2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION
);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
88 static int hpsa_simple_mode
;
89 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
90 MODULE_PARM_DESC(hpsa_simple_mode
,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id
[] = {
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
136 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
142 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
146 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
147 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
148 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
149 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
150 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
151 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
155 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
157 /* board_id = Subsystem Device ID & Vendor ID
158 * product = Marketing Name for the board
159 * access = Address of the struct of function pointers
161 static struct board_type products
[] = {
162 {0x40700E11, "Smart Array 5300", &SA5A_access
},
163 {0x40800E11, "Smart Array 5i", &SA5B_access
},
164 {0x40820E11, "Smart Array 532", &SA5B_access
},
165 {0x40830E11, "Smart Array 5312", &SA5B_access
},
166 {0x409A0E11, "Smart Array 641", &SA5A_access
},
167 {0x409B0E11, "Smart Array 642", &SA5A_access
},
168 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
169 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
170 {0x40910E11, "Smart Array 6i", &SA5A_access
},
171 {0x3225103C, "Smart Array P600", &SA5A_access
},
172 {0x3223103C, "Smart Array P800", &SA5A_access
},
173 {0x3234103C, "Smart Array P400", &SA5A_access
},
174 {0x3235103C, "Smart Array P400i", &SA5A_access
},
175 {0x3211103C, "Smart Array E200i", &SA5A_access
},
176 {0x3212103C, "Smart Array E200", &SA5A_access
},
177 {0x3213103C, "Smart Array E200i", &SA5A_access
},
178 {0x3214103C, "Smart Array E200i", &SA5A_access
},
179 {0x3215103C, "Smart Array E200i", &SA5A_access
},
180 {0x3237103C, "Smart Array E500", &SA5A_access
},
181 {0x323D103C, "Smart Array P700m", &SA5A_access
},
182 {0x3241103C, "Smart Array P212", &SA5_access
},
183 {0x3243103C, "Smart Array P410", &SA5_access
},
184 {0x3245103C, "Smart Array P410i", &SA5_access
},
185 {0x3247103C, "Smart Array P411", &SA5_access
},
186 {0x3249103C, "Smart Array P812", &SA5_access
},
187 {0x324A103C, "Smart Array P712m", &SA5_access
},
188 {0x324B103C, "Smart Array P711m", &SA5_access
},
189 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
190 {0x3350103C, "Smart Array P222", &SA5_access
},
191 {0x3351103C, "Smart Array P420", &SA5_access
},
192 {0x3352103C, "Smart Array P421", &SA5_access
},
193 {0x3353103C, "Smart Array P822", &SA5_access
},
194 {0x3354103C, "Smart Array P420i", &SA5_access
},
195 {0x3355103C, "Smart Array P220i", &SA5_access
},
196 {0x3356103C, "Smart Array P721m", &SA5_access
},
197 {0x1920103C, "Smart Array P430i", &SA5_access
},
198 {0x1921103C, "Smart Array P830i", &SA5_access
},
199 {0x1922103C, "Smart Array P430", &SA5_access
},
200 {0x1923103C, "Smart Array P431", &SA5_access
},
201 {0x1924103C, "Smart Array P830", &SA5_access
},
202 {0x1925103C, "Smart Array P831", &SA5_access
},
203 {0x1926103C, "Smart Array P731m", &SA5_access
},
204 {0x1928103C, "Smart Array P230i", &SA5_access
},
205 {0x1929103C, "Smart Array P530", &SA5_access
},
206 {0x21BD103C, "Smart Array P244br", &SA5_access
},
207 {0x21BE103C, "Smart Array P741m", &SA5_access
},
208 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
209 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
210 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
211 {0x21C2103C, "Smart Array P440", &SA5_access
},
212 {0x21C3103C, "Smart Array P441", &SA5_access
},
213 {0x21C4103C, "Smart Array", &SA5_access
},
214 {0x21C5103C, "Smart Array P841", &SA5_access
},
215 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
216 {0x21C7103C, "Smart HBA H240", &SA5_access
},
217 {0x21C8103C, "Smart HBA H241", &SA5_access
},
218 {0x21C9103C, "Smart Array", &SA5_access
},
219 {0x21CA103C, "Smart Array P246br", &SA5_access
},
220 {0x21CB103C, "Smart Array P840", &SA5_access
},
221 {0x21CC103C, "Smart Array", &SA5_access
},
222 {0x21CD103C, "Smart Array", &SA5_access
},
223 {0x21CE103C, "Smart HBA", &SA5_access
},
224 {0x05809005, "SmartHBA-SA", &SA5_access
},
225 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
226 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
227 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
228 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
229 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
230 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
231 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
232 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
233 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
234 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
235 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
238 static struct scsi_transport_template
*hpsa_sas_transport_template
;
239 static int hpsa_add_sas_host(struct ctlr_info
*h
);
240 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
241 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
242 struct hpsa_scsi_dev_t
*device
);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
244 static struct hpsa_scsi_dev_t
245 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
246 struct sas_rphy
*rphy
);
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy
;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle
;
252 static int number_of_controllers
;
254 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
255 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
256 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
258 static int hpsa_passthru_ioctl(struct ctlr_info
*h
,
259 IOCTL_Command_struct
*iocommand
);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
,
261 BIG_IOCTL_Command_struct
*ioc
);
264 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
268 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
269 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
270 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
271 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
272 struct scsi_cmnd
*scmd
);
273 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
274 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
276 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
280 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
281 static void hpsa_scan_start(struct Scsi_Host
*);
282 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
283 unsigned long elapsed_time
);
284 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
287 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
288 static int hpsa_slave_configure(struct scsi_device
*sdev
);
289 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
291 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
292 static int check_for_unit_attention(struct ctlr_info
*h
,
293 struct CommandList
*c
);
294 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
295 struct CommandList
*c
);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket
, int num_buckets
,
298 int nsgs
, int min_blocks
, u32
*bucket_map
);
299 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
301 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
302 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
303 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
305 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
306 unsigned long *memory_bar
);
307 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
309 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
310 unsigned char lunaddr
[],
312 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
314 static inline void finish_cmd(struct CommandList
*c
);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
319 static void hpsa_flush_cache(struct ctlr_info
*h
);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
321 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
322 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
323 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
324 static u32
lockup_detected(struct ctlr_info
*h
);
325 static int detect_controller_lockup(struct ctlr_info
*h
);
326 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
328 struct ReportExtendedLUNdata
*buf
, int bufsize
);
329 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
330 unsigned char scsi3addr
[], u8 page
);
331 static int hpsa_luns_changed(struct ctlr_info
*h
);
332 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
333 struct hpsa_scsi_dev_t
*dev
,
334 unsigned char *scsi3addr
);
336 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
338 unsigned long *priv
= shost_priv(sdev
->host
);
339 return (struct ctlr_info
*) *priv
;
342 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
344 unsigned long *priv
= shost_priv(sh
);
345 return (struct ctlr_info
*) *priv
;
348 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
350 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
353 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
354 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
355 u8
*sense_key
, u8
*asc
, u8
*ascq
)
357 struct scsi_sense_hdr sshdr
;
364 if (sense_data_len
< 1)
367 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
369 *sense_key
= sshdr
.sense_key
;
375 static int check_for_unit_attention(struct ctlr_info
*h
,
376 struct CommandList
*c
)
378 u8 sense_key
, asc
, ascq
;
381 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
382 sense_len
= sizeof(c
->err_info
->SenseInfo
);
384 sense_len
= c
->err_info
->SenseLen
;
386 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
387 &sense_key
, &asc
, &ascq
);
388 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
393 dev_warn(&h
->pdev
->dev
,
394 "%s: a state change detected, command retried\n",
398 dev_warn(&h
->pdev
->dev
,
399 "%s: LUN failure detected\n", h
->devname
);
401 case REPORT_LUNS_CHANGED
:
402 dev_warn(&h
->pdev
->dev
,
403 "%s: report LUN data changed\n", h
->devname
);
405 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 * target (array) devices.
410 dev_warn(&h
->pdev
->dev
,
411 "%s: a power on or device reset detected\n",
414 case UNIT_ATTENTION_CLEARED
:
415 dev_warn(&h
->pdev
->dev
,
416 "%s: unit attention cleared by another initiator\n",
420 dev_warn(&h
->pdev
->dev
,
421 "%s: unknown unit attention detected\n",
428 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
430 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
431 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
432 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
434 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
438 static u32
lockup_detected(struct ctlr_info
*h
);
439 static ssize_t
host_show_lockup_detected(struct device
*dev
,
440 struct device_attribute
*attr
, char *buf
)
444 struct Scsi_Host
*shost
= class_to_shost(dev
);
446 h
= shost_to_hba(shost
);
447 ld
= lockup_detected(h
);
449 return sprintf(buf
, "ld=%d\n", ld
);
452 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
453 struct device_attribute
*attr
,
454 const char *buf
, size_t count
)
458 struct Scsi_Host
*shost
= class_to_shost(dev
);
461 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
463 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
464 strncpy(tmpbuf
, buf
, len
);
466 if (sscanf(tmpbuf
, "%d", &status
) != 1)
468 h
= shost_to_hba(shost
);
469 h
->acciopath_status
= !!status
;
470 dev_warn(&h
->pdev
->dev
,
471 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 h
->acciopath_status
? "enabled" : "disabled");
476 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
477 struct device_attribute
*attr
,
478 const char *buf
, size_t count
)
480 int debug_level
, len
;
482 struct Scsi_Host
*shost
= class_to_shost(dev
);
485 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
487 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
488 strncpy(tmpbuf
, buf
, len
);
490 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
494 h
= shost_to_hba(shost
);
495 h
->raid_offload_debug
= debug_level
;
496 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
497 h
->raid_offload_debug
);
501 static ssize_t
host_store_rescan(struct device
*dev
,
502 struct device_attribute
*attr
,
503 const char *buf
, size_t count
)
506 struct Scsi_Host
*shost
= class_to_shost(dev
);
507 h
= shost_to_hba(shost
);
508 hpsa_scan_start(h
->scsi_host
);
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t
*device
)
514 device
->offload_enabled
= 0;
515 device
->offload_to_be_enabled
= 0;
518 static ssize_t
host_show_firmware_revision(struct device
*dev
,
519 struct device_attribute
*attr
, char *buf
)
522 struct Scsi_Host
*shost
= class_to_shost(dev
);
523 unsigned char *fwrev
;
525 h
= shost_to_hba(shost
);
526 if (!h
->hba_inquiry_data
)
528 fwrev
= &h
->hba_inquiry_data
[32];
529 return snprintf(buf
, 20, "%c%c%c%c\n",
530 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
533 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
534 struct device_attribute
*attr
, char *buf
)
536 struct Scsi_Host
*shost
= class_to_shost(dev
);
537 struct ctlr_info
*h
= shost_to_hba(shost
);
539 return snprintf(buf
, 20, "%d\n",
540 atomic_read(&h
->commands_outstanding
));
543 static ssize_t
host_show_transport_mode(struct device
*dev
,
544 struct device_attribute
*attr
, char *buf
)
547 struct Scsi_Host
*shost
= class_to_shost(dev
);
549 h
= shost_to_hba(shost
);
550 return snprintf(buf
, 20, "%s\n",
551 h
->transMethod
& CFGTBL_Trans_Performant
?
552 "performant" : "simple");
555 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
556 struct device_attribute
*attr
, char *buf
)
559 struct Scsi_Host
*shost
= class_to_shost(dev
);
561 h
= shost_to_hba(shost
);
562 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
563 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller
[] = {
568 0x324a103C, /* Smart Array P712m */
569 0x324b103C, /* Smart Array P711m */
570 0x3223103C, /* Smart Array P800 */
571 0x3234103C, /* Smart Array P400 */
572 0x3235103C, /* Smart Array P400i */
573 0x3211103C, /* Smart Array E200i */
574 0x3212103C, /* Smart Array E200 */
575 0x3213103C, /* Smart Array E200i */
576 0x3214103C, /* Smart Array E200i */
577 0x3215103C, /* Smart Array E200i */
578 0x3237103C, /* Smart Array E500 */
579 0x323D103C, /* Smart Array P700m */
580 0x40800E11, /* Smart Array 5i */
581 0x409C0E11, /* Smart Array 6400 */
582 0x409D0E11, /* Smart Array 6400 EM */
583 0x40700E11, /* Smart Array 5300 */
584 0x40820E11, /* Smart Array 532 */
585 0x40830E11, /* Smart Array 5312 */
586 0x409A0E11, /* Smart Array 641 */
587 0x409B0E11, /* Smart Array 642 */
588 0x40910E11, /* Smart Array 6i */
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller
[] = {
593 0x40800E11, /* Smart Array 5i */
594 0x40700E11, /* Smart Array 5300 */
595 0x40820E11, /* Smart Array 532 */
596 0x40830E11, /* Smart Array 5312 */
597 0x409A0E11, /* Smart Array 641 */
598 0x409B0E11, /* Smart Array 642 */
599 0x40910E11, /* Smart Array 6i */
600 /* Exclude 640x boards. These are two pci devices in one slot
601 * which share a battery backed cache module. One controls the
602 * cache, the other accesses the cache through the one that controls
603 * it. If we reset the one controlling the cache, the other will
604 * likely not be happy. Just forbid resetting this conjoined mess.
605 * The 640x isn't really supported by hpsa anyway.
607 0x409C0E11, /* Smart Array 6400 */
608 0x409D0E11, /* Smart Array 6400 EM */
611 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
615 for (i
= 0; i
< nelems
; i
++)
616 if (a
[i
] == board_id
)
621 static int ctlr_is_hard_resettable(u32 board_id
)
623 return !board_id_in_array(unresettable_controller
,
624 ARRAY_SIZE(unresettable_controller
), board_id
);
627 static int ctlr_is_soft_resettable(u32 board_id
)
629 return !board_id_in_array(soft_unresettable_controller
,
630 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
633 static int ctlr_is_resettable(u32 board_id
)
635 return ctlr_is_hard_resettable(board_id
) ||
636 ctlr_is_soft_resettable(board_id
);
639 static ssize_t
host_show_resettable(struct device
*dev
,
640 struct device_attribute
*attr
, char *buf
)
643 struct Scsi_Host
*shost
= class_to_shost(dev
);
645 h
= shost_to_hba(shost
);
646 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
651 return (scsi3addr
[3] & 0xC0) == 0x40;
654 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
657 #define HPSA_RAID_0 0
658 #define HPSA_RAID_4 1
659 #define HPSA_RAID_1 2 /* also used for RAID 10 */
660 #define HPSA_RAID_5 3 /* also used for RAID 50 */
661 #define HPSA_RAID_51 4
662 #define HPSA_RAID_6 5 /* also used for RAID 60 */
663 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
669 return !device
->physical_device
;
672 static ssize_t
raid_level_show(struct device
*dev
,
673 struct device_attribute
*attr
, char *buf
)
676 unsigned char rlevel
;
678 struct scsi_device
*sdev
;
679 struct hpsa_scsi_dev_t
*hdev
;
682 sdev
= to_scsi_device(dev
);
683 h
= sdev_to_hba(sdev
);
684 spin_lock_irqsave(&h
->lock
, flags
);
685 hdev
= sdev
->hostdata
;
687 spin_unlock_irqrestore(&h
->lock
, flags
);
691 /* Is this even a logical drive? */
692 if (!is_logical_device(hdev
)) {
693 spin_unlock_irqrestore(&h
->lock
, flags
);
694 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
698 rlevel
= hdev
->raid_level
;
699 spin_unlock_irqrestore(&h
->lock
, flags
);
700 if (rlevel
> RAID_UNKNOWN
)
701 rlevel
= RAID_UNKNOWN
;
702 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
706 static ssize_t
lunid_show(struct device
*dev
,
707 struct device_attribute
*attr
, char *buf
)
710 struct scsi_device
*sdev
;
711 struct hpsa_scsi_dev_t
*hdev
;
713 unsigned char lunid
[8];
715 sdev
= to_scsi_device(dev
);
716 h
= sdev_to_hba(sdev
);
717 spin_lock_irqsave(&h
->lock
, flags
);
718 hdev
= sdev
->hostdata
;
720 spin_unlock_irqrestore(&h
->lock
, flags
);
723 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
724 spin_unlock_irqrestore(&h
->lock
, flags
);
725 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
728 static ssize_t
unique_id_show(struct device
*dev
,
729 struct device_attribute
*attr
, char *buf
)
732 struct scsi_device
*sdev
;
733 struct hpsa_scsi_dev_t
*hdev
;
735 unsigned char sn
[16];
737 sdev
= to_scsi_device(dev
);
738 h
= sdev_to_hba(sdev
);
739 spin_lock_irqsave(&h
->lock
, flags
);
740 hdev
= sdev
->hostdata
;
742 spin_unlock_irqrestore(&h
->lock
, flags
);
745 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
746 spin_unlock_irqrestore(&h
->lock
, flags
);
747 return snprintf(buf
, 16 * 2 + 2,
748 "%02X%02X%02X%02X%02X%02X%02X%02X"
749 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 sn
[0], sn
[1], sn
[2], sn
[3],
751 sn
[4], sn
[5], sn
[6], sn
[7],
752 sn
[8], sn
[9], sn
[10], sn
[11],
753 sn
[12], sn
[13], sn
[14], sn
[15]);
756 static ssize_t
sas_address_show(struct device
*dev
,
757 struct device_attribute
*attr
, char *buf
)
760 struct scsi_device
*sdev
;
761 struct hpsa_scsi_dev_t
*hdev
;
765 sdev
= to_scsi_device(dev
);
766 h
= sdev_to_hba(sdev
);
767 spin_lock_irqsave(&h
->lock
, flags
);
768 hdev
= sdev
->hostdata
;
769 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
770 spin_unlock_irqrestore(&h
->lock
, flags
);
773 sas_address
= hdev
->sas_address
;
774 spin_unlock_irqrestore(&h
->lock
, flags
);
776 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
779 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
780 struct device_attribute
*attr
, char *buf
)
783 struct scsi_device
*sdev
;
784 struct hpsa_scsi_dev_t
*hdev
;
788 sdev
= to_scsi_device(dev
);
789 h
= sdev_to_hba(sdev
);
790 spin_lock_irqsave(&h
->lock
, flags
);
791 hdev
= sdev
->hostdata
;
793 spin_unlock_irqrestore(&h
->lock
, flags
);
796 offload_enabled
= hdev
->offload_enabled
;
797 spin_unlock_irqrestore(&h
->lock
, flags
);
799 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
800 return snprintf(buf
, 20, "%d\n", offload_enabled
);
802 return snprintf(buf
, 40, "%s\n",
803 "Not applicable for a controller");
807 static ssize_t
path_info_show(struct device
*dev
,
808 struct device_attribute
*attr
, char *buf
)
811 struct scsi_device
*sdev
;
812 struct hpsa_scsi_dev_t
*hdev
;
818 u8 path_map_index
= 0;
820 unsigned char phys_connector
[2];
822 sdev
= to_scsi_device(dev
);
823 h
= sdev_to_hba(sdev
);
824 spin_lock_irqsave(&h
->devlock
, flags
);
825 hdev
= sdev
->hostdata
;
827 spin_unlock_irqrestore(&h
->devlock
, flags
);
832 for (i
= 0; i
< MAX_PATHS
; i
++) {
833 path_map_index
= 1<<i
;
834 if (i
== hdev
->active_path_index
)
836 else if (hdev
->path_map
& path_map_index
)
841 output_len
+= scnprintf(buf
+ output_len
,
842 PAGE_SIZE
- output_len
,
843 "[%d:%d:%d:%d] %20.20s ",
844 h
->scsi_host
->host_no
,
845 hdev
->bus
, hdev
->target
, hdev
->lun
,
846 scsi_device_type(hdev
->devtype
));
848 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
849 output_len
+= scnprintf(buf
+ output_len
,
850 PAGE_SIZE
- output_len
,
856 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
857 sizeof(phys_connector
));
858 if (phys_connector
[0] < '0')
859 phys_connector
[0] = '0';
860 if (phys_connector
[1] < '0')
861 phys_connector
[1] = '0';
862 output_len
+= scnprintf(buf
+ output_len
,
863 PAGE_SIZE
- output_len
,
866 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
867 hdev
->expose_device
) {
868 if (box
== 0 || box
== 0xFF) {
869 output_len
+= scnprintf(buf
+ output_len
,
870 PAGE_SIZE
- output_len
,
874 output_len
+= scnprintf(buf
+ output_len
,
875 PAGE_SIZE
- output_len
,
876 "BOX: %hhu BAY: %hhu %s\n",
879 } else if (box
!= 0 && box
!= 0xFF) {
880 output_len
+= scnprintf(buf
+ output_len
,
881 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
884 output_len
+= scnprintf(buf
+ output_len
,
885 PAGE_SIZE
- output_len
, "%s\n", active
);
888 spin_unlock_irqrestore(&h
->devlock
, flags
);
892 static ssize_t
host_show_ctlr_num(struct device
*dev
,
893 struct device_attribute
*attr
, char *buf
)
896 struct Scsi_Host
*shost
= class_to_shost(dev
);
898 h
= shost_to_hba(shost
);
899 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
902 static ssize_t
host_show_legacy_board(struct device
*dev
,
903 struct device_attribute
*attr
, char *buf
)
906 struct Scsi_Host
*shost
= class_to_shost(dev
);
908 h
= shost_to_hba(shost
);
909 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
912 static DEVICE_ATTR_RO(raid_level
);
913 static DEVICE_ATTR_RO(lunid
);
914 static DEVICE_ATTR_RO(unique_id
);
915 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
916 static DEVICE_ATTR_RO(sas_address
);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
918 host_show_hp_ssd_smart_path_enabled
, NULL
);
919 static DEVICE_ATTR_RO(path_info
);
920 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
921 host_show_hp_ssd_smart_path_status
,
922 host_store_hp_ssd_smart_path_status
);
923 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
924 host_store_raid_offload_debug
);
925 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
926 host_show_firmware_revision
, NULL
);
927 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
928 host_show_commands_outstanding
, NULL
);
929 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
930 host_show_transport_mode
, NULL
);
931 static DEVICE_ATTR(resettable
, S_IRUGO
,
932 host_show_resettable
, NULL
);
933 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
934 host_show_lockup_detected
, NULL
);
935 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
936 host_show_ctlr_num
, NULL
);
937 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
938 host_show_legacy_board
, NULL
);
940 static struct device_attribute
*hpsa_sdev_attrs
[] = {
941 &dev_attr_raid_level
,
944 &dev_attr_hp_ssd_smart_path_enabled
,
946 &dev_attr_sas_address
,
950 static struct device_attribute
*hpsa_shost_attrs
[] = {
952 &dev_attr_firmware_revision
,
953 &dev_attr_commands_outstanding
,
954 &dev_attr_transport_mode
,
955 &dev_attr_resettable
,
956 &dev_attr_hp_ssd_smart_path_status
,
957 &dev_attr_raid_offload_debug
,
958 &dev_attr_lockup_detected
,
960 &dev_attr_legacy_board
,
964 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 HPSA_MAX_CONCURRENT_PASSTHRUS)
967 static struct scsi_host_template hpsa_driver_template
= {
968 .module
= THIS_MODULE
,
971 .queuecommand
= hpsa_scsi_queue_command
,
972 .scan_start
= hpsa_scan_start
,
973 .scan_finished
= hpsa_scan_finished
,
974 .change_queue_depth
= hpsa_change_queue_depth
,
976 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
978 .slave_alloc
= hpsa_slave_alloc
,
979 .slave_configure
= hpsa_slave_configure
,
980 .slave_destroy
= hpsa_slave_destroy
,
982 .compat_ioctl
= hpsa_compat_ioctl
,
984 .sdev_attrs
= hpsa_sdev_attrs
,
985 .shost_attrs
= hpsa_shost_attrs
,
990 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
993 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
995 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
996 return h
->access
.command_completed(h
, q
);
998 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
999 return h
->access
.command_completed(h
, q
);
1001 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
1002 a
= rq
->head
[rq
->current_entry
];
1003 rq
->current_entry
++;
1004 atomic_dec(&h
->commands_outstanding
);
1008 /* Check for wraparound */
1009 if (rq
->current_entry
== h
->max_commands
) {
1010 rq
->current_entry
= 0;
1011 rq
->wraparound
^= 1;
1017 * There are some special bits in the bus address of the
1018 * command that we have to set for the controller to know
1019 * how to process the command:
1021 * Normal performant mode:
1022 * bit 0: 1 means performant mode, 0 means simple mode.
1023 * bits 1-3 = block fetch table entry
1024 * bits 4-6 = command type (== 0)
1027 * bit 0 = "performant mode" bit.
1028 * bits 1-3 = block fetch table entry
1029 * bits 4-6 = command type (== 110)
1030 * (command type is needed because ioaccel1 mode
1031 * commands are submitted through the same register as normal
1032 * mode commands, so this is how the controller knows whether
1033 * the command is normal mode or ioaccel1 mode.)
1036 * bit 0 = "performant mode" bit.
1037 * bits 1-4 = block fetch table entry (note extra bit)
1038 * bits 4-6 = not needed, because ioaccel2 mode has
1039 * a separate special register for submitting commands.
1043 * set_performant_mode: Modify the tag for cciss performant
1044 * set bit 0 for pull model, bits 3-1 for block fetch
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1051 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1052 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1053 if (unlikely(!h
->msix_vectors
))
1055 c
->Header
.ReplyQueue
= reply_queue
;
1059 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1060 struct CommandList
*c
,
1063 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1066 * Tell the controller to post the reply to the queue for this
1067 * processor. This seems to give the best I/O throughput.
1069 cp
->ReplyQueue
= reply_queue
;
1071 * Set the bits in the address sent down to include:
1072 * - performant mode bit (bit 0)
1073 * - pull count (bits 1-3)
1074 * - command type (bits 4-6)
1076 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1077 IOACCEL1_BUSADDR_CMDTYPE
;
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1081 struct CommandList
*c
,
1084 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1085 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1087 /* Tell the controller to post the reply to the queue for this
1088 * processor. This seems to give the best I/O throughput.
1090 cp
->reply_queue
= reply_queue
;
1091 /* Set the bits in the address sent down to include:
1092 * - performant mode bit not used in ioaccel mode 2
1093 * - pull count (bits 0-3)
1094 * - command type isn't needed for ioaccel2
1096 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1099 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1100 struct CommandList
*c
,
1103 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1106 * Tell the controller to post the reply to the queue for this
1107 * processor. This seems to give the best I/O throughput.
1109 cp
->reply_queue
= reply_queue
;
1111 * Set the bits in the address sent down to include:
1112 * - performant mode bit not used in ioaccel mode 2
1113 * - pull count (bits 0-3)
1114 * - command type isn't needed for ioaccel2
1116 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1119 static int is_firmware_flash_cmd(u8
*cdb
)
1121 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1125 * During firmware flash, the heartbeat register may not update as frequently
1126 * as it should. So we dial down lockup detection during firmware flash. and
1127 * dial it back up when firmware flash completes.
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1133 struct CommandList
*c
)
1135 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1137 atomic_inc(&h
->firmware_flash_in_progress
);
1138 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1142 struct CommandList
*c
)
1144 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1145 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1146 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1150 struct CommandList
*c
, int reply_queue
)
1152 dial_down_lockup_detection_during_fw_flash(h
, c
);
1153 atomic_inc(&h
->commands_outstanding
);
1155 atomic_inc(&c
->device
->commands_outstanding
);
1157 reply_queue
= h
->reply_map
[raw_smp_processor_id()];
1158 switch (c
->cmd_type
) {
1160 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1161 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1164 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1165 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1168 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1169 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1172 set_performant_mode(h
, c
, reply_queue
);
1173 h
->access
.submit_command(h
, c
);
1177 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1179 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1182 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1184 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1187 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1189 if (!h
->hba_inquiry_data
)
1191 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1196 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1197 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1199 /* finds an unused bus, target, lun for a new physical device
1200 * assumes h->devlock is held
1203 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1205 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1207 for (i
= 0; i
< h
->ndevices
; i
++) {
1208 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1209 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1212 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1213 if (i
< HPSA_MAX_DEVICES
) {
1222 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1223 struct hpsa_scsi_dev_t
*dev
, char *description
)
1225 #define LABEL_SIZE 25
1226 char label
[LABEL_SIZE
];
1228 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1231 switch (dev
->devtype
) {
1233 snprintf(label
, LABEL_SIZE
, "controller");
1235 case TYPE_ENCLOSURE
:
1236 snprintf(label
, LABEL_SIZE
, "enclosure");
1241 snprintf(label
, LABEL_SIZE
, "external");
1242 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1243 snprintf(label
, LABEL_SIZE
, "%s",
1244 raid_label
[PHYSICAL_DRIVE
]);
1246 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1247 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1248 raid_label
[dev
->raid_level
]);
1251 snprintf(label
, LABEL_SIZE
, "rom");
1254 snprintf(label
, LABEL_SIZE
, "tape");
1256 case TYPE_MEDIUM_CHANGER
:
1257 snprintf(label
, LABEL_SIZE
, "changer");
1260 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1264 dev_printk(level
, &h
->pdev
->dev
,
1265 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1268 scsi_device_type(dev
->devtype
),
1272 dev
->offload_config
? '+' : '-',
1273 dev
->offload_to_be_enabled
? '+' : '-',
1274 dev
->expose_device
);
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1279 struct hpsa_scsi_dev_t
*device
,
1280 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1282 /* assumes h->devlock is held */
1283 int n
= h
->ndevices
;
1285 unsigned char addr1
[8], addr2
[8];
1286 struct hpsa_scsi_dev_t
*sd
;
1288 if (n
>= HPSA_MAX_DEVICES
) {
1289 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1294 /* physical devices do not have lun or target assigned until now. */
1295 if (device
->lun
!= -1)
1296 /* Logical device, lun is already assigned. */
1299 /* If this device a non-zero lun of a multi-lun device
1300 * byte 4 of the 8-byte LUN addr will contain the logical
1301 * unit no, zero otherwise.
1303 if (device
->scsi3addr
[4] == 0) {
1304 /* This is not a non-zero lun of a multi-lun device */
1305 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1306 device
->bus
, &device
->target
, &device
->lun
) != 0)
1311 /* This is a non-zero lun of a multi-lun device.
1312 * Search through our list and find the device which
1313 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 * Assign the same bus and target for this new LUN.
1315 * Use the logical unit number from the firmware.
1317 memcpy(addr1
, device
->scsi3addr
, 8);
1320 for (i
= 0; i
< n
; i
++) {
1322 memcpy(addr2
, sd
->scsi3addr
, 8);
1325 /* differ only in byte 4 and 5? */
1326 if (memcmp(addr1
, addr2
, 8) == 0) {
1327 device
->bus
= sd
->bus
;
1328 device
->target
= sd
->target
;
1329 device
->lun
= device
->scsi3addr
[4];
1333 if (device
->lun
== -1) {
1334 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1335 " suspect firmware bug or unsupported hardware "
1336 "configuration.\n");
1344 added
[*nadded
] = device
;
1346 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1347 device
->expose_device
? "added" : "masked");
1352 * Called during a scan operation.
1354 * Update an entry in h->dev[] array.
1356 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1357 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1359 /* assumes h->devlock is held */
1360 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1362 /* Raid level changed. */
1363 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1366 * ioacccel_handle may have changed for a dual domain disk
1368 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1370 /* Raid offload parameters changed. Careful about the ordering. */
1371 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1373 * if drive is newly offload_enabled, we want to copy the
1374 * raid map data first. If previously offload_enabled and
1375 * offload_config were set, raid map data had better be
1376 * the same as it was before. If raid map data has changed
1377 * then it had better be the case that
1378 * h->dev[entry]->offload_enabled is currently 0.
1380 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1381 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1383 if (new_entry
->offload_to_be_enabled
) {
1384 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1385 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1387 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1388 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1389 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1390 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1393 * We can turn off ioaccel offload now, but need to delay turning
1394 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395 * can't do that until all the devices are updated.
1397 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1400 * turn ioaccel off immediately if told to do so.
1402 if (!new_entry
->offload_to_be_enabled
)
1403 h
->dev
[entry
]->offload_enabled
= 0;
1405 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1410 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1411 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1412 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1414 /* assumes h->devlock is held */
1415 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1416 removed
[*nremoved
] = h
->dev
[entry
];
1420 * New physical devices won't have target/lun assigned yet
1421 * so we need to preserve the values in the slot we are replacing.
1423 if (new_entry
->target
== -1) {
1424 new_entry
->target
= h
->dev
[entry
]->target
;
1425 new_entry
->lun
= h
->dev
[entry
]->lun
;
1428 h
->dev
[entry
] = new_entry
;
1429 added
[*nadded
] = new_entry
;
1432 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1437 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1439 /* assumes h->devlock is held */
1441 struct hpsa_scsi_dev_t
*sd
;
1443 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1446 removed
[*nremoved
] = h
->dev
[entry
];
1449 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1450 h
->dev
[i
] = h
->dev
[i
+1];
1452 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456 (a)[7] == (b)[7] && \
1457 (a)[6] == (b)[6] && \
1458 (a)[5] == (b)[5] && \
1459 (a)[4] == (b)[4] && \
1460 (a)[3] == (b)[3] && \
1461 (a)[2] == (b)[2] && \
1462 (a)[1] == (b)[1] && \
1465 static void fixup_botched_add(struct ctlr_info
*h
,
1466 struct hpsa_scsi_dev_t
*added
)
1468 /* called when scsi_add_device fails in order to re-adjust
1469 * h->dev[] to match the mid layer's view.
1471 unsigned long flags
;
1474 spin_lock_irqsave(&h
->lock
, flags
);
1475 for (i
= 0; i
< h
->ndevices
; i
++) {
1476 if (h
->dev
[i
] == added
) {
1477 for (j
= i
; j
< h
->ndevices
-1; j
++)
1478 h
->dev
[j
] = h
->dev
[j
+1];
1483 spin_unlock_irqrestore(&h
->lock
, flags
);
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1488 struct hpsa_scsi_dev_t
*dev2
)
1490 /* we compare everything except lun and target as these
1491 * are not yet assigned. Compare parts likely
1494 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1495 sizeof(dev1
->scsi3addr
)) != 0)
1497 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1498 sizeof(dev1
->device_id
)) != 0)
1500 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1502 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1504 if (dev1
->devtype
!= dev2
->devtype
)
1506 if (dev1
->bus
!= dev2
->bus
)
1511 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1512 struct hpsa_scsi_dev_t
*dev2
)
1514 /* Device attributes that can change, but don't mean
1515 * that the device is a different device, nor that the OS
1516 * needs to be told anything about the change.
1518 if (dev1
->raid_level
!= dev2
->raid_level
)
1520 if (dev1
->offload_config
!= dev2
->offload_config
)
1522 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1524 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1525 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1528 * This can happen for dual domain devices. An active
1529 * path change causes the ioaccel handle to change
1531 * for example note the handle differences between p0 and p1
1532 * Device WWN ,WWN hash,Handle
1533 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1536 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1541 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1542 * and return needle location in *index. If scsi3addr matches, but not
1543 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544 * location in *index.
1545 * In the case of a minor device attribute change, such as RAID level, just
1546 * return DEVICE_UPDATED, along with the updated device's location in index.
1547 * If needle not found, return DEVICE_NOT_FOUND.
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1550 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1559 return DEVICE_NOT_FOUND
;
1561 for (i
= 0; i
< haystack_size
; i
++) {
1562 if (haystack
[i
] == NULL
) /* previously removed. */
1564 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1566 if (device_is_the_same(needle
, haystack
[i
])) {
1567 if (device_updated(needle
, haystack
[i
]))
1568 return DEVICE_UPDATED
;
1571 /* Keep offline devices offline */
1572 if (needle
->volume_offline
)
1573 return DEVICE_NOT_FOUND
;
1574 return DEVICE_CHANGED
;
1579 return DEVICE_NOT_FOUND
;
1582 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1583 unsigned char scsi3addr
[])
1585 struct offline_device_entry
*device
;
1586 unsigned long flags
;
1588 /* Check to see if device is already on the list */
1589 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1590 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1591 if (memcmp(device
->scsi3addr
, scsi3addr
,
1592 sizeof(device
->scsi3addr
)) == 0) {
1593 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1597 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1599 /* Device is not on the list, add it. */
1600 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1604 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1605 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1606 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1607 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1612 struct hpsa_scsi_dev_t
*sd
)
1614 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1615 dev_info(&h
->pdev
->dev
,
1616 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617 h
->scsi_host
->host_no
,
1618 sd
->bus
, sd
->target
, sd
->lun
);
1619 switch (sd
->volume_offline
) {
1622 case HPSA_LV_UNDERGOING_ERASE
:
1623 dev_info(&h
->pdev
->dev
,
1624 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625 h
->scsi_host
->host_no
,
1626 sd
->bus
, sd
->target
, sd
->lun
);
1628 case HPSA_LV_NOT_AVAILABLE
:
1629 dev_info(&h
->pdev
->dev
,
1630 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631 h
->scsi_host
->host_no
,
1632 sd
->bus
, sd
->target
, sd
->lun
);
1634 case HPSA_LV_UNDERGOING_RPI
:
1635 dev_info(&h
->pdev
->dev
,
1636 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637 h
->scsi_host
->host_no
,
1638 sd
->bus
, sd
->target
, sd
->lun
);
1640 case HPSA_LV_PENDING_RPI
:
1641 dev_info(&h
->pdev
->dev
,
1642 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643 h
->scsi_host
->host_no
,
1644 sd
->bus
, sd
->target
, sd
->lun
);
1646 case HPSA_LV_ENCRYPTED_NO_KEY
:
1647 dev_info(&h
->pdev
->dev
,
1648 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649 h
->scsi_host
->host_no
,
1650 sd
->bus
, sd
->target
, sd
->lun
);
1652 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1653 dev_info(&h
->pdev
->dev
,
1654 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655 h
->scsi_host
->host_no
,
1656 sd
->bus
, sd
->target
, sd
->lun
);
1658 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1659 dev_info(&h
->pdev
->dev
,
1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661 h
->scsi_host
->host_no
,
1662 sd
->bus
, sd
->target
, sd
->lun
);
1664 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1665 dev_info(&h
->pdev
->dev
,
1666 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667 h
->scsi_host
->host_no
,
1668 sd
->bus
, sd
->target
, sd
->lun
);
1670 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1671 dev_info(&h
->pdev
->dev
,
1672 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673 h
->scsi_host
->host_no
,
1674 sd
->bus
, sd
->target
, sd
->lun
);
1676 case HPSA_LV_PENDING_ENCRYPTION
:
1677 dev_info(&h
->pdev
->dev
,
1678 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679 h
->scsi_host
->host_no
,
1680 sd
->bus
, sd
->target
, sd
->lun
);
1682 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1683 dev_info(&h
->pdev
->dev
,
1684 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685 h
->scsi_host
->host_no
,
1686 sd
->bus
, sd
->target
, sd
->lun
);
1692 * Figure the list of physical drive pointers for a logical drive with
1693 * raid offload configured.
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1696 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1697 struct hpsa_scsi_dev_t
*logical_drive
)
1699 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1700 struct raid_map_disk_data
*dd
= &map
->data
[0];
1702 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1703 le16_to_cpu(map
->metadata_disks_per_row
);
1704 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1705 le16_to_cpu(map
->layout_map_count
) *
1706 total_disks_per_row
;
1707 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1708 total_disks_per_row
;
1711 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1712 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1714 logical_drive
->nphysical_disks
= nraid_map_entries
;
1717 for (i
= 0; i
< nraid_map_entries
; i
++) {
1718 logical_drive
->phys_disk
[i
] = NULL
;
1719 if (!logical_drive
->offload_config
)
1721 for (j
= 0; j
< ndevices
; j
++) {
1724 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1725 dev
[j
]->devtype
!= TYPE_ZBC
)
1727 if (is_logical_device(dev
[j
]))
1729 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1732 logical_drive
->phys_disk
[i
] = dev
[j
];
1734 qdepth
= min(h
->nr_cmds
, qdepth
+
1735 logical_drive
->phys_disk
[i
]->queue_depth
);
1740 * This can happen if a physical drive is removed and
1741 * the logical drive is degraded. In that case, the RAID
1742 * map data will refer to a physical disk which isn't actually
1743 * present. And in that case offload_enabled should already
1744 * be 0, but we'll turn it off here just in case
1746 if (!logical_drive
->phys_disk
[i
]) {
1747 dev_warn(&h
->pdev
->dev
,
1748 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1750 h
->scsi_host
->host_no
, logical_drive
->bus
,
1751 logical_drive
->target
, logical_drive
->lun
);
1752 hpsa_turn_off_ioaccel_for_device(logical_drive
);
1753 logical_drive
->queue_depth
= 8;
1756 if (nraid_map_entries
)
1758 * This is correct for reads, too high for full stripe writes,
1759 * way too high for partial stripe writes
1761 logical_drive
->queue_depth
= qdepth
;
1763 if (logical_drive
->external
)
1764 logical_drive
->queue_depth
= EXTERNAL_QD
;
1766 logical_drive
->queue_depth
= h
->nr_cmds
;
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1771 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1775 for (i
= 0; i
< ndevices
; i
++) {
1778 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1779 dev
[i
]->devtype
!= TYPE_ZBC
)
1781 if (!is_logical_device(dev
[i
]))
1785 * If offload is currently enabled, the RAID map and
1786 * phys_disk[] assignment *better* not be changing
1787 * because we would be changing ioaccel phsy_disk[] pointers
1788 * on a ioaccel volume processing I/O requests.
1790 * If an ioaccel volume status changed, initially because it was
1791 * re-configured and thus underwent a transformation, or
1792 * a drive failed, we would have received a state change
1793 * request and ioaccel should have been turned off. When the
1794 * transformation completes, we get another state change
1795 * request to turn ioaccel back on. In this case, we need
1796 * to update the ioaccel information.
1798 * Thus: If it is not currently enabled, but will be after
1799 * the scan completes, make sure the ioaccel pointers
1803 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1804 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1808 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1815 if (is_logical_device(device
)) /* RAID */
1816 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1817 device
->target
, device
->lun
);
1819 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1825 struct hpsa_scsi_dev_t
*dev
)
1830 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1831 struct CommandList
*c
= h
->cmd_pool
+ i
;
1832 int refcount
= atomic_inc_return(&c
->refcount
);
1834 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1836 unsigned long flags
;
1838 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1839 if (!hpsa_is_cmd_idle(c
))
1841 spin_unlock_irqrestore(&h
->lock
, flags
);
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1852 struct hpsa_scsi_dev_t
*device
)
1856 int num_wait
= NUM_WAIT
;
1858 if (device
->external
)
1859 num_wait
= HPSA_EH_PTRAID_TIMEOUT
;
1862 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1865 if (++waits
> num_wait
)
1870 if (waits
> num_wait
) {
1871 dev_warn(&h
->pdev
->dev
,
1872 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1874 h
->scsi_host
->host_no
,
1875 device
->bus
, device
->target
, device
->lun
, cmds
);
1879 static void hpsa_remove_device(struct ctlr_info
*h
,
1880 struct hpsa_scsi_dev_t
*device
)
1882 struct scsi_device
*sdev
= NULL
;
1888 * Allow for commands to drain
1890 device
->removed
= 1;
1891 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1893 if (is_logical_device(device
)) { /* RAID */
1894 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1895 device
->target
, device
->lun
);
1897 scsi_remove_device(sdev
);
1898 scsi_device_put(sdev
);
1901 * We don't expect to get here. Future commands
1902 * to this device will get a selection timeout as
1903 * if the device were gone.
1905 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1906 "didn't find device for removal.");
1910 hpsa_remove_sas_device(device
);
1914 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1915 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1917 /* sd contains scsi3 addresses and devtypes, and inquiry
1918 * data. This function takes what's in sd to be the current
1919 * reality and updates h->dev[] to reflect that reality.
1921 int i
, entry
, device_change
, changes
= 0;
1922 struct hpsa_scsi_dev_t
*csd
;
1923 unsigned long flags
;
1924 struct hpsa_scsi_dev_t
**added
, **removed
;
1925 int nadded
, nremoved
;
1928 * A reset can cause a device status to change
1929 * re-schedule the scan to see what happened.
1931 spin_lock_irqsave(&h
->reset_lock
, flags
);
1932 if (h
->reset_in_progress
) {
1933 h
->drv_req_rescan
= 1;
1934 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1937 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1939 added
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*added
), GFP_KERNEL
);
1940 removed
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*removed
), GFP_KERNEL
);
1942 if (!added
|| !removed
) {
1943 dev_warn(&h
->pdev
->dev
, "out of memory in "
1944 "adjust_hpsa_scsi_table\n");
1948 spin_lock_irqsave(&h
->devlock
, flags
);
1950 /* find any devices in h->dev[] that are not in
1951 * sd[] and remove them from h->dev[], and for any
1952 * devices which have changed, remove the old device
1953 * info and add the new device info.
1954 * If minor device attributes change, just update
1955 * the existing device structure.
1960 while (i
< h
->ndevices
) {
1962 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1963 if (device_change
== DEVICE_NOT_FOUND
) {
1965 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1966 continue; /* remove ^^^, hence i not incremented */
1967 } else if (device_change
== DEVICE_CHANGED
) {
1969 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1970 added
, &nadded
, removed
, &nremoved
);
1971 /* Set it to NULL to prevent it from being freed
1972 * at the bottom of hpsa_update_scsi_devices()
1975 } else if (device_change
== DEVICE_UPDATED
) {
1976 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1981 /* Now, make sure every device listed in sd[] is also
1982 * listed in h->dev[], adding them if they aren't found
1985 for (i
= 0; i
< nsds
; i
++) {
1986 if (!sd
[i
]) /* if already added above. */
1989 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990 * as the SCSI mid-layer does not handle such devices well.
1991 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992 * at 160Hz, and prevents the system from coming up.
1994 if (sd
[i
]->volume_offline
) {
1995 hpsa_show_volume_status(h
, sd
[i
]);
1996 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
2000 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
2001 h
->ndevices
, &entry
);
2002 if (device_change
== DEVICE_NOT_FOUND
) {
2004 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
2006 sd
[i
] = NULL
; /* prevent from being freed later. */
2007 } else if (device_change
== DEVICE_CHANGED
) {
2008 /* should never happen... */
2010 dev_warn(&h
->pdev
->dev
,
2011 "device unexpectedly changed.\n");
2012 /* but if it does happen, we just ignore that device */
2015 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2018 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019 * any logical drives that need it enabled.
2021 * The raid map should be current by now.
2023 * We are updating the device list used for I/O requests.
2025 for (i
= 0; i
< h
->ndevices
; i
++) {
2026 if (h
->dev
[i
] == NULL
)
2028 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2031 spin_unlock_irqrestore(&h
->devlock
, flags
);
2033 /* Monitor devices which are in one of several NOT READY states to be
2034 * brought online later. This must be done without holding h->devlock,
2035 * so don't touch h->dev[]
2037 for (i
= 0; i
< nsds
; i
++) {
2038 if (!sd
[i
]) /* if already added above. */
2040 if (sd
[i
]->volume_offline
)
2041 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2044 /* Don't notify scsi mid layer of any changes the first time through
2045 * (or if there are no changes) scsi_scan_host will do it later the
2046 * first time through.
2051 /* Notify scsi mid layer of any removed devices */
2052 for (i
= 0; i
< nremoved
; i
++) {
2053 if (removed
[i
] == NULL
)
2055 if (removed
[i
]->expose_device
)
2056 hpsa_remove_device(h
, removed
[i
]);
2061 /* Notify scsi mid layer of any added devices */
2062 for (i
= 0; i
< nadded
; i
++) {
2065 if (added
[i
] == NULL
)
2067 if (!(added
[i
]->expose_device
))
2069 rc
= hpsa_add_device(h
, added
[i
]);
2072 dev_warn(&h
->pdev
->dev
,
2073 "addition failed %d, device not added.", rc
);
2074 /* now we have to remove it from h->dev,
2075 * since it didn't get added to scsi mid layer
2077 fixup_botched_add(h
, added
[i
]);
2078 h
->drv_req_rescan
= 1;
2087 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088 * Assume's h->devlock is held.
2090 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2091 int bus
, int target
, int lun
)
2094 struct hpsa_scsi_dev_t
*sd
;
2096 for (i
= 0; i
< h
->ndevices
; i
++) {
2098 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2104 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2106 struct hpsa_scsi_dev_t
*sd
= NULL
;
2107 unsigned long flags
;
2108 struct ctlr_info
*h
;
2110 h
= sdev_to_hba(sdev
);
2111 spin_lock_irqsave(&h
->devlock
, flags
);
2112 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2113 struct scsi_target
*starget
;
2114 struct sas_rphy
*rphy
;
2116 starget
= scsi_target(sdev
);
2117 rphy
= target_to_rphy(starget
);
2118 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2120 sd
->target
= sdev_id(sdev
);
2121 sd
->lun
= sdev
->lun
;
2125 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2126 sdev_id(sdev
), sdev
->lun
);
2128 if (sd
&& sd
->expose_device
) {
2129 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2130 sdev
->hostdata
= sd
;
2132 sdev
->hostdata
= NULL
;
2133 spin_unlock_irqrestore(&h
->devlock
, flags
);
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2141 struct hpsa_scsi_dev_t
*sd
;
2144 sd
= sdev
->hostdata
;
2145 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2148 sd
->was_removed
= 0;
2149 queue_depth
= sd
->queue_depth
!= 0 ?
2150 sd
->queue_depth
: sdev
->host
->can_queue
;
2152 queue_depth
= EXTERNAL_QD
;
2153 sdev
->eh_timeout
= HPSA_EH_PTRAID_TIMEOUT
;
2154 blk_queue_rq_timeout(sdev
->request_queue
,
2155 HPSA_EH_PTRAID_TIMEOUT
);
2157 if (is_hba_lunid(sd
->scsi3addr
)) {
2158 sdev
->eh_timeout
= CTLR_TIMEOUT
;
2159 blk_queue_rq_timeout(sdev
->request_queue
, CTLR_TIMEOUT
);
2162 queue_depth
= sdev
->host
->can_queue
;
2165 scsi_change_queue_depth(sdev
, queue_depth
);
2170 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2172 struct hpsa_scsi_dev_t
*hdev
= NULL
;
2174 hdev
= sdev
->hostdata
;
2177 hdev
->was_removed
= 1;
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2184 if (!h
->ioaccel2_cmd_sg_list
)
2186 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2187 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2188 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2190 kfree(h
->ioaccel2_cmd_sg_list
);
2191 h
->ioaccel2_cmd_sg_list
= NULL
;
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2198 if (h
->chainsize
<= 0)
2201 h
->ioaccel2_cmd_sg_list
=
2202 kcalloc(h
->nr_cmds
, sizeof(*h
->ioaccel2_cmd_sg_list
),
2204 if (!h
->ioaccel2_cmd_sg_list
)
2206 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2207 h
->ioaccel2_cmd_sg_list
[i
] =
2208 kmalloc_array(h
->maxsgentries
,
2209 sizeof(*h
->ioaccel2_cmd_sg_list
[i
]),
2211 if (!h
->ioaccel2_cmd_sg_list
[i
])
2217 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2225 if (!h
->cmd_sg_list
)
2227 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2228 kfree(h
->cmd_sg_list
[i
]);
2229 h
->cmd_sg_list
[i
] = NULL
;
2231 kfree(h
->cmd_sg_list
);
2232 h
->cmd_sg_list
= NULL
;
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2239 if (h
->chainsize
<= 0)
2242 h
->cmd_sg_list
= kcalloc(h
->nr_cmds
, sizeof(*h
->cmd_sg_list
),
2244 if (!h
->cmd_sg_list
)
2247 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2248 h
->cmd_sg_list
[i
] = kmalloc_array(h
->chainsize
,
2249 sizeof(*h
->cmd_sg_list
[i
]),
2251 if (!h
->cmd_sg_list
[i
])
2258 hpsa_free_sg_chain_blocks(h
);
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2263 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2265 struct ioaccel2_sg_element
*chain_block
;
2269 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2270 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2271 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_size
,
2273 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2274 /* prevent subsequent unmapping */
2275 cp
->sg
->address
= 0;
2278 cp
->sg
->address
= cpu_to_le64(temp64
);
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2283 struct io_accel2_cmd
*cp
)
2285 struct ioaccel2_sg_element
*chain_sg
;
2290 temp64
= le64_to_cpu(chain_sg
->address
);
2291 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2292 dma_unmap_single(&h
->pdev
->dev
, temp64
, chain_size
, DMA_TO_DEVICE
);
2295 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2296 struct CommandList
*c
)
2298 struct SGDescriptor
*chain_sg
, *chain_block
;
2302 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2303 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2304 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2305 chain_len
= sizeof(*chain_sg
) *
2306 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2307 chain_sg
->Len
= cpu_to_le32(chain_len
);
2308 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_len
,
2310 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2311 /* prevent subsequent unmapping */
2312 chain_sg
->Addr
= cpu_to_le64(0);
2315 chain_sg
->Addr
= cpu_to_le64(temp64
);
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2320 struct CommandList
*c
)
2322 struct SGDescriptor
*chain_sg
;
2324 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2327 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2328 dma_unmap_single(&h
->pdev
->dev
, le64_to_cpu(chain_sg
->Addr
),
2329 le32_to_cpu(chain_sg
->Len
), DMA_TO_DEVICE
);
2333 /* Decode the various types of errors on ioaccel2 path.
2334 * Return 1 for any error that should generate a RAID path retry.
2335 * Return 0 for errors that don't require a RAID path retry.
2337 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2338 struct CommandList
*c
,
2339 struct scsi_cmnd
*cmd
,
2340 struct io_accel2_cmd
*c2
,
2341 struct hpsa_scsi_dev_t
*dev
)
2345 u32 ioaccel2_resid
= 0;
2347 switch (c2
->error_data
.serv_response
) {
2348 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2349 switch (c2
->error_data
.status
) {
2350 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2354 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2355 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2356 if (c2
->error_data
.data_present
!=
2357 IOACCEL2_SENSE_DATA_PRESENT
) {
2358 memset(cmd
->sense_buffer
, 0,
2359 SCSI_SENSE_BUFFERSIZE
);
2362 /* copy the sense data */
2363 data_len
= c2
->error_data
.sense_data_len
;
2364 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2365 data_len
= SCSI_SENSE_BUFFERSIZE
;
2366 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2368 sizeof(c2
->error_data
.sense_data_buff
);
2369 memcpy(cmd
->sense_buffer
,
2370 c2
->error_data
.sense_data_buff
, data_len
);
2373 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2376 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2379 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2382 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2390 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2391 switch (c2
->error_data
.status
) {
2392 case IOACCEL2_STATUS_SR_IO_ERROR
:
2393 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2394 case IOACCEL2_STATUS_SR_OVERRUN
:
2397 case IOACCEL2_STATUS_SR_UNDERRUN
:
2398 cmd
->result
= (DID_OK
<< 16); /* host byte */
2399 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2400 ioaccel2_resid
= get_unaligned_le32(
2401 &c2
->error_data
.resid_cnt
[0]);
2402 scsi_set_resid(cmd
, ioaccel2_resid
);
2404 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2405 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2406 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2408 * Did an HBA disk disappear? We will eventually
2409 * get a state change event from the controller but
2410 * in the meantime, we need to tell the OS that the
2411 * HBA disk is no longer there and stop I/O
2412 * from going down. This allows the potential re-insert
2413 * of the disk to get the same device node.
2415 if (dev
->physical_device
&& dev
->expose_device
) {
2416 cmd
->result
= DID_NO_CONNECT
<< 16;
2418 h
->drv_req_rescan
= 1;
2419 dev_warn(&h
->pdev
->dev
,
2420 "%s: device is gone!\n", __func__
);
2423 * Retry by sending down the RAID path.
2424 * We will get an event from ctlr to
2425 * trigger rescan regardless.
2433 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2435 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2437 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2440 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2450 return retry
; /* retry on raid path? */
2453 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2454 struct CommandList
*c
)
2456 struct hpsa_scsi_dev_t
*dev
= c
->device
;
2459 * Reset c->scsi_cmd here so that the reset handler will know
2460 * this command has completed. Then, check to see if the handler is
2461 * waiting for this command, and, if so, wake it.
2463 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2464 mb(); /* Declare command idle before checking for pending events. */
2466 atomic_dec(&dev
->commands_outstanding
);
2467 if (dev
->in_reset
&&
2468 atomic_read(&dev
->commands_outstanding
) <= 0)
2469 wake_up_all(&h
->event_sync_wait_queue
);
2473 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2474 struct CommandList
*c
)
2476 hpsa_cmd_resolve_events(h
, c
);
2477 cmd_tagged_free(h
, c
);
2480 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2481 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2483 hpsa_cmd_resolve_and_free(h
, c
);
2484 if (cmd
&& cmd
->scsi_done
)
2485 cmd
->scsi_done(cmd
);
2488 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2490 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2491 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2494 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2495 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2496 struct hpsa_scsi_dev_t
*dev
)
2498 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2500 /* check for good status */
2501 if (likely(c2
->error_data
.serv_response
== 0 &&
2502 c2
->error_data
.status
== 0)) {
2504 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2508 * Any RAID offload error results in retry which will use
2509 * the normal I/O path so the controller can handle whatever is
2512 if (is_logical_device(dev
) &&
2513 c2
->error_data
.serv_response
==
2514 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2515 if (c2
->error_data
.status
==
2516 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2517 hpsa_turn_off_ioaccel_for_device(dev
);
2520 if (dev
->in_reset
) {
2521 cmd
->result
= DID_RESET
<< 16;
2522 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2525 return hpsa_retry_cmd(h
, c
);
2528 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2529 return hpsa_retry_cmd(h
, c
);
2531 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2534 /* Returns 0 on success, < 0 otherwise. */
2535 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2536 struct CommandList
*cp
)
2538 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2540 switch (tmf_status
) {
2541 case CISS_TMF_COMPLETE
:
2543 * CISS_TMF_COMPLETE never happens, instead,
2544 * ei->CommandStatus == 0 for this case.
2546 case CISS_TMF_SUCCESS
:
2548 case CISS_TMF_INVALID_FRAME
:
2549 case CISS_TMF_NOT_SUPPORTED
:
2550 case CISS_TMF_FAILED
:
2551 case CISS_TMF_WRONG_LUN
:
2552 case CISS_TMF_OVERLAPPED_TAG
:
2555 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2562 static void complete_scsi_command(struct CommandList
*cp
)
2564 struct scsi_cmnd
*cmd
;
2565 struct ctlr_info
*h
;
2566 struct ErrorInfo
*ei
;
2567 struct hpsa_scsi_dev_t
*dev
;
2568 struct io_accel2_cmd
*c2
;
2571 u8 asc
; /* additional sense code */
2572 u8 ascq
; /* additional sense code qualifier */
2573 unsigned long sense_data_size
;
2580 cmd
->result
= DID_NO_CONNECT
<< 16;
2581 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2584 dev
= cmd
->device
->hostdata
;
2586 cmd
->result
= DID_NO_CONNECT
<< 16;
2587 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2589 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2591 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2592 if ((cp
->cmd_type
== CMD_SCSI
) &&
2593 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2594 hpsa_unmap_sg_chain_block(h
, cp
);
2596 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2597 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2598 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2600 cmd
->result
= (DID_OK
<< 16); /* host byte */
2601 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2603 /* SCSI command has already been cleaned up in SML */
2604 if (dev
->was_removed
) {
2605 hpsa_cmd_resolve_and_free(h
, cp
);
2609 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2610 if (dev
->physical_device
&& dev
->expose_device
&&
2612 cmd
->result
= DID_NO_CONNECT
<< 16;
2613 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2615 if (likely(cp
->phys_disk
!= NULL
))
2616 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2620 * We check for lockup status here as it may be set for
2621 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622 * fail_all_oustanding_cmds()
2624 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2625 /* DID_NO_CONNECT will prevent a retry */
2626 cmd
->result
= DID_NO_CONNECT
<< 16;
2627 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2630 if (cp
->cmd_type
== CMD_IOACCEL2
)
2631 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2633 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2634 if (ei
->CommandStatus
== 0)
2635 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2637 /* For I/O accelerator commands, copy over some fields to the normal
2638 * CISS header used below for error handling.
2640 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2641 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2642 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2643 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2644 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2645 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2646 cp
->Header
.tag
= c
->tag
;
2647 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2648 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2650 /* Any RAID offload error results in retry which will use
2651 * the normal I/O path so the controller can handle whatever's
2654 if (is_logical_device(dev
)) {
2655 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2656 dev
->offload_enabled
= 0;
2657 return hpsa_retry_cmd(h
, cp
);
2661 /* an error has occurred */
2662 switch (ei
->CommandStatus
) {
2664 case CMD_TARGET_STATUS
:
2665 cmd
->result
|= ei
->ScsiStatus
;
2666 /* copy the sense data */
2667 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2668 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2670 sense_data_size
= sizeof(ei
->SenseInfo
);
2671 if (ei
->SenseLen
< sense_data_size
)
2672 sense_data_size
= ei
->SenseLen
;
2673 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2675 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2676 &sense_key
, &asc
, &ascq
);
2677 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2678 switch (sense_key
) {
2679 case ABORTED_COMMAND
:
2680 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2682 case UNIT_ATTENTION
:
2683 if (asc
== 0x3F && ascq
== 0x0E)
2684 h
->drv_req_rescan
= 1;
2686 case ILLEGAL_REQUEST
:
2687 if (asc
== 0x25 && ascq
== 0x00) {
2689 cmd
->result
= DID_NO_CONNECT
<< 16;
2695 /* Problem was not a check condition
2696 * Pass it up to the upper layers...
2698 if (ei
->ScsiStatus
) {
2699 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2700 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701 "Returning result: 0x%x\n",
2703 sense_key
, asc
, ascq
,
2705 } else { /* scsi status is zero??? How??? */
2706 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2707 "Returning no connection.\n", cp
),
2709 /* Ordinarily, this case should never happen,
2710 * but there is a bug in some released firmware
2711 * revisions that allows it to happen if, for
2712 * example, a 4100 backplane loses power and
2713 * the tape drive is in it. We assume that
2714 * it's a fatal error of some kind because we
2715 * can't show that it wasn't. We will make it
2716 * look like selection timeout since that is
2717 * the most common reason for this to occur,
2718 * and it's severe enough.
2721 cmd
->result
= DID_NO_CONNECT
<< 16;
2725 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2727 case CMD_DATA_OVERRUN
:
2728 dev_warn(&h
->pdev
->dev
,
2729 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2732 /* print_bytes(cp, sizeof(*cp), 1, 0);
2734 /* We get CMD_INVALID if you address a non-existent device
2735 * instead of a selection timeout (no response). You will
2736 * see this if you yank out a drive, then try to access it.
2737 * This is kind of a shame because it means that any other
2738 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739 * missing target. */
2740 cmd
->result
= DID_NO_CONNECT
<< 16;
2743 case CMD_PROTOCOL_ERR
:
2744 cmd
->result
= DID_ERROR
<< 16;
2745 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2748 case CMD_HARDWARE_ERR
:
2749 cmd
->result
= DID_ERROR
<< 16;
2750 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2753 case CMD_CONNECTION_LOST
:
2754 cmd
->result
= DID_ERROR
<< 16;
2755 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2759 cmd
->result
= DID_ABORT
<< 16;
2761 case CMD_ABORT_FAILED
:
2762 cmd
->result
= DID_ERROR
<< 16;
2763 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2766 case CMD_UNSOLICITED_ABORT
:
2767 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2768 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2772 cmd
->result
= DID_TIME_OUT
<< 16;
2773 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2776 case CMD_UNABORTABLE
:
2777 cmd
->result
= DID_ERROR
<< 16;
2778 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2780 case CMD_TMF_STATUS
:
2781 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2782 cmd
->result
= DID_ERROR
<< 16;
2784 case CMD_IOACCEL_DISABLED
:
2785 /* This only handles the direct pass-through case since RAID
2786 * offload is handled above. Just attempt a retry.
2788 cmd
->result
= DID_SOFT_ERROR
<< 16;
2789 dev_warn(&h
->pdev
->dev
,
2790 "cp %p had HP SSD Smart Path error\n", cp
);
2793 cmd
->result
= DID_ERROR
<< 16;
2794 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2795 cp
, ei
->CommandStatus
);
2798 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2801 static void hpsa_pci_unmap(struct pci_dev
*pdev
, struct CommandList
*c
,
2802 int sg_used
, enum dma_data_direction data_direction
)
2806 for (i
= 0; i
< sg_used
; i
++)
2807 dma_unmap_single(&pdev
->dev
, le64_to_cpu(c
->SG
[i
].Addr
),
2808 le32_to_cpu(c
->SG
[i
].Len
),
2812 static int hpsa_map_one(struct pci_dev
*pdev
,
2813 struct CommandList
*cp
,
2816 enum dma_data_direction data_direction
)
2820 if (buflen
== 0 || data_direction
== DMA_NONE
) {
2821 cp
->Header
.SGList
= 0;
2822 cp
->Header
.SGTotal
= cpu_to_le16(0);
2826 addr64
= dma_map_single(&pdev
->dev
, buf
, buflen
, data_direction
);
2827 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2828 /* Prevent subsequent unmap of something never mapped */
2829 cp
->Header
.SGList
= 0;
2830 cp
->Header
.SGTotal
= cpu_to_le16(0);
2833 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2834 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2835 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2836 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2837 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2844 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2846 DECLARE_COMPLETION_ONSTACK(wait
);
2849 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2850 if (timeout_msecs
== NO_TIMEOUT
) {
2851 /* TODO: get rid of this no-timeout thing */
2852 wait_for_completion_io(&wait
);
2855 if (!wait_for_completion_io_timeout(&wait
,
2856 msecs_to_jiffies(timeout_msecs
))) {
2857 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2864 int reply_queue
, unsigned long timeout_msecs
)
2866 if (unlikely(lockup_detected(h
))) {
2867 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2870 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2873 static u32
lockup_detected(struct ctlr_info
*h
)
2876 u32 rc
, *lockup_detected
;
2879 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2880 rc
= *lockup_detected
;
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2887 struct CommandList
*c
, enum dma_data_direction data_direction
,
2888 unsigned long timeout_msecs
)
2890 int backoff_time
= 10, retry_count
= 0;
2894 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2895 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2900 if (retry_count
> 3) {
2901 msleep(backoff_time
);
2902 if (backoff_time
< 1000)
2905 } while ((check_for_unit_attention(h
, c
) ||
2906 check_for_busy(h
, c
)) &&
2907 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2908 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2909 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2914 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2915 struct CommandList
*c
)
2917 const u8
*cdb
= c
->Request
.CDB
;
2918 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2920 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2924 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2925 struct CommandList
*cp
)
2927 const struct ErrorInfo
*ei
= cp
->err_info
;
2928 struct device
*d
= &cp
->h
->pdev
->dev
;
2929 u8 sense_key
, asc
, ascq
;
2932 switch (ei
->CommandStatus
) {
2933 case CMD_TARGET_STATUS
:
2934 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2935 sense_len
= sizeof(ei
->SenseInfo
);
2937 sense_len
= ei
->SenseLen
;
2938 decode_sense_data(ei
->SenseInfo
, sense_len
,
2939 &sense_key
, &asc
, &ascq
);
2940 hpsa_print_cmd(h
, "SCSI status", cp
);
2941 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2942 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943 sense_key
, asc
, ascq
);
2945 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2946 if (ei
->ScsiStatus
== 0)
2947 dev_warn(d
, "SCSI status is abnormally zero. "
2948 "(probably indicates selection timeout "
2949 "reported incorrectly due to a known "
2950 "firmware bug, circa July, 2001.)\n");
2952 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2954 case CMD_DATA_OVERRUN
:
2955 hpsa_print_cmd(h
, "overrun condition", cp
);
2958 /* controller unfortunately reports SCSI passthru's
2959 * to non-existent targets as invalid commands.
2961 hpsa_print_cmd(h
, "invalid command", cp
);
2962 dev_warn(d
, "probably means device no longer present\n");
2965 case CMD_PROTOCOL_ERR
:
2966 hpsa_print_cmd(h
, "protocol error", cp
);
2968 case CMD_HARDWARE_ERR
:
2969 hpsa_print_cmd(h
, "hardware error", cp
);
2971 case CMD_CONNECTION_LOST
:
2972 hpsa_print_cmd(h
, "connection lost", cp
);
2975 hpsa_print_cmd(h
, "aborted", cp
);
2977 case CMD_ABORT_FAILED
:
2978 hpsa_print_cmd(h
, "abort failed", cp
);
2980 case CMD_UNSOLICITED_ABORT
:
2981 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2984 hpsa_print_cmd(h
, "timed out", cp
);
2986 case CMD_UNABORTABLE
:
2987 hpsa_print_cmd(h
, "unabortable", cp
);
2989 case CMD_CTLR_LOCKUP
:
2990 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2993 hpsa_print_cmd(h
, "unknown status", cp
);
2994 dev_warn(d
, "Unknown command status %x\n",
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
3000 u8 page
, u8
*buf
, size_t bufsize
)
3003 struct CommandList
*c
;
3004 struct ErrorInfo
*ei
;
3007 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
3008 page
, scsi3addr
, TYPE_CMD
)) {
3012 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3017 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3018 hpsa_scsi_interpret_error(h
, c
);
3026 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
3033 buf
= kzalloc(1024, GFP_KERNEL
);
3037 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3043 sa
= get_unaligned_be64(buf
+12);
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3051 u16 page
, unsigned char *buf
,
3052 unsigned char bufsize
)
3055 struct CommandList
*c
;
3056 struct ErrorInfo
*ei
;
3060 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3061 page
, scsi3addr
, TYPE_CMD
)) {
3065 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3070 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3071 hpsa_scsi_interpret_error(h
, c
);
3079 static int hpsa_send_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3080 u8 reset_type
, int reply_queue
)
3083 struct CommandList
*c
;
3084 struct ErrorInfo
*ei
;
3089 /* fill_cmd can't fail here, no data buffer to map. */
3090 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0, dev
->scsi3addr
, TYPE_MSG
);
3091 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3093 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3096 /* no unmap needed here because no data xfer. */
3099 if (ei
->CommandStatus
!= 0) {
3100 hpsa_scsi_interpret_error(h
, c
);
3108 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3109 struct hpsa_scsi_dev_t
*dev
,
3110 unsigned char *scsi3addr
)
3114 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3115 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3117 if (hpsa_is_cmd_idle(c
))
3120 switch (c
->cmd_type
) {
3122 case CMD_IOCTL_PEND
:
3123 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3124 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3129 if (c
->phys_disk
== dev
) {
3130 /* HBA mode match */
3133 /* Possible RAID mode -- check each phys dev. */
3134 /* FIXME: Do we need to take out a lock here? If
3135 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3137 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3138 /* FIXME: an alternate test might be
3140 * match = dev->phys_disk[i]->ioaccel_handle
3141 * == c2->scsi_nexus; */
3142 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3148 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3149 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3150 le32_to_cpu(ac
->it_nexus
);
3154 case 0: /* The command is in the middle of being initialized. */
3159 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3167 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3168 u8 reset_type
, int reply_queue
)
3172 /* We can really only handle one reset at a time */
3173 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3174 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3178 rc
= hpsa_send_reset(h
, dev
, reset_type
, reply_queue
);
3180 /* incremented by sending the reset request */
3181 atomic_dec(&dev
->commands_outstanding
);
3182 wait_event(h
->event_sync_wait_queue
,
3183 atomic_read(&dev
->commands_outstanding
) <= 0 ||
3184 lockup_detected(h
));
3187 if (unlikely(lockup_detected(h
))) {
3188 dev_warn(&h
->pdev
->dev
,
3189 "Controller lockup detected during reset wait\n");
3194 rc
= wait_for_device_to_become_ready(h
, dev
->scsi3addr
, 0);
3196 mutex_unlock(&h
->reset_mutex
);
3200 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3201 unsigned char *scsi3addr
, unsigned char *raid_level
)
3206 *raid_level
= RAID_UNKNOWN
;
3207 buf
= kzalloc(64, GFP_KERNEL
);
3211 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3212 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3215 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3216 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3219 *raid_level
= buf
[8];
3220 if (*raid_level
> RAID_UNKNOWN
)
3221 *raid_level
= RAID_UNKNOWN
;
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3230 struct raid_map_data
*map_buff
)
3232 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3234 u16 map_cnt
, row_cnt
, disks_per_row
;
3239 /* Show details only if debugging has been activated. */
3240 if (h
->raid_offload_debug
< 2)
3243 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3244 le32_to_cpu(map_buff
->structure_size
));
3245 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3246 le32_to_cpu(map_buff
->volume_blk_size
));
3247 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3248 le64_to_cpu(map_buff
->volume_blk_cnt
));
3249 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3250 map_buff
->phys_blk_shift
);
3251 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3252 map_buff
->parity_rotation_shift
);
3253 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3254 le16_to_cpu(map_buff
->strip_size
));
3255 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3256 le64_to_cpu(map_buff
->disk_starting_blk
));
3257 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3258 le64_to_cpu(map_buff
->disk_blk_cnt
));
3259 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3260 le16_to_cpu(map_buff
->data_disks_per_row
));
3261 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3262 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3263 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3264 le16_to_cpu(map_buff
->row_cnt
));
3265 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3266 le16_to_cpu(map_buff
->layout_map_count
));
3267 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3268 le16_to_cpu(map_buff
->flags
));
3269 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3270 le16_to_cpu(map_buff
->flags
) &
3271 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3272 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3273 le16_to_cpu(map_buff
->dekindex
));
3274 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3275 for (map
= 0; map
< map_cnt
; map
++) {
3276 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3277 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3278 for (row
= 0; row
< row_cnt
; row
++) {
3279 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3281 le16_to_cpu(map_buff
->data_disks_per_row
);
3282 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3283 dev_info(&h
->pdev
->dev
,
3284 " D%02u: h=0x%04x xor=%u,%u\n",
3285 col
, dd
->ioaccel_handle
,
3286 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3288 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3289 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3290 dev_info(&h
->pdev
->dev
,
3291 " M%02u: h=0x%04x xor=%u,%u\n",
3292 col
, dd
->ioaccel_handle
,
3293 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3298 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3299 __attribute__((unused
)) int rc
,
3300 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3305 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3306 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3309 struct CommandList
*c
;
3310 struct ErrorInfo
*ei
;
3314 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3315 sizeof(this_device
->raid_map
), 0,
3316 scsi3addr
, TYPE_CMD
)) {
3317 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3321 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3326 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3327 hpsa_scsi_interpret_error(h
, c
);
3333 /* @todo in the future, dynamically allocate RAID map memory */
3334 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3335 sizeof(this_device
->raid_map
)) {
3336 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3339 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3347 unsigned char scsi3addr
[], u16 bmic_device_index
,
3348 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3351 struct CommandList
*c
;
3352 struct ErrorInfo
*ei
;
3356 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3357 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3361 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3362 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3364 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3369 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3370 hpsa_scsi_interpret_error(h
, c
);
3378 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3379 struct bmic_identify_controller
*buf
, size_t bufsize
)
3382 struct CommandList
*c
;
3383 struct ErrorInfo
*ei
;
3387 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3388 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3392 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3397 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3398 hpsa_scsi_interpret_error(h
, c
);
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3407 unsigned char scsi3addr
[], u16 bmic_device_index
,
3408 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3411 struct CommandList
*c
;
3412 struct ErrorInfo
*ei
;
3415 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3416 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3420 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3421 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3423 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3426 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3427 hpsa_scsi_interpret_error(h
, c
);
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3442 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3443 unsigned char *scsi3addr
,
3444 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3445 struct hpsa_scsi_dev_t
*encl_dev
)
3448 struct CommandList
*c
= NULL
;
3449 struct ErrorInfo
*ei
= NULL
;
3450 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3451 struct bmic_identify_physical_device
*id_phys
= NULL
;
3452 struct ext_report_lun_entry
*rle
;
3453 u16 bmic_device_index
= 0;
3455 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
3458 rle
= &rlep
->LUN
[rle_index
];
3461 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3463 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3465 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3470 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3475 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3479 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3483 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3484 id_phys
, sizeof(*id_phys
));
3486 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3487 __func__
, encl_dev
->external
, bmic_device_index
);
3493 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3494 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3499 if (id_phys
->phys_connector
[1] == 'E')
3500 c
->Request
.CDB
[5] = id_phys
->box_index
;
3502 c
->Request
.CDB
[5] = 0;
3504 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3510 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3515 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3516 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3517 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3528 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3529 "Error, could not get enclosure information");
3532 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3533 unsigned char *scsi3addr
)
3535 struct ReportExtendedLUNdata
*physdev
;
3540 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3544 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3545 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3549 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3551 for (i
= 0; i
< nphysicals
; i
++)
3552 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3553 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3562 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3563 struct hpsa_scsi_dev_t
*dev
)
3568 if (is_hba_lunid(scsi3addr
)) {
3569 struct bmic_sense_subsystem_info
*ssi
;
3571 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3575 rc
= hpsa_bmic_sense_subsystem_information(h
,
3576 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3578 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3579 h
->sas_address
= sa
;
3584 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3586 dev
->sas_address
= sa
;
3589 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3590 struct ReportExtendedLUNdata
*physdev
)
3595 if (h
->discovery_polling
)
3598 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3600 for (i
= 0; i
< nphysicals
; i
++) {
3601 if (physdev
->LUN
[i
].device_type
==
3602 BMIC_DEVICE_TYPE_CONTROLLER
3603 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3604 dev_info(&h
->pdev
->dev
,
3605 "External controller present, activate discovery polling and disable rld caching\n");
3606 hpsa_disable_rld_caching(h
);
3607 h
->discovery_polling
= 1;
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3615 unsigned char scsi3addr
[], u8 page
)
3620 unsigned char *buf
, bufsize
;
3622 buf
= kzalloc(256, GFP_KERNEL
);
3626 /* Get the size of the page list first */
3627 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3628 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3629 buf
, HPSA_VPD_HEADER_SZ
);
3631 goto exit_unsupported
;
3633 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3634 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3638 /* Get the whole VPD page list */
3639 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3640 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3643 goto exit_unsupported
;
3646 for (i
= 1; i
<= pages
; i
++)
3647 if (buf
[3 + i
] == page
)
3648 goto exit_supported
;
3658 * Called during a scan operation.
3659 * Sets ioaccel status on the new device list, not the existing device list
3661 * The device list used during I/O will be updated later in
3662 * adjust_hpsa_scsi_table.
3664 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3665 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3671 this_device
->offload_config
= 0;
3672 this_device
->offload_enabled
= 0;
3673 this_device
->offload_to_be_enabled
= 0;
3675 buf
= kzalloc(64, GFP_KERNEL
);
3678 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3680 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3681 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3689 this_device
->offload_config
=
3690 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3691 if (this_device
->offload_config
) {
3692 bool offload_enabled
=
3693 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3695 * Check to see if offload can be enabled.
3697 if (offload_enabled
) {
3698 rc
= hpsa_get_raid_map(h
, scsi3addr
, this_device
);
3699 if (rc
) /* could not load raid_map */
3701 this_device
->offload_to_be_enabled
= 1;
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3712 unsigned char *device_id
, int index
, int buflen
)
3717 /* Does controller have VPD for device id? */
3718 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3719 return 1; /* not supported */
3721 buf
= kzalloc(64, GFP_KERNEL
);
3725 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3726 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3730 memcpy(device_id
, &buf
[8], buflen
);
3735 return rc
; /*0 - got id, otherwise, didn't */
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3739 void *buf
, int bufsize
,
3740 int extended_response
)
3743 struct CommandList
*c
;
3744 unsigned char scsi3addr
[8];
3745 struct ErrorInfo
*ei
;
3749 /* address the controller */
3750 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3751 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3752 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3756 if (extended_response
)
3757 c
->Request
.CDB
[1] = extended_response
;
3758 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3763 if (ei
->CommandStatus
!= 0 &&
3764 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3765 hpsa_scsi_interpret_error(h
, c
);
3768 struct ReportLUNdata
*rld
= buf
;
3770 if (rld
->extended_response_flag
!= extended_response
) {
3771 if (!h
->legacy_board
) {
3772 dev_err(&h
->pdev
->dev
,
3773 "report luns requested format %u, got %u\n",
3775 rld
->extended_response_flag
);
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3787 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3790 struct ReportLUNdata
*lbuf
;
3792 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3793 HPSA_REPORT_PHYS_EXTENDED
);
3794 if (!rc
|| rc
!= -EOPNOTSUPP
)
3797 /* REPORT PHYS EXTENDED is not supported */
3798 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3802 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3807 /* Copy ReportLUNdata header */
3808 memcpy(buf
, lbuf
, 8);
3809 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3810 for (i
= 0; i
< nphys
; i
++)
3811 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3818 struct ReportLUNdata
*buf
, int bufsize
)
3820 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3824 int bus
, int target
, int lun
)
3827 device
->target
= target
;
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3833 unsigned char scsi3addr
[])
3840 buf
= kzalloc(64, GFP_KERNEL
);
3842 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3844 /* Does controller have VPD for logical volume status? */
3845 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3848 /* Get the size of the VPD return buffer */
3849 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3850 buf
, HPSA_VPD_HEADER_SZ
);
3855 /* Now get the whole VPD buffer */
3856 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3857 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3860 status
= buf
[4]; /* status byte */
3866 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3869 /* Determine offline status of a volume.
3872 * 0xff (offline for unknown reasons)
3873 * # (integer code indicating one of several NOT READY states
3874 * describing why a volume is to be kept offline)
3876 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3877 unsigned char scsi3addr
[])
3879 struct CommandList
*c
;
3880 unsigned char *sense
;
3881 u8 sense_key
, asc
, ascq
;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3890 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3891 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3895 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3897 sense
= c
->err_info
->SenseInfo
;
3898 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3899 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3901 sense_len
= c
->err_info
->SenseLen
;
3902 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3905 /* Determine the reason for not ready state */
3906 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3908 /* Keep volume offline in certain cases: */
3910 case HPSA_LV_FAILED
:
3911 case HPSA_LV_UNDERGOING_ERASE
:
3912 case HPSA_LV_NOT_AVAILABLE
:
3913 case HPSA_LV_UNDERGOING_RPI
:
3914 case HPSA_LV_PENDING_RPI
:
3915 case HPSA_LV_ENCRYPTED_NO_KEY
:
3916 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3917 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3918 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3919 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3921 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3922 /* If VPD status page isn't available,
3923 * use ASC/ASCQ to determine state
3925 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3926 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3935 static int hpsa_update_device_info(struct ctlr_info
*h
,
3936 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3937 unsigned char *is_OBDR_device
)
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3945 unsigned char *inq_buff
;
3946 unsigned char *obdr_sig
;
3949 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3955 /* Do an inquiry to the device to see what it is. */
3956 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3957 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3958 dev_err(&h
->pdev
->dev
,
3959 "%s: inquiry failed, device will be skipped.\n",
3961 rc
= HPSA_INQUIRY_FAILED
;
3965 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3966 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3968 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3969 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3970 memcpy(this_device
->vendor
, &inq_buff
[8],
3971 sizeof(this_device
->vendor
));
3972 memcpy(this_device
->model
, &inq_buff
[16],
3973 sizeof(this_device
->model
));
3974 this_device
->rev
= inq_buff
[2];
3975 memset(this_device
->device_id
, 0,
3976 sizeof(this_device
->device_id
));
3977 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3978 sizeof(this_device
->device_id
)) < 0) {
3979 dev_err(&h
->pdev
->dev
,
3980 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3982 h
->scsi_host
->host_no
,
3983 this_device
->bus
, this_device
->target
,
3985 scsi_device_type(this_device
->devtype
),
3986 this_device
->model
);
3987 rc
= HPSA_LV_FAILED
;
3991 if ((this_device
->devtype
== TYPE_DISK
||
3992 this_device
->devtype
== TYPE_ZBC
) &&
3993 is_logical_dev_addr_mode(scsi3addr
)) {
3994 unsigned char volume_offline
;
3996 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3997 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3998 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3999 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
4000 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
4003 * Legacy boards might not support volume status
4005 dev_info(&h
->pdev
->dev
,
4006 "C0:T%d:L%d Volume status not available, assuming online.\n",
4007 this_device
->target
, this_device
->lun
);
4010 this_device
->volume_offline
= volume_offline
;
4011 if (volume_offline
== HPSA_LV_FAILED
) {
4012 rc
= HPSA_LV_FAILED
;
4013 dev_err(&h
->pdev
->dev
,
4014 "%s: LV failed, device will be skipped.\n",
4019 this_device
->raid_level
= RAID_UNKNOWN
;
4020 this_device
->offload_config
= 0;
4021 hpsa_turn_off_ioaccel_for_device(this_device
);
4022 this_device
->hba_ioaccel_enabled
= 0;
4023 this_device
->volume_offline
= 0;
4024 this_device
->queue_depth
= h
->nr_cmds
;
4027 if (this_device
->external
)
4028 this_device
->queue_depth
= EXTERNAL_QD
;
4030 if (is_OBDR_device
) {
4031 /* See if this is a One-Button-Disaster-Recovery device
4032 * by looking for "$DR-10" at offset 43 in inquiry data.
4034 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4035 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4036 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4037 OBDR_SIG_LEN
) == 0);
4048 * Helper function to assign bus, target, lun mapping of devices.
4049 * Logical drive target and lun are assigned at this time, but
4050 * physical device lun and target assignment are deferred (assigned
4051 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4053 static void figure_bus_target_lun(struct ctlr_info
*h
,
4054 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4056 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4058 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4059 /* physical device, target and lun filled in later */
4060 if (is_hba_lunid(lunaddrbytes
)) {
4061 int bus
= HPSA_HBA_BUS
;
4064 bus
= HPSA_LEGACY_HBA_BUS
;
4065 hpsa_set_bus_target_lun(device
,
4066 bus
, 0, lunid
& 0x3fff);
4068 /* defer target, lun assignment for physical devices */
4069 hpsa_set_bus_target_lun(device
,
4070 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4073 /* It's a logical device */
4074 if (device
->external
) {
4075 hpsa_set_bus_target_lun(device
,
4076 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4080 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4084 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4085 int i
, int nphysicals
, int nlocal_logicals
)
4087 /* In report logicals, local logicals are listed first,
4088 * then any externals.
4090 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4092 if (i
== raid_ctlr_position
)
4095 if (i
< logicals_start
)
4098 /* i is in logicals range, but still within local logicals */
4099 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4102 return 1; /* it's an external lun */
4106 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4107 * logdev. The number of luns in physdev and logdev are returned in
4108 * *nphysicals and *nlogicals, respectively.
4109 * Returns 0 on success, -1 otherwise.
4111 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4112 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4113 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4115 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4116 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4119 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4120 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4121 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4123 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4125 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4126 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4129 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4130 /* Reject Logicals in excess of our max capability. */
4131 if (*nlogicals
> HPSA_MAX_LUN
) {
4132 dev_warn(&h
->pdev
->dev
,
4133 "maximum logical LUNs (%d) exceeded. "
4134 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4135 *nlogicals
- HPSA_MAX_LUN
);
4136 *nlogicals
= HPSA_MAX_LUN
;
4138 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4139 dev_warn(&h
->pdev
->dev
,
4140 "maximum logical + physical LUNs (%d) exceeded. "
4141 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4142 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4143 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4148 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4149 int i
, int nphysicals
, int nlogicals
,
4150 struct ReportExtendedLUNdata
*physdev_list
,
4151 struct ReportLUNdata
*logdev_list
)
4153 /* Helper function, figure out where the LUN ID info is coming from
4154 * given index i, lists of physical and logical devices, where in
4155 * the list the raid controller is supposed to appear (first or last)
4158 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4159 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4161 if (i
== raid_ctlr_position
)
4162 return RAID_CTLR_LUNID
;
4164 if (i
< logicals_start
)
4165 return &physdev_list
->LUN
[i
-
4166 (raid_ctlr_position
== 0)].lunid
[0];
4168 if (i
< last_device
)
4169 return &logdev_list
->LUN
[i
- nphysicals
-
4170 (raid_ctlr_position
== 0)][0];
4175 /* get physical drive ioaccel handle and queue depth */
4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4177 struct hpsa_scsi_dev_t
*dev
,
4178 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4179 struct bmic_identify_physical_device
*id_phys
)
4182 struct ext_report_lun_entry
*rle
;
4184 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
4187 rle
= &rlep
->LUN
[rle_index
];
4189 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4190 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4191 dev
->hba_ioaccel_enabled
= 1;
4192 memset(id_phys
, 0, sizeof(*id_phys
));
4193 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4194 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4197 /* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4201 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4202 DRIVE_CMDS_RESERVED_FOR_FW
;
4204 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4208 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4209 struct bmic_identify_physical_device
*id_phys
)
4211 struct ext_report_lun_entry
*rle
;
4213 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
4216 rle
= &rlep
->LUN
[rle_index
];
4218 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4219 this_device
->hba_ioaccel_enabled
= 1;
4221 memcpy(&this_device
->active_path_index
,
4222 &id_phys
->active_path_number
,
4223 sizeof(this_device
->active_path_index
));
4224 memcpy(&this_device
->path_map
,
4225 &id_phys
->redundant_path_present_map
,
4226 sizeof(this_device
->path_map
));
4227 memcpy(&this_device
->box
,
4228 &id_phys
->alternate_paths_phys_box_on_port
,
4229 sizeof(this_device
->box
));
4230 memcpy(&this_device
->phys_connector
,
4231 &id_phys
->alternate_paths_phys_connector
,
4232 sizeof(this_device
->phys_connector
));
4233 memcpy(&this_device
->bay
,
4234 &id_phys
->phys_bay_in_box
,
4235 sizeof(this_device
->bay
));
4238 /* get number of local logical disks. */
4239 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4240 struct bmic_identify_controller
*id_ctlr
,
4246 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4250 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4251 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4253 if (id_ctlr
->configured_logical_drive_count
< 255)
4254 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4256 *nlocals
= le16_to_cpu(
4257 id_ctlr
->extended_logical_unit_count
);
4263 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4265 struct bmic_identify_physical_device
*id_phys
;
4266 bool is_spare
= false;
4269 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4273 rc
= hpsa_bmic_id_physical_device(h
,
4275 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4276 id_phys
, sizeof(*id_phys
));
4278 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4284 #define RPL_DEV_FLAG_NON_DISK 0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4290 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4291 struct ext_report_lun_entry
*rle
)
4296 if (!MASKED_DEVICE(lunaddrbytes
))
4299 device_flags
= rle
->device_flags
;
4300 device_type
= rle
->device_type
;
4302 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4303 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4308 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4311 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4315 * Spares may be spun down, we do not want to
4316 * do an Inquiry to a RAID set spare drive as
4317 * that would have them spun up, that is a
4318 * performance hit because I/O to the RAID device
4319 * stops while the spin up occurs which can take
4322 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4328 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4330 /* the idea here is we could get notified
4331 * that some devices have changed, so we do a report
4332 * physical luns and report logical luns cmd, and adjust
4333 * our list of devices accordingly.
4335 * The scsi3addr's of devices won't change so long as the
4336 * adapter is not reset. That means we can rescan and
4337 * tell which devices we already know about, vs. new
4338 * devices, vs. disappearing devices.
4340 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4341 struct ReportLUNdata
*logdev_list
= NULL
;
4342 struct bmic_identify_physical_device
*id_phys
= NULL
;
4343 struct bmic_identify_controller
*id_ctlr
= NULL
;
4346 u32 nlocal_logicals
= 0;
4347 u32 ndev_allocated
= 0;
4348 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4350 int i
, ndevs_to_allocate
;
4351 int raid_ctlr_position
;
4352 bool physical_device
;
4353 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4355 currentsd
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*currentsd
), GFP_KERNEL
);
4356 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4357 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4358 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4359 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4360 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4362 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4363 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4364 dev_err(&h
->pdev
->dev
, "out of memory\n");
4367 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4369 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4371 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4372 logdev_list
, &nlogicals
)) {
4373 h
->drv_req_rescan
= 1;
4377 /* Set number of local logicals (non PTRAID) */
4378 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4379 dev_warn(&h
->pdev
->dev
,
4380 "%s: Can't determine number of local logical devices.\n",
4384 /* We might see up to the maximum number of logical and physical disks
4385 * plus external target devices, and a device for the local RAID
4388 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4390 hpsa_ext_ctrl_present(h
, physdev_list
);
4392 /* Allocate the per device structures */
4393 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4394 if (i
>= HPSA_MAX_DEVICES
) {
4395 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4396 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4397 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4401 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4402 if (!currentsd
[i
]) {
4403 h
->drv_req_rescan
= 1;
4409 if (is_scsi_rev_5(h
))
4410 raid_ctlr_position
= 0;
4412 raid_ctlr_position
= nphysicals
+ nlogicals
;
4414 /* adjust our table of devices */
4415 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4416 u8
*lunaddrbytes
, is_OBDR
= 0;
4418 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4419 bool skip_device
= false;
4421 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4423 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4425 /* Figure out where the LUN ID info is coming from */
4426 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4427 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4429 /* Determine if this is a lun from an external target array */
4430 tmpdevice
->external
=
4431 figure_external_status(h
, raid_ctlr_position
, i
,
4432 nphysicals
, nlocal_logicals
);
4435 * Skip over some devices such as a spare.
4437 if (phys_dev_index
>= 0 && !tmpdevice
->external
&&
4439 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4440 &physdev_list
->LUN
[phys_dev_index
]);
4445 /* Get device type, vendor, model, device id, raid_map */
4446 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4448 if (rc
== -ENOMEM
) {
4449 dev_warn(&h
->pdev
->dev
,
4450 "Out of memory, rescan deferred.\n");
4451 h
->drv_req_rescan
= 1;
4455 h
->drv_req_rescan
= 1;
4459 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4460 this_device
= currentsd
[ncurrent
];
4462 *this_device
= *tmpdevice
;
4463 this_device
->physical_device
= physical_device
;
4466 * Expose all devices except for physical devices that
4469 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4470 this_device
->expose_device
= 0;
4472 this_device
->expose_device
= 1;
4476 * Get the SAS address for physical devices that are exposed.
4478 if (this_device
->physical_device
&& this_device
->expose_device
)
4479 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4481 switch (this_device
->devtype
) {
4483 /* We don't *really* support actual CD-ROM devices,
4484 * just "One Button Disaster Recovery" tape drive
4485 * which temporarily pretends to be a CD-ROM drive.
4486 * So we check that the device is really an OBDR tape
4487 * device by checking for "$DR-10" in bytes 43-48 of
4495 if (this_device
->physical_device
) {
4496 /* The disk is in HBA mode. */
4497 /* Never use RAID mapper in HBA mode. */
4498 this_device
->offload_enabled
= 0;
4499 hpsa_get_ioaccel_drive_info(h
, this_device
,
4500 physdev_list
, phys_dev_index
, id_phys
);
4501 hpsa_get_path_info(this_device
,
4502 physdev_list
, phys_dev_index
, id_phys
);
4507 case TYPE_MEDIUM_CHANGER
:
4510 case TYPE_ENCLOSURE
:
4511 if (!this_device
->external
)
4512 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4513 physdev_list
, phys_dev_index
,
4518 /* Only present the Smartarray HBA as a RAID controller.
4519 * If it's a RAID controller other than the HBA itself
4520 * (an external RAID controller, MSA500 or similar)
4523 if (!is_hba_lunid(lunaddrbytes
))
4530 if (ncurrent
>= HPSA_MAX_DEVICES
)
4534 if (h
->sas_host
== NULL
) {
4537 rc
= hpsa_add_sas_host(h
);
4539 dev_warn(&h
->pdev
->dev
,
4540 "Could not add sas host %d\n", rc
);
4545 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4548 for (i
= 0; i
< ndev_allocated
; i
++)
4549 kfree(currentsd
[i
]);
4551 kfree(physdev_list
);
4557 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4558 struct scatterlist
*sg
)
4560 u64 addr64
= (u64
) sg_dma_address(sg
);
4561 unsigned int len
= sg_dma_len(sg
);
4563 desc
->Addr
= cpu_to_le64(addr64
);
4564 desc
->Len
= cpu_to_le32(len
);
4569 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570 * dma mapping and fills in the scatter gather entries of the
4573 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4574 struct CommandList
*cp
,
4575 struct scsi_cmnd
*cmd
)
4577 struct scatterlist
*sg
;
4578 int use_sg
, i
, sg_limit
, chained
;
4579 struct SGDescriptor
*curr_sg
;
4581 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4583 use_sg
= scsi_dma_map(cmd
);
4588 goto sglist_finished
;
4591 * If the number of entries is greater than the max for a single list,
4592 * then we have a chained list; we will set up all but one entry in the
4593 * first list (the last entry is saved for link information);
4594 * otherwise, we don't have a chained list and we'll set up at each of
4595 * the entries in the one list.
4598 chained
= use_sg
> h
->max_cmd_sg_entries
;
4599 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4600 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4601 hpsa_set_sg_descriptor(curr_sg
, sg
);
4607 * Continue with the chained list. Set curr_sg to the chained
4608 * list. Modify the limit to the total count less the entries
4609 * we've already set up. Resume the scan at the list entry
4610 * where the previous loop left off.
4612 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4613 sg_limit
= use_sg
- sg_limit
;
4614 for_each_sg(sg
, sg
, sg_limit
, i
) {
4615 hpsa_set_sg_descriptor(curr_sg
, sg
);
4620 /* Back the pointer up to the last entry and mark it as "last". */
4621 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4623 if (use_sg
+ chained
> h
->maxSG
)
4624 h
->maxSG
= use_sg
+ chained
;
4627 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4628 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4629 if (hpsa_map_sg_chain_block(h
, cp
)) {
4630 scsi_dma_unmap(cmd
);
4638 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4639 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4643 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4644 u8
*cdb
, int cdb_len
,
4647 dev_warn(&h
->pdev
->dev
,
4648 "%s: Blocking zero-length request: CDB:%*phN\n",
4649 func
, cdb_len
, cdb
);
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
4654 static bool is_zero_length_transfer(u8
*cdb
)
4658 /* Block zero-length transfer sizes on certain commands. */
4662 case VERIFY
: /* 0x2F */
4663 case WRITE_VERIFY
: /* 0x2E */
4664 block_cnt
= get_unaligned_be16(&cdb
[7]);
4668 case VERIFY_12
: /* 0xAF */
4669 case WRITE_VERIFY_12
: /* 0xAE */
4670 block_cnt
= get_unaligned_be32(&cdb
[6]);
4674 case VERIFY_16
: /* 0x8F */
4675 block_cnt
= get_unaligned_be32(&cdb
[10]);
4681 return block_cnt
== 0;
4684 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4690 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4698 if (*cdb_len
== 6) {
4699 block
= (((cdb
[1] & 0x1F) << 16) |
4706 BUG_ON(*cdb_len
!= 12);
4707 block
= get_unaligned_be32(&cdb
[2]);
4708 block_cnt
= get_unaligned_be32(&cdb
[6]);
4710 if (block_cnt
> 0xffff)
4711 return IO_ACCEL_INELIGIBLE
;
4713 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4715 cdb
[2] = (u8
) (block
>> 24);
4716 cdb
[3] = (u8
) (block
>> 16);
4717 cdb
[4] = (u8
) (block
>> 8);
4718 cdb
[5] = (u8
) (block
);
4720 cdb
[7] = (u8
) (block_cnt
>> 8);
4721 cdb
[8] = (u8
) (block_cnt
);
4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4730 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4731 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4733 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4734 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4736 unsigned int total_len
= 0;
4737 struct scatterlist
*sg
;
4740 struct SGDescriptor
*curr_sg
;
4741 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4743 /* TODO: implement chaining support */
4744 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4745 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4746 return IO_ACCEL_INELIGIBLE
;
4749 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4751 if (is_zero_length_transfer(cdb
)) {
4752 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4753 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4754 return IO_ACCEL_INELIGIBLE
;
4757 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4758 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4759 return IO_ACCEL_INELIGIBLE
;
4762 c
->cmd_type
= CMD_IOACCEL1
;
4764 /* Adjust the DMA address to point to the accelerated command buffer */
4765 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4766 (c
->cmdindex
* sizeof(*cp
));
4767 BUG_ON(c
->busaddr
& 0x0000007F);
4769 use_sg
= scsi_dma_map(cmd
);
4771 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4777 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4778 addr64
= (u64
) sg_dma_address(sg
);
4779 len
= sg_dma_len(sg
);
4781 curr_sg
->Addr
= cpu_to_le64(addr64
);
4782 curr_sg
->Len
= cpu_to_le32(len
);
4783 curr_sg
->Ext
= cpu_to_le32(0);
4786 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4788 switch (cmd
->sc_data_direction
) {
4790 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4792 case DMA_FROM_DEVICE
:
4793 control
|= IOACCEL1_CONTROL_DATA_IN
;
4796 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4799 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4800 cmd
->sc_data_direction
);
4805 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4808 c
->Header
.SGList
= use_sg
;
4809 /* Fill out the command structure to submit */
4810 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4811 cp
->transfer_len
= cpu_to_le32(total_len
);
4812 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4813 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4814 cp
->control
= cpu_to_le32(control
);
4815 memcpy(cp
->CDB
, cdb
, cdb_len
);
4816 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4817 /* Tag was already set at init time. */
4818 enqueue_cmd_and_start_io(h
, c
);
4823 * Queue a command directly to a device behind the controller using the
4824 * I/O accelerator path.
4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4827 struct CommandList
*c
)
4829 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4830 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4840 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4841 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4845 * Set encryption parameters for the ioaccel2 request
4847 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4848 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4850 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4851 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4852 struct raid_map_data
*map
= &dev
->raid_map
;
4855 /* Are we doing encryption on this device */
4856 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4858 /* Set the data encryption key index. */
4859 cp
->dekindex
= map
->dekindex
;
4861 /* Set the encryption enable flag, encoded into direction field. */
4862 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4864 /* Set encryption tweak values based on logical block address
4865 * If block size is 512, tweak value is LBA.
4866 * For other block sizes, tweak is (LBA * block size)/ 512)
4868 switch (cmd
->cmnd
[0]) {
4869 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4873 (cmd
->cmnd
[2] << 8) |
4878 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4885 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4888 dev_err(&h
->pdev
->dev
,
4889 "ERROR: %s: size (0x%x) not supported for encryption\n",
4890 __func__
, cmd
->cmnd
[0]);
4895 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4896 first_block
= first_block
*
4897 le32_to_cpu(map
->volume_blk_size
)/512;
4899 cp
->tweak_lower
= cpu_to_le32(first_block
);
4900 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4904 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4905 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4907 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4908 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4909 struct ioaccel2_sg_element
*curr_sg
;
4911 struct scatterlist
*sg
;
4919 if (!cmd
->device
->hostdata
)
4922 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4924 if (is_zero_length_transfer(cdb
)) {
4925 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4926 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4927 return IO_ACCEL_INELIGIBLE
;
4930 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4931 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4932 return IO_ACCEL_INELIGIBLE
;
4935 c
->cmd_type
= CMD_IOACCEL2
;
4936 /* Adjust the DMA address to point to the accelerated command buffer */
4937 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4938 (c
->cmdindex
* sizeof(*cp
));
4939 BUG_ON(c
->busaddr
& 0x0000007F);
4941 memset(cp
, 0, sizeof(*cp
));
4942 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4944 use_sg
= scsi_dma_map(cmd
);
4946 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4952 if (use_sg
> h
->ioaccel_maxsg
) {
4953 addr64
= le64_to_cpu(
4954 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4955 curr_sg
->address
= cpu_to_le64(addr64
);
4956 curr_sg
->length
= 0;
4957 curr_sg
->reserved
[0] = 0;
4958 curr_sg
->reserved
[1] = 0;
4959 curr_sg
->reserved
[2] = 0;
4960 curr_sg
->chain_indicator
= IOACCEL2_CHAIN
;
4962 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4964 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4965 addr64
= (u64
) sg_dma_address(sg
);
4966 len
= sg_dma_len(sg
);
4968 curr_sg
->address
= cpu_to_le64(addr64
);
4969 curr_sg
->length
= cpu_to_le32(len
);
4970 curr_sg
->reserved
[0] = 0;
4971 curr_sg
->reserved
[1] = 0;
4972 curr_sg
->reserved
[2] = 0;
4973 curr_sg
->chain_indicator
= 0;
4978 * Set the last s/g element bit
4980 (curr_sg
- 1)->chain_indicator
= IOACCEL2_LAST_SG
;
4982 switch (cmd
->sc_data_direction
) {
4984 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4985 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4987 case DMA_FROM_DEVICE
:
4988 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4989 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4992 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4993 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4996 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4997 cmd
->sc_data_direction
);
5002 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
5003 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
5006 /* Set encryption parameters, if necessary */
5007 set_encrypt_ioaccel2(h
, c
, cp
);
5009 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
5010 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5011 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
5013 cp
->data_len
= cpu_to_le32(total_len
);
5014 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
5015 offsetof(struct io_accel2_cmd
, error_data
));
5016 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
5018 /* fill in sg elements */
5019 if (use_sg
> h
->ioaccel_maxsg
) {
5021 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
5022 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
5023 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5024 scsi_dma_unmap(cmd
);
5028 cp
->sg_count
= (u8
) use_sg
;
5030 if (phys_disk
->in_reset
) {
5031 cmd
->result
= DID_RESET
<< 16;
5035 enqueue_cmd_and_start_io(h
, c
);
5040 * Queue a command to the correct I/O accelerator path.
5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
5043 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
5044 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5046 if (!c
->scsi_cmd
->device
)
5049 if (!c
->scsi_cmd
->device
->hostdata
)
5052 if (phys_disk
->in_reset
)
5055 /* Try to honor the device's queue depth */
5056 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5057 phys_disk
->queue_depth
) {
5058 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5059 return IO_ACCEL_INELIGIBLE
;
5061 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5062 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5063 cdb
, cdb_len
, scsi3addr
,
5066 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5067 cdb
, cdb_len
, scsi3addr
,
5071 static void raid_map_helper(struct raid_map_data
*map
,
5072 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5074 if (offload_to_mirror
== 0) {
5075 /* use physical disk in the first mirrored group. */
5076 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5080 /* determine mirror group that *map_index indicates */
5081 *current_group
= *map_index
/
5082 le16_to_cpu(map
->data_disks_per_row
);
5083 if (offload_to_mirror
== *current_group
)
5085 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5086 /* select map index from next group */
5087 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5090 /* select map index from first group */
5091 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5094 } while (offload_to_mirror
!= *current_group
);
5098 * Attempt to perform offload RAID mapping for a logical volume I/O.
5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5101 struct CommandList
*c
)
5103 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5104 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5105 struct raid_map_data
*map
= &dev
->raid_map
;
5106 struct raid_map_disk_data
*dd
= &map
->data
[0];
5109 u64 first_block
, last_block
;
5112 u64 first_row
, last_row
;
5113 u32 first_row_offset
, last_row_offset
;
5114 u32 first_column
, last_column
;
5115 u64 r0_first_row
, r0_last_row
;
5116 u32 r5or6_blocks_per_row
;
5117 u64 r5or6_first_row
, r5or6_last_row
;
5118 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5119 u32 r5or6_first_column
, r5or6_last_column
;
5120 u32 total_disks_per_row
;
5122 u32 first_group
, last_group
, current_group
;
5130 #if BITS_PER_LONG == 32
5133 int offload_to_mirror
;
5141 /* check for valid opcode, get LBA and block count */
5142 switch (cmd
->cmnd
[0]) {
5147 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5148 (cmd
->cmnd
[2] << 8) |
5150 block_cnt
= cmd
->cmnd
[4];
5159 (((u64
) cmd
->cmnd
[2]) << 24) |
5160 (((u64
) cmd
->cmnd
[3]) << 16) |
5161 (((u64
) cmd
->cmnd
[4]) << 8) |
5164 (((u32
) cmd
->cmnd
[7]) << 8) |
5172 (((u64
) cmd
->cmnd
[2]) << 24) |
5173 (((u64
) cmd
->cmnd
[3]) << 16) |
5174 (((u64
) cmd
->cmnd
[4]) << 8) |
5177 (((u32
) cmd
->cmnd
[6]) << 24) |
5178 (((u32
) cmd
->cmnd
[7]) << 16) |
5179 (((u32
) cmd
->cmnd
[8]) << 8) |
5187 (((u64
) cmd
->cmnd
[2]) << 56) |
5188 (((u64
) cmd
->cmnd
[3]) << 48) |
5189 (((u64
) cmd
->cmnd
[4]) << 40) |
5190 (((u64
) cmd
->cmnd
[5]) << 32) |
5191 (((u64
) cmd
->cmnd
[6]) << 24) |
5192 (((u64
) cmd
->cmnd
[7]) << 16) |
5193 (((u64
) cmd
->cmnd
[8]) << 8) |
5196 (((u32
) cmd
->cmnd
[10]) << 24) |
5197 (((u32
) cmd
->cmnd
[11]) << 16) |
5198 (((u32
) cmd
->cmnd
[12]) << 8) |
5202 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5204 last_block
= first_block
+ block_cnt
- 1;
5206 /* check for write to non-RAID-0 */
5207 if (is_write
&& dev
->raid_level
!= 0)
5208 return IO_ACCEL_INELIGIBLE
;
5210 /* check for invalid block or wraparound */
5211 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5212 last_block
< first_block
)
5213 return IO_ACCEL_INELIGIBLE
;
5215 /* calculate stripe information for the request */
5216 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5217 le16_to_cpu(map
->strip_size
);
5218 strip_size
= le16_to_cpu(map
->strip_size
);
5219 #if BITS_PER_LONG == 32
5220 tmpdiv
= first_block
;
5221 (void) do_div(tmpdiv
, blocks_per_row
);
5223 tmpdiv
= last_block
;
5224 (void) do_div(tmpdiv
, blocks_per_row
);
5226 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5227 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5228 tmpdiv
= first_row_offset
;
5229 (void) do_div(tmpdiv
, strip_size
);
5230 first_column
= tmpdiv
;
5231 tmpdiv
= last_row_offset
;
5232 (void) do_div(tmpdiv
, strip_size
);
5233 last_column
= tmpdiv
;
5235 first_row
= first_block
/ blocks_per_row
;
5236 last_row
= last_block
/ blocks_per_row
;
5237 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5238 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5239 first_column
= first_row_offset
/ strip_size
;
5240 last_column
= last_row_offset
/ strip_size
;
5243 /* if this isn't a single row/column then give to the controller */
5244 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5245 return IO_ACCEL_INELIGIBLE
;
5247 /* proceeding with driver mapping */
5248 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5249 le16_to_cpu(map
->metadata_disks_per_row
);
5250 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5251 le16_to_cpu(map
->row_cnt
);
5252 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5254 switch (dev
->raid_level
) {
5256 break; /* nothing special to do */
5258 /* Handles load balance across RAID 1 members.
5259 * (2-drive R1 and R10 with even # of drives.)
5260 * Appropriate for SSDs, not optimal for HDDs
5261 * Ensure we have the correct raid_map.
5263 if (le16_to_cpu(map
->layout_map_count
) != 2) {
5264 hpsa_turn_off_ioaccel_for_device(dev
);
5265 return IO_ACCEL_INELIGIBLE
;
5267 if (dev
->offload_to_mirror
)
5268 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5269 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5272 /* Handles N-way mirrors (R1-ADM)
5273 * and R10 with # of drives divisible by 3.)
5274 * Ensure we have the correct raid_map.
5276 if (le16_to_cpu(map
->layout_map_count
) != 3) {
5277 hpsa_turn_off_ioaccel_for_device(dev
);
5278 return IO_ACCEL_INELIGIBLE
;
5281 offload_to_mirror
= dev
->offload_to_mirror
;
5282 raid_map_helper(map
, offload_to_mirror
,
5283 &map_index
, ¤t_group
);
5284 /* set mirror group to use next time */
5286 (offload_to_mirror
>=
5287 le16_to_cpu(map
->layout_map_count
) - 1)
5288 ? 0 : offload_to_mirror
+ 1;
5289 dev
->offload_to_mirror
= offload_to_mirror
;
5290 /* Avoid direct use of dev->offload_to_mirror within this
5291 * function since multiple threads might simultaneously
5292 * increment it beyond the range of dev->layout_map_count -1.
5297 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5300 /* Verify first and last block are in same RAID group */
5301 r5or6_blocks_per_row
=
5302 le16_to_cpu(map
->strip_size
) *
5303 le16_to_cpu(map
->data_disks_per_row
);
5304 if (r5or6_blocks_per_row
== 0) {
5305 hpsa_turn_off_ioaccel_for_device(dev
);
5306 return IO_ACCEL_INELIGIBLE
;
5308 stripesize
= r5or6_blocks_per_row
*
5309 le16_to_cpu(map
->layout_map_count
);
5310 #if BITS_PER_LONG == 32
5311 tmpdiv
= first_block
;
5312 first_group
= do_div(tmpdiv
, stripesize
);
5313 tmpdiv
= first_group
;
5314 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5315 first_group
= tmpdiv
;
5316 tmpdiv
= last_block
;
5317 last_group
= do_div(tmpdiv
, stripesize
);
5318 tmpdiv
= last_group
;
5319 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5320 last_group
= tmpdiv
;
5322 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5323 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5325 if (first_group
!= last_group
)
5326 return IO_ACCEL_INELIGIBLE
;
5328 /* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330 tmpdiv
= first_block
;
5331 (void) do_div(tmpdiv
, stripesize
);
5332 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5333 tmpdiv
= last_block
;
5334 (void) do_div(tmpdiv
, stripesize
);
5335 r5or6_last_row
= r0_last_row
= tmpdiv
;
5337 first_row
= r5or6_first_row
= r0_first_row
=
5338 first_block
/ stripesize
;
5339 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5341 if (r5or6_first_row
!= r5or6_last_row
)
5342 return IO_ACCEL_INELIGIBLE
;
5345 /* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347 tmpdiv
= first_block
;
5348 first_row_offset
= do_div(tmpdiv
, stripesize
);
5349 tmpdiv
= first_row_offset
;
5350 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5351 r5or6_first_row_offset
= first_row_offset
;
5352 tmpdiv
= last_block
;
5353 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5354 tmpdiv
= r5or6_last_row_offset
;
5355 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5356 tmpdiv
= r5or6_first_row_offset
;
5357 (void) do_div(tmpdiv
, map
->strip_size
);
5358 first_column
= r5or6_first_column
= tmpdiv
;
5359 tmpdiv
= r5or6_last_row_offset
;
5360 (void) do_div(tmpdiv
, map
->strip_size
);
5361 r5or6_last_column
= tmpdiv
;
5363 first_row_offset
= r5or6_first_row_offset
=
5364 (u32
)((first_block
% stripesize
) %
5365 r5or6_blocks_per_row
);
5367 r5or6_last_row_offset
=
5368 (u32
)((last_block
% stripesize
) %
5369 r5or6_blocks_per_row
);
5371 first_column
= r5or6_first_column
=
5372 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5374 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5376 if (r5or6_first_column
!= r5or6_last_column
)
5377 return IO_ACCEL_INELIGIBLE
;
5379 /* Request is eligible */
5380 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5381 le16_to_cpu(map
->row_cnt
);
5383 map_index
= (first_group
*
5384 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5385 (map_row
* total_disks_per_row
) + first_column
;
5388 return IO_ACCEL_INELIGIBLE
;
5391 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5392 return IO_ACCEL_INELIGIBLE
;
5394 c
->phys_disk
= dev
->phys_disk
[map_index
];
5396 return IO_ACCEL_INELIGIBLE
;
5398 disk_handle
= dd
[map_index
].ioaccel_handle
;
5399 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5400 first_row
* le16_to_cpu(map
->strip_size
) +
5401 (first_row_offset
- first_column
*
5402 le16_to_cpu(map
->strip_size
));
5403 disk_block_cnt
= block_cnt
;
5405 /* handle differing logical/physical block sizes */
5406 if (map
->phys_blk_shift
) {
5407 disk_block
<<= map
->phys_blk_shift
;
5408 disk_block_cnt
<<= map
->phys_blk_shift
;
5410 BUG_ON(disk_block_cnt
> 0xffff);
5412 /* build the new CDB for the physical disk I/O */
5413 if (disk_block
> 0xffffffff) {
5414 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5416 cdb
[2] = (u8
) (disk_block
>> 56);
5417 cdb
[3] = (u8
) (disk_block
>> 48);
5418 cdb
[4] = (u8
) (disk_block
>> 40);
5419 cdb
[5] = (u8
) (disk_block
>> 32);
5420 cdb
[6] = (u8
) (disk_block
>> 24);
5421 cdb
[7] = (u8
) (disk_block
>> 16);
5422 cdb
[8] = (u8
) (disk_block
>> 8);
5423 cdb
[9] = (u8
) (disk_block
);
5424 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5425 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5426 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5427 cdb
[13] = (u8
) (disk_block_cnt
);
5432 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5434 cdb
[2] = (u8
) (disk_block
>> 24);
5435 cdb
[3] = (u8
) (disk_block
>> 16);
5436 cdb
[4] = (u8
) (disk_block
>> 8);
5437 cdb
[5] = (u8
) (disk_block
);
5439 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5440 cdb
[8] = (u8
) (disk_block_cnt
);
5444 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5446 dev
->phys_disk
[map_index
]);
5450 * Submit commands down the "normal" RAID stack path
5451 * All callers to hpsa_ciss_submit must check lockup_detected
5452 * beforehand, before (opt.) and after calling cmd_alloc
5454 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5455 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5456 struct hpsa_scsi_dev_t
*dev
)
5458 cmd
->host_scribble
= (unsigned char *) c
;
5459 c
->cmd_type
= CMD_SCSI
;
5461 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5462 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &dev
->scsi3addr
[0], 8);
5463 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5465 /* Fill in the request block... */
5467 c
->Request
.Timeout
= 0;
5468 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5469 c
->Request
.CDBLen
= cmd
->cmd_len
;
5470 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5471 switch (cmd
->sc_data_direction
) {
5473 c
->Request
.type_attr_dir
=
5474 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5476 case DMA_FROM_DEVICE
:
5477 c
->Request
.type_attr_dir
=
5478 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5481 c
->Request
.type_attr_dir
=
5482 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5484 case DMA_BIDIRECTIONAL
:
5485 /* This can happen if a buggy application does a scsi passthru
5486 * and sets both inlen and outlen to non-zero. ( see
5487 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490 c
->Request
.type_attr_dir
=
5491 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5492 /* This is technically wrong, and hpsa controllers should
5493 * reject it with CMD_INVALID, which is the most correct
5494 * response, but non-fibre backends appear to let it
5495 * slide by, and give the same results as if this field
5496 * were set correctly. Either way is acceptable for
5497 * our purposes here.
5503 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5504 cmd
->sc_data_direction
);
5509 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5510 hpsa_cmd_resolve_and_free(h
, c
);
5511 return SCSI_MLQUEUE_HOST_BUSY
;
5514 if (dev
->in_reset
) {
5515 hpsa_cmd_resolve_and_free(h
, c
);
5516 return SCSI_MLQUEUE_HOST_BUSY
;
5521 enqueue_cmd_and_start_io(h
, c
);
5522 /* the cmd'll come back via intr handler in complete_scsi_command() */
5526 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5527 struct CommandList
*c
)
5529 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5531 /* Zero out all of commandlist except the last field, refcount */
5532 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5533 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5534 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5535 c
->err_info
= h
->errinfo_pool
+ index
;
5536 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5537 err_dma_handle
= h
->errinfo_pool_dhandle
5538 + index
* sizeof(*c
->err_info
);
5539 c
->cmdindex
= index
;
5540 c
->busaddr
= (u32
) cmd_dma_handle
;
5541 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5542 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5544 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5547 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5551 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5552 struct CommandList
*c
= h
->cmd_pool
+ i
;
5554 hpsa_cmd_init(h
, i
, c
);
5555 atomic_set(&c
->refcount
, 0);
5559 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5560 struct CommandList
*c
)
5562 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5564 BUG_ON(c
->cmdindex
!= index
);
5566 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5567 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5568 c
->busaddr
= (u32
) cmd_dma_handle
;
5571 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5572 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
5574 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5575 int rc
= IO_ACCEL_INELIGIBLE
;
5578 return SCSI_MLQUEUE_HOST_BUSY
;
5581 return SCSI_MLQUEUE_HOST_BUSY
;
5583 if (hpsa_simple_mode
)
5584 return IO_ACCEL_INELIGIBLE
;
5586 cmd
->host_scribble
= (unsigned char *) c
;
5588 if (dev
->offload_enabled
) {
5589 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5590 c
->cmd_type
= CMD_SCSI
;
5593 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5594 if (rc
< 0) /* scsi_dma_map failed. */
5595 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5596 } else if (dev
->hba_ioaccel_enabled
) {
5597 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5598 c
->cmd_type
= CMD_SCSI
;
5601 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5602 if (rc
< 0) /* scsi_dma_map failed. */
5603 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5608 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5610 struct scsi_cmnd
*cmd
;
5611 struct hpsa_scsi_dev_t
*dev
;
5612 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5615 dev
= cmd
->device
->hostdata
;
5617 cmd
->result
= DID_NO_CONNECT
<< 16;
5618 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5621 if (dev
->in_reset
) {
5622 cmd
->result
= DID_RESET
<< 16;
5623 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5626 if (c
->cmd_type
== CMD_IOACCEL2
) {
5627 struct ctlr_info
*h
= c
->h
;
5628 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5631 if (c2
->error_data
.serv_response
==
5632 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5633 rc
= hpsa_ioaccel_submit(h
, c
, cmd
);
5636 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5638 * If we get here, it means dma mapping failed.
5639 * Try again via scsi mid layer, which will
5640 * then get SCSI_MLQUEUE_HOST_BUSY.
5642 cmd
->result
= DID_IMM_RETRY
<< 16;
5643 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5645 /* else, fall thru and resubmit down CISS path */
5648 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5649 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
)) {
5651 * If we get here, it means dma mapping failed. Try
5652 * again via scsi mid layer, which will then get
5653 * SCSI_MLQUEUE_HOST_BUSY.
5655 * hpsa_ciss_submit will have already freed c
5656 * if it encountered a dma mapping failure.
5658 cmd
->result
= DID_IMM_RETRY
<< 16;
5659 cmd
->scsi_done(cmd
);
5663 /* Running in struct Scsi_Host->host_lock less mode */
5664 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5666 struct ctlr_info
*h
;
5667 struct hpsa_scsi_dev_t
*dev
;
5668 struct CommandList
*c
;
5671 /* Get the ptr to our adapter structure out of cmd->host. */
5672 h
= sdev_to_hba(cmd
->device
);
5674 BUG_ON(cmd
->request
->tag
< 0);
5676 dev
= cmd
->device
->hostdata
;
5678 cmd
->result
= DID_NO_CONNECT
<< 16;
5679 cmd
->scsi_done(cmd
);
5684 cmd
->result
= DID_NO_CONNECT
<< 16;
5685 cmd
->scsi_done(cmd
);
5689 if (unlikely(lockup_detected(h
))) {
5690 cmd
->result
= DID_NO_CONNECT
<< 16;
5691 cmd
->scsi_done(cmd
);
5696 return SCSI_MLQUEUE_DEVICE_BUSY
;
5698 c
= cmd_tagged_alloc(h
, cmd
);
5700 return SCSI_MLQUEUE_DEVICE_BUSY
;
5703 * This is necessary because the SML doesn't zero out this field during
5709 * Call alternate submit routine for I/O accelerated commands.
5710 * Retries always go down the normal I/O path.
5712 if (likely(cmd
->retries
== 0 &&
5713 !blk_rq_is_passthrough(cmd
->request
) &&
5714 h
->acciopath_status
)) {
5715 rc
= hpsa_ioaccel_submit(h
, c
, cmd
);
5718 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5719 hpsa_cmd_resolve_and_free(h
, c
);
5720 return SCSI_MLQUEUE_HOST_BUSY
;
5723 return hpsa_ciss_submit(h
, c
, cmd
, dev
);
5726 static void hpsa_scan_complete(struct ctlr_info
*h
)
5728 unsigned long flags
;
5730 spin_lock_irqsave(&h
->scan_lock
, flags
);
5731 h
->scan_finished
= 1;
5732 wake_up(&h
->scan_wait_queue
);
5733 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5736 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5738 struct ctlr_info
*h
= shost_to_hba(sh
);
5739 unsigned long flags
;
5742 * Don't let rescans be initiated on a controller known to be locked
5743 * up. If the controller locks up *during* a rescan, that thread is
5744 * probably hosed, but at least we can prevent new rescan threads from
5745 * piling up on a locked up controller.
5747 if (unlikely(lockup_detected(h
)))
5748 return hpsa_scan_complete(h
);
5751 * If a scan is already waiting to run, no need to add another
5753 spin_lock_irqsave(&h
->scan_lock
, flags
);
5754 if (h
->scan_waiting
) {
5755 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5759 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5761 /* wait until any scan already in progress is finished. */
5763 spin_lock_irqsave(&h
->scan_lock
, flags
);
5764 if (h
->scan_finished
)
5766 h
->scan_waiting
= 1;
5767 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5768 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5769 /* Note: We don't need to worry about a race between this
5770 * thread and driver unload because the midlayer will
5771 * have incremented the reference count, so unload won't
5772 * happen if we're in here.
5775 h
->scan_finished
= 0; /* mark scan as in progress */
5776 h
->scan_waiting
= 0;
5777 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5779 if (unlikely(lockup_detected(h
)))
5780 return hpsa_scan_complete(h
);
5783 * Do the scan after a reset completion
5785 spin_lock_irqsave(&h
->reset_lock
, flags
);
5786 if (h
->reset_in_progress
) {
5787 h
->drv_req_rescan
= 1;
5788 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5789 hpsa_scan_complete(h
);
5792 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5794 hpsa_update_scsi_devices(h
);
5796 hpsa_scan_complete(h
);
5799 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5801 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5808 else if (qdepth
> logical_drive
->queue_depth
)
5809 qdepth
= logical_drive
->queue_depth
;
5811 return scsi_change_queue_depth(sdev
, qdepth
);
5814 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5815 unsigned long elapsed_time
)
5817 struct ctlr_info
*h
= shost_to_hba(sh
);
5818 unsigned long flags
;
5821 spin_lock_irqsave(&h
->scan_lock
, flags
);
5822 finished
= h
->scan_finished
;
5823 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5827 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5829 struct Scsi_Host
*sh
;
5831 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5833 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5840 sh
->max_channel
= 3;
5841 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5842 sh
->max_lun
= HPSA_MAX_LUN
;
5843 sh
->max_id
= HPSA_MAX_LUN
;
5844 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5845 sh
->cmd_per_lun
= sh
->can_queue
;
5846 sh
->sg_tablesize
= h
->maxsgentries
;
5847 sh
->transportt
= hpsa_sas_transport_template
;
5848 sh
->hostdata
[0] = (unsigned long) h
;
5849 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5850 sh
->unique_id
= sh
->irq
;
5856 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5860 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5862 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5865 scsi_scan_host(h
->scsi_host
);
5870 * The block layer has already gone to the trouble of picking out a unique,
5871 * small-integer tag for this request. We use an offset from that value as
5872 * an index to select our command block. (The offset allows us to reserve the
5873 * low-numbered entries for our own uses.)
5875 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5877 int idx
= scmd
->request
->tag
;
5882 /* Offset to leave space for internal cmds. */
5883 return idx
+= HPSA_NRESERVED_CMDS
;
5887 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5888 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5890 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5891 struct CommandList
*c
, unsigned char lunaddr
[],
5896 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5897 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5898 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5899 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5902 /* no unmap needed here because no data xfer. */
5904 /* Check if the unit is already ready. */
5905 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5909 * The first command sent after reset will receive "unit attention" to
5910 * indicate that the LUN has been reset...this is actually what we're
5911 * looking for (but, success is good too).
5913 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5914 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5915 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5916 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5923 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5924 * returns zero when the unit is ready, and non-zero when giving up.
5926 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5927 struct CommandList
*c
,
5928 unsigned char lunaddr
[], int reply_queue
)
5932 int waittime
= 1; /* seconds */
5934 /* Send test unit ready until device ready, or give up. */
5935 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5938 * Wait for a bit. do this first, because if we send
5939 * the TUR right away, the reset will just abort it.
5941 msleep(1000 * waittime
);
5943 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5947 /* Increase wait time with each try, up to a point. */
5948 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5951 dev_warn(&h
->pdev
->dev
,
5952 "waiting %d secs for device to become ready.\n",
5959 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5960 unsigned char lunaddr
[],
5967 struct CommandList
*c
;
5972 * If no specific reply queue was requested, then send the TUR
5973 * repeatedly, requesting a reply on each reply queue; otherwise execute
5974 * the loop exactly once using only the specified queue.
5976 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5978 last_queue
= h
->nreply_queues
- 1;
5980 first_queue
= reply_queue
;
5981 last_queue
= reply_queue
;
5984 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5985 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5991 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5993 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5999 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6000 * complaining. Doing a host- or bus-reset can't do anything good here.
6002 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
6006 struct ctlr_info
*h
;
6007 struct hpsa_scsi_dev_t
*dev
= NULL
;
6010 unsigned long flags
;
6012 /* find the controller to which the command to be aborted was sent */
6013 h
= sdev_to_hba(scsicmd
->device
);
6014 if (h
== NULL
) /* paranoia */
6017 spin_lock_irqsave(&h
->reset_lock
, flags
);
6018 h
->reset_in_progress
= 1;
6019 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6021 if (lockup_detected(h
)) {
6023 goto return_reset_status
;
6026 dev
= scsicmd
->device
->hostdata
;
6028 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
6030 goto return_reset_status
;
6033 if (dev
->devtype
== TYPE_ENCLOSURE
) {
6035 goto return_reset_status
;
6038 /* if controller locked up, we can guarantee command won't complete */
6039 if (lockup_detected(h
)) {
6040 snprintf(msg
, sizeof(msg
),
6041 "cmd %d RESET FAILED, lockup detected",
6042 hpsa_get_cmd_index(scsicmd
));
6043 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6045 goto return_reset_status
;
6048 /* this reset request might be the result of a lockup; check */
6049 if (detect_controller_lockup(h
)) {
6050 snprintf(msg
, sizeof(msg
),
6051 "cmd %d RESET FAILED, new lockup detected",
6052 hpsa_get_cmd_index(scsicmd
));
6053 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6055 goto return_reset_status
;
6058 /* Do not attempt on controller */
6059 if (is_hba_lunid(dev
->scsi3addr
)) {
6061 goto return_reset_status
;
6064 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
6065 reset_type
= HPSA_DEVICE_RESET_MSG
;
6067 reset_type
= HPSA_PHYS_TARGET_RESET
;
6069 sprintf(msg
, "resetting %s",
6070 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
6071 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6074 * wait to see if any commands will complete before sending reset
6076 dev
->in_reset
= true; /* block any new cmds from OS for this device */
6077 for (i
= 0; i
< 10; i
++) {
6078 if (atomic_read(&dev
->commands_outstanding
) > 0)
6084 /* send a reset to the SCSI LUN which the command was sent to */
6085 rc
= hpsa_do_reset(h
, dev
, reset_type
, DEFAULT_REPLY_QUEUE
);
6091 sprintf(msg
, "reset %s %s",
6092 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
6093 rc
== SUCCESS
? "completed successfully" : "failed");
6094 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6096 return_reset_status
:
6097 spin_lock_irqsave(&h
->reset_lock
, flags
);
6098 h
->reset_in_progress
= 0;
6100 dev
->in_reset
= false;
6101 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6106 * For operations with an associated SCSI command, a command block is allocated
6107 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6108 * block request tag as an index into a table of entries. cmd_tagged_free() is
6109 * the complement, although cmd_free() may be called instead.
6111 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6112 struct scsi_cmnd
*scmd
)
6114 int idx
= hpsa_get_cmd_index(scmd
);
6115 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6117 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6118 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6119 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6120 /* The index value comes from the block layer, so if it's out of
6121 * bounds, it's probably not our bug.
6126 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6128 * We expect that the SCSI layer will hand us a unique tag
6129 * value. Thus, there should never be a collision here between
6130 * two requests...because if the selected command isn't idle
6131 * then someone is going to be very disappointed.
6133 if (idx
!= h
->last_collision_tag
) { /* Print once per tag */
6134 dev_warn(&h
->pdev
->dev
,
6135 "%s: tag collision (tag=%d)\n", __func__
, idx
);
6137 scsi_print_command(scmd
);
6138 h
->last_collision_tag
= idx
;
6143 atomic_inc(&c
->refcount
);
6145 hpsa_cmd_partial_init(h
, idx
, c
);
6149 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6152 * Release our reference to the block. We don't need to do anything
6153 * else to free it, because it is accessed by index.
6155 (void)atomic_dec(&c
->refcount
);
6159 * For operations that cannot sleep, a command block is allocated at init,
6160 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6161 * which ones are free or in use. Lock must be held when calling this.
6162 * cmd_free() is the complement.
6163 * This function never gives up and returns NULL. If it hangs,
6164 * another thread must call cmd_free() to free some tags.
6167 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6169 struct CommandList
*c
;
6174 * There is some *extremely* small but non-zero chance that that
6175 * multiple threads could get in here, and one thread could
6176 * be scanning through the list of bits looking for a free
6177 * one, but the free ones are always behind him, and other
6178 * threads sneak in behind him and eat them before he can
6179 * get to them, so that while there is always a free one, a
6180 * very unlucky thread might be starved anyway, never able to
6181 * beat the other threads. In reality, this happens so
6182 * infrequently as to be indistinguishable from never.
6184 * Note that we start allocating commands before the SCSI host structure
6185 * is initialized. Since the search starts at bit zero, this
6186 * all works, since we have at least one command structure available;
6187 * however, it means that the structures with the low indexes have to be
6188 * reserved for driver-initiated requests, while requests from the block
6189 * layer will use the higher indexes.
6193 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6194 HPSA_NRESERVED_CMDS
,
6196 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6200 c
= h
->cmd_pool
+ i
;
6201 refcount
= atomic_inc_return(&c
->refcount
);
6202 if (unlikely(refcount
> 1)) {
6203 cmd_free(h
, c
); /* already in use */
6204 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6207 set_bit(i
& (BITS_PER_LONG
- 1),
6208 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6209 break; /* it's ours now. */
6211 hpsa_cmd_partial_init(h
, i
, c
);
6217 * This is the complementary operation to cmd_alloc(). Note, however, in some
6218 * corner cases it may also be used to free blocks allocated by
6219 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6220 * the clear-bit is harmless.
6222 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6224 if (atomic_dec_and_test(&c
->refcount
)) {
6227 i
= c
- h
->cmd_pool
;
6228 clear_bit(i
& (BITS_PER_LONG
- 1),
6229 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6233 #ifdef CONFIG_COMPAT
6235 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, unsigned int cmd
,
6238 struct ctlr_info
*h
= sdev_to_hba(dev
);
6239 IOCTL32_Command_struct __user
*arg32
= arg
;
6240 IOCTL_Command_struct arg64
;
6247 memset(&arg64
, 0, sizeof(arg64
));
6248 if (copy_from_user(&arg64
, arg32
, offsetof(IOCTL_Command_struct
, buf
)))
6250 if (get_user(cp
, &arg32
->buf
))
6252 arg64
.buf
= compat_ptr(cp
);
6254 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6256 err
= hpsa_passthru_ioctl(h
, &arg64
);
6257 atomic_inc(&h
->passthru_cmds_avail
);
6260 if (copy_to_user(&arg32
->error_info
, &arg64
.error_info
,
6261 sizeof(arg32
->error_info
)))
6266 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6267 unsigned int cmd
, void __user
*arg
)
6269 struct ctlr_info
*h
= sdev_to_hba(dev
);
6270 BIG_IOCTL32_Command_struct __user
*arg32
= arg
;
6271 BIG_IOCTL_Command_struct arg64
;
6277 memset(&arg64
, 0, sizeof(arg64
));
6278 if (copy_from_user(&arg64
, arg32
,
6279 offsetof(BIG_IOCTL32_Command_struct
, buf
)))
6281 if (get_user(cp
, &arg32
->buf
))
6283 arg64
.buf
= compat_ptr(cp
);
6285 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6287 err
= hpsa_big_passthru_ioctl(h
, &arg64
);
6288 atomic_inc(&h
->passthru_cmds_avail
);
6291 if (copy_to_user(&arg32
->error_info
, &arg64
.error_info
,
6292 sizeof(arg32
->error_info
)))
6297 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6301 case CCISS_GETPCIINFO
:
6302 case CCISS_GETINTINFO
:
6303 case CCISS_SETINTINFO
:
6304 case CCISS_GETNODENAME
:
6305 case CCISS_SETNODENAME
:
6306 case CCISS_GETHEARTBEAT
:
6307 case CCISS_GETBUSTYPES
:
6308 case CCISS_GETFIRMVER
:
6309 case CCISS_GETDRIVVER
:
6310 case CCISS_REVALIDVOLS
:
6311 case CCISS_DEREGDISK
:
6312 case CCISS_REGNEWDISK
:
6314 case CCISS_RESCANDISK
:
6315 case CCISS_GETLUNINFO
:
6316 return hpsa_ioctl(dev
, cmd
, arg
);
6318 case CCISS_PASSTHRU32
:
6319 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6320 case CCISS_BIG_PASSTHRU32
:
6321 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6324 return -ENOIOCTLCMD
;
6329 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6331 struct hpsa_pci_info pciinfo
;
6335 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6336 pciinfo
.bus
= h
->pdev
->bus
->number
;
6337 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6338 pciinfo
.board_id
= h
->board_id
;
6339 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6344 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6346 DriverVer_type DriverVer
;
6347 unsigned char vmaj
, vmin
, vsubmin
;
6350 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6351 &vmaj
, &vmin
, &vsubmin
);
6353 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6354 "unrecognized.", HPSA_DRIVER_VERSION
);
6359 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6362 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6367 static int hpsa_passthru_ioctl(struct ctlr_info
*h
,
6368 IOCTL_Command_struct
*iocommand
)
6370 struct CommandList
*c
;
6375 if (!capable(CAP_SYS_RAWIO
))
6377 if ((iocommand
->buf_size
< 1) &&
6378 (iocommand
->Request
.Type
.Direction
!= XFER_NONE
)) {
6381 if (iocommand
->buf_size
> 0) {
6382 buff
= kmalloc(iocommand
->buf_size
, GFP_KERNEL
);
6385 if (iocommand
->Request
.Type
.Direction
& XFER_WRITE
) {
6386 /* Copy the data into the buffer we created */
6387 if (copy_from_user(buff
, iocommand
->buf
,
6388 iocommand
->buf_size
)) {
6393 memset(buff
, 0, iocommand
->buf_size
);
6398 /* Fill in the command type */
6399 c
->cmd_type
= CMD_IOCTL_PEND
;
6400 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6401 /* Fill in Command Header */
6402 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6403 if (iocommand
->buf_size
> 0) { /* buffer to fill */
6404 c
->Header
.SGList
= 1;
6405 c
->Header
.SGTotal
= cpu_to_le16(1);
6406 } else { /* no buffers to fill */
6407 c
->Header
.SGList
= 0;
6408 c
->Header
.SGTotal
= cpu_to_le16(0);
6410 memcpy(&c
->Header
.LUN
, &iocommand
->LUN_info
, sizeof(c
->Header
.LUN
));
6412 /* Fill in Request block */
6413 memcpy(&c
->Request
, &iocommand
->Request
,
6414 sizeof(c
->Request
));
6416 /* Fill in the scatter gather information */
6417 if (iocommand
->buf_size
> 0) {
6418 temp64
= dma_map_single(&h
->pdev
->dev
, buff
,
6419 iocommand
->buf_size
, DMA_BIDIRECTIONAL
);
6420 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6421 c
->SG
[0].Addr
= cpu_to_le64(0);
6422 c
->SG
[0].Len
= cpu_to_le32(0);
6426 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6427 c
->SG
[0].Len
= cpu_to_le32(iocommand
->buf_size
);
6428 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6430 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6432 if (iocommand
->buf_size
> 0)
6433 hpsa_pci_unmap(h
->pdev
, c
, 1, DMA_BIDIRECTIONAL
);
6434 check_ioctl_unit_attention(h
, c
);
6440 /* Copy the error information out */
6441 memcpy(&iocommand
->error_info
, c
->err_info
,
6442 sizeof(iocommand
->error_info
));
6443 if ((iocommand
->Request
.Type
.Direction
& XFER_READ
) &&
6444 iocommand
->buf_size
> 0) {
6445 /* Copy the data out of the buffer we created */
6446 if (copy_to_user(iocommand
->buf
, buff
, iocommand
->buf_size
)) {
6458 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
,
6459 BIG_IOCTL_Command_struct
*ioc
)
6461 struct CommandList
*c
;
6462 unsigned char **buff
= NULL
;
6463 int *buff_size
= NULL
;
6469 BYTE __user
*data_ptr
;
6471 if (!capable(CAP_SYS_RAWIO
))
6474 if ((ioc
->buf_size
< 1) &&
6475 (ioc
->Request
.Type
.Direction
!= XFER_NONE
))
6477 /* Check kmalloc limits using all SGs */
6478 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
)
6480 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
)
6482 buff
= kcalloc(SG_ENTRIES_IN_CMD
, sizeof(char *), GFP_KERNEL
);
6487 buff_size
= kmalloc_array(SG_ENTRIES_IN_CMD
, sizeof(int), GFP_KERNEL
);
6492 left
= ioc
->buf_size
;
6493 data_ptr
= ioc
->buf
;
6495 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6496 buff_size
[sg_used
] = sz
;
6497 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6498 if (buff
[sg_used
] == NULL
) {
6502 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6503 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6508 memset(buff
[sg_used
], 0, sz
);
6515 c
->cmd_type
= CMD_IOCTL_PEND
;
6516 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6517 c
->Header
.ReplyQueue
= 0;
6518 c
->Header
.SGList
= (u8
) sg_used
;
6519 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6520 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6521 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6522 if (ioc
->buf_size
> 0) {
6524 for (i
= 0; i
< sg_used
; i
++) {
6525 temp64
= dma_map_single(&h
->pdev
->dev
, buff
[i
],
6526 buff_size
[i
], DMA_BIDIRECTIONAL
);
6527 if (dma_mapping_error(&h
->pdev
->dev
,
6528 (dma_addr_t
) temp64
)) {
6529 c
->SG
[i
].Addr
= cpu_to_le64(0);
6530 c
->SG
[i
].Len
= cpu_to_le32(0);
6531 hpsa_pci_unmap(h
->pdev
, c
, i
,
6536 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6537 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6538 c
->SG
[i
].Ext
= cpu_to_le32(0);
6540 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6542 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6545 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, DMA_BIDIRECTIONAL
);
6546 check_ioctl_unit_attention(h
, c
);
6552 /* Copy the error information out */
6553 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6554 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6557 /* Copy the data out of the buffer we created */
6558 BYTE __user
*ptr
= ioc
->buf
;
6559 for (i
= 0; i
< sg_used
; i
++) {
6560 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6564 ptr
+= buff_size
[i
];
6574 for (i
= 0; i
< sg_used
; i
++)
6582 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6583 struct CommandList
*c
)
6585 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6586 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6587 (void) check_for_unit_attention(h
, c
);
6593 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6596 struct ctlr_info
*h
= sdev_to_hba(dev
);
6600 case CCISS_DEREGDISK
:
6601 case CCISS_REGNEWDISK
:
6603 hpsa_scan_start(h
->scsi_host
);
6605 case CCISS_GETPCIINFO
:
6606 return hpsa_getpciinfo_ioctl(h
, argp
);
6607 case CCISS_GETDRIVVER
:
6608 return hpsa_getdrivver_ioctl(h
, argp
);
6609 case CCISS_PASSTHRU
: {
6610 IOCTL_Command_struct iocommand
;
6614 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6616 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6618 rc
= hpsa_passthru_ioctl(h
, &iocommand
);
6619 atomic_inc(&h
->passthru_cmds_avail
);
6620 if (!rc
&& copy_to_user(argp
, &iocommand
, sizeof(iocommand
)))
6624 case CCISS_BIG_PASSTHRU
: {
6625 BIG_IOCTL_Command_struct ioc
;
6628 if (copy_from_user(&ioc
, argp
, sizeof(ioc
)))
6630 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6632 rc
= hpsa_big_passthru_ioctl(h
, &ioc
);
6633 atomic_inc(&h
->passthru_cmds_avail
);
6634 if (!rc
&& copy_to_user(argp
, &ioc
, sizeof(ioc
)))
6643 static void hpsa_send_host_reset(struct ctlr_info
*h
, u8 reset_type
)
6645 struct CommandList
*c
;
6649 /* fill_cmd can't fail here, no data buffer to map */
6650 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6651 RAID_CTLR_LUNID
, TYPE_MSG
);
6652 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6654 enqueue_cmd_and_start_io(h
, c
);
6655 /* Don't wait for completion, the reset won't complete. Don't free
6656 * the command either. This is the last command we will send before
6657 * re-initializing everything, so it doesn't matter and won't leak.
6662 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6663 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6666 enum dma_data_direction dir
= DMA_NONE
;
6668 c
->cmd_type
= CMD_IOCTL_PEND
;
6669 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6670 c
->Header
.ReplyQueue
= 0;
6671 if (buff
!= NULL
&& size
> 0) {
6672 c
->Header
.SGList
= 1;
6673 c
->Header
.SGTotal
= cpu_to_le16(1);
6675 c
->Header
.SGList
= 0;
6676 c
->Header
.SGTotal
= cpu_to_le16(0);
6678 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6680 if (cmd_type
== TYPE_CMD
) {
6683 /* are we trying to read a vital product page */
6684 if (page_code
& VPD_PAGE
) {
6685 c
->Request
.CDB
[1] = 0x01;
6686 c
->Request
.CDB
[2] = (page_code
& 0xff);
6688 c
->Request
.CDBLen
= 6;
6689 c
->Request
.type_attr_dir
=
6690 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6691 c
->Request
.Timeout
= 0;
6692 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6693 c
->Request
.CDB
[4] = size
& 0xFF;
6695 case RECEIVE_DIAGNOSTIC
:
6696 c
->Request
.CDBLen
= 6;
6697 c
->Request
.type_attr_dir
=
6698 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6699 c
->Request
.Timeout
= 0;
6700 c
->Request
.CDB
[0] = cmd
;
6701 c
->Request
.CDB
[1] = 1;
6702 c
->Request
.CDB
[2] = 1;
6703 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6704 c
->Request
.CDB
[4] = size
& 0xFF;
6706 case HPSA_REPORT_LOG
:
6707 case HPSA_REPORT_PHYS
:
6708 /* Talking to controller so It's a physical command
6709 mode = 00 target = 0. Nothing to write.
6711 c
->Request
.CDBLen
= 12;
6712 c
->Request
.type_attr_dir
=
6713 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6714 c
->Request
.Timeout
= 0;
6715 c
->Request
.CDB
[0] = cmd
;
6716 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6717 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6718 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6719 c
->Request
.CDB
[9] = size
& 0xFF;
6721 case BMIC_SENSE_DIAG_OPTIONS
:
6722 c
->Request
.CDBLen
= 16;
6723 c
->Request
.type_attr_dir
=
6724 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6725 c
->Request
.Timeout
= 0;
6726 /* Spec says this should be BMIC_WRITE */
6727 c
->Request
.CDB
[0] = BMIC_READ
;
6728 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6730 case BMIC_SET_DIAG_OPTIONS
:
6731 c
->Request
.CDBLen
= 16;
6732 c
->Request
.type_attr_dir
=
6733 TYPE_ATTR_DIR(cmd_type
,
6734 ATTR_SIMPLE
, XFER_WRITE
);
6735 c
->Request
.Timeout
= 0;
6736 c
->Request
.CDB
[0] = BMIC_WRITE
;
6737 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6739 case HPSA_CACHE_FLUSH
:
6740 c
->Request
.CDBLen
= 12;
6741 c
->Request
.type_attr_dir
=
6742 TYPE_ATTR_DIR(cmd_type
,
6743 ATTR_SIMPLE
, XFER_WRITE
);
6744 c
->Request
.Timeout
= 0;
6745 c
->Request
.CDB
[0] = BMIC_WRITE
;
6746 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6747 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6748 c
->Request
.CDB
[8] = size
& 0xFF;
6750 case TEST_UNIT_READY
:
6751 c
->Request
.CDBLen
= 6;
6752 c
->Request
.type_attr_dir
=
6753 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6754 c
->Request
.Timeout
= 0;
6756 case HPSA_GET_RAID_MAP
:
6757 c
->Request
.CDBLen
= 12;
6758 c
->Request
.type_attr_dir
=
6759 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6760 c
->Request
.Timeout
= 0;
6761 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6762 c
->Request
.CDB
[1] = cmd
;
6763 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6764 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6765 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6766 c
->Request
.CDB
[9] = size
& 0xFF;
6768 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6769 c
->Request
.CDBLen
= 10;
6770 c
->Request
.type_attr_dir
=
6771 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6772 c
->Request
.Timeout
= 0;
6773 c
->Request
.CDB
[0] = BMIC_READ
;
6774 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6775 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6776 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6778 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6779 c
->Request
.CDBLen
= 10;
6780 c
->Request
.type_attr_dir
=
6781 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6782 c
->Request
.Timeout
= 0;
6783 c
->Request
.CDB
[0] = BMIC_READ
;
6784 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6785 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6786 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6788 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6789 c
->Request
.CDBLen
= 10;
6790 c
->Request
.type_attr_dir
=
6791 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6792 c
->Request
.Timeout
= 0;
6793 c
->Request
.CDB
[0] = BMIC_READ
;
6794 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6795 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6796 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6798 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6799 c
->Request
.CDBLen
= 10;
6800 c
->Request
.type_attr_dir
=
6801 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6802 c
->Request
.Timeout
= 0;
6803 c
->Request
.CDB
[0] = BMIC_READ
;
6804 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6805 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6806 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6808 case BMIC_IDENTIFY_CONTROLLER
:
6809 c
->Request
.CDBLen
= 10;
6810 c
->Request
.type_attr_dir
=
6811 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6812 c
->Request
.Timeout
= 0;
6813 c
->Request
.CDB
[0] = BMIC_READ
;
6814 c
->Request
.CDB
[1] = 0;
6815 c
->Request
.CDB
[2] = 0;
6816 c
->Request
.CDB
[3] = 0;
6817 c
->Request
.CDB
[4] = 0;
6818 c
->Request
.CDB
[5] = 0;
6819 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6820 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6821 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6822 c
->Request
.CDB
[9] = 0;
6825 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6828 } else if (cmd_type
== TYPE_MSG
) {
6831 case HPSA_PHYS_TARGET_RESET
:
6832 c
->Request
.CDBLen
= 16;
6833 c
->Request
.type_attr_dir
=
6834 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6835 c
->Request
.Timeout
= 0; /* Don't time out */
6836 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6837 c
->Request
.CDB
[0] = HPSA_RESET
;
6838 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6839 /* Physical target reset needs no control bytes 4-7*/
6840 c
->Request
.CDB
[4] = 0x00;
6841 c
->Request
.CDB
[5] = 0x00;
6842 c
->Request
.CDB
[6] = 0x00;
6843 c
->Request
.CDB
[7] = 0x00;
6845 case HPSA_DEVICE_RESET_MSG
:
6846 c
->Request
.CDBLen
= 16;
6847 c
->Request
.type_attr_dir
=
6848 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6849 c
->Request
.Timeout
= 0; /* Don't time out */
6850 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6851 c
->Request
.CDB
[0] = cmd
;
6852 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6853 /* If bytes 4-7 are zero, it means reset the */
6855 c
->Request
.CDB
[4] = 0x00;
6856 c
->Request
.CDB
[5] = 0x00;
6857 c
->Request
.CDB
[6] = 0x00;
6858 c
->Request
.CDB
[7] = 0x00;
6861 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6866 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6870 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6872 dir
= DMA_FROM_DEVICE
;
6875 dir
= DMA_TO_DEVICE
;
6881 dir
= DMA_BIDIRECTIONAL
;
6883 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, dir
))
6889 * Map (physical) PCI mem into (virtual) kernel space
6891 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6893 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6894 ulong page_offs
= ((ulong
) base
) - page_base
;
6895 void __iomem
*page_remapped
= ioremap(page_base
,
6898 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6901 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6903 return h
->access
.command_completed(h
, q
);
6906 static inline bool interrupt_pending(struct ctlr_info
*h
)
6908 return h
->access
.intr_pending(h
);
6911 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6913 return (h
->access
.intr_pending(h
) == 0) ||
6914 (h
->interrupts_enabled
== 0);
6917 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6920 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6921 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6927 static inline void finish_cmd(struct CommandList
*c
)
6929 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6930 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6931 || c
->cmd_type
== CMD_IOACCEL2
))
6932 complete_scsi_command(c
);
6933 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6934 complete(c
->waiting
);
6937 /* process completion of an indexed ("direct lookup") command */
6938 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6942 struct CommandList
*c
;
6944 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6945 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6946 c
= h
->cmd_pool
+ tag_index
;
6951 /* Some controllers, like p400, will give us one interrupt
6952 * after a soft reset, even if we turned interrupts off.
6953 * Only need to check for this in the hpsa_xxx_discard_completions
6956 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6958 if (likely(!reset_devices
))
6961 if (likely(h
->interrupts_enabled
))
6964 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6965 "(known firmware bug.) Ignoring.\n");
6971 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6972 * Relies on (h-q[x] == x) being true for x such that
6973 * 0 <= x < MAX_REPLY_QUEUES.
6975 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6977 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6980 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6982 struct ctlr_info
*h
= queue_to_hba(queue
);
6983 u8 q
= *(u8
*) queue
;
6986 if (ignore_bogus_interrupt(h
))
6989 if (interrupt_not_for_us(h
))
6991 h
->last_intr_timestamp
= get_jiffies_64();
6992 while (interrupt_pending(h
)) {
6993 raw_tag
= get_next_completion(h
, q
);
6994 while (raw_tag
!= FIFO_EMPTY
)
6995 raw_tag
= next_command(h
, q
);
7000 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7002 struct ctlr_info
*h
= queue_to_hba(queue
);
7004 u8 q
= *(u8
*) queue
;
7006 if (ignore_bogus_interrupt(h
))
7009 h
->last_intr_timestamp
= get_jiffies_64();
7010 raw_tag
= get_next_completion(h
, q
);
7011 while (raw_tag
!= FIFO_EMPTY
)
7012 raw_tag
= next_command(h
, q
);
7016 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7018 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7020 u8 q
= *(u8
*) queue
;
7022 if (interrupt_not_for_us(h
))
7024 h
->last_intr_timestamp
= get_jiffies_64();
7025 while (interrupt_pending(h
)) {
7026 raw_tag
= get_next_completion(h
, q
);
7027 while (raw_tag
!= FIFO_EMPTY
) {
7028 process_indexed_cmd(h
, raw_tag
);
7029 raw_tag
= next_command(h
, q
);
7035 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7037 struct ctlr_info
*h
= queue_to_hba(queue
);
7039 u8 q
= *(u8
*) queue
;
7041 h
->last_intr_timestamp
= get_jiffies_64();
7042 raw_tag
= get_next_completion(h
, q
);
7043 while (raw_tag
!= FIFO_EMPTY
) {
7044 process_indexed_cmd(h
, raw_tag
);
7045 raw_tag
= next_command(h
, q
);
7050 /* Send a message CDB to the firmware. Careful, this only works
7051 * in simple mode, not performant mode due to the tag lookup.
7052 * We only ever use this immediately after a controller reset.
7054 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7058 struct CommandListHeader CommandHeader
;
7059 struct RequestBlock Request
;
7060 struct ErrDescriptor ErrorDescriptor
;
7062 struct Command
*cmd
;
7063 static const size_t cmd_sz
= sizeof(*cmd
) +
7064 sizeof(cmd
->ErrorDescriptor
);
7068 void __iomem
*vaddr
;
7071 vaddr
= pci_ioremap_bar(pdev
, 0);
7075 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7076 * CCISS commands, so they must be allocated from the lower 4GiB of
7079 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
7085 cmd
= dma_alloc_coherent(&pdev
->dev
, cmd_sz
, &paddr64
, GFP_KERNEL
);
7091 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7092 * although there's no guarantee, we assume that the address is at
7093 * least 4-byte aligned (most likely, it's page-aligned).
7095 paddr32
= cpu_to_le32(paddr64
);
7097 cmd
->CommandHeader
.ReplyQueue
= 0;
7098 cmd
->CommandHeader
.SGList
= 0;
7099 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7100 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7101 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7103 cmd
->Request
.CDBLen
= 16;
7104 cmd
->Request
.type_attr_dir
=
7105 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7106 cmd
->Request
.Timeout
= 0; /* Don't time out */
7107 cmd
->Request
.CDB
[0] = opcode
;
7108 cmd
->Request
.CDB
[1] = type
;
7109 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7110 cmd
->ErrorDescriptor
.Addr
=
7111 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7112 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7114 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7116 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7117 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7118 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7120 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7125 /* we leak the DMA buffer here ... no choice since the controller could
7126 * still complete the command.
7128 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7129 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7134 dma_free_coherent(&pdev
->dev
, cmd_sz
, cmd
, paddr64
);
7136 if (tag
& HPSA_ERROR_BIT
) {
7137 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7142 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7147 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7149 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7150 void __iomem
*vaddr
, u32 use_doorbell
)
7154 /* For everything after the P600, the PCI power state method
7155 * of resetting the controller doesn't work, so we have this
7156 * other way using the doorbell register.
7158 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7159 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7161 /* PMC hardware guys tell us we need a 10 second delay after
7162 * doorbell reset and before any attempt to talk to the board
7163 * at all to ensure that this actually works and doesn't fall
7164 * over in some weird corner cases.
7167 } else { /* Try to do it the PCI power state way */
7169 /* Quoting from the Open CISS Specification: "The Power
7170 * Management Control/Status Register (CSR) controls the power
7171 * state of the device. The normal operating state is D0,
7172 * CSR=00h. The software off state is D3, CSR=03h. To reset
7173 * the controller, place the interface device in D3 then to D0,
7174 * this causes a secondary PCI reset which will reset the
7179 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7181 /* enter the D3hot power management state */
7182 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7188 /* enter the D0 power management state */
7189 rc
= pci_set_power_state(pdev
, PCI_D0
);
7194 * The P600 requires a small delay when changing states.
7195 * Otherwise we may think the board did not reset and we bail.
7196 * This for kdump only and is particular to the P600.
7203 static void init_driver_version(char *driver_version
, int len
)
7205 memset(driver_version
, 0, len
);
7206 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7209 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7211 char *driver_version
;
7212 int i
, size
= sizeof(cfgtable
->driver_version
);
7214 driver_version
= kmalloc(size
, GFP_KERNEL
);
7215 if (!driver_version
)
7218 init_driver_version(driver_version
, size
);
7219 for (i
= 0; i
< size
; i
++)
7220 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7221 kfree(driver_version
);
7225 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7226 unsigned char *driver_ver
)
7230 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7231 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7234 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7237 char *driver_ver
, *old_driver_ver
;
7238 int rc
, size
= sizeof(cfgtable
->driver_version
);
7240 old_driver_ver
= kmalloc_array(2, size
, GFP_KERNEL
);
7241 if (!old_driver_ver
)
7243 driver_ver
= old_driver_ver
+ size
;
7245 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7246 * should have been changed, otherwise we know the reset failed.
7248 init_driver_version(old_driver_ver
, size
);
7249 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7250 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7251 kfree(old_driver_ver
);
7254 /* This does a hard reset of the controller using PCI power management
7255 * states or the using the doorbell register.
7257 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7261 u64 cfg_base_addr_index
;
7262 void __iomem
*vaddr
;
7263 unsigned long paddr
;
7264 u32 misc_fw_support
;
7266 struct CfgTable __iomem
*cfgtable
;
7268 u16 command_register
;
7270 /* For controllers as old as the P600, this is very nearly
7273 * pci_save_state(pci_dev);
7274 * pci_set_power_state(pci_dev, PCI_D3hot);
7275 * pci_set_power_state(pci_dev, PCI_D0);
7276 * pci_restore_state(pci_dev);
7278 * For controllers newer than the P600, the pci power state
7279 * method of resetting doesn't work so we have another way
7280 * using the doorbell register.
7283 if (!ctlr_is_resettable(board_id
)) {
7284 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7288 /* if controller is soft- but not hard resettable... */
7289 if (!ctlr_is_hard_resettable(board_id
))
7290 return -ENOTSUPP
; /* try soft reset later. */
7292 /* Save the PCI command register */
7293 pci_read_config_word(pdev
, 4, &command_register
);
7294 pci_save_state(pdev
);
7296 /* find the first memory BAR, so we can find the cfg table */
7297 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7300 vaddr
= remap_pci_mem(paddr
, 0x250);
7304 /* find cfgtable in order to check if reset via doorbell is supported */
7305 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7306 &cfg_base_addr_index
, &cfg_offset
);
7309 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7310 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7315 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7317 goto unmap_cfgtable
;
7319 /* If reset via doorbell register is supported, use that.
7320 * There are two such methods. Favor the newest method.
7322 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7323 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7325 use_doorbell
= DOORBELL_CTLR_RESET2
;
7327 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7329 dev_warn(&pdev
->dev
,
7330 "Soft reset not supported. Firmware update is required.\n");
7331 rc
= -ENOTSUPP
; /* try soft reset */
7332 goto unmap_cfgtable
;
7336 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7338 goto unmap_cfgtable
;
7340 pci_restore_state(pdev
);
7341 pci_write_config_word(pdev
, 4, command_register
);
7343 /* Some devices (notably the HP Smart Array 5i Controller)
7344 need a little pause here */
7345 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7347 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7349 dev_warn(&pdev
->dev
,
7350 "Failed waiting for board to become ready after hard reset\n");
7351 goto unmap_cfgtable
;
7354 rc
= controller_reset_failed(vaddr
);
7356 goto unmap_cfgtable
;
7358 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7359 "controller. Will try soft reset.\n");
7362 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7374 * We cannot read the structure directly, for portability we must use
7376 * This is for debug only.
7378 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7384 dev_info(dev
, "Controller Configuration information\n");
7385 dev_info(dev
, "------------------------------------\n");
7386 for (i
= 0; i
< 4; i
++)
7387 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7388 temp_name
[4] = '\0';
7389 dev_info(dev
, " Signature = %s\n", temp_name
);
7390 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7391 dev_info(dev
, " Transport methods supported = 0x%x\n",
7392 readl(&(tb
->TransportSupport
)));
7393 dev_info(dev
, " Transport methods active = 0x%x\n",
7394 readl(&(tb
->TransportActive
)));
7395 dev_info(dev
, " Requested transport Method = 0x%x\n",
7396 readl(&(tb
->HostWrite
.TransportRequest
)));
7397 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7398 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7399 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7400 readl(&(tb
->HostWrite
.CoalIntCount
)));
7401 dev_info(dev
, " Max outstanding commands = %d\n",
7402 readl(&(tb
->CmdsOutMax
)));
7403 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7404 for (i
= 0; i
< 16; i
++)
7405 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7406 temp_name
[16] = '\0';
7407 dev_info(dev
, " Server Name = %s\n", temp_name
);
7408 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7409 readl(&(tb
->HeartBeat
)));
7410 #endif /* HPSA_DEBUG */
7413 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7415 int i
, offset
, mem_type
, bar_type
;
7417 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7420 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7421 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7422 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7425 mem_type
= pci_resource_flags(pdev
, i
) &
7426 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7428 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7429 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7430 offset
+= 4; /* 32 bit */
7432 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7435 default: /* reserved in PCI 2.2 */
7436 dev_warn(&pdev
->dev
,
7437 "base address is invalid\n");
7441 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7447 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7449 pci_free_irq_vectors(h
->pdev
);
7450 h
->msix_vectors
= 0;
7453 static void hpsa_setup_reply_map(struct ctlr_info
*h
)
7455 const struct cpumask
*mask
;
7456 unsigned int queue
, cpu
;
7458 for (queue
= 0; queue
< h
->msix_vectors
; queue
++) {
7459 mask
= pci_irq_get_affinity(h
->pdev
, queue
);
7463 for_each_cpu(cpu
, mask
)
7464 h
->reply_map
[cpu
] = queue
;
7469 for_each_possible_cpu(cpu
)
7470 h
->reply_map
[cpu
] = 0;
7473 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7474 * controllers that are capable. If not, we use legacy INTx mode.
7476 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7478 unsigned int flags
= PCI_IRQ_LEGACY
;
7481 /* Some boards advertise MSI but don't really support it */
7482 switch (h
->board_id
) {
7489 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7490 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7492 h
->msix_vectors
= ret
;
7496 flags
|= PCI_IRQ_MSI
;
7500 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7506 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7510 u32 subsystem_vendor_id
, subsystem_device_id
;
7512 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7513 subsystem_device_id
= pdev
->subsystem_device
;
7514 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7515 subsystem_vendor_id
;
7518 *legacy_board
= false;
7519 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7520 if (*board_id
== products
[i
].board_id
) {
7521 if (products
[i
].access
!= &SA5A_access
&&
7522 products
[i
].access
!= &SA5B_access
)
7524 dev_warn(&pdev
->dev
,
7525 "legacy board ID: 0x%08x\n",
7528 *legacy_board
= true;
7532 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7534 *legacy_board
= true;
7535 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7538 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7539 unsigned long *memory_bar
)
7543 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7544 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7545 /* addressing mode bits already removed */
7546 *memory_bar
= pci_resource_start(pdev
, i
);
7547 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7551 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7555 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7561 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7563 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7565 for (i
= 0; i
< iterations
; i
++) {
7566 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7567 if (wait_for_ready
) {
7568 if (scratchpad
== HPSA_FIRMWARE_READY
)
7571 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7574 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7576 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7580 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7581 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7584 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7585 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7586 *cfg_base_addr
&= (u32
) 0x0000ffff;
7587 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7588 if (*cfg_base_addr_index
== -1) {
7589 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7595 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7597 if (h
->transtable
) {
7598 iounmap(h
->transtable
);
7599 h
->transtable
= NULL
;
7602 iounmap(h
->cfgtable
);
7607 /* Find and map CISS config table and transfer table
7608 + * several items must be unmapped (freed) later
7610 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7614 u64 cfg_base_addr_index
;
7618 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7619 &cfg_base_addr_index
, &cfg_offset
);
7622 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7623 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7625 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7628 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7631 /* Find performant mode table. */
7632 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7633 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7634 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7635 sizeof(*h
->transtable
));
7636 if (!h
->transtable
) {
7637 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7638 hpsa_free_cfgtables(h
);
7644 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7646 #define MIN_MAX_COMMANDS 16
7647 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7649 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7651 /* Limit commands in memory limited kdump scenario. */
7652 if (reset_devices
&& h
->max_commands
> 32)
7653 h
->max_commands
= 32;
7655 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7656 dev_warn(&h
->pdev
->dev
,
7657 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7660 h
->max_commands
= MIN_MAX_COMMANDS
;
7664 /* If the controller reports that the total max sg entries is greater than 512,
7665 * then we know that chained SG blocks work. (Original smart arrays did not
7666 * support chained SG blocks and would return zero for max sg entries.)
7668 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7670 return h
->maxsgentries
> 512;
7673 /* Interrogate the hardware for some limits:
7674 * max commands, max SG elements without chaining, and with chaining,
7675 * SG chain block size, etc.
7677 static void hpsa_find_board_params(struct ctlr_info
*h
)
7679 hpsa_get_max_perf_mode_cmds(h
);
7680 h
->nr_cmds
= h
->max_commands
;
7681 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7682 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7683 if (hpsa_supports_chained_sg_blocks(h
)) {
7684 /* Limit in-command s/g elements to 32 save dma'able memory. */
7685 h
->max_cmd_sg_entries
= 32;
7686 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7687 h
->maxsgentries
--; /* save one for chain pointer */
7690 * Original smart arrays supported at most 31 s/g entries
7691 * embedded inline in the command (trying to use more
7692 * would lock up the controller)
7694 h
->max_cmd_sg_entries
= 31;
7695 h
->maxsgentries
= 31; /* default to traditional values */
7699 /* Find out what task management functions are supported and cache */
7700 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7701 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7702 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7703 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7704 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7705 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7706 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7709 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7711 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7712 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7718 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7722 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7723 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7725 driver_support
|= ENABLE_SCSI_PREFETCH
;
7727 driver_support
|= ENABLE_UNIT_ATTN
;
7728 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7731 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7732 * in a prefetch beyond physical memory.
7734 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7738 if (h
->board_id
!= 0x3225103C)
7740 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7741 dma_prefetch
|= 0x8000;
7742 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7745 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7749 unsigned long flags
;
7750 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7751 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7752 spin_lock_irqsave(&h
->lock
, flags
);
7753 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7754 spin_unlock_irqrestore(&h
->lock
, flags
);
7755 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7757 /* delay and try again */
7758 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7765 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7769 unsigned long flags
;
7771 /* under certain very rare conditions, this can take awhile.
7772 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7773 * as we enter this code.)
7775 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7776 if (h
->remove_in_progress
)
7778 spin_lock_irqsave(&h
->lock
, flags
);
7779 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7780 spin_unlock_irqrestore(&h
->lock
, flags
);
7781 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7783 /* delay and try again */
7784 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7791 /* return -ENODEV or other reason on error, 0 on success */
7792 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7796 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7797 if (!(trans_support
& SIMPLE_MODE
))
7800 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7802 /* Update the field, and then ring the doorbell */
7803 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7804 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7805 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7806 if (hpsa_wait_for_mode_change_ack(h
))
7808 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7809 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7811 h
->transMethod
= CFGTBL_Trans_Simple
;
7814 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7818 /* free items allocated or mapped by hpsa_pci_init */
7819 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7821 hpsa_free_cfgtables(h
); /* pci_init 4 */
7822 iounmap(h
->vaddr
); /* pci_init 3 */
7824 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7826 * call pci_disable_device before pci_release_regions per
7827 * Documentation/driver-api/pci/pci.rst
7829 pci_disable_device(h
->pdev
); /* pci_init 1 */
7830 pci_release_regions(h
->pdev
); /* pci_init 2 */
7833 /* several items must be freed later */
7834 static int hpsa_pci_init(struct ctlr_info
*h
)
7836 int prod_index
, err
;
7839 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7842 h
->product_name
= products
[prod_index
].product_name
;
7843 h
->access
= *(products
[prod_index
].access
);
7844 h
->legacy_board
= legacy_board
;
7845 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7846 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7848 err
= pci_enable_device(h
->pdev
);
7850 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7851 pci_disable_device(h
->pdev
);
7855 err
= pci_request_regions(h
->pdev
, HPSA
);
7857 dev_err(&h
->pdev
->dev
,
7858 "failed to obtain PCI resources\n");
7859 pci_disable_device(h
->pdev
);
7863 pci_set_master(h
->pdev
);
7865 err
= hpsa_interrupt_mode(h
);
7869 /* setup mapping between CPU and reply queue */
7870 hpsa_setup_reply_map(h
);
7872 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7874 goto clean2
; /* intmode+region, pci */
7875 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7877 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7879 goto clean2
; /* intmode+region, pci */
7881 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7883 goto clean3
; /* vaddr, intmode+region, pci */
7884 err
= hpsa_find_cfgtables(h
);
7886 goto clean3
; /* vaddr, intmode+region, pci */
7887 hpsa_find_board_params(h
);
7889 if (!hpsa_CISS_signature_present(h
)) {
7891 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7893 hpsa_set_driver_support_bits(h
);
7894 hpsa_p600_dma_prefetch_quirk(h
);
7895 err
= hpsa_enter_simple_mode(h
);
7897 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7900 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7901 hpsa_free_cfgtables(h
);
7902 clean3
: /* vaddr, intmode+region, pci */
7905 clean2
: /* intmode+region, pci */
7906 hpsa_disable_interrupt_mode(h
);
7909 * call pci_disable_device before pci_release_regions per
7910 * Documentation/driver-api/pci/pci.rst
7912 pci_disable_device(h
->pdev
);
7913 pci_release_regions(h
->pdev
);
7917 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7921 #define HBA_INQUIRY_BYTE_COUNT 64
7922 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7923 if (!h
->hba_inquiry_data
)
7925 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7926 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7928 kfree(h
->hba_inquiry_data
);
7929 h
->hba_inquiry_data
= NULL
;
7933 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7936 void __iomem
*vaddr
;
7941 /* kdump kernel is loading, we don't know in which state is
7942 * the pci interface. The dev->enable_cnt is equal zero
7943 * so we call enable+disable, wait a while and switch it on.
7945 rc
= pci_enable_device(pdev
);
7947 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7950 pci_disable_device(pdev
);
7951 msleep(260); /* a randomly chosen number */
7952 rc
= pci_enable_device(pdev
);
7954 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7958 pci_set_master(pdev
);
7960 vaddr
= pci_ioremap_bar(pdev
, 0);
7961 if (vaddr
== NULL
) {
7965 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7968 /* Reset the controller with a PCI power-cycle or via doorbell */
7969 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7971 /* -ENOTSUPP here means we cannot reset the controller
7972 * but it's already (and still) up and running in
7973 * "performant mode". Or, it might be 640x, which can't reset
7974 * due to concerns about shared bbwc between 6402/6404 pair.
7979 /* Now try to get the controller to respond to a no-op */
7980 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7981 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7982 if (hpsa_noop(pdev
) == 0)
7985 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7986 (i
< 11 ? "; re-trying" : ""));
7991 pci_disable_device(pdev
);
7995 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7997 kfree(h
->cmd_pool_bits
);
7998 h
->cmd_pool_bits
= NULL
;
8000 dma_free_coherent(&h
->pdev
->dev
,
8001 h
->nr_cmds
* sizeof(struct CommandList
),
8003 h
->cmd_pool_dhandle
);
8005 h
->cmd_pool_dhandle
= 0;
8007 if (h
->errinfo_pool
) {
8008 dma_free_coherent(&h
->pdev
->dev
,
8009 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8011 h
->errinfo_pool_dhandle
);
8012 h
->errinfo_pool
= NULL
;
8013 h
->errinfo_pool_dhandle
= 0;
8017 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8019 h
->cmd_pool_bits
= kcalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
),
8020 sizeof(unsigned long),
8022 h
->cmd_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8023 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8024 &h
->cmd_pool_dhandle
, GFP_KERNEL
);
8025 h
->errinfo_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8026 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8027 &h
->errinfo_pool_dhandle
, GFP_KERNEL
);
8028 if ((h
->cmd_pool_bits
== NULL
)
8029 || (h
->cmd_pool
== NULL
)
8030 || (h
->errinfo_pool
== NULL
)) {
8031 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8034 hpsa_preinitialize_commands(h
);
8037 hpsa_free_cmd_pool(h
);
8041 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8042 static void hpsa_free_irqs(struct ctlr_info
*h
)
8047 if (hpsa_simple_mode
)
8048 irq_vector
= h
->intr_mode
;
8050 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
8051 /* Single reply queue, only one irq to free */
8052 free_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8053 &h
->q
[h
->intr_mode
]);
8054 h
->q
[h
->intr_mode
] = 0;
8058 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8059 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
8062 for (; i
< MAX_REPLY_QUEUES
; i
++)
8066 /* returns 0 on success; cleans up and returns -Enn on error */
8067 static int hpsa_request_irqs(struct ctlr_info
*h
,
8068 irqreturn_t (*msixhandler
)(int, void *),
8069 irqreturn_t (*intxhandler
)(int, void *))
8074 if (hpsa_simple_mode
)
8075 irq_vector
= h
->intr_mode
;
8078 * initialize h->q[x] = x so that interrupt handlers know which
8081 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8084 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
8085 /* If performant mode and MSI-X, use multiple reply queues */
8086 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8087 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8088 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8094 dev_err(&h
->pdev
->dev
,
8095 "failed to get irq %d for %s\n",
8096 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8097 for (j
= 0; j
< i
; j
++) {
8098 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8101 for (; j
< MAX_REPLY_QUEUES
; j
++)
8107 /* Use single reply pool */
8108 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8109 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8110 h
->msix_vectors
? "x" : "");
8111 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8114 &h
->q
[h
->intr_mode
]);
8116 sprintf(h
->intrname
[h
->intr_mode
],
8117 "%s-intx", h
->devname
);
8118 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8119 intxhandler
, IRQF_SHARED
,
8121 &h
->q
[h
->intr_mode
]);
8125 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8126 pci_irq_vector(h
->pdev
, irq_vector
), h
->devname
);
8133 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8136 hpsa_send_host_reset(h
, HPSA_RESET_TYPE_CONTROLLER
);
8138 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8139 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8141 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8145 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8146 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8148 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8149 "after soft reset.\n");
8156 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8160 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8161 if (!h
->reply_queue
[i
].head
)
8163 dma_free_coherent(&h
->pdev
->dev
,
8164 h
->reply_queue_size
,
8165 h
->reply_queue
[i
].head
,
8166 h
->reply_queue
[i
].busaddr
);
8167 h
->reply_queue
[i
].head
= NULL
;
8168 h
->reply_queue
[i
].busaddr
= 0;
8170 h
->reply_queue_size
= 0;
8173 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8175 hpsa_free_performant_mode(h
); /* init_one 7 */
8176 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8177 hpsa_free_cmd_pool(h
); /* init_one 5 */
8178 hpsa_free_irqs(h
); /* init_one 4 */
8179 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8180 h
->scsi_host
= NULL
; /* init_one 3 */
8181 hpsa_free_pci_init(h
); /* init_one 2_5 */
8182 free_percpu(h
->lockup_detected
); /* init_one 2 */
8183 h
->lockup_detected
= NULL
; /* init_one 2 */
8184 if (h
->resubmit_wq
) {
8185 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8186 h
->resubmit_wq
= NULL
;
8188 if (h
->rescan_ctlr_wq
) {
8189 destroy_workqueue(h
->rescan_ctlr_wq
);
8190 h
->rescan_ctlr_wq
= NULL
;
8192 if (h
->monitor_ctlr_wq
) {
8193 destroy_workqueue(h
->monitor_ctlr_wq
);
8194 h
->monitor_ctlr_wq
= NULL
;
8197 kfree(h
); /* init_one 1 */
8200 /* Called when controller lockup detected. */
8201 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8204 struct CommandList
*c
;
8207 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8208 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8209 c
= h
->cmd_pool
+ i
;
8210 refcount
= atomic_inc_return(&c
->refcount
);
8212 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8214 atomic_dec(&h
->commands_outstanding
);
8219 dev_warn(&h
->pdev
->dev
,
8220 "failed %d commands in fail_all\n", failcount
);
8223 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8227 for_each_online_cpu(cpu
) {
8228 u32
*lockup_detected
;
8229 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8230 *lockup_detected
= value
;
8232 wmb(); /* be sure the per-cpu variables are out to memory */
8235 static void controller_lockup_detected(struct ctlr_info
*h
)
8237 unsigned long flags
;
8238 u32 lockup_detected
;
8240 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8241 spin_lock_irqsave(&h
->lock
, flags
);
8242 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8243 if (!lockup_detected
) {
8244 /* no heartbeat, but controller gave us a zero. */
8245 dev_warn(&h
->pdev
->dev
,
8246 "lockup detected after %d but scratchpad register is zero\n",
8247 h
->heartbeat_sample_interval
/ HZ
);
8248 lockup_detected
= 0xffffffff;
8250 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8251 spin_unlock_irqrestore(&h
->lock
, flags
);
8252 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8253 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8254 if (lockup_detected
== 0xffff0000) {
8255 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8256 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8258 pci_disable_device(h
->pdev
);
8259 fail_all_outstanding_cmds(h
);
8262 static int detect_controller_lockup(struct ctlr_info
*h
)
8266 unsigned long flags
;
8268 now
= get_jiffies_64();
8269 /* If we've received an interrupt recently, we're ok. */
8270 if (time_after64(h
->last_intr_timestamp
+
8271 (h
->heartbeat_sample_interval
), now
))
8275 * If we've already checked the heartbeat recently, we're ok.
8276 * This could happen if someone sends us a signal. We
8277 * otherwise don't care about signals in this thread.
8279 if (time_after64(h
->last_heartbeat_timestamp
+
8280 (h
->heartbeat_sample_interval
), now
))
8283 /* If heartbeat has not changed since we last looked, we're not ok. */
8284 spin_lock_irqsave(&h
->lock
, flags
);
8285 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8286 spin_unlock_irqrestore(&h
->lock
, flags
);
8287 if (h
->last_heartbeat
== heartbeat
) {
8288 controller_lockup_detected(h
);
8293 h
->last_heartbeat
= heartbeat
;
8294 h
->last_heartbeat_timestamp
= now
;
8299 * Set ioaccel status for all ioaccel volumes.
8301 * Called from monitor controller worker (hpsa_event_monitor_worker)
8303 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8304 * transformation, so we will be turning off ioaccel for all volumes that
8305 * make up the Array.
8307 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8313 struct hpsa_scsi_dev_t
*device
;
8318 buf
= kmalloc(64, GFP_KERNEL
);
8323 * Run through current device list used during I/O requests.
8325 for (i
= 0; i
< h
->ndevices
; i
++) {
8326 int offload_to_be_enabled
= 0;
8327 int offload_config
= 0;
8333 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8334 HPSA_VPD_LV_IOACCEL_STATUS
))
8339 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8340 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8345 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8348 * Check if offload is still configured on
8351 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8353 * If offload is configured on, check to see if ioaccel
8354 * needs to be enabled.
8357 offload_to_be_enabled
=
8358 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8361 * If ioaccel is to be re-enabled, re-enable later during the
8362 * scan operation so the driver can get a fresh raidmap
8363 * before turning ioaccel back on.
8365 if (offload_to_be_enabled
)
8369 * Immediately turn off ioaccel for any volume the
8370 * controller tells us to. Some of the reasons could be:
8371 * transformation - change to the LVs of an Array.
8372 * degraded volume - component failure
8374 hpsa_turn_off_ioaccel_for_device(device
);
8380 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8384 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8387 /* Ask the controller to clear the events we're handling. */
8388 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8389 | CFGTBL_Trans_io_accel2
)) &&
8390 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8391 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8393 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8394 event_type
= "state change";
8395 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8396 event_type
= "configuration change";
8397 /* Stop sending new RAID offload reqs via the IO accelerator */
8398 scsi_block_requests(h
->scsi_host
);
8399 hpsa_set_ioaccel_status(h
);
8400 hpsa_drain_accel_commands(h
);
8401 /* Set 'accelerator path config change' bit */
8402 dev_warn(&h
->pdev
->dev
,
8403 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8404 h
->events
, event_type
);
8405 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8406 /* Set the "clear event notify field update" bit 6 */
8407 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8408 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8409 hpsa_wait_for_clear_event_notify_ack(h
);
8410 scsi_unblock_requests(h
->scsi_host
);
8412 /* Acknowledge controller notification events. */
8413 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8414 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8415 hpsa_wait_for_clear_event_notify_ack(h
);
8420 /* Check a register on the controller to see if there are configuration
8421 * changes (added/changed/removed logical drives, etc.) which mean that
8422 * we should rescan the controller for devices.
8423 * Also check flag for driver-initiated rescan.
8425 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8427 if (h
->drv_req_rescan
) {
8428 h
->drv_req_rescan
= 0;
8432 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8435 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8436 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8440 * Check if any of the offline devices have become ready
8442 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8444 unsigned long flags
;
8445 struct offline_device_entry
*d
;
8446 struct list_head
*this, *tmp
;
8448 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8449 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8450 d
= list_entry(this, struct offline_device_entry
,
8452 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8453 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8454 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8455 list_del(&d
->offline_list
);
8456 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8459 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8461 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8465 static int hpsa_luns_changed(struct ctlr_info
*h
)
8467 int rc
= 1; /* assume there are changes */
8468 struct ReportLUNdata
*logdev
= NULL
;
8470 /* if we can't find out if lun data has changed,
8471 * assume that it has.
8474 if (!h
->lastlogicals
)
8477 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8481 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8482 dev_warn(&h
->pdev
->dev
,
8483 "report luns failed, can't track lun changes.\n");
8486 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8487 dev_info(&h
->pdev
->dev
,
8488 "Lun changes detected.\n");
8489 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8492 rc
= 0; /* no changes detected. */
8498 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8500 struct Scsi_Host
*sh
= NULL
;
8501 unsigned long flags
;
8504 * Do the scan after the reset
8506 spin_lock_irqsave(&h
->reset_lock
, flags
);
8507 if (h
->reset_in_progress
) {
8508 h
->drv_req_rescan
= 1;
8509 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8512 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8514 sh
= scsi_host_get(h
->scsi_host
);
8516 hpsa_scan_start(sh
);
8518 h
->drv_req_rescan
= 0;
8523 * watch for controller events
8525 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8527 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8528 struct ctlr_info
, event_monitor_work
);
8529 unsigned long flags
;
8531 spin_lock_irqsave(&h
->lock
, flags
);
8532 if (h
->remove_in_progress
) {
8533 spin_unlock_irqrestore(&h
->lock
, flags
);
8536 spin_unlock_irqrestore(&h
->lock
, flags
);
8538 if (hpsa_ctlr_needs_rescan(h
)) {
8539 hpsa_ack_ctlr_events(h
);
8540 hpsa_perform_rescan(h
);
8543 spin_lock_irqsave(&h
->lock
, flags
);
8544 if (!h
->remove_in_progress
)
8545 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->event_monitor_work
,
8546 HPSA_EVENT_MONITOR_INTERVAL
);
8547 spin_unlock_irqrestore(&h
->lock
, flags
);
8550 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8552 unsigned long flags
;
8553 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8554 struct ctlr_info
, rescan_ctlr_work
);
8556 spin_lock_irqsave(&h
->lock
, flags
);
8557 if (h
->remove_in_progress
) {
8558 spin_unlock_irqrestore(&h
->lock
, flags
);
8561 spin_unlock_irqrestore(&h
->lock
, flags
);
8563 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8564 hpsa_perform_rescan(h
);
8565 } else if (h
->discovery_polling
) {
8566 if (hpsa_luns_changed(h
)) {
8567 dev_info(&h
->pdev
->dev
,
8568 "driver discovery polling rescan.\n");
8569 hpsa_perform_rescan(h
);
8572 spin_lock_irqsave(&h
->lock
, flags
);
8573 if (!h
->remove_in_progress
)
8574 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8575 h
->heartbeat_sample_interval
);
8576 spin_unlock_irqrestore(&h
->lock
, flags
);
8579 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8581 unsigned long flags
;
8582 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8583 struct ctlr_info
, monitor_ctlr_work
);
8585 detect_controller_lockup(h
);
8586 if (lockup_detected(h
))
8589 spin_lock_irqsave(&h
->lock
, flags
);
8590 if (!h
->remove_in_progress
)
8591 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->monitor_ctlr_work
,
8592 h
->heartbeat_sample_interval
);
8593 spin_unlock_irqrestore(&h
->lock
, flags
);
8596 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8599 struct workqueue_struct
*wq
= NULL
;
8601 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8603 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8608 static void hpda_free_ctlr_info(struct ctlr_info
*h
)
8610 kfree(h
->reply_map
);
8614 static struct ctlr_info
*hpda_alloc_ctlr_info(void)
8616 struct ctlr_info
*h
;
8618 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8622 h
->reply_map
= kcalloc(nr_cpu_ids
, sizeof(*h
->reply_map
), GFP_KERNEL
);
8623 if (!h
->reply_map
) {
8630 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8633 struct ctlr_info
*h
;
8634 int try_soft_reset
= 0;
8635 unsigned long flags
;
8638 if (number_of_controllers
== 0)
8639 printk(KERN_INFO DRIVER_NAME
"\n");
8641 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8643 dev_warn(&pdev
->dev
, "Board ID not found\n");
8647 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8649 if (rc
!= -ENOTSUPP
)
8651 /* If the reset fails in a particular way (it has no way to do
8652 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8653 * a soft reset once we get the controller configured up to the
8654 * point that it can accept a command.
8660 reinit_after_soft_reset
:
8662 /* Command structures must be aligned on a 32-byte boundary because
8663 * the 5 lower bits of the address are used by the hardware. and by
8664 * the driver. See comments in hpsa.h for more info.
8666 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8667 h
= hpda_alloc_ctlr_info();
8669 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8675 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8676 INIT_LIST_HEAD(&h
->offline_device_list
);
8677 spin_lock_init(&h
->lock
);
8678 spin_lock_init(&h
->offline_device_lock
);
8679 spin_lock_init(&h
->scan_lock
);
8680 spin_lock_init(&h
->reset_lock
);
8681 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8683 /* Allocate and clear per-cpu variable lockup_detected */
8684 h
->lockup_detected
= alloc_percpu(u32
);
8685 if (!h
->lockup_detected
) {
8686 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8688 goto clean1
; /* aer/h */
8690 set_lockup_detected_for_all_cpus(h
, 0);
8692 rc
= hpsa_pci_init(h
);
8694 goto clean2
; /* lu, aer/h */
8696 /* relies on h-> settings made by hpsa_pci_init, including
8697 * interrupt_mode h->intr */
8698 rc
= hpsa_scsi_host_alloc(h
);
8700 goto clean2_5
; /* pci, lu, aer/h */
8702 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8703 h
->ctlr
= number_of_controllers
;
8704 number_of_controllers
++;
8706 /* configure PCI DMA stuff */
8707 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
8709 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
8711 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8712 goto clean3
; /* shost, pci, lu, aer/h */
8716 /* make sure the board interrupts are off */
8717 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8719 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8721 goto clean3
; /* shost, pci, lu, aer/h */
8722 rc
= hpsa_alloc_cmd_pool(h
);
8724 goto clean4
; /* irq, shost, pci, lu, aer/h */
8725 rc
= hpsa_alloc_sg_chain_blocks(h
);
8727 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8728 init_waitqueue_head(&h
->scan_wait_queue
);
8729 init_waitqueue_head(&h
->event_sync_wait_queue
);
8730 mutex_init(&h
->reset_mutex
);
8731 h
->scan_finished
= 1; /* no scan currently in progress */
8732 h
->scan_waiting
= 0;
8734 pci_set_drvdata(pdev
, h
);
8737 spin_lock_init(&h
->devlock
);
8738 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8740 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8742 /* create the resubmit workqueue */
8743 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8744 if (!h
->rescan_ctlr_wq
) {
8749 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8750 if (!h
->resubmit_wq
) {
8752 goto clean7
; /* aer/h */
8755 h
->monitor_ctlr_wq
= hpsa_create_controller_wq(h
, "monitor");
8756 if (!h
->monitor_ctlr_wq
) {
8762 * At this point, the controller is ready to take commands.
8763 * Now, if reset_devices and the hard reset didn't work, try
8764 * the soft reset and see if that works.
8766 if (try_soft_reset
) {
8768 /* This is kind of gross. We may or may not get a completion
8769 * from the soft reset command, and if we do, then the value
8770 * from the fifo may or may not be valid. So, we wait 10 secs
8771 * after the reset throwing away any completions we get during
8772 * that time. Unregister the interrupt handler and register
8773 * fake ones to scoop up any residual completions.
8775 spin_lock_irqsave(&h
->lock
, flags
);
8776 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8777 spin_unlock_irqrestore(&h
->lock
, flags
);
8779 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8780 hpsa_intx_discard_completions
);
8782 dev_warn(&h
->pdev
->dev
,
8783 "Failed to request_irq after soft reset.\n");
8785 * cannot goto clean7 or free_irqs will be called
8786 * again. Instead, do its work
8788 hpsa_free_performant_mode(h
); /* clean7 */
8789 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8790 hpsa_free_cmd_pool(h
); /* clean5 */
8792 * skip hpsa_free_irqs(h) clean4 since that
8793 * was just called before request_irqs failed
8798 rc
= hpsa_kdump_soft_reset(h
);
8800 /* Neither hard nor soft reset worked, we're hosed. */
8803 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8804 dev_info(&h
->pdev
->dev
,
8805 "Waiting for stale completions to drain.\n");
8806 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8808 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8810 rc
= controller_reset_failed(h
->cfgtable
);
8812 dev_info(&h
->pdev
->dev
,
8813 "Soft reset appears to have failed.\n");
8815 /* since the controller's reset, we have to go back and re-init
8816 * everything. Easiest to just forget what we've done and do it
8819 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8822 /* don't goto clean, we already unallocated */
8825 goto reinit_after_soft_reset
;
8828 /* Enable Accelerated IO path at driver layer */
8829 h
->acciopath_status
= 1;
8830 /* Disable discovery polling.*/
8831 h
->discovery_polling
= 0;
8834 /* Turn the interrupts on so we can service requests */
8835 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8837 hpsa_hba_inquiry(h
);
8839 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8840 if (!h
->lastlogicals
)
8841 dev_info(&h
->pdev
->dev
,
8842 "Can't track change to report lun data\n");
8844 /* hook into SCSI subsystem */
8845 rc
= hpsa_scsi_add_host(h
);
8847 goto clean8
; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8849 /* Monitor the controller for firmware lockups */
8850 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8851 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8852 schedule_delayed_work(&h
->monitor_ctlr_work
,
8853 h
->heartbeat_sample_interval
);
8854 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8855 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8856 h
->heartbeat_sample_interval
);
8857 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8858 schedule_delayed_work(&h
->event_monitor_work
,
8859 HPSA_EVENT_MONITOR_INTERVAL
);
8862 clean8
: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8863 kfree(h
->lastlogicals
);
8864 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8865 hpsa_free_performant_mode(h
);
8866 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8867 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8868 hpsa_free_sg_chain_blocks(h
);
8869 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8870 hpsa_free_cmd_pool(h
);
8871 clean4
: /* irq, shost, pci, lu, aer/h */
8873 clean3
: /* shost, pci, lu, aer/h */
8874 scsi_host_put(h
->scsi_host
);
8875 h
->scsi_host
= NULL
;
8876 clean2_5
: /* pci, lu, aer/h */
8877 hpsa_free_pci_init(h
);
8878 clean2
: /* lu, aer/h */
8879 if (h
->lockup_detected
) {
8880 free_percpu(h
->lockup_detected
);
8881 h
->lockup_detected
= NULL
;
8883 clean1
: /* wq/aer/h */
8884 if (h
->resubmit_wq
) {
8885 destroy_workqueue(h
->resubmit_wq
);
8886 h
->resubmit_wq
= NULL
;
8888 if (h
->rescan_ctlr_wq
) {
8889 destroy_workqueue(h
->rescan_ctlr_wq
);
8890 h
->rescan_ctlr_wq
= NULL
;
8892 if (h
->monitor_ctlr_wq
) {
8893 destroy_workqueue(h
->monitor_ctlr_wq
);
8894 h
->monitor_ctlr_wq
= NULL
;
8900 static void hpsa_flush_cache(struct ctlr_info
*h
)
8903 struct CommandList
*c
;
8906 if (unlikely(lockup_detected(h
)))
8908 flush_buf
= kzalloc(4, GFP_KERNEL
);
8914 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8915 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8918 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8922 if (c
->err_info
->CommandStatus
!= 0)
8924 dev_warn(&h
->pdev
->dev
,
8925 "error flushing cache on controller\n");
8930 /* Make controller gather fresh report lun data each time we
8931 * send down a report luns request
8933 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8936 struct CommandList
*c
;
8939 /* Don't bother trying to set diag options if locked up */
8940 if (unlikely(h
->lockup_detected
))
8943 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8949 /* first, get the current diag options settings */
8950 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8951 RAID_CTLR_LUNID
, TYPE_CMD
))
8954 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8956 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8959 /* Now, set the bit for disabling the RLD caching */
8960 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8962 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8963 RAID_CTLR_LUNID
, TYPE_CMD
))
8966 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8968 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8971 /* Now verify that it got set: */
8972 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8973 RAID_CTLR_LUNID
, TYPE_CMD
))
8976 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8978 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8981 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8985 dev_err(&h
->pdev
->dev
,
8986 "Error: failed to disable report lun data caching.\n");
8992 static void __hpsa_shutdown(struct pci_dev
*pdev
)
8994 struct ctlr_info
*h
;
8996 h
= pci_get_drvdata(pdev
);
8997 /* Turn board interrupts off and send the flush cache command
8998 * sendcmd will turn off interrupt, and send the flush...
8999 * To write all data in the battery backed cache to disks
9001 hpsa_flush_cache(h
);
9002 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
9003 hpsa_free_irqs(h
); /* init_one 4 */
9004 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
9007 static void hpsa_shutdown(struct pci_dev
*pdev
)
9009 __hpsa_shutdown(pdev
);
9010 pci_disable_device(pdev
);
9013 static void hpsa_free_device_info(struct ctlr_info
*h
)
9017 for (i
= 0; i
< h
->ndevices
; i
++) {
9023 static void hpsa_remove_one(struct pci_dev
*pdev
)
9025 struct ctlr_info
*h
;
9026 unsigned long flags
;
9028 if (pci_get_drvdata(pdev
) == NULL
) {
9029 dev_err(&pdev
->dev
, "unable to remove device\n");
9032 h
= pci_get_drvdata(pdev
);
9034 /* Get rid of any controller monitoring work items */
9035 spin_lock_irqsave(&h
->lock
, flags
);
9036 h
->remove_in_progress
= 1;
9037 spin_unlock_irqrestore(&h
->lock
, flags
);
9038 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9039 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9040 cancel_delayed_work_sync(&h
->event_monitor_work
);
9041 destroy_workqueue(h
->rescan_ctlr_wq
);
9042 destroy_workqueue(h
->resubmit_wq
);
9043 destroy_workqueue(h
->monitor_ctlr_wq
);
9045 hpsa_delete_sas_host(h
);
9048 * Call before disabling interrupts.
9049 * scsi_remove_host can trigger I/O operations especially
9050 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9051 * operations which cannot complete and will hang the system.
9054 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9055 /* includes hpsa_free_irqs - init_one 4 */
9056 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9057 __hpsa_shutdown(pdev
);
9059 hpsa_free_device_info(h
); /* scan */
9061 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9062 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9063 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9064 hpsa_free_performant_mode(h
); /* init_one 7 */
9065 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9066 hpsa_free_cmd_pool(h
); /* init_one 5 */
9067 kfree(h
->lastlogicals
);
9069 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9071 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9072 h
->scsi_host
= NULL
; /* init_one 3 */
9074 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9075 hpsa_free_pci_init(h
); /* init_one 2.5 */
9077 free_percpu(h
->lockup_detected
); /* init_one 2 */
9078 h
->lockup_detected
= NULL
; /* init_one 2 */
9079 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9081 hpda_free_ctlr_info(h
); /* init_one 1 */
9084 static int __maybe_unused
hpsa_suspend(
9085 __attribute__((unused
)) struct device
*dev
)
9090 static int __maybe_unused hpsa_resume
9091 (__attribute__((unused
)) struct device
*dev
)
9096 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops
, hpsa_suspend
, hpsa_resume
);
9098 static struct pci_driver hpsa_pci_driver
= {
9100 .probe
= hpsa_init_one
,
9101 .remove
= hpsa_remove_one
,
9102 .id_table
= hpsa_pci_device_id
, /* id_table */
9103 .shutdown
= hpsa_shutdown
,
9104 .driver
.pm
= &hpsa_pm_ops
,
9107 /* Fill in bucket_map[], given nsgs (the max number of
9108 * scatter gather elements supported) and bucket[],
9109 * which is an array of 8 integers. The bucket[] array
9110 * contains 8 different DMA transfer sizes (in 16
9111 * byte increments) which the controller uses to fetch
9112 * commands. This function fills in bucket_map[], which
9113 * maps a given number of scatter gather elements to one of
9114 * the 8 DMA transfer sizes. The point of it is to allow the
9115 * controller to only do as much DMA as needed to fetch the
9116 * command, with the DMA transfer size encoded in the lower
9117 * bits of the command address.
9119 static void calc_bucket_map(int bucket
[], int num_buckets
,
9120 int nsgs
, int min_blocks
, u32
*bucket_map
)
9124 /* Note, bucket_map must have nsgs+1 entries. */
9125 for (i
= 0; i
<= nsgs
; i
++) {
9126 /* Compute size of a command with i SG entries */
9127 size
= i
+ min_blocks
;
9128 b
= num_buckets
; /* Assume the biggest bucket */
9129 /* Find the bucket that is just big enough */
9130 for (j
= 0; j
< num_buckets
; j
++) {
9131 if (bucket
[j
] >= size
) {
9136 /* for a command with i SG entries, use bucket b. */
9142 * return -ENODEV on err, 0 on success (or no action)
9143 * allocates numerous items that must be freed later
9145 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9148 unsigned long register_value
;
9149 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9150 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9151 CFGTBL_Trans_enable_directed_msix
|
9152 (trans_support
& (CFGTBL_Trans_io_accel1
|
9153 CFGTBL_Trans_io_accel2
));
9154 struct access_method access
= SA5_performant_access
;
9156 /* This is a bit complicated. There are 8 registers on
9157 * the controller which we write to to tell it 8 different
9158 * sizes of commands which there may be. It's a way of
9159 * reducing the DMA done to fetch each command. Encoded into
9160 * each command's tag are 3 bits which communicate to the controller
9161 * which of the eight sizes that command fits within. The size of
9162 * each command depends on how many scatter gather entries there are.
9163 * Each SG entry requires 16 bytes. The eight registers are programmed
9164 * with the number of 16-byte blocks a command of that size requires.
9165 * The smallest command possible requires 5 such 16 byte blocks.
9166 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9167 * blocks. Note, this only extends to the SG entries contained
9168 * within the command block, and does not extend to chained blocks
9169 * of SG elements. bft[] contains the eight values we write to
9170 * the registers. They are not evenly distributed, but have more
9171 * sizes for small commands, and fewer sizes for larger commands.
9173 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9174 #define MIN_IOACCEL2_BFT_ENTRY 5
9175 #define HPSA_IOACCEL2_HEADER_SZ 4
9176 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9177 13, 14, 15, 16, 17, 18, 19,
9178 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9179 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9180 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9181 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9182 16 * MIN_IOACCEL2_BFT_ENTRY
);
9183 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9184 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9185 /* 5 = 1 s/g entry or 4k
9186 * 6 = 2 s/g entry or 8k
9187 * 8 = 4 s/g entry or 16k
9188 * 10 = 6 s/g entry or 24k
9191 /* If the controller supports either ioaccel method then
9192 * we can also use the RAID stack submit path that does not
9193 * perform the superfluous readl() after each command submission.
9195 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9196 access
= SA5_performant_access_no_read
;
9198 /* Controller spec: zero out this buffer. */
9199 for (i
= 0; i
< h
->nreply_queues
; i
++)
9200 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9202 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9203 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9204 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9205 for (i
= 0; i
< 8; i
++)
9206 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9208 /* size of controller ring buffer */
9209 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9210 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9211 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9212 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9214 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9215 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9216 writel(h
->reply_queue
[i
].busaddr
,
9217 &h
->transtable
->RepQAddr
[i
].lower
);
9220 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9221 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9223 * enable outbound interrupt coalescing in accelerator mode;
9225 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9226 access
= SA5_ioaccel_mode1_access
;
9227 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9228 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9230 if (trans_support
& CFGTBL_Trans_io_accel2
)
9231 access
= SA5_ioaccel_mode2_access
;
9232 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9233 if (hpsa_wait_for_mode_change_ack(h
)) {
9234 dev_err(&h
->pdev
->dev
,
9235 "performant mode problem - doorbell timeout\n");
9238 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9239 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9240 dev_err(&h
->pdev
->dev
,
9241 "performant mode problem - transport not active\n");
9244 /* Change the access methods to the performant access methods */
9246 h
->transMethod
= transMethod
;
9248 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9249 (trans_support
& CFGTBL_Trans_io_accel2
)))
9252 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9253 /* Set up I/O accelerator mode */
9254 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9255 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9256 h
->reply_queue
[i
].current_entry
=
9257 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9259 bft
[7] = h
->ioaccel_maxsg
+ 8;
9260 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9261 h
->ioaccel1_blockFetchTable
);
9263 /* initialize all reply queue entries to unused */
9264 for (i
= 0; i
< h
->nreply_queues
; i
++)
9265 memset(h
->reply_queue
[i
].head
,
9266 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9267 h
->reply_queue_size
);
9269 /* set all the constant fields in the accelerator command
9270 * frames once at init time to save CPU cycles later.
9272 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9273 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9275 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9276 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9277 (i
* sizeof(struct ErrorInfo
)));
9278 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9279 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9280 cp
->host_context_flags
=
9281 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9282 cp
->timeout_sec
= 0;
9285 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9287 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9288 (i
* sizeof(struct io_accel1_cmd
)));
9290 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9291 u64 cfg_offset
, cfg_base_addr_index
;
9292 u32 bft2_offset
, cfg_base_addr
;
9294 hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9295 &cfg_base_addr_index
, &cfg_offset
);
9296 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9297 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9298 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9299 4, h
->ioaccel2_blockFetchTable
);
9300 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9301 BUILD_BUG_ON(offsetof(struct CfgTable
,
9302 io_accel_request_size_offset
) != 0xb8);
9303 h
->ioaccel2_bft2_regs
=
9304 remap_pci_mem(pci_resource_start(h
->pdev
,
9305 cfg_base_addr_index
) +
9306 cfg_offset
+ bft2_offset
,
9308 sizeof(*h
->ioaccel2_bft2_regs
));
9309 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9310 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9312 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9313 if (hpsa_wait_for_mode_change_ack(h
)) {
9314 dev_err(&h
->pdev
->dev
,
9315 "performant mode problem - enabling ioaccel mode\n");
9321 /* Free ioaccel1 mode command blocks and block fetch table */
9322 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9324 if (h
->ioaccel_cmd_pool
) {
9325 dma_free_coherent(&h
->pdev
->dev
,
9326 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9327 h
->ioaccel_cmd_pool
,
9328 h
->ioaccel_cmd_pool_dhandle
);
9329 h
->ioaccel_cmd_pool
= NULL
;
9330 h
->ioaccel_cmd_pool_dhandle
= 0;
9332 kfree(h
->ioaccel1_blockFetchTable
);
9333 h
->ioaccel1_blockFetchTable
= NULL
;
9336 /* Allocate ioaccel1 mode command blocks and block fetch table */
9337 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9340 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9341 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9342 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9344 /* Command structures must be aligned on a 128-byte boundary
9345 * because the 7 lower bits of the address are used by the
9348 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9349 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9350 h
->ioaccel_cmd_pool
=
9351 dma_alloc_coherent(&h
->pdev
->dev
,
9352 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9353 &h
->ioaccel_cmd_pool_dhandle
, GFP_KERNEL
);
9355 h
->ioaccel1_blockFetchTable
=
9356 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9357 sizeof(u32
)), GFP_KERNEL
);
9359 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9360 (h
->ioaccel1_blockFetchTable
== NULL
))
9363 memset(h
->ioaccel_cmd_pool
, 0,
9364 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9368 hpsa_free_ioaccel1_cmd_and_bft(h
);
9372 /* Free ioaccel2 mode command blocks and block fetch table */
9373 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9375 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9377 if (h
->ioaccel2_cmd_pool
) {
9378 dma_free_coherent(&h
->pdev
->dev
,
9379 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9380 h
->ioaccel2_cmd_pool
,
9381 h
->ioaccel2_cmd_pool_dhandle
);
9382 h
->ioaccel2_cmd_pool
= NULL
;
9383 h
->ioaccel2_cmd_pool_dhandle
= 0;
9385 kfree(h
->ioaccel2_blockFetchTable
);
9386 h
->ioaccel2_blockFetchTable
= NULL
;
9389 /* Allocate ioaccel2 mode command blocks and block fetch table */
9390 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9394 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9398 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9399 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9401 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9402 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9403 h
->ioaccel2_cmd_pool
=
9404 dma_alloc_coherent(&h
->pdev
->dev
,
9405 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9406 &h
->ioaccel2_cmd_pool_dhandle
, GFP_KERNEL
);
9408 h
->ioaccel2_blockFetchTable
=
9409 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9410 sizeof(u32
)), GFP_KERNEL
);
9412 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9413 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9418 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9422 memset(h
->ioaccel2_cmd_pool
, 0,
9423 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9427 hpsa_free_ioaccel2_cmd_and_bft(h
);
9431 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9432 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9434 kfree(h
->blockFetchTable
);
9435 h
->blockFetchTable
= NULL
;
9436 hpsa_free_reply_queues(h
);
9437 hpsa_free_ioaccel1_cmd_and_bft(h
);
9438 hpsa_free_ioaccel2_cmd_and_bft(h
);
9441 /* return -ENODEV on error, 0 on success (or no action)
9442 * allocates numerous items that must be freed later
9444 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9447 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9448 CFGTBL_Trans_use_short_tags
;
9451 if (hpsa_simple_mode
)
9454 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9455 if (!(trans_support
& PERFORMANT_MODE
))
9458 /* Check for I/O accelerator mode support */
9459 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9460 transMethod
|= CFGTBL_Trans_io_accel1
|
9461 CFGTBL_Trans_enable_directed_msix
;
9462 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9465 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9466 transMethod
|= CFGTBL_Trans_io_accel2
|
9467 CFGTBL_Trans_enable_directed_msix
;
9468 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9473 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9474 hpsa_get_max_perf_mode_cmds(h
);
9475 /* Performant mode ring buffer and supporting data structures */
9476 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9478 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9479 h
->reply_queue
[i
].head
= dma_alloc_coherent(&h
->pdev
->dev
,
9480 h
->reply_queue_size
,
9481 &h
->reply_queue
[i
].busaddr
,
9483 if (!h
->reply_queue
[i
].head
) {
9485 goto clean1
; /* rq, ioaccel */
9487 h
->reply_queue
[i
].size
= h
->max_commands
;
9488 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9489 h
->reply_queue
[i
].current_entry
= 0;
9492 /* Need a block fetch table for performant mode */
9493 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9494 sizeof(u32
)), GFP_KERNEL
);
9495 if (!h
->blockFetchTable
) {
9497 goto clean1
; /* rq, ioaccel */
9500 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9502 goto clean2
; /* bft, rq, ioaccel */
9505 clean2
: /* bft, rq, ioaccel */
9506 kfree(h
->blockFetchTable
);
9507 h
->blockFetchTable
= NULL
;
9508 clean1
: /* rq, ioaccel */
9509 hpsa_free_reply_queues(h
);
9510 hpsa_free_ioaccel1_cmd_and_bft(h
);
9511 hpsa_free_ioaccel2_cmd_and_bft(h
);
9515 static int is_accelerated_cmd(struct CommandList
*c
)
9517 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9520 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9522 struct CommandList
*c
= NULL
;
9523 int i
, accel_cmds_out
;
9526 do { /* wait for all outstanding ioaccel commands to drain out */
9528 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9529 c
= h
->cmd_pool
+ i
;
9530 refcount
= atomic_inc_return(&c
->refcount
);
9531 if (refcount
> 1) /* Command is allocated */
9532 accel_cmds_out
+= is_accelerated_cmd(c
);
9535 if (accel_cmds_out
<= 0)
9541 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9542 struct hpsa_sas_port
*hpsa_sas_port
)
9544 struct hpsa_sas_phy
*hpsa_sas_phy
;
9545 struct sas_phy
*phy
;
9547 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9551 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9552 hpsa_sas_port
->next_phy_index
);
9554 kfree(hpsa_sas_phy
);
9558 hpsa_sas_port
->next_phy_index
++;
9559 hpsa_sas_phy
->phy
= phy
;
9560 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9562 return hpsa_sas_phy
;
9565 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9567 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9569 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9570 if (hpsa_sas_phy
->added_to_port
)
9571 list_del(&hpsa_sas_phy
->phy_list_entry
);
9572 sas_phy_delete(phy
);
9573 kfree(hpsa_sas_phy
);
9576 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9579 struct hpsa_sas_port
*hpsa_sas_port
;
9580 struct sas_phy
*phy
;
9581 struct sas_identify
*identify
;
9583 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9584 phy
= hpsa_sas_phy
->phy
;
9586 identify
= &phy
->identify
;
9587 memset(identify
, 0, sizeof(*identify
));
9588 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9589 identify
->device_type
= SAS_END_DEVICE
;
9590 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9591 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9592 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9593 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9594 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9595 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9596 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9598 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9602 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9603 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9604 &hpsa_sas_port
->phy_list_head
);
9605 hpsa_sas_phy
->added_to_port
= true;
9611 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9612 struct sas_rphy
*rphy
)
9614 struct sas_identify
*identify
;
9616 identify
= &rphy
->identify
;
9617 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9618 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9619 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9621 return sas_rphy_add(rphy
);
9624 static struct hpsa_sas_port
9625 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9629 struct hpsa_sas_port
*hpsa_sas_port
;
9630 struct sas_port
*port
;
9632 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9636 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9637 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9639 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9641 goto free_hpsa_port
;
9643 rc
= sas_port_add(port
);
9647 hpsa_sas_port
->port
= port
;
9648 hpsa_sas_port
->sas_address
= sas_address
;
9649 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9650 &hpsa_sas_node
->port_list_head
);
9652 return hpsa_sas_port
;
9655 sas_port_free(port
);
9657 kfree(hpsa_sas_port
);
9662 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9664 struct hpsa_sas_phy
*hpsa_sas_phy
;
9665 struct hpsa_sas_phy
*next
;
9667 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9668 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9669 hpsa_free_sas_phy(hpsa_sas_phy
);
9671 sas_port_delete(hpsa_sas_port
->port
);
9672 list_del(&hpsa_sas_port
->port_list_entry
);
9673 kfree(hpsa_sas_port
);
9676 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9678 struct hpsa_sas_node
*hpsa_sas_node
;
9680 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9681 if (hpsa_sas_node
) {
9682 hpsa_sas_node
->parent_dev
= parent_dev
;
9683 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9686 return hpsa_sas_node
;
9689 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9691 struct hpsa_sas_port
*hpsa_sas_port
;
9692 struct hpsa_sas_port
*next
;
9697 list_for_each_entry_safe(hpsa_sas_port
, next
,
9698 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9699 hpsa_free_sas_port(hpsa_sas_port
);
9701 kfree(hpsa_sas_node
);
9704 static struct hpsa_scsi_dev_t
9705 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9706 struct sas_rphy
*rphy
)
9709 struct hpsa_scsi_dev_t
*device
;
9711 for (i
= 0; i
< h
->ndevices
; i
++) {
9713 if (!device
->sas_port
)
9715 if (device
->sas_port
->rphy
== rphy
)
9722 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9725 struct device
*parent_dev
;
9726 struct hpsa_sas_node
*hpsa_sas_node
;
9727 struct hpsa_sas_port
*hpsa_sas_port
;
9728 struct hpsa_sas_phy
*hpsa_sas_phy
;
9730 parent_dev
= &h
->scsi_host
->shost_dev
;
9732 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9736 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9737 if (!hpsa_sas_port
) {
9742 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9743 if (!hpsa_sas_phy
) {
9748 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9752 h
->sas_host
= hpsa_sas_node
;
9757 hpsa_free_sas_phy(hpsa_sas_phy
);
9759 hpsa_free_sas_port(hpsa_sas_port
);
9761 hpsa_free_sas_node(hpsa_sas_node
);
9766 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9768 hpsa_free_sas_node(h
->sas_host
);
9771 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9772 struct hpsa_scsi_dev_t
*device
)
9775 struct hpsa_sas_port
*hpsa_sas_port
;
9776 struct sas_rphy
*rphy
;
9778 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9782 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9788 hpsa_sas_port
->rphy
= rphy
;
9789 device
->sas_port
= hpsa_sas_port
;
9791 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9798 hpsa_free_sas_port(hpsa_sas_port
);
9799 device
->sas_port
= NULL
;
9804 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9806 if (device
->sas_port
) {
9807 hpsa_free_sas_port(device
->sas_port
);
9808 device
->sas_port
= NULL
;
9813 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9819 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9821 struct Scsi_Host
*shost
= phy_to_shost(rphy
);
9822 struct ctlr_info
*h
;
9823 struct hpsa_scsi_dev_t
*sd
;
9828 h
= shost_to_hba(shost
);
9833 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
9837 *identifier
= sd
->eli
;
9843 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9849 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9855 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9861 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9867 hpsa_sas_phy_release(struct sas_phy
*phy
)
9872 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9877 static struct sas_function_template hpsa_sas_transport_functions
= {
9878 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9879 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9880 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9881 .phy_reset
= hpsa_sas_phy_reset
,
9882 .phy_enable
= hpsa_sas_phy_enable
,
9883 .phy_setup
= hpsa_sas_phy_setup
,
9884 .phy_release
= hpsa_sas_phy_release
,
9885 .set_phy_speed
= hpsa_sas_phy_speed
,
9889 * This is it. Register the PCI driver information for the cards we control
9890 * the OS will call our registered routines when it finds one of our cards.
9892 static int __init
hpsa_init(void)
9896 hpsa_sas_transport_template
=
9897 sas_attach_transport(&hpsa_sas_transport_functions
);
9898 if (!hpsa_sas_transport_template
)
9901 rc
= pci_register_driver(&hpsa_pci_driver
);
9904 sas_release_transport(hpsa_sas_transport_template
);
9909 static void __exit
hpsa_cleanup(void)
9911 pci_unregister_driver(&hpsa_pci_driver
);
9912 sas_release_transport(hpsa_sas_transport_template
);
9915 static void __attribute__((unused
)) verify_offsets(void)
9917 #define VERIFY_OFFSET(member, offset) \
9918 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9920 VERIFY_OFFSET(structure_size
, 0);
9921 VERIFY_OFFSET(volume_blk_size
, 4);
9922 VERIFY_OFFSET(volume_blk_cnt
, 8);
9923 VERIFY_OFFSET(phys_blk_shift
, 16);
9924 VERIFY_OFFSET(parity_rotation_shift
, 17);
9925 VERIFY_OFFSET(strip_size
, 18);
9926 VERIFY_OFFSET(disk_starting_blk
, 20);
9927 VERIFY_OFFSET(disk_blk_cnt
, 28);
9928 VERIFY_OFFSET(data_disks_per_row
, 36);
9929 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9930 VERIFY_OFFSET(row_cnt
, 40);
9931 VERIFY_OFFSET(layout_map_count
, 42);
9932 VERIFY_OFFSET(flags
, 44);
9933 VERIFY_OFFSET(dekindex
, 46);
9934 /* VERIFY_OFFSET(reserved, 48 */
9935 VERIFY_OFFSET(data
, 64);
9937 #undef VERIFY_OFFSET
9939 #define VERIFY_OFFSET(member, offset) \
9940 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9942 VERIFY_OFFSET(IU_type
, 0);
9943 VERIFY_OFFSET(direction
, 1);
9944 VERIFY_OFFSET(reply_queue
, 2);
9945 /* VERIFY_OFFSET(reserved1, 3); */
9946 VERIFY_OFFSET(scsi_nexus
, 4);
9947 VERIFY_OFFSET(Tag
, 8);
9948 VERIFY_OFFSET(cdb
, 16);
9949 VERIFY_OFFSET(cciss_lun
, 32);
9950 VERIFY_OFFSET(data_len
, 40);
9951 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9952 VERIFY_OFFSET(sg_count
, 45);
9953 /* VERIFY_OFFSET(reserved3 */
9954 VERIFY_OFFSET(err_ptr
, 48);
9955 VERIFY_OFFSET(err_len
, 56);
9956 /* VERIFY_OFFSET(reserved4 */
9957 VERIFY_OFFSET(sg
, 64);
9959 #undef VERIFY_OFFSET
9961 #define VERIFY_OFFSET(member, offset) \
9962 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9964 VERIFY_OFFSET(dev_handle
, 0x00);
9965 VERIFY_OFFSET(reserved1
, 0x02);
9966 VERIFY_OFFSET(function
, 0x03);
9967 VERIFY_OFFSET(reserved2
, 0x04);
9968 VERIFY_OFFSET(err_info
, 0x0C);
9969 VERIFY_OFFSET(reserved3
, 0x10);
9970 VERIFY_OFFSET(err_info_len
, 0x12);
9971 VERIFY_OFFSET(reserved4
, 0x13);
9972 VERIFY_OFFSET(sgl_offset
, 0x14);
9973 VERIFY_OFFSET(reserved5
, 0x15);
9974 VERIFY_OFFSET(transfer_len
, 0x1C);
9975 VERIFY_OFFSET(reserved6
, 0x20);
9976 VERIFY_OFFSET(io_flags
, 0x24);
9977 VERIFY_OFFSET(reserved7
, 0x26);
9978 VERIFY_OFFSET(LUN
, 0x34);
9979 VERIFY_OFFSET(control
, 0x3C);
9980 VERIFY_OFFSET(CDB
, 0x40);
9981 VERIFY_OFFSET(reserved8
, 0x50);
9982 VERIFY_OFFSET(host_context_flags
, 0x60);
9983 VERIFY_OFFSET(timeout_sec
, 0x62);
9984 VERIFY_OFFSET(ReplyQueue
, 0x64);
9985 VERIFY_OFFSET(reserved9
, 0x65);
9986 VERIFY_OFFSET(tag
, 0x68);
9987 VERIFY_OFFSET(host_addr
, 0x70);
9988 VERIFY_OFFSET(CISS_LUN
, 0x78);
9989 VERIFY_OFFSET(SG
, 0x78 + 8);
9990 #undef VERIFY_OFFSET
9993 module_init(hpsa_init
);
9994 module_exit(hpsa_cleanup
);