WIP FPC-III support
[linux/fpc-iii.git] / drivers / scsi / isci / phy.c
blob1b87d9080ebebdf3f2f1001aca4c4a57bc3a1966
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
62 #undef C
63 #define C(a) (#a)
64 static const char *phy_state_name(enum sci_phy_states state)
66 static const char * const strings[] = PHY_STATES;
68 return strings[state];
70 #undef C
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
77 return iphy->max_negotiated_speed;
80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
82 struct isci_phy *table = iphy - iphy->phy_index;
83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
85 return ihost;
88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
90 return &phy_to_host(iphy)->pdev->dev;
93 static enum sci_status
94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 struct scu_transport_layer_registers __iomem *reg)
97 u32 tl_control;
99 iphy->transport_layer_registers = reg;
101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 &iphy->transport_layer_registers->stp_rni);
105 * Hardware team recommends that we enable the STP prefetch for all
106 * transports
108 tl_control = readl(&iphy->transport_layer_registers->control);
109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 writel(tl_control, &iphy->transport_layer_registers->control);
112 return SCI_SUCCESS;
115 static enum sci_status
116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 struct scu_link_layer_registers __iomem *llr)
119 struct isci_host *ihost = iphy->owning_port->owning_controller;
120 struct sci_phy_user_params *phy_user;
121 struct sci_phy_oem_params *phy_oem;
122 int phy_idx = iphy->phy_index;
123 struct sci_phy_cap phy_cap;
124 u32 phy_configuration;
125 u32 parity_check = 0;
126 u32 parity_count = 0;
127 u32 llctl, link_rate;
128 u32 clksm_value = 0;
129 u32 sp_timeouts = 0;
131 phy_user = &ihost->user_parameters.phys[phy_idx];
132 phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 iphy->link_layer_registers = llr;
135 /* Set our IDENTIFY frame data */
136 #define SCI_END_DEVICE 0x01
138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 &llr->transmit_identification);
145 /* Write the device SAS Address */
146 writel(0xFEDCBA98, &llr->sas_device_name_high);
147 writel(phy_idx, &llr->sas_device_name_low);
149 /* Write the source SAS Address */
150 writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
153 /* Clear and Set the PHY Identifier */
154 writel(0, &llr->identify_frame_phy_id);
155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
157 /* Change the initial state of the phy configuration register */
158 phy_configuration = readl(&llr->phy_configuration);
160 /* Hold OOB state machine in reset */
161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 writel(phy_configuration, &llr->phy_configuration);
164 /* Configure the SNW capabilities */
165 phy_cap.all = 0;
166 phy_cap.start = 1;
167 phy_cap.gen3_no_ssc = 1;
168 phy_cap.gen2_no_ssc = 1;
169 phy_cap.gen1_no_ssc = 1;
170 if (ihost->oem_parameters.controller.do_enable_ssc) {
171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 bool en_sas = false;
175 bool en_sata = false;
176 u32 sas_type = 0;
177 u32 sata_spread = 0x2;
178 u32 sas_spread = 0x2;
180 phy_cap.gen3_ssc = 1;
181 phy_cap.gen2_ssc = 1;
182 phy_cap.gen1_ssc = 1;
184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 en_sas = en_sata = true;
186 else {
187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
190 if (sata_spread)
191 en_sata = true;
193 if (sas_spread) {
194 en_sas = true;
195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
200 if (en_sas) {
201 u32 reg;
203 reg = readl(&xcvr->afe_xcvr_control0);
204 reg |= (0x00100000 | (sas_type << 19));
205 writel(reg, &xcvr->afe_xcvr_control0);
207 reg = readl(&xcvr->afe_tx_ssc_control);
208 reg |= sas_spread << 8;
209 writel(reg, &xcvr->afe_tx_ssc_control);
212 if (en_sata) {
213 u32 reg;
215 reg = readl(&xcvr->afe_tx_ssc_control);
216 reg |= sata_spread;
217 writel(reg, &xcvr->afe_tx_ssc_control);
219 reg = readl(&llr->stp_control);
220 reg |= 1 << 12;
221 writel(reg, &llr->stp_control);
225 /* The SAS specification indicates that the phy_capabilities that
226 * are transmitted shall have an even parity. Calculate the parity.
228 parity_check = phy_cap.all;
229 while (parity_check != 0) {
230 if (parity_check & 0x1)
231 parity_count++;
232 parity_check >>= 1;
235 /* If parity indicates there are an odd number of bits set, then
236 * set the parity bit to 1 in the phy capabilities.
238 if ((parity_count % 2) != 0)
239 phy_cap.parity = 1;
241 writel(phy_cap.all, &llr->phy_capabilities);
243 /* Set the enable spinup period but disable the ability to send
244 * notify enable spinup
246 writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 phy_user->notify_enable_spin_up_insertion_frequency),
248 &llr->notify_enable_spinup_control);
250 /* Write the ALIGN Insertion Ferequency for connected phy and
251 * inpendent of connected state
253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 phy_user->in_connection_align_insertion_frequency);
256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 phy_user->align_insertion_frequency);
259 writel(clksm_value, &llr->clock_skew_management);
261 if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 writel(0x04210400, &llr->afe_lookup_table_control);
263 writel(0x020A7C05, &llr->sas_primitive_timeout);
264 } else
265 writel(0x02108421, &llr->afe_lookup_table_control);
267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 (u8)ihost->user_parameters.no_outbound_task_timeout);
270 switch (phy_user->max_speed_generation) {
271 case SCIC_SDS_PARM_GEN3_SPEED:
272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 break;
274 case SCIC_SDS_PARM_GEN2_SPEED:
275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 break;
277 default:
278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 break;
281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 writel(llctl, &llr->link_layer_control);
284 sp_timeouts = readl(&llr->sas_phy_timeouts);
286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
294 writel(sp_timeouts, &llr->sas_phy_timeouts);
296 if (is_a2(ihost->pdev)) {
297 /* Program the max ARB time for the PHY to 700us so we
298 * inter-operate with the PMC expander which shuts down
299 * PHYs if the expander PHY generates too many breaks.
300 * This time value will guarantee that the initiator PHY
301 * will generate the break.
303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 &llr->maximum_arbitration_wait_timer_timeout);
307 /* Disable link layer hang detection, rely on the OS timeout for
308 * I/O timeouts.
310 writel(0, &llr->link_layer_hang_detection_timeout);
312 /* We can exit the initial state to the stopped state */
313 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
315 return SCI_SUCCESS;
318 static void phy_sata_timeout(struct timer_list *t)
320 struct sci_timer *tmr = from_timer(tmr, t, timer);
321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 struct isci_host *ihost = iphy->owning_port->owning_controller;
323 unsigned long flags;
325 spin_lock_irqsave(&ihost->scic_lock, flags);
327 if (tmr->cancel)
328 goto done;
330 dev_dbg(sciphy_to_dev(iphy),
331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 "timeout.\n",
333 __func__,
334 iphy);
336 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338 spin_unlock_irqrestore(&ihost->scic_lock, flags);
342 * This method returns the port currently containing this phy. If the phy is
343 * currently contained by the dummy port, then the phy is considered to not
344 * be part of a port.
345 * @sci_phy: This parameter specifies the phy for which to retrieve the
346 * containing port.
348 * This method returns a handle to a port that contains the supplied phy.
349 * NULL This value is returned if the phy is not part of a real
350 * port (i.e. it's contained in the dummy port). !NULL All other
351 * values indicate a handle/pointer to the port containing the phy.
353 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
355 struct isci_port *iport = iphy->owning_port;
357 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358 return NULL;
360 return iphy->owning_port;
364 * This method will assign a port to the phy object.
365 * @out]: iphy This parameter specifies the phy for which to assign a port
366 * object.
370 void sci_phy_set_port(
371 struct isci_phy *iphy,
372 struct isci_port *iport)
374 iphy->owning_port = iport;
376 if (iphy->bcn_received_while_port_unassigned) {
377 iphy->bcn_received_while_port_unassigned = false;
378 sci_port_broadcast_change_received(iphy->owning_port, iphy);
382 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383 struct scu_transport_layer_registers __iomem *tl,
384 struct scu_link_layer_registers __iomem *ll)
386 /* Perfrom the initialization of the TL hardware */
387 sci_phy_transport_layer_initialization(iphy, tl);
389 /* Perofrm the initialization of the PE hardware */
390 sci_phy_link_layer_initialization(iphy, ll);
392 /* There is nothing that needs to be done in this state just
393 * transition to the stopped state
395 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
397 return SCI_SUCCESS;
401 * This method assigns the direct attached device ID for this phy.
403 * @iphy The phy for which the direct attached device id is to
404 * be assigned.
405 * @device_id The direct attached device ID to assign to the phy.
406 * This will either be the RNi for the device or an invalid RNi if there
407 * is no current device assigned to the phy.
409 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
411 u32 tl_control;
413 writel(device_id, &iphy->transport_layer_registers->stp_rni);
416 * The read should guarantee that the first write gets posted
417 * before the next write
419 tl_control = readl(&iphy->transport_layer_registers->control);
420 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421 writel(tl_control, &iphy->transport_layer_registers->control);
424 static void sci_phy_suspend(struct isci_phy *iphy)
426 u32 scu_sas_pcfg_value;
428 scu_sas_pcfg_value =
429 readl(&iphy->link_layer_registers->phy_configuration);
430 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431 writel(scu_sas_pcfg_value,
432 &iphy->link_layer_registers->phy_configuration);
434 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
437 void sci_phy_resume(struct isci_phy *iphy)
439 u32 scu_sas_pcfg_value;
441 scu_sas_pcfg_value =
442 readl(&iphy->link_layer_registers->phy_configuration);
443 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444 writel(scu_sas_pcfg_value,
445 &iphy->link_layer_registers->phy_configuration);
448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
450 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
454 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
456 struct sas_identify_frame *iaf;
458 iaf = &iphy->frame_rcvd.iaf;
459 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
462 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
464 proto->all = readl(&iphy->link_layer_registers->transmit_identification);
467 enum sci_status sci_phy_start(struct isci_phy *iphy)
469 enum sci_phy_states state = iphy->sm.current_state_id;
471 if (state != SCI_PHY_STOPPED) {
472 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473 __func__, phy_state_name(state));
474 return SCI_FAILURE_INVALID_STATE;
477 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478 return SCI_SUCCESS;
481 enum sci_status sci_phy_stop(struct isci_phy *iphy)
483 enum sci_phy_states state = iphy->sm.current_state_id;
485 switch (state) {
486 case SCI_PHY_SUB_INITIAL:
487 case SCI_PHY_SUB_AWAIT_OSSP_EN:
488 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489 case SCI_PHY_SUB_AWAIT_SAS_POWER:
490 case SCI_PHY_SUB_AWAIT_SATA_POWER:
491 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494 case SCI_PHY_SUB_FINAL:
495 case SCI_PHY_READY:
496 break;
497 default:
498 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499 __func__, phy_state_name(state));
500 return SCI_FAILURE_INVALID_STATE;
503 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504 return SCI_SUCCESS;
507 enum sci_status sci_phy_reset(struct isci_phy *iphy)
509 enum sci_phy_states state = iphy->sm.current_state_id;
511 if (state != SCI_PHY_READY) {
512 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513 __func__, phy_state_name(state));
514 return SCI_FAILURE_INVALID_STATE;
517 sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518 return SCI_SUCCESS;
521 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
523 enum sci_phy_states state = iphy->sm.current_state_id;
525 switch (state) {
526 case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527 u32 enable_spinup;
529 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
533 /* Change state to the final state this substate machine has run to completion */
534 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
536 return SCI_SUCCESS;
538 case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539 u32 scu_sas_pcfg_value;
541 /* Release the spinup hold state and reset the OOB state machine */
542 scu_sas_pcfg_value =
543 readl(&iphy->link_layer_registers->phy_configuration);
544 scu_sas_pcfg_value &=
545 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547 writel(scu_sas_pcfg_value,
548 &iphy->link_layer_registers->phy_configuration);
550 /* Now restart the OOB operation */
551 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553 writel(scu_sas_pcfg_value,
554 &iphy->link_layer_registers->phy_configuration);
556 /* Change state to the final state this substate machine has run to completion */
557 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
559 return SCI_SUCCESS;
561 default:
562 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563 __func__, phy_state_name(state));
564 return SCI_FAILURE_INVALID_STATE;
568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
570 /* continue the link training for the phy as if it were a SAS PHY
571 * instead of a SATA PHY. This is done because the completion queue had a SAS
572 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
574 u32 phy_control;
576 phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578 writel(phy_control,
579 &iphy->link_layer_registers->phy_configuration);
581 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
583 iphy->protocol = SAS_PROTOCOL_SSP;
586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
588 /* This method continues the link training for the phy as if it were a SATA PHY
589 * instead of a SAS PHY. This is done because the completion queue had a SATA
590 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
592 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
594 iphy->protocol = SAS_PROTOCOL_SATA;
598 * sci_phy_complete_link_training - perform processing common to
599 * all protocols upon completion of link training.
600 * @sci_phy: This parameter specifies the phy object for which link training
601 * has completed.
602 * @max_link_rate: This parameter specifies the maximum link rate to be
603 * associated with this phy.
604 * @next_state: This parameter specifies the next state for the phy's starting
605 * sub-state machine.
608 static void sci_phy_complete_link_training(struct isci_phy *iphy,
609 enum sas_linkrate max_link_rate,
610 u32 next_state)
612 iphy->max_negotiated_speed = max_link_rate;
614 sci_change_state(&iphy->sm, next_state);
617 static const char *phy_event_name(u32 event_code)
619 switch (scu_get_event_code(event_code)) {
620 case SCU_EVENT_PORT_SELECTOR_DETECTED:
621 return "port selector";
622 case SCU_EVENT_SENT_PORT_SELECTION:
623 return "port selection";
624 case SCU_EVENT_HARD_RESET_TRANSMITTED:
625 return "tx hard reset";
626 case SCU_EVENT_HARD_RESET_RECEIVED:
627 return "rx hard reset";
628 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629 return "identify timeout";
630 case SCU_EVENT_LINK_FAILURE:
631 return "link fail";
632 case SCU_EVENT_SATA_SPINUP_HOLD:
633 return "sata spinup hold";
634 case SCU_EVENT_SAS_15_SSC:
635 case SCU_EVENT_SAS_15:
636 return "sas 1.5";
637 case SCU_EVENT_SAS_30_SSC:
638 case SCU_EVENT_SAS_30:
639 return "sas 3.0";
640 case SCU_EVENT_SAS_60_SSC:
641 case SCU_EVENT_SAS_60:
642 return "sas 6.0";
643 case SCU_EVENT_SATA_15_SSC:
644 case SCU_EVENT_SATA_15:
645 return "sata 1.5";
646 case SCU_EVENT_SATA_30_SSC:
647 case SCU_EVENT_SATA_30:
648 return "sata 3.0";
649 case SCU_EVENT_SATA_60_SSC:
650 case SCU_EVENT_SATA_60:
651 return "sata 6.0";
652 case SCU_EVENT_SAS_PHY_DETECTED:
653 return "sas detect";
654 case SCU_EVENT_SATA_PHY_DETECTED:
655 return "sata detect";
656 default:
657 return "unknown";
661 #define phy_event_dbg(iphy, state, code) \
662 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663 phy_to_host(iphy)->id, iphy->phy_index, \
664 phy_state_name(state), phy_event_name(code), code)
666 #define phy_event_warn(iphy, state, code) \
667 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668 phy_to_host(iphy)->id, iphy->phy_index, \
669 phy_state_name(state), phy_event_name(code), code)
672 static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
674 u32 val;
676 /* Extend timeout */
677 val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
678 val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
679 val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
681 writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
684 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
686 enum sci_phy_states state = iphy->sm.current_state_id;
688 switch (state) {
689 case SCI_PHY_SUB_AWAIT_OSSP_EN:
690 switch (scu_get_event_code(event_code)) {
691 case SCU_EVENT_SAS_PHY_DETECTED:
692 sci_phy_start_sas_link_training(iphy);
693 iphy->is_in_link_training = true;
694 break;
695 case SCU_EVENT_SATA_SPINUP_HOLD:
696 sci_phy_start_sata_link_training(iphy);
697 iphy->is_in_link_training = true;
698 break;
699 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
700 /* Extend timeout value */
701 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
703 /* Start the oob/sn state machine over again */
704 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705 break;
706 default:
707 phy_event_dbg(iphy, state, event_code);
708 return SCI_FAILURE;
710 return SCI_SUCCESS;
711 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712 switch (scu_get_event_code(event_code)) {
713 case SCU_EVENT_SAS_PHY_DETECTED:
715 * Why is this being reported again by the controller?
716 * We would re-enter this state so just stay here */
717 break;
718 case SCU_EVENT_SAS_15:
719 case SCU_EVENT_SAS_15_SSC:
720 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721 SCI_PHY_SUB_AWAIT_IAF_UF);
722 break;
723 case SCU_EVENT_SAS_30:
724 case SCU_EVENT_SAS_30_SSC:
725 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726 SCI_PHY_SUB_AWAIT_IAF_UF);
727 break;
728 case SCU_EVENT_SAS_60:
729 case SCU_EVENT_SAS_60_SSC:
730 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731 SCI_PHY_SUB_AWAIT_IAF_UF);
732 break;
733 case SCU_EVENT_SATA_SPINUP_HOLD:
735 * We were doing SAS PHY link training and received a SATA PHY event
736 * continue OOB/SN as if this were a SATA PHY */
737 sci_phy_start_sata_link_training(iphy);
738 break;
739 case SCU_EVENT_LINK_FAILURE:
740 /* Change the timeout value to default */
741 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
743 /* Link failure change state back to the starting state */
744 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745 break;
746 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
747 /* Extend the timeout value */
748 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
750 /* Start the oob/sn state machine over again */
751 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752 break;
753 default:
754 phy_event_warn(iphy, state, event_code);
755 return SCI_FAILURE;
757 return SCI_SUCCESS;
758 case SCI_PHY_SUB_AWAIT_IAF_UF:
759 switch (scu_get_event_code(event_code)) {
760 case SCU_EVENT_SAS_PHY_DETECTED:
761 /* Backup the state machine */
762 sci_phy_start_sas_link_training(iphy);
763 break;
764 case SCU_EVENT_SATA_SPINUP_HOLD:
765 /* We were doing SAS PHY link training and received a
766 * SATA PHY event continue OOB/SN as if this were a
767 * SATA PHY
769 sci_phy_start_sata_link_training(iphy);
770 break;
771 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
772 /* Extend the timeout value */
773 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
775 /* Start the oob/sn state machine over again */
776 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
777 break;
778 case SCU_EVENT_LINK_FAILURE:
779 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
780 fallthrough;
781 case SCU_EVENT_HARD_RESET_RECEIVED:
782 /* Start the oob/sn state machine over again */
783 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
784 break;
785 default:
786 phy_event_warn(iphy, state, event_code);
787 return SCI_FAILURE;
789 return SCI_SUCCESS;
790 case SCI_PHY_SUB_AWAIT_SAS_POWER:
791 switch (scu_get_event_code(event_code)) {
792 case SCU_EVENT_LINK_FAILURE:
793 /* Change the timeout value to default */
794 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
796 /* Link failure change state back to the starting state */
797 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
798 break;
799 default:
800 phy_event_warn(iphy, state, event_code);
801 return SCI_FAILURE;
803 return SCI_SUCCESS;
804 case SCI_PHY_SUB_AWAIT_SATA_POWER:
805 switch (scu_get_event_code(event_code)) {
806 case SCU_EVENT_LINK_FAILURE:
807 /* Change the timeout value to default */
808 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
810 /* Link failure change state back to the starting state */
811 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
812 break;
813 case SCU_EVENT_SATA_SPINUP_HOLD:
814 /* These events are received every 10ms and are
815 * expected while in this state
817 break;
819 case SCU_EVENT_SAS_PHY_DETECTED:
820 /* There has been a change in the phy type before OOB/SN for the
821 * SATA finished start down the SAS link traning path.
823 sci_phy_start_sas_link_training(iphy);
824 break;
826 default:
827 phy_event_warn(iphy, state, event_code);
828 return SCI_FAILURE;
830 return SCI_SUCCESS;
831 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
832 switch (scu_get_event_code(event_code)) {
833 case SCU_EVENT_LINK_FAILURE:
834 /* Change the timeout value to default */
835 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
837 /* Link failure change state back to the starting state */
838 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
839 break;
840 case SCU_EVENT_SATA_SPINUP_HOLD:
841 /* These events might be received since we dont know how many may be in
842 * the completion queue while waiting for power
844 break;
845 case SCU_EVENT_SATA_PHY_DETECTED:
846 iphy->protocol = SAS_PROTOCOL_SATA;
848 /* We have received the SATA PHY notification change state */
849 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
850 break;
851 case SCU_EVENT_SAS_PHY_DETECTED:
852 /* There has been a change in the phy type before OOB/SN for the
853 * SATA finished start down the SAS link traning path.
855 sci_phy_start_sas_link_training(iphy);
856 break;
857 default:
858 phy_event_warn(iphy, state, event_code);
859 return SCI_FAILURE;
861 return SCI_SUCCESS;
862 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
863 switch (scu_get_event_code(event_code)) {
864 case SCU_EVENT_SATA_PHY_DETECTED:
866 * The hardware reports multiple SATA PHY detected events
867 * ignore the extras */
868 break;
869 case SCU_EVENT_SATA_15:
870 case SCU_EVENT_SATA_15_SSC:
871 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
872 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
873 break;
874 case SCU_EVENT_SATA_30:
875 case SCU_EVENT_SATA_30_SSC:
876 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
877 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
878 break;
879 case SCU_EVENT_SATA_60:
880 case SCU_EVENT_SATA_60_SSC:
881 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
882 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
883 break;
884 case SCU_EVENT_LINK_FAILURE:
885 /* Change the timeout value to default */
886 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
888 /* Link failure change state back to the starting state */
889 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
890 break;
891 case SCU_EVENT_SAS_PHY_DETECTED:
893 * There has been a change in the phy type before OOB/SN for the
894 * SATA finished start down the SAS link traning path. */
895 sci_phy_start_sas_link_training(iphy);
896 break;
897 default:
898 phy_event_warn(iphy, state, event_code);
899 return SCI_FAILURE;
902 return SCI_SUCCESS;
903 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
904 switch (scu_get_event_code(event_code)) {
905 case SCU_EVENT_SATA_PHY_DETECTED:
906 /* Backup the state machine */
907 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
908 break;
910 case SCU_EVENT_LINK_FAILURE:
911 /* Change the timeout value to default */
912 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
914 /* Link failure change state back to the starting state */
915 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
916 break;
918 default:
919 phy_event_warn(iphy, state, event_code);
920 return SCI_FAILURE;
922 return SCI_SUCCESS;
923 case SCI_PHY_READY:
924 switch (scu_get_event_code(event_code)) {
925 case SCU_EVENT_LINK_FAILURE:
926 /* Set default timeout */
927 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
929 /* Link failure change state back to the starting state */
930 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
931 break;
932 case SCU_EVENT_BROADCAST_CHANGE:
933 case SCU_EVENT_BROADCAST_SES:
934 case SCU_EVENT_BROADCAST_RESERVED0:
935 case SCU_EVENT_BROADCAST_RESERVED1:
936 case SCU_EVENT_BROADCAST_EXPANDER:
937 case SCU_EVENT_BROADCAST_AEN:
938 /* Broadcast change received. Notify the port. */
939 if (phy_get_non_dummy_port(iphy) != NULL)
940 sci_port_broadcast_change_received(iphy->owning_port, iphy);
941 else
942 iphy->bcn_received_while_port_unassigned = true;
943 break;
944 case SCU_EVENT_BROADCAST_RESERVED3:
945 case SCU_EVENT_BROADCAST_RESERVED4:
946 default:
947 phy_event_warn(iphy, state, event_code);
948 return SCI_FAILURE_INVALID_STATE;
950 return SCI_SUCCESS;
951 case SCI_PHY_RESETTING:
952 switch (scu_get_event_code(event_code)) {
953 case SCU_EVENT_HARD_RESET_TRANSMITTED:
954 /* Link failure change state back to the starting state */
955 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
956 break;
957 default:
958 phy_event_warn(iphy, state, event_code);
959 return SCI_FAILURE_INVALID_STATE;
961 return SCI_SUCCESS;
962 default:
963 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
964 __func__, phy_state_name(state));
965 return SCI_FAILURE_INVALID_STATE;
969 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
971 enum sci_phy_states state = iphy->sm.current_state_id;
972 struct isci_host *ihost = iphy->owning_port->owning_controller;
973 enum sci_status result;
974 unsigned long flags;
976 switch (state) {
977 case SCI_PHY_SUB_AWAIT_IAF_UF: {
978 u32 *frame_words;
979 struct sas_identify_frame iaf;
981 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
982 frame_index,
983 (void **)&frame_words);
985 if (result != SCI_SUCCESS)
986 return result;
988 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
989 if (iaf.frame_type == 0) {
990 u32 state;
992 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
993 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
994 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
995 if (iaf.smp_tport) {
996 /* We got the IAF for an expander PHY go to the final
997 * state since there are no power requirements for
998 * expander phys.
1000 state = SCI_PHY_SUB_FINAL;
1001 } else {
1002 /* We got the IAF we can now go to the await spinup
1003 * semaphore state
1005 state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1007 sci_change_state(&iphy->sm, state);
1008 result = SCI_SUCCESS;
1009 } else
1010 dev_warn(sciphy_to_dev(iphy),
1011 "%s: PHY starting substate machine received "
1012 "unexpected frame id %x\n",
1013 __func__, frame_index);
1015 sci_controller_release_frame(ihost, frame_index);
1016 return result;
1018 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1019 struct dev_to_host_fis *frame_header;
1020 u32 *fis_frame_data;
1022 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1023 frame_index,
1024 (void **)&frame_header);
1026 if (result != SCI_SUCCESS)
1027 return result;
1029 if ((frame_header->fis_type == FIS_REGD2H) &&
1030 !(frame_header->status & ATA_BUSY)) {
1031 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1032 frame_index,
1033 (void **)&fis_frame_data);
1035 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1036 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1037 frame_header,
1038 fis_frame_data);
1039 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1041 /* got IAF we can now go to the await spinup semaphore state */
1042 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1044 result = SCI_SUCCESS;
1045 } else
1046 dev_warn(sciphy_to_dev(iphy),
1047 "%s: PHY starting substate machine received "
1048 "unexpected frame id %x\n",
1049 __func__, frame_index);
1051 /* Regardless of the result we are done with this frame with it */
1052 sci_controller_release_frame(ihost, frame_index);
1054 return result;
1056 default:
1057 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1058 __func__, phy_state_name(state));
1059 return SCI_FAILURE_INVALID_STATE;
1064 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1066 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1068 /* This is just an temporary state go off to the starting state */
1069 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1072 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1074 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1075 struct isci_host *ihost = iphy->owning_port->owning_controller;
1077 sci_controller_power_control_queue_insert(ihost, iphy);
1080 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1082 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1083 struct isci_host *ihost = iphy->owning_port->owning_controller;
1085 sci_controller_power_control_queue_remove(ihost, iphy);
1088 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1090 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1091 struct isci_host *ihost = iphy->owning_port->owning_controller;
1093 sci_controller_power_control_queue_insert(ihost, iphy);
1096 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1098 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1099 struct isci_host *ihost = iphy->owning_port->owning_controller;
1101 sci_controller_power_control_queue_remove(ihost, iphy);
1104 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1106 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1108 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1111 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1113 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1115 sci_del_timer(&iphy->sata_timer);
1118 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1120 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1122 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1125 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1127 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1129 sci_del_timer(&iphy->sata_timer);
1132 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1134 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1136 if (sci_port_link_detected(iphy->owning_port, iphy)) {
1139 * Clear the PE suspend condition so we can actually
1140 * receive SIG FIS
1141 * The hardware will not respond to the XRDY until the PE
1142 * suspend condition is cleared.
1144 sci_phy_resume(iphy);
1146 sci_mod_timer(&iphy->sata_timer,
1147 SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1148 } else
1149 iphy->is_in_link_training = false;
1152 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1154 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1156 sci_del_timer(&iphy->sata_timer);
1159 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1161 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1163 /* State machine has run to completion so exit out and change
1164 * the base state machine to the ready state
1166 sci_change_state(&iphy->sm, SCI_PHY_READY);
1171 * @sci_phy: This is the struct isci_phy object to stop.
1173 * This method will stop the struct isci_phy object. This does not reset the
1174 * protocol engine it just suspends it and places it in a state where it will
1175 * not cause the end device to power up. none
1177 static void scu_link_layer_stop_protocol_engine(
1178 struct isci_phy *iphy)
1180 u32 scu_sas_pcfg_value;
1181 u32 enable_spinup_value;
1183 /* Suspend the protocol engine and place it in a sata spinup hold state */
1184 scu_sas_pcfg_value =
1185 readl(&iphy->link_layer_registers->phy_configuration);
1186 scu_sas_pcfg_value |=
1187 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1188 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1189 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1190 writel(scu_sas_pcfg_value,
1191 &iphy->link_layer_registers->phy_configuration);
1193 /* Disable the notify enable spinup primitives */
1194 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1195 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1196 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1199 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1201 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1202 u32 val;
1204 /** Reset OOB sequence - start */
1205 val = readl(&ll->phy_configuration);
1206 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1207 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1208 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1209 writel(val, &ll->phy_configuration);
1210 readl(&ll->phy_configuration); /* flush */
1211 /** Reset OOB sequence - end */
1213 /** Start OOB sequence - start */
1214 val = readl(&ll->phy_configuration);
1215 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1216 writel(val, &ll->phy_configuration);
1217 readl(&ll->phy_configuration); /* flush */
1218 /** Start OOB sequence - end */
1224 * This method will transmit a hard reset request on the specified phy. The SCU
1225 * hardware requires that we reset the OOB state machine and set the hard reset
1226 * bit in the phy configuration register. We then must start OOB over with the
1227 * hard reset bit set.
1229 static void scu_link_layer_tx_hard_reset(
1230 struct isci_phy *iphy)
1232 u32 phy_configuration_value;
1235 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1236 * to the starting state. */
1237 phy_configuration_value =
1238 readl(&iphy->link_layer_registers->phy_configuration);
1239 phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1240 phy_configuration_value |=
1241 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1242 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1243 writel(phy_configuration_value,
1244 &iphy->link_layer_registers->phy_configuration);
1246 /* Now take the OOB state machine out of reset */
1247 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1248 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1249 writel(phy_configuration_value,
1250 &iphy->link_layer_registers->phy_configuration);
1253 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1255 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1256 struct isci_port *iport = iphy->owning_port;
1257 struct isci_host *ihost = iport->owning_controller;
1260 * @todo We need to get to the controller to place this PE in a
1261 * reset state
1263 sci_del_timer(&iphy->sata_timer);
1265 scu_link_layer_stop_protocol_engine(iphy);
1267 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1268 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1271 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1273 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1274 struct isci_port *iport = iphy->owning_port;
1275 struct isci_host *ihost = iport->owning_controller;
1277 scu_link_layer_stop_protocol_engine(iphy);
1278 scu_link_layer_start_oob(iphy);
1280 /* We don't know what kind of phy we are going to be just yet */
1281 iphy->protocol = SAS_PROTOCOL_NONE;
1282 iphy->bcn_received_while_port_unassigned = false;
1284 if (iphy->sm.previous_state_id == SCI_PHY_READY)
1285 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1287 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1290 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1292 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1293 struct isci_port *iport = iphy->owning_port;
1294 struct isci_host *ihost = iport->owning_controller;
1296 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1299 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1301 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1303 sci_phy_suspend(iphy);
1306 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1308 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1310 /* The phy is being reset, therefore deactivate it from the port. In
1311 * the resetting state we don't notify the user regarding link up and
1312 * link down notifications
1314 sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1316 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1317 scu_link_layer_tx_hard_reset(iphy);
1318 } else {
1319 /* The SCU does not need to have a discrete reset state so
1320 * just go back to the starting state.
1322 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1326 static const struct sci_base_state sci_phy_state_table[] = {
1327 [SCI_PHY_INITIAL] = { },
1328 [SCI_PHY_STOPPED] = {
1329 .enter_state = sci_phy_stopped_state_enter,
1331 [SCI_PHY_STARTING] = {
1332 .enter_state = sci_phy_starting_state_enter,
1334 [SCI_PHY_SUB_INITIAL] = {
1335 .enter_state = sci_phy_starting_initial_substate_enter,
1337 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1338 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1339 [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1340 [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1341 .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1342 .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1344 [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1345 .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1346 .exit_state = sci_phy_starting_await_sata_power_substate_exit
1348 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1349 .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1350 .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1352 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1353 .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1354 .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1356 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1357 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1358 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1360 [SCI_PHY_SUB_FINAL] = {
1361 .enter_state = sci_phy_starting_final_substate_enter,
1363 [SCI_PHY_READY] = {
1364 .enter_state = sci_phy_ready_state_enter,
1365 .exit_state = sci_phy_ready_state_exit,
1367 [SCI_PHY_RESETTING] = {
1368 .enter_state = sci_phy_resetting_state_enter,
1370 [SCI_PHY_FINAL] = { },
1373 void sci_phy_construct(struct isci_phy *iphy,
1374 struct isci_port *iport, u8 phy_index)
1376 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1378 /* Copy the rest of the input data to our locals */
1379 iphy->owning_port = iport;
1380 iphy->phy_index = phy_index;
1381 iphy->bcn_received_while_port_unassigned = false;
1382 iphy->protocol = SAS_PROTOCOL_NONE;
1383 iphy->link_layer_registers = NULL;
1384 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1386 /* Create the SIGNATURE FIS Timeout timer for this phy */
1387 sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1390 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1392 struct sci_oem_params *oem = &ihost->oem_parameters;
1393 u64 sci_sas_addr;
1394 __be64 sas_addr;
1396 sci_sas_addr = oem->phys[index].sas_address.high;
1397 sci_sas_addr <<= 32;
1398 sci_sas_addr |= oem->phys[index].sas_address.low;
1399 sas_addr = cpu_to_be64(sci_sas_addr);
1400 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1402 iphy->sas_phy.enabled = 0;
1403 iphy->sas_phy.id = index;
1404 iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1405 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1406 iphy->sas_phy.ha = &ihost->sas_ha;
1407 iphy->sas_phy.lldd_phy = iphy;
1408 iphy->sas_phy.enabled = 1;
1409 iphy->sas_phy.class = SAS;
1410 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1411 iphy->sas_phy.tproto = 0;
1412 iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1413 iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1414 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1415 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1416 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1421 * isci_phy_control() - This function is one of the SAS Domain Template
1422 * functions. This is a phy management function.
1423 * @phy: This parameter specifies the sphy being controlled.
1424 * @func: This parameter specifies the phy control function being invoked.
1425 * @buf: This parameter is specific to the phy function being invoked.
1427 * status, zero indicates success.
1429 int isci_phy_control(struct asd_sas_phy *sas_phy,
1430 enum phy_func func,
1431 void *buf)
1433 int ret = 0;
1434 struct isci_phy *iphy = sas_phy->lldd_phy;
1435 struct asd_sas_port *port = sas_phy->port;
1436 struct isci_host *ihost = sas_phy->ha->lldd_ha;
1437 unsigned long flags;
1439 dev_dbg(&ihost->pdev->dev,
1440 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1441 __func__, sas_phy, func, buf, iphy, port);
1443 switch (func) {
1444 case PHY_FUNC_DISABLE:
1445 spin_lock_irqsave(&ihost->scic_lock, flags);
1446 scu_link_layer_start_oob(iphy);
1447 sci_phy_stop(iphy);
1448 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1449 break;
1451 case PHY_FUNC_LINK_RESET:
1452 spin_lock_irqsave(&ihost->scic_lock, flags);
1453 scu_link_layer_start_oob(iphy);
1454 sci_phy_stop(iphy);
1455 sci_phy_start(iphy);
1456 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1457 break;
1459 case PHY_FUNC_HARD_RESET:
1460 if (!port)
1461 return -ENODEV;
1463 ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1465 break;
1466 case PHY_FUNC_GET_EVENTS: {
1467 struct scu_link_layer_registers __iomem *r;
1468 struct sas_phy *phy = sas_phy->phy;
1470 r = iphy->link_layer_registers;
1471 phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1472 phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1473 phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1474 phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1475 break;
1478 default:
1479 dev_dbg(&ihost->pdev->dev,
1480 "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1481 __func__, sas_phy, func);
1482 ret = -ENOSYS;
1483 break;
1485 return ret;