1 // SPDX-License-Identifier: GPL-2.0-only
3 * Aic94xx SAS/SATA driver hardware interface.
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <linux/firmware.h>
16 #include "aic94xx_reg.h"
17 #include "aic94xx_hwi.h"
18 #include "aic94xx_seq.h"
19 #include "aic94xx_dump.h"
23 /* ---------- Initialization ---------- */
25 static int asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
27 /* adapter came with a sas address */
28 if (asd_ha
->hw_prof
.sas_addr
[0])
31 return sas_request_addr(asd_ha
->sas_ha
.core
.shost
,
32 asd_ha
->hw_prof
.sas_addr
);
35 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
39 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
40 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
42 /* Set a phy's address only if it has none.
44 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
45 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
46 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
47 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
51 /* ---------- PHY initialization ---------- */
53 static void asd_init_phy_identify(struct asd_phy
*phy
)
55 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
57 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
59 phy
->identify_frame
->dev_type
= SAS_END_DEVICE
;
60 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
61 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
62 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
63 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
64 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
66 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
69 static int asd_init_phy(struct asd_phy
*phy
)
71 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
72 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
76 sas_phy
->iproto
= SAS_PROTOCOL_ALL
;
78 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
79 sas_phy
->role
= PHY_ROLE_INITIATOR
;
80 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
81 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
83 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
84 sizeof(*phy
->identify_frame
),
86 if (!phy
->id_frm_tok
) {
87 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
90 asd_init_phy_identify(phy
);
92 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
97 static void asd_init_ports(struct asd_ha_struct
*asd_ha
)
101 spin_lock_init(&asd_ha
->asd_ports_lock
);
102 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
103 struct asd_port
*asd_port
= &asd_ha
->asd_ports
[i
];
105 memset(asd_port
->sas_addr
, 0, SAS_ADDR_SIZE
);
106 memset(asd_port
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
107 asd_port
->phy_mask
= 0;
108 asd_port
->num_phys
= 0;
112 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
115 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
117 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
118 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
120 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
121 phy
->asd_port
= NULL
;
123 phy
->sas_phy
.enabled
= 0;
125 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
126 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
127 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
128 phy
->sas_phy
.lldd_phy
= phy
;
131 /* Now enable and initialize only the enabled phys. */
132 for_each_phy(phy_mask
, phy_mask
, i
) {
133 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
141 /* ---------- Sliding windows ---------- */
143 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
145 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
150 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
152 asd_printk("couldn't access conf. space of %s\n",
157 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
159 asd_printk("couldn't write to MBAR_KEY of %s\n",
164 /* Set sliding windows A, B and C to point to proper internal
167 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
168 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
169 REG_BASE_ADDR_CSEQCIO
);
170 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
171 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
172 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
173 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
174 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
175 if (!asd_ha
->iospace
) {
176 /* MBAR1 will point to OCM (On Chip Memory) */
177 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
178 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
180 spin_lock_init(&asd_ha
->iolock
);
185 /* ---------- SCB initialization ---------- */
188 * asd_init_scbs - manually allocate the first SCB.
189 * @asd_ha: pointer to host adapter structure
191 * This allocates the very first SCB which would be sent to the
192 * sequencer for execution. Its bus address is written to
193 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
194 * the _next_ scb to be DMA-ed to the host adapter is read from the last
195 * SCB DMA-ed to the host adapter, we have to always stay one step
196 * ahead of the sequencer and keep one SCB already allocated.
198 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
200 struct asd_seq_data
*seq
= &asd_ha
->seq
;
203 /* allocate the index array and bitmap */
204 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
205 asd_ha
->seq
.tc_index_array
= kcalloc(asd_ha
->seq
.tc_index_bitmap_bits
,
208 if (!asd_ha
->seq
.tc_index_array
)
211 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
212 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
213 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
214 if (!asd_ha
->seq
.tc_index_bitmap
) {
215 kfree(asd_ha
->seq
.tc_index_array
);
216 asd_ha
->seq
.tc_index_array
= NULL
;
220 spin_lock_init(&seq
->tc_index_lock
);
222 seq
->next_scb
.size
= sizeof(struct scb
);
223 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
224 &seq
->next_scb
.dma_handle
);
225 if (!seq
->next_scb
.vaddr
) {
226 kfree(asd_ha
->seq
.tc_index_bitmap
);
227 kfree(asd_ha
->seq
.tc_index_array
);
228 asd_ha
->seq
.tc_index_bitmap
= NULL
;
229 asd_ha
->seq
.tc_index_array
= NULL
;
234 spin_lock_init(&seq
->pend_q_lock
);
235 INIT_LIST_HEAD(&seq
->pend_q
);
240 static void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
242 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
243 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
244 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
245 asd_ha
->hw_prof
.max_scbs
,
246 asd_ha
->hw_prof
.max_ddbs
);
249 /* ---------- Done List initialization ---------- */
251 static void asd_dl_tasklet_handler(unsigned long);
253 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
255 asd_ha
->seq
.actual_dl
256 = asd_alloc_coherent(asd_ha
,
257 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
259 if (!asd_ha
->seq
.actual_dl
)
261 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
262 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
263 asd_ha
->seq
.dl_next
= 0;
264 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
265 (unsigned long) asd_ha
);
270 /* ---------- EDB and ESCB init ---------- */
272 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, gfp_t gfp_flags
)
274 struct asd_seq_data
*seq
= &asd_ha
->seq
;
277 seq
->edb_arr
= kmalloc_array(seq
->num_edbs
, sizeof(*seq
->edb_arr
),
282 for (i
= 0; i
< seq
->num_edbs
; i
++) {
283 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
285 if (!seq
->edb_arr
[i
])
287 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
290 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
295 for (i
-- ; i
>= 0; i
--)
296 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
303 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
306 struct asd_seq_data
*seq
= &asd_ha
->seq
;
307 struct asd_ascb
*escb
;
310 seq
->escb_arr
= kmalloc_array(seq
->num_escbs
, sizeof(*seq
->escb_arr
),
315 escbs
= seq
->num_escbs
;
316 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
318 asd_printk("couldn't allocate list of escbs\n");
321 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
322 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
324 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
327 seq
->escb_arr
[i
] = escb
;
328 escb
->scb
->header
.opcode
= EMPTY_SCB
;
333 kfree(seq
->escb_arr
);
334 seq
->escb_arr
= NULL
;
339 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
341 struct asd_seq_data
*seq
= &asd_ha
->seq
;
344 for (i
= 0; i
< seq
->num_escbs
; i
++) {
345 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
346 struct empty_scb
*escb
= &ascb
->scb
->escb
;
350 escb
->num_valid
= ASD_EDBS_PER_SCB
;
352 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
353 struct sg_el
*eb
= &escb
->eb
[k
];
354 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
356 memset(eb
, 0, sizeof(*eb
));
357 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
358 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
364 * asd_init_escbs -- allocate and initialize empty scbs
365 * @asd_ha: pointer to host adapter structure
367 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
368 * They transport sense data, etc.
370 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
372 struct asd_seq_data
*seq
= &asd_ha
->seq
;
375 /* Allocate two empty data buffers (edb) per sequencer. */
376 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
378 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
379 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
381 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
383 asd_printk("couldn't allocate edbs\n");
387 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
389 asd_printk("couldn't allocate escbs\n");
393 asd_assign_edbs2escbs(asd_ha
);
394 /* In order to insure that normal SCBs do not overfill sequencer
395 * memory and leave no space for escbs (halting condition),
396 * we increment pending here by the number of escbs. However,
397 * escbs are never pending.
399 seq
->pending
= seq
->num_escbs
;
400 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
405 /* ---------- HW initialization ---------- */
408 * asd_chip_hardrst -- hard reset the chip
409 * @asd_ha: pointer to host adapter structure
411 * This takes 16 cycles and is synchronous to CFCLK, which runs
412 * at 200 MHz, so this should take at most 80 nanoseconds.
414 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
420 for (i
= 0 ; i
< 4 ; i
++) {
421 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
426 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
427 if (reg
& HARDRSTDET
) {
428 asd_write_reg_dword(asd_ha
, CHIMINT
,
429 HARDRSTDET
|PORRSTDET
);
432 } while (--count
> 0);
438 * asd_init_chip -- initialize the chip
439 * @asd_ha: pointer to host adapter structure
441 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
442 * microcode and starts the sequencers. The caller has to explicitly
443 * enable HA interrupts with asd_enable_ints(asd_ha).
445 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
449 err
= asd_chip_hardrst(asd_ha
);
451 asd_printk("couldn't hard reset %s\n",
452 pci_name(asd_ha
->pcidev
));
456 asd_disable_ints(asd_ha
);
458 err
= asd_init_seqs(asd_ha
);
460 asd_printk("couldn't init seqs for %s\n",
461 pci_name(asd_ha
->pcidev
));
465 err
= asd_start_seqs(asd_ha
);
467 asd_printk("couldn't start seqs for %s\n",
468 pci_name(asd_ha
->pcidev
));
475 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
477 static int max_devs
= 0;
478 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
479 MODULE_PARM_DESC(max_devs
, "\n"
480 "\tMaximum number of SAS devices to support (not LUs).\n"
481 "\tDefault: 2176, Maximum: 65663.\n");
483 static int max_cmnds
= 0;
484 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
485 MODULE_PARM_DESC(max_cmnds
, "\n"
486 "\tMaximum number of commands queuable.\n"
487 "\tDefault: 512, Maximum: 66047.\n");
489 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
491 unsigned long dma_addr
= OCM_BASE_ADDR
;
494 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
495 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
496 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
498 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
499 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
502 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
504 dma_addr_t dma_handle
;
505 unsigned long dma_addr
;
509 asd_extend_devctx_ocm(asd_ha
);
511 asd_ha
->hw_prof
.ddb_ext
= NULL
;
512 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
513 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
517 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
519 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
520 if (!asd_ha
->hw_prof
.ddb_ext
) {
521 asd_printk("couldn't allocate memory for %d devices\n",
523 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
526 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
527 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
528 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
529 dma_handle
= (dma_addr_t
) dma_addr
;
530 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
531 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
533 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
535 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
540 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
542 dma_addr_t dma_handle
;
543 unsigned long dma_addr
;
547 asd_ha
->hw_prof
.scb_ext
= NULL
;
548 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
549 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
553 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
555 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
556 if (!asd_ha
->hw_prof
.scb_ext
) {
557 asd_printk("couldn't allocate memory for %d commands\n",
559 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
562 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
563 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
564 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
565 dma_handle
= (dma_addr_t
) dma_addr
;
566 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
567 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
569 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
571 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
577 * asd_init_ctxmem -- initialize context memory
578 * @asd_ha: pointer to host adapter structure
580 * This function sets the maximum number of SCBs and
581 * DDBs which can be used by the sequencer. This is normally
582 * 512 and 128 respectively. If support for more SCBs or more DDBs
583 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
584 * initialized here to extend context memory to point to host memory,
585 * thus allowing unlimited support for SCBs and DDBs -- only limited
588 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
592 asd_get_max_scb_ddb(asd_ha
);
593 asd_extend_devctx(asd_ha
);
594 asd_extend_cmdctx(asd_ha
);
596 /* The kernel wants bitmaps to be unsigned long sized. */
597 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
598 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
599 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
600 if (!asd_ha
->hw_prof
.ddb_bitmap
)
602 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
607 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
612 err
= asd_init_sw(asd_ha
);
616 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
618 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
619 pci_name(asd_ha
->pcidev
));
622 err
= pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
625 asd_printk("couldn't disable split completion timer of %s\n",
626 pci_name(asd_ha
->pcidev
));
630 err
= asd_read_ocm(asd_ha
);
632 asd_printk("couldn't read ocm(%d)\n", err
);
633 /* While suspicios, it is not an error that we
634 * couldn't read the OCM. */
637 err
= asd_read_flash(asd_ha
);
639 asd_printk("couldn't read flash(%d)\n", err
);
640 /* While suspicios, it is not an error that we
641 * couldn't read FLASH memory.
645 asd_init_ctxmem(asd_ha
);
647 if (asd_get_user_sas_addr(asd_ha
)) {
648 asd_printk("No SAS Address provided for %s\n",
649 pci_name(asd_ha
->pcidev
));
654 asd_propagate_sas_addr(asd_ha
);
656 err
= asd_init_phys(asd_ha
);
658 asd_printk("couldn't initialize phys for %s\n",
659 pci_name(asd_ha
->pcidev
));
663 asd_init_ports(asd_ha
);
665 err
= asd_init_scbs(asd_ha
);
667 asd_printk("couldn't initialize scbs for %s\n",
668 pci_name(asd_ha
->pcidev
));
672 err
= asd_init_dl(asd_ha
);
674 asd_printk("couldn't initialize the done list:%d\n",
679 err
= asd_init_escbs(asd_ha
);
681 asd_printk("couldn't initialize escbs\n");
685 err
= asd_init_chip(asd_ha
);
687 asd_printk("couldn't init the chip\n");
694 /* ---------- Chip reset ---------- */
697 * asd_chip_reset -- reset the host adapter, etc
698 * @asd_ha: pointer to host adapter structure of interest
700 * Called from the ISR. Hard reset the chip. Let everything
701 * timeout. This should be no different than hot-unplugging the
702 * host adapter. Once everything times out we'll init the chip with
703 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
706 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
708 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
709 asd_chip_hardrst(asd_ha
);
712 /* ---------- Done List Routines ---------- */
714 static void asd_dl_tasklet_handler(unsigned long data
)
716 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
717 struct asd_seq_data
*seq
= &asd_ha
->seq
;
721 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
722 struct asd_ascb
*ascb
;
724 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
728 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
729 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
730 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
731 if (unlikely(!ascb
)) {
732 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
734 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
736 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
739 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
740 list_del_init(&ascb
->list
);
742 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
744 ascb
->tasklet_complete(ascb
, dl
);
747 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
749 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
753 /* ---------- Interrupt Service Routines ---------- */
756 * asd_process_donelist_isr -- schedule processing of done list entries
757 * @asd_ha: pointer to host adapter structure
759 static void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
761 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
765 * asd_com_sas_isr -- process device communication interrupt (COMINT)
766 * @asd_ha: pointer to host adapter structure
768 static void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
770 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
772 /* clear COMSTAT int */
773 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
775 if (comstat
& CSBUFPERR
) {
776 asd_printk("%s: command/status buffer dma parity error\n",
777 pci_name(asd_ha
->pcidev
));
778 } else if (comstat
& CSERR
) {
780 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
782 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
783 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
784 pci_name(asd_ha
->pcidev
),
786 asd_read_reg_dword(asd_ha
, CSDMAADR
),
787 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
788 asd_printk("CSBUFFER:\n");
789 for (i
= 0; i
< 8; i
++) {
790 asd_printk("%08x %08x %08x %08x\n",
791 asd_read_reg_dword(asd_ha
, CSBUFFER
),
792 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
793 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
794 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
796 asd_dump_seq_state(asd_ha
, 0);
797 } else if (comstat
& OVLYERR
) {
798 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
799 dmaerr
= (dmaerr
>> 8) & 0xFF;
800 asd_printk("%s: overlay dma error:0x%x\n",
801 pci_name(asd_ha
->pcidev
),
804 asd_chip_reset(asd_ha
);
807 static void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
809 static const char *halt_code
[256] = {
810 "UNEXPECTED_INTERRUPT0",
811 "UNEXPECTED_INTERRUPT1",
812 "UNEXPECTED_INTERRUPT2",
813 "UNEXPECTED_INTERRUPT3",
814 "UNEXPECTED_INTERRUPT4",
815 "UNEXPECTED_INTERRUPT5",
816 "UNEXPECTED_INTERRUPT6",
817 "UNEXPECTED_INTERRUPT7",
818 "UNEXPECTED_INTERRUPT8",
819 "UNEXPECTED_INTERRUPT9",
820 "UNEXPECTED_INTERRUPT10",
821 [11 ... 19] = "unknown[11,19]",
822 "NO_FREE_SCB_AVAILABLE",
823 "INVALID_SCB_OPCODE",
824 "INVALID_MBX_OPCODE",
827 "ATA_TAG_TABLE_FAULT",
828 "ATA_TAG_MASK_FAULT",
829 "BAD_LINK_QUEUE_STATE",
830 "DMA2CHIM_QUEUE_ERROR",
831 "EMPTY_SCB_LIST_FULL",
833 "IN_USE_SCB_ON_FREE_LIST",
834 "BAD_OPEN_WAIT_STATE",
835 "INVALID_STP_AFFILIATION",
838 "TOO_MANY_EMPTIES_NEEDED",
839 "EMPTY_REQ_QUEUE_ERROR",
840 "Q_MONIRTT_MGMT_ERROR",
841 "TARGET_MODE_FLOW_ERROR",
842 "DEVICE_QUEUE_NOT_FOUND",
843 "START_IRTT_TIMER_ERROR",
844 "ABORT_TASK_ILLEGAL_REQ",
845 [43 ... 255] = "unknown[43,255]"
848 if (dchstatus
& CSEQINT
) {
849 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
851 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
852 asd_printk("%s: CSEQ arp2int:0x%x\n",
853 pci_name(asd_ha
->pcidev
),
855 } else if (arp2int
& ARP2HALTC
)
856 asd_printk("%s: CSEQ halted: %s\n",
857 pci_name(asd_ha
->pcidev
),
858 halt_code
[(arp2int
>>16)&0xFF]);
860 asd_printk("%s: CARP2INT:0x%x\n",
861 pci_name(asd_ha
->pcidev
),
864 if (dchstatus
& LSEQINT_MASK
) {
866 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
868 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
869 u32 arp2int
= asd_read_reg_dword(asd_ha
,
871 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
873 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
874 pci_name(asd_ha
->pcidev
),
876 /* XXX we should only do lseq reset */
877 } else if (arp2int
& ARP2HALTC
)
878 asd_printk("%s: LSEQ%d halted: %s\n",
879 pci_name(asd_ha
->pcidev
),
880 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
882 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
883 pci_name(asd_ha
->pcidev
), lseq
,
887 asd_chip_reset(asd_ha
);
891 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
892 * @asd_ha: pointer to host adapter structure
894 static void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
896 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
898 if (dchstatus
& CFIFTOERR
) {
899 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
900 asd_chip_reset(asd_ha
);
902 asd_arp2_err(asd_ha
, dchstatus
);
906 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
907 * @asd_ha: pointer to host adapter structure
909 static void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
911 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
913 if (!(stat0r
& ASIERR
)) {
914 asd_printk("hmm, EXSI interrupted but no error?\n");
918 if (stat0r
& ASIFMTERR
) {
919 asd_printk("ASI SEEPROM format error for %s\n",
920 pci_name(asd_ha
->pcidev
));
921 } else if (stat0r
& ASISEECHKERR
) {
922 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
923 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
924 stat1r
& CHECKSUM_MASK
,
925 pci_name(asd_ha
->pcidev
));
927 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
929 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
930 ASD_DPRINTK("hmm, ASIERR?\n");
933 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
934 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
936 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
937 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
938 "master id: 0x%x, master err: 0x%x\n",
939 pci_name(asd_ha
->pcidev
),
941 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
942 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
943 (statr
& CPI2ASITARGERR_MASK
) >> 8,
944 (statr
& CPI2ASITARGMID_MASK
) >> 4,
945 (statr
& CPI2ASIMSTERR_MASK
));
948 asd_chip_reset(asd_ha
);
952 * asd_hst_pcix_isr -- process host interface interrupts
953 * @asd_ha: pointer to host adapter structure
955 * Asserted on PCIX errors: target abort, etc.
957 static void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
963 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
964 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
965 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
967 if (status
& PCI_STATUS_DETECTED_PARITY
)
968 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
969 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
970 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
971 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
972 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
973 else if (status
& PCI_STATUS_PARITY
)
974 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
975 else if (pcix_status
& RCV_SCE
) {
976 asd_printk("received split completion error for %s\n",
977 pci_name(asd_ha
->pcidev
));
978 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
979 /* XXX: Abort task? */
981 } else if (pcix_status
& UNEXP_SC
) {
982 asd_printk("unexpected split completion for %s\n",
983 pci_name(asd_ha
->pcidev
));
984 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
987 } else if (pcix_status
& SC_DISCARD
)
988 asd_printk("split completion discarded for %s\n",
989 pci_name(asd_ha
->pcidev
));
990 else if (ecc_status
& UNCOR_ECCERR
)
991 asd_printk("uncorrectable ECC error for %s\n",
992 pci_name(asd_ha
->pcidev
));
993 asd_chip_reset(asd_ha
);
997 * asd_hw_isr -- host adapter interrupt service routine
999 * @dev_id: pointer to host adapter structure
1001 * The ISR processes done list entries and level 3 error handling.
1003 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
)
1005 struct asd_ha_struct
*asd_ha
= dev_id
;
1006 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1011 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1012 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1014 if (chimint
& DLAVAIL
)
1015 asd_process_donelist_isr(asd_ha
);
1016 if (chimint
& COMINT
)
1017 asd_com_sas_isr(asd_ha
);
1018 if (chimint
& DEVINT
)
1019 asd_dch_sas_isr(asd_ha
);
1020 if (chimint
& INITERR
)
1021 asd_rbi_exsi_isr(asd_ha
);
1022 if (chimint
& HOSTERR
)
1023 asd_hst_pcix_isr(asd_ha
);
1028 /* ---------- SCB handling ---------- */
1030 static struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1033 extern struct kmem_cache
*asd_ascb_cache
;
1034 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1035 struct asd_ascb
*ascb
;
1036 unsigned long flags
;
1038 ascb
= kmem_cache_zalloc(asd_ascb_cache
, gfp_flags
);
1041 ascb
->dma_scb
.size
= sizeof(struct scb
);
1042 ascb
->dma_scb
.vaddr
= dma_pool_zalloc(asd_ha
->scb_pool
,
1044 &ascb
->dma_scb
.dma_handle
);
1045 if (!ascb
->dma_scb
.vaddr
) {
1046 kmem_cache_free(asd_ascb_cache
, ascb
);
1049 asd_init_ascb(asd_ha
, ascb
);
1051 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1052 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1053 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1054 if (ascb
->tc_index
== -1)
1057 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1062 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1063 ascb
->dma_scb
.dma_handle
);
1064 kmem_cache_free(asd_ascb_cache
, ascb
);
1065 ASD_DPRINTK("no index for ascb\n");
1070 * asd_ascb_alloc_list -- allocate a list of aSCBs
1071 * @asd_ha: pointer to host adapter structure
1072 * @num: pointer to integer number of aSCBs
1073 * @gfp_flags: GFP_ flags.
1075 * This is the only function which is used to allocate aSCBs.
1076 * It can allocate one or many. If more than one, then they form
1077 * a linked list in two ways: by their list field of the ascb struct
1078 * and by the next_scb field of the scb_header.
1080 * Returns NULL if no memory was available, else pointer to a list
1081 * of ascbs. When this function returns, @num would be the number
1082 * of SCBs which were not able to be allocated, 0 if all requested
1083 * were able to be allocated.
1085 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1089 struct asd_ascb
*first
= NULL
;
1091 for ( ; *num
> 0; --*num
) {
1092 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1099 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1102 list_add_tail(&ascb
->list
, &first
->list
);
1103 last
->scb
->header
.next_scb
=
1104 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1112 * asd_swap_head_scb -- swap the head scb
1113 * @asd_ha: pointer to host adapter structure
1114 * @ascb: pointer to the head of an ascb list
1116 * The sequencer knows the DMA address of the next SCB to be DMAed to
1117 * the host adapter, from initialization or from the last list DMAed.
1118 * seq->next_scb keeps the address of this SCB. The sequencer will
1119 * DMA to the host adapter this list of SCBs. But the head (first
1120 * element) of this list is not known to the sequencer. Here we swap
1121 * the head of the list with the known SCB (memcpy()).
1122 * Only one memcpy() is required per list so it is in our interest
1123 * to keep the list of SCB as long as possible so that the ratio
1124 * of number of memcpy calls to the number of SCB DMA-ed is as small
1127 * LOCKING: called with the pending list lock held.
1129 static void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1130 struct asd_ascb
*ascb
)
1132 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1133 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1136 struct asd_dma_tok t
= ascb
->dma_scb
;
1138 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1139 ascb
->dma_scb
= seq
->next_scb
;
1140 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1142 last
->scb
->header
.next_scb
=
1143 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1147 * asd_start_timers -- (add and) start timers of SCBs
1148 * @list: pointer to struct list_head of the scbs
1150 * If an SCB in the @list has no timer function, assign the default
1151 * one, then start the timer of the SCB. This function is
1152 * intended to be called from asd_post_ascb_list(), just prior to
1153 * posting the SCBs to the sequencer.
1155 static void asd_start_scb_timers(struct list_head
*list
)
1157 struct asd_ascb
*ascb
;
1158 list_for_each_entry(ascb
, list
, list
) {
1159 if (!ascb
->uldd_timer
) {
1160 ascb
->timer
.function
= asd_ascb_timedout
;
1161 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1162 add_timer(&ascb
->timer
);
1168 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1169 * @asd_ha: pointer to a host adapter structure
1170 * @ascb: pointer to the first aSCB in the list
1171 * @num: number of aSCBs in the list (to be posted)
1173 * See queueing comment in asd_post_escb_list().
1175 * Additional note on queuing: In order to minimize the ratio of memcpy()
1176 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1178 * Two cases are possible:
1179 * A) can_queue >= num,
1180 * B) can_queue < num.
1181 * Case A: we can send the whole batch at once. Increment "pending"
1182 * in the beginning of this function, when it is checked, in order to
1183 * eliminate races when this function is called by multiple processes.
1184 * Case B: should never happen.
1186 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1189 unsigned long flags
;
1193 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1194 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1195 if (can_queue
>= num
)
1196 asd_ha
->seq
.pending
+= num
;
1201 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1202 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1203 return -SAS_QUEUE_FULL
;
1206 asd_swap_head_scb(asd_ha
, ascb
);
1208 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1210 asd_start_scb_timers(&list
);
1212 asd_ha
->seq
.scbpro
+= num
;
1213 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1214 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1215 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1221 * asd_post_escb_list -- post a list of 1 or more empty scb
1222 * @asd_ha: pointer to a host adapter structure
1223 * @ascb: pointer to the first empty SCB in the list
1224 * @num: number of aSCBs in the list (to be posted)
1226 * This is essentially the same as asd_post_ascb_list, but we do not
1227 * increment pending, add those to the pending list or get indexes.
1228 * See asd_init_escbs() and asd_init_post_escbs().
1230 * Since sending a list of ascbs is a superset of sending a single
1231 * ascb, this function exists to generalize this. More specifically,
1232 * when sending a list of those, we want to do only a _single_
1233 * memcpy() at swap head, as opposed to for each ascb sent (in the
1234 * case of sending them one by one). That is, we want to minimize the
1235 * ratio of memcpy() operations to the number of ascbs sent. The same
1236 * logic applies to asd_post_ascb_list().
1238 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1241 unsigned long flags
;
1243 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1244 asd_swap_head_scb(asd_ha
, ascb
);
1245 asd_ha
->seq
.scbpro
+= num
;
1246 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1247 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1252 /* ---------- LED ---------- */
1255 * asd_turn_led -- turn on/off an LED
1256 * @asd_ha: pointer to host adapter structure
1257 * @phy_id: the PHY id whose LED we want to manupulate
1258 * @op: 1 to turn on, 0 to turn off
1260 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1262 if (phy_id
< ASD_MAX_PHYS
) {
1263 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1268 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1273 * asd_control_led -- enable/disable an LED on the board
1274 * @asd_ha: pointer to host adapter structure
1275 * @phy_id: integer, the phy id
1276 * @op: integer, 1 to enable, 0 to disable the LED
1278 * First we output enable the LED, then we set the source
1279 * to be an external module.
1281 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1283 if (phy_id
< ASD_MAX_PHYS
) {
1286 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1290 v
&= ~(1 << phy_id
);
1291 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1293 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1297 v
&= ~(1 << phy_id
);
1298 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1302 /* ---------- PHY enable ---------- */
1304 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1306 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1308 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1309 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1310 HOTPLUG_DELAY_TIMEOUT
);
1312 /* Get defaults from manuf. sector */
1313 /* XXX we need defaults for those in case MS is broken. */
1314 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1315 phy
->phy_desc
->phy_control_0
);
1316 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1317 phy
->phy_desc
->phy_control_1
);
1318 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1319 phy
->phy_desc
->phy_control_2
);
1320 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1321 phy
->phy_desc
->phy_control_3
);
1323 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1324 ASD_COMINIT_TIMEOUT
);
1326 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1327 phy
->id_frm_tok
->dma_handle
);
1329 asd_control_led(asd_ha
, phy_id
, 1);
1334 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1339 struct asd_ascb
*ascb
;
1340 struct asd_ascb
*ascb_list
;
1343 asd_printk("%s called with phy_mask of 0!?\n", __func__
);
1347 for_each_phy(phy_mask
, phy_m
, i
) {
1349 asd_enable_phy(asd_ha
, i
);
1353 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1355 asd_printk("no memory for control phy ascb list\n");
1361 for_each_phy(phy_mask
, phy_m
, i
) {
1362 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1363 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1365 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1366 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1368 asd_ascb_free_list(ascb_list
);