1 /* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 #include "qman_test.h"
33 #include <linux/dma-mapping.h>
34 #include <linux/delay.h>
39 * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
40 * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
41 * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
42 * shuttle a "hot potato" frame around them such that every forwarding action
43 * moves it from one cpu to another. (The use of more than one handler per cpu
44 * is to allow enough handlers/FQs to truly test the significance of caching -
45 * ie. when cache-expiries are occurring.)
47 * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
48 * first and last words of the frame data will undergo a transformation step on
49 * each forwarding action. To achieve this, each handler will be assigned a
50 * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
51 * received by a handler, the mixer of the expected sender is XOR'd into all
52 * words of the entire frame, which is then validated against the original
53 * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
54 * the current handler. Apart from validating that the frame is taking the
55 * expected path, this also provides some quasi-realistic overheads to each
56 * forwarding action - dereferencing *all* the frame data, computation, and
57 * conditional branching. There is a "special" handler designated to act as the
58 * instigator of the test by creating an enqueuing the "hot potato" frame, and
59 * to determine when the test has completed by counting HP_LOOPS iterations.
63 * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
64 * into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
65 * handlers and link-list them (but do no other handler setup).
67 * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
68 * hp_cpu's 'iterator' to point to its first handler. With each loop,
69 * allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
70 * and advance the iterator for the next loop. This includes a final fixup,
71 * which connects the last handler to the first (and which is why phase 2
72 * and 3 are separate).
74 * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
75 * hp_cpu's 'iterator' to point to its first handler. With each loop,
76 * initialise FQ objects and advance the iterator for the next loop.
77 * Moreover, do this initialisation on the cpu it applies to so that Rx FQ
78 * initialisation targets the correct cpu.
82 * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
83 * the fn from irq context, which is too restrictive).
89 static int bstrap_fn(void *bs
)
91 struct bstrap
*bstrap
= bs
;
94 atomic_inc(&bstrap
->started
);
98 while (!kthread_should_stop())
102 static int on_all_cpus(int (*fn
)(void))
106 for_each_cpu(cpu
, cpu_online_mask
) {
107 struct bstrap bstrap
= {
109 .started
= ATOMIC_INIT(0)
111 struct task_struct
*k
= kthread_create(bstrap_fn
, &bstrap
,
117 kthread_bind(k
, cpu
);
120 * If we call kthread_stop() before the "wake up" has had an
121 * effect, then the thread may exit with -EINTR without ever
122 * running the function. So poll until it's started before
123 * requesting it to stop.
125 while (!atomic_read(&bstrap
.started
))
127 ret
= kthread_stop(k
);
136 /* The following data is stashed when 'rx' is dequeued; */
138 /* The Rx FQ, dequeues of which will stash the entire hp_handler */
140 /* The Tx FQ we should forward to */
142 /* The value we XOR post-dequeue, prior to validating */
144 /* The value we XOR pre-enqueue, after validating */
146 /* what the hotpotato address should be on dequeue */
150 /* The following data isn't (necessarily) stashed on dequeue; */
152 u32 fqid_rx
, fqid_tx
;
153 /* list node for linking us into 'hp_cpu' */
154 struct list_head node
;
155 /* Just to check ... */
156 unsigned int processor_id
;
157 } ____cacheline_aligned
;
160 /* identify the cpu we run on; */
161 unsigned int processor_id
;
162 /* root node for the per-cpu list of handlers */
163 struct list_head handlers
;
164 /* list node for linking us into 'hp_cpu_list' */
165 struct list_head node
;
167 * when repeatedly scanning 'hp_list', each time linking the n'th
168 * handlers together, this is used as per-cpu iterator state
170 struct hp_handler
*iterator
;
173 /* Each cpu has one of these */
174 static DEFINE_PER_CPU(struct hp_cpu
, hp_cpus
);
176 /* links together the hp_cpu structs, in first-come first-serve order. */
177 static LIST_HEAD(hp_cpu_list
);
178 static DEFINE_SPINLOCK(hp_lock
);
180 static unsigned int hp_cpu_list_length
;
182 /* the "special" handler, that starts and terminates the test. */
183 static struct hp_handler
*special_handler
;
184 static int loop_counter
;
186 /* handlers are allocated out of this, so they're properly aligned. */
187 static struct kmem_cache
*hp_handler_slab
;
189 /* this is the frame data */
190 static void *__frame_ptr
;
191 static u32
*frame_ptr
;
192 static dma_addr_t frame_dma
;
194 /* needed for dma_map*() */
195 static const struct qm_portal_config
*pcfg
;
197 /* the main function waits on this */
198 static DECLARE_WAIT_QUEUE_HEAD(queue
);
202 /* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
203 #define HP_NUM_WORDS 80
204 /* First word of the LFSR-based frame data */
205 #define HP_FIRST_WORD 0xabbaf00d
207 static inline u32
do_lfsr(u32 prev
)
209 return (prev
>> 1) ^ (-(prev
& 1u) & 0xd0000001u
);
212 static int allocate_frame_data(void)
214 u32 lfsr
= HP_FIRST_WORD
;
217 if (!qman_dma_portal
) {
218 pr_crit("portal not available\n");
222 pcfg
= qman_get_qm_portal_config(qman_dma_portal
);
224 __frame_ptr
= kmalloc(4 * HP_NUM_WORDS
, GFP_KERNEL
);
228 frame_ptr
= PTR_ALIGN(__frame_ptr
, 64);
229 for (loop
= 0; loop
< HP_NUM_WORDS
; loop
++) {
230 frame_ptr
[loop
] = lfsr
;
231 lfsr
= do_lfsr(lfsr
);
234 frame_dma
= dma_map_single(pcfg
->dev
, frame_ptr
, 4 * HP_NUM_WORDS
,
236 if (dma_mapping_error(pcfg
->dev
, frame_dma
)) {
237 pr_crit("dma mapping failure\n");
245 static void deallocate_frame_data(void)
247 dma_unmap_single(pcfg
->dev
, frame_dma
, 4 * HP_NUM_WORDS
,
252 static inline int process_frame_data(struct hp_handler
*handler
,
253 const struct qm_fd
*fd
)
255 u32
*p
= handler
->frame_ptr
;
256 u32 lfsr
= HP_FIRST_WORD
;
259 if (qm_fd_addr_get64(fd
) != handler
->addr
) {
260 pr_crit("bad frame address, [%llX != %llX]\n",
261 qm_fd_addr_get64(fd
), handler
->addr
);
264 for (loop
= 0; loop
< HP_NUM_WORDS
; loop
++, p
++) {
265 *p
^= handler
->rx_mixer
;
267 pr_crit("corrupt frame data");
270 *p
^= handler
->tx_mixer
;
271 lfsr
= do_lfsr(lfsr
);
276 static enum qman_cb_dqrr_result
normal_dqrr(struct qman_portal
*portal
,
278 const struct qm_dqrr_entry
*dqrr
,
281 struct hp_handler
*handler
= (struct hp_handler
*)fq
;
283 if (process_frame_data(handler
, &dqrr
->fd
)) {
287 if (qman_enqueue(&handler
->tx
, &dqrr
->fd
)) {
288 pr_crit("qman_enqueue() failed");
292 return qman_cb_dqrr_consume
;
295 static enum qman_cb_dqrr_result
special_dqrr(struct qman_portal
*portal
,
297 const struct qm_dqrr_entry
*dqrr
,
300 struct hp_handler
*handler
= (struct hp_handler
*)fq
;
302 process_frame_data(handler
, &dqrr
->fd
);
303 if (++loop_counter
< HP_LOOPS
) {
304 if (qman_enqueue(&handler
->tx
, &dqrr
->fd
)) {
305 pr_crit("qman_enqueue() failed");
310 pr_info("Received final (%dth) frame\n", loop_counter
);
314 return qman_cb_dqrr_consume
;
317 static int create_per_cpu_handlers(void)
319 struct hp_handler
*handler
;
321 struct hp_cpu
*hp_cpu
= this_cpu_ptr(&hp_cpus
);
323 hp_cpu
->processor_id
= smp_processor_id();
325 list_add_tail(&hp_cpu
->node
, &hp_cpu_list
);
326 hp_cpu_list_length
++;
327 spin_unlock(&hp_lock
);
328 INIT_LIST_HEAD(&hp_cpu
->handlers
);
329 for (loop
= 0; loop
< HP_PER_CPU
; loop
++) {
330 handler
= kmem_cache_alloc(hp_handler_slab
, GFP_KERNEL
);
332 pr_crit("kmem_cache_alloc() failed");
336 handler
->processor_id
= hp_cpu
->processor_id
;
337 handler
->addr
= frame_dma
;
338 handler
->frame_ptr
= frame_ptr
;
339 list_add_tail(&handler
->node
, &hp_cpu
->handlers
);
344 static int destroy_per_cpu_handlers(void)
346 struct list_head
*loop
, *tmp
;
347 struct hp_cpu
*hp_cpu
= this_cpu_ptr(&hp_cpus
);
350 list_del(&hp_cpu
->node
);
351 spin_unlock(&hp_lock
);
352 list_for_each_safe(loop
, tmp
, &hp_cpu
->handlers
) {
354 struct hp_handler
*handler
= list_entry(loop
, struct hp_handler
,
356 if (qman_retire_fq(&handler
->rx
, &flags
) ||
357 (flags
& QMAN_FQ_STATE_BLOCKOOS
)) {
358 pr_crit("qman_retire_fq(rx) failed, flags: %x", flags
);
362 if (qman_oos_fq(&handler
->rx
)) {
363 pr_crit("qman_oos_fq(rx) failed");
367 qman_destroy_fq(&handler
->rx
);
368 qman_destroy_fq(&handler
->tx
);
369 qman_release_fqid(handler
->fqid_rx
);
370 list_del(&handler
->node
);
371 kmem_cache_free(hp_handler_slab
, handler
);
376 static inline u8
num_cachelines(u32 offset
)
378 u8 res
= (offset
+ (L1_CACHE_BYTES
- 1))
384 #define STASH_DATA_CL \
385 num_cachelines(HP_NUM_WORDS * 4)
386 #define STASH_CTX_CL \
387 num_cachelines(offsetof(struct hp_handler, fqid_rx))
389 static int init_handler(void *h
)
391 struct qm_mcc_initfq opts
;
392 struct hp_handler
*handler
= h
;
395 if (handler
->processor_id
!= smp_processor_id()) {
400 memset(&handler
->rx
, 0, sizeof(handler
->rx
));
401 if (handler
== special_handler
)
402 handler
->rx
.cb
.dqrr
= special_dqrr
;
404 handler
->rx
.cb
.dqrr
= normal_dqrr
;
405 err
= qman_create_fq(handler
->fqid_rx
, 0, &handler
->rx
);
407 pr_crit("qman_create_fq(rx) failed");
410 memset(&opts
, 0, sizeof(opts
));
411 opts
.we_mask
= cpu_to_be16(QM_INITFQ_WE_FQCTRL
|
412 QM_INITFQ_WE_CONTEXTA
);
413 opts
.fqd
.fq_ctrl
= cpu_to_be16(QM_FQCTRL_CTXASTASHING
);
414 qm_fqd_set_stashing(&opts
.fqd
, 0, STASH_DATA_CL
, STASH_CTX_CL
);
415 err
= qman_init_fq(&handler
->rx
, QMAN_INITFQ_FLAG_SCHED
|
416 QMAN_INITFQ_FLAG_LOCAL
, &opts
);
418 pr_crit("qman_init_fq(rx) failed");
422 memset(&handler
->tx
, 0, sizeof(handler
->tx
));
423 err
= qman_create_fq(handler
->fqid_tx
, QMAN_FQ_FLAG_NO_MODIFY
,
426 pr_crit("qman_create_fq(tx) failed");
435 static void init_handler_cb(void *h
)
441 static int init_phase2(void)
445 u32 lfsr
= 0xdeadbeef;
446 struct hp_cpu
*hp_cpu
;
447 struct hp_handler
*handler
;
449 for (loop
= 0; loop
< HP_PER_CPU
; loop
++) {
450 list_for_each_entry(hp_cpu
, &hp_cpu_list
, node
) {
454 hp_cpu
->iterator
= list_first_entry(
456 struct hp_handler
, node
);
458 hp_cpu
->iterator
= list_entry(
459 hp_cpu
->iterator
->node
.next
,
460 struct hp_handler
, node
);
461 /* Rx FQID is the previous handler's Tx FQID */
462 hp_cpu
->iterator
->fqid_rx
= fqid
;
463 /* Allocate new FQID for Tx */
464 err
= qman_alloc_fqid(&fqid
);
466 pr_crit("qman_alloc_fqid() failed");
469 hp_cpu
->iterator
->fqid_tx
= fqid
;
470 /* Rx mixer is the previous handler's Tx mixer */
471 hp_cpu
->iterator
->rx_mixer
= lfsr
;
472 /* Get new mixer for Tx */
473 lfsr
= do_lfsr(lfsr
);
474 hp_cpu
->iterator
->tx_mixer
= lfsr
;
477 /* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
478 hp_cpu
= list_first_entry(&hp_cpu_list
, struct hp_cpu
, node
);
479 handler
= list_first_entry(&hp_cpu
->handlers
, struct hp_handler
, node
);
480 if (handler
->fqid_rx
!= 0 || handler
->rx_mixer
!= 0xdeadbeef)
482 handler
->fqid_rx
= fqid
;
483 handler
->rx_mixer
= lfsr
;
484 /* and tag it as our "special" handler */
485 special_handler
= handler
;
489 static int init_phase3(void)
492 struct hp_cpu
*hp_cpu
;
494 for (loop
= 0; loop
< HP_PER_CPU
; loop
++) {
495 list_for_each_entry(hp_cpu
, &hp_cpu_list
, node
) {
497 hp_cpu
->iterator
= list_first_entry(
499 struct hp_handler
, node
);
501 hp_cpu
->iterator
= list_entry(
502 hp_cpu
->iterator
->node
.next
,
503 struct hp_handler
, node
);
505 if (hp_cpu
->processor_id
== smp_processor_id()) {
506 err
= init_handler(hp_cpu
->iterator
);
510 smp_call_function_single(hp_cpu
->processor_id
,
511 init_handler_cb
, hp_cpu
->iterator
, 1);
519 static int send_first_frame(void *ignore
)
521 u32
*p
= special_handler
->frame_ptr
;
522 u32 lfsr
= HP_FIRST_WORD
;
526 if (special_handler
->processor_id
!= smp_processor_id()) {
530 memset(&fd
, 0, sizeof(fd
));
531 qm_fd_addr_set64(&fd
, special_handler
->addr
);
532 qm_fd_set_contig_big(&fd
, HP_NUM_WORDS
* 4);
533 for (loop
= 0; loop
< HP_NUM_WORDS
; loop
++, p
++) {
536 pr_crit("corrupt frame data");
539 *p
^= special_handler
->tx_mixer
;
540 lfsr
= do_lfsr(lfsr
);
542 pr_info("Sending first frame\n");
543 err
= qman_enqueue(&special_handler
->tx
, &fd
);
545 pr_crit("qman_enqueue() failed");
554 static void send_first_frame_cb(void *ignore
)
556 if (send_first_frame(NULL
))
560 int qman_test_stash(void)
564 if (cpumask_weight(cpu_online_mask
) < 2) {
565 pr_info("%s(): skip - only 1 CPU\n", __func__
);
569 pr_info("%s(): Starting\n", __func__
);
571 hp_cpu_list_length
= 0;
573 hp_handler_slab
= kmem_cache_create("hp_handler_slab",
574 sizeof(struct hp_handler
), L1_CACHE_BYTES
,
575 SLAB_HWCACHE_ALIGN
, NULL
);
576 if (!hp_handler_slab
) {
578 pr_crit("kmem_cache_create() failed");
582 err
= allocate_frame_data();
587 pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU
);
588 if (on_all_cpus(create_per_cpu_handlers
)) {
590 pr_crit("on_each_cpu() failed");
593 pr_info("Number of cpus: %d, total of %d handlers\n",
594 hp_cpu_list_length
, hp_cpu_list_length
* HP_PER_CPU
);
605 if (special_handler
->processor_id
== smp_processor_id()) {
606 err
= send_first_frame(NULL
);
610 smp_call_function_single(special_handler
->processor_id
,
611 send_first_frame_cb
, NULL
, 1);
615 wait_event(queue
, loop_counter
== HP_LOOPS
);
616 deallocate_frame_data();
617 if (on_all_cpus(destroy_per_cpu_handlers
)) {
619 pr_crit("on_each_cpu() failed");
622 kmem_cache_destroy(hp_handler_slab
);
623 pr_info("%s(): Finished\n", __func__
);