_driver_probe(&cmos_platform_driver
,
1471 cmos_platform_probe
);
1473 platform_driver_registered
= true;
1480 if (pnp_driver_registered
)
1481 pnp_unregister_driver(&cmos_pnp_driver
);
1485 module_init(cmos_init
);
1487 static void __exit
cmos_exit(void)
1490 if (pnp_driver_registered
)
1491 pnp_unregister_driver(&cmos_pnp_driver
);
1493 if (platform_driver_registered
)
1494 platform_driver_unregister(&cmos_platform_driver
);
1496 module_exit(cmos_exit
);
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");