WIP FPC-III support
[linux/fpc-iii.git] / drivers / soc / qcom / rpmh-rsc.c
blob37969dcbaf14c967965ab154b3bb99701e8077b5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 */
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/wait.h>
25 #include <soc/qcom/cmd-db.h>
26 #include <soc/qcom/tcs.h>
27 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
29 #include "rpmh-internal.h"
31 #define CREATE_TRACE_POINTS
32 #include "trace-rpmh.h"
34 #define RSC_DRV_TCS_OFFSET 672
35 #define RSC_DRV_CMD_OFFSET 20
37 /* DRV HW Solver Configuration Information Register */
38 #define DRV_SOLVER_CONFIG 0x04
39 #define DRV_HW_SOLVER_MASK 1
40 #define DRV_HW_SOLVER_SHIFT 24
42 /* DRV TCS Configuration Information Register */
43 #define DRV_PRNT_CHLD_CONFIG 0x0C
44 #define DRV_NUM_TCS_MASK 0x3F
45 #define DRV_NUM_TCS_SHIFT 6
46 #define DRV_NCPT_MASK 0x1F
47 #define DRV_NCPT_SHIFT 27
49 /* Offsets for common TCS Registers, one bit per TCS */
50 #define RSC_DRV_IRQ_ENABLE 0x00
51 #define RSC_DRV_IRQ_STATUS 0x04
52 #define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */
55 * Offsets for per TCS Registers.
57 * TCSes start at 0x10 from tcs_base and are stored one after another.
58 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
59 * of the below to find a register.
61 #define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */
62 #define RSC_DRV_CONTROL 0x14
63 #define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */
64 #define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */
67 * Offsets for per command in a TCS.
69 * Commands (up to 16) start at 0x30 in a TCS; multiply command index
70 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
72 #define RSC_DRV_CMD_MSGID 0x30
73 #define RSC_DRV_CMD_ADDR 0x34
74 #define RSC_DRV_CMD_DATA 0x38
75 #define RSC_DRV_CMD_STATUS 0x3C
76 #define RSC_DRV_CMD_RESP_DATA 0x40
78 #define TCS_AMC_MODE_ENABLE BIT(16)
79 #define TCS_AMC_MODE_TRIGGER BIT(24)
81 /* TCS CMD register bit mask */
82 #define CMD_MSGID_LEN 8
83 #define CMD_MSGID_RESP_REQ BIT(8)
84 #define CMD_MSGID_WRITE BIT(16)
85 #define CMD_STATUS_ISSUED BIT(8)
86 #define CMD_STATUS_COMPL BIT(16)
89 * Here's a high level overview of how all the registers in RPMH work
90 * together:
92 * - The main rpmh-rsc address is the base of a register space that can
93 * be used to find overall configuration of the hardware
94 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
95 * space are all the TCS blocks. The offset of the TCS blocks is
96 * specified in the device tree by "qcom,tcs-offset" and used to
97 * compute tcs_base.
98 * - TCS blocks come one after another. Type, count, and order are
99 * specified by the device tree as "qcom,tcs-config".
100 * - Each TCS block has some registers, then space for up to 16 commands.
101 * Note that though address space is reserved for 16 commands, fewer
102 * might be present. See ncpt (num cmds per TCS).
104 * Here's a picture:
106 * +---------------------------------------------------+
107 * |RSC |
108 * | ctrl |
109 * | |
110 * | Drvs: |
111 * | +-----------------------------------------------+ |
112 * | |DRV0 | |
113 * | | ctrl/config | |
114 * | | IRQ | |
115 * | | | |
116 * | | TCSes: | |
117 * | | +------------------------------------------+ | |
118 * | | |TCS0 | | | | | | | | | | | | | | |
119 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
120 * | | | | | | | | | | | | | | | | | |
121 * | | +------------------------------------------+ | |
122 * | | +------------------------------------------+ | |
123 * | | |TCS1 | | | | | | | | | | | | | | |
124 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
125 * | | | | | | | | | | | | | | | | | |
126 * | | +------------------------------------------+ | |
127 * | | +------------------------------------------+ | |
128 * | | |TCS2 | | | | | | | | | | | | | | |
129 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
130 * | | | | | | | | | | | | | | | | | |
131 * | | +------------------------------------------+ | |
132 * | | ...... | |
133 * | +-----------------------------------------------+ |
134 * | +-----------------------------------------------+ |
135 * | |DRV1 | |
136 * | | (same as DRV0) | |
137 * | +-----------------------------------------------+ |
138 * | ...... |
139 * +---------------------------------------------------+
142 static inline void __iomem *
143 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
145 return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
148 static inline void __iomem *
149 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
151 return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
154 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
155 int cmd_id)
157 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
160 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
162 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
165 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
166 int cmd_id, u32 data)
168 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
171 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
172 u32 data)
174 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
177 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
178 u32 data)
180 int i;
182 writel(data, tcs_reg_addr(drv, reg, tcs_id));
185 * Wait until we read back the same value. Use a counter rather than
186 * ktime for timeout since this may be called after timekeeping stops.
188 for (i = 0; i < USEC_PER_SEC; i++) {
189 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
190 return;
191 udelay(1);
193 pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
194 data, tcs_id, reg);
198 * tcs_is_free() - Return if a TCS is totally free.
199 * @drv: The RSC controller.
200 * @tcs_id: The global ID of this TCS.
202 * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
204 * Context: Must be called with the drv->lock held.
206 * Return: true if the given TCS is free.
208 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
210 return !test_bit(tcs_id, drv->tcs_in_use);
214 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
215 * @drv: The RSC controller.
216 * @type: SLEEP_TCS or WAKE_TCS
218 * This will clear the "slots" variable of the given tcs_group and also
219 * tell the hardware to forget about all entries.
221 * The caller must ensure that no other RPMH actions are happening when this
222 * function is called, since otherwise the device may immediately become
223 * used again even before this function exits.
225 static void tcs_invalidate(struct rsc_drv *drv, int type)
227 int m;
228 struct tcs_group *tcs = &drv->tcs[type];
230 /* Caller ensures nobody else is running so no lock */
231 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
232 return;
234 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
235 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
236 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
238 bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
242 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
243 * @drv: The RSC controller.
245 * The caller must ensure that no other RPMH actions are happening when this
246 * function is called, since otherwise the device may immediately become
247 * used again even before this function exits.
249 void rpmh_rsc_invalidate(struct rsc_drv *drv)
251 tcs_invalidate(drv, SLEEP_TCS);
252 tcs_invalidate(drv, WAKE_TCS);
256 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
257 * @drv: The RSC controller.
258 * @msg: The message we want to send.
260 * This is normally pretty straightforward except if we are trying to send
261 * an ACTIVE_ONLY message but don't have any active_only TCSes.
263 * Return: A pointer to a tcs_group or an ERR_PTR.
265 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
266 const struct tcs_request *msg)
268 int type;
269 struct tcs_group *tcs;
271 switch (msg->state) {
272 case RPMH_ACTIVE_ONLY_STATE:
273 type = ACTIVE_TCS;
274 break;
275 case RPMH_WAKE_ONLY_STATE:
276 type = WAKE_TCS;
277 break;
278 case RPMH_SLEEP_STATE:
279 type = SLEEP_TCS;
280 break;
281 default:
282 return ERR_PTR(-EINVAL);
286 * If we are making an active request on a RSC that does not have a
287 * dedicated TCS for active state use, then re-purpose a wake TCS to
288 * send active votes. This is safe because we ensure any active-only
289 * transfers have finished before we use it (maybe by running from
290 * the last CPU in PM code).
292 tcs = &drv->tcs[type];
293 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
294 tcs = &drv->tcs[WAKE_TCS];
296 return tcs;
300 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
301 * @drv: The RSC controller.
302 * @tcs_id: The global ID of this TCS.
304 * For ACTIVE_ONLY transfers we want to call back into the client when the
305 * transfer finishes. To do this we need the "request" that the client
306 * originally provided us. This function grabs the request that we stashed
307 * when we started the transfer.
309 * This only makes sense for ACTIVE_ONLY transfers since those are the only
310 * ones we track sending (the only ones we enable interrupts for and the only
311 * ones we call back to the client for).
313 * Return: The stashed request.
315 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
316 int tcs_id)
318 struct tcs_group *tcs;
319 int i;
321 for (i = 0; i < TCS_TYPE_NR; i++) {
322 tcs = &drv->tcs[i];
323 if (tcs->mask & BIT(tcs_id))
324 return tcs->req[tcs_id - tcs->offset];
327 return NULL;
331 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
332 * @drv: The controller.
333 * @tcs_id: The global ID of this TCS.
334 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
336 * In the normal case we only ever call with "trigger=true" to start a
337 * transfer. That will un-trigger/disable the TCS from the last transfer
338 * then trigger/enable for this transfer.
340 * If we borrowed a wake TCS for an active-only transfer we'll also call
341 * this function with "trigger=false" to just do the un-trigger/disable
342 * before using the TCS for wake purposes again.
344 * Note that the AP is only in charge of triggering active-only transfers.
345 * The AP never triggers sleep/wake values using this function.
347 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
349 u32 enable;
352 * HW req: Clear the DRV_CONTROL and enable TCS again
353 * While clearing ensure that the AMC mode trigger is cleared
354 * and then the mode enable is cleared.
356 enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
357 enable &= ~TCS_AMC_MODE_TRIGGER;
358 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
359 enable &= ~TCS_AMC_MODE_ENABLE;
360 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
362 if (trigger) {
363 /* Enable the AMC mode on the TCS and then trigger the TCS */
364 enable = TCS_AMC_MODE_ENABLE;
365 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
366 enable |= TCS_AMC_MODE_TRIGGER;
367 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
372 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
373 * @drv: The controller.
374 * @tcs_id: The global ID of this TCS.
375 * @enable: If true then enable; if false then disable
377 * We only ever call this when we borrow a wake TCS for an active-only
378 * transfer. For active-only TCSes interrupts are always left enabled.
380 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
382 u32 data;
384 data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
385 if (enable)
386 data |= BIT(tcs_id);
387 else
388 data &= ~BIT(tcs_id);
389 writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
393 * tcs_tx_done() - TX Done interrupt handler.
394 * @irq: The IRQ number (ignored).
395 * @p: Pointer to "struct rsc_drv".
397 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
398 * IRQ for) when a transfer is done.
400 * Return: IRQ_HANDLED
402 static irqreturn_t tcs_tx_done(int irq, void *p)
404 struct rsc_drv *drv = p;
405 int i, j, err = 0;
406 unsigned long irq_status;
407 const struct tcs_request *req;
408 struct tcs_cmd *cmd;
410 irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
412 for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
413 req = get_req_from_tcs(drv, i);
414 if (!req) {
415 WARN_ON(1);
416 goto skip;
419 err = 0;
420 for (j = 0; j < req->num_cmds; j++) {
421 u32 sts;
423 cmd = &req->cmds[j];
424 sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
425 if (!(sts & CMD_STATUS_ISSUED) ||
426 ((req->wait_for_compl || cmd->wait) &&
427 !(sts & CMD_STATUS_COMPL))) {
428 pr_err("Incomplete request: %s: addr=%#x data=%#x",
429 drv->name, cmd->addr, cmd->data);
430 err = -EIO;
434 trace_rpmh_tx_done(drv, i, req, err);
437 * If wake tcs was re-purposed for sending active
438 * votes, clear AMC trigger & enable modes and
439 * disable interrupt for this TCS
441 if (!drv->tcs[ACTIVE_TCS].num_tcs)
442 __tcs_set_trigger(drv, i, false);
443 skip:
444 /* Reclaim the TCS */
445 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
446 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
447 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
448 spin_lock(&drv->lock);
449 clear_bit(i, drv->tcs_in_use);
451 * Disable interrupt for WAKE TCS to avoid being
452 * spammed with interrupts coming when the solver
453 * sends its wake votes.
455 if (!drv->tcs[ACTIVE_TCS].num_tcs)
456 enable_tcs_irq(drv, i, false);
457 spin_unlock(&drv->lock);
458 wake_up(&drv->tcs_wait);
459 if (req)
460 rpmh_tx_done(req, err);
463 return IRQ_HANDLED;
467 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
468 * @drv: The controller.
469 * @tcs_id: The global ID of this TCS.
470 * @cmd_id: The index within the TCS to start writing.
471 * @msg: The message we want to send, which will contain several addr/data
472 * pairs to program (but few enough that they all fit in one TCS).
474 * This is used for all types of transfers (active, sleep, and wake).
476 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
477 const struct tcs_request *msg)
479 u32 msgid, cmd_msgid;
480 u32 cmd_enable = 0;
481 u32 cmd_complete;
482 struct tcs_cmd *cmd;
483 int i, j;
485 cmd_msgid = CMD_MSGID_LEN;
486 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
487 cmd_msgid |= CMD_MSGID_WRITE;
489 cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
491 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
492 cmd = &msg->cmds[i];
493 cmd_enable |= BIT(j);
494 cmd_complete |= cmd->wait << j;
495 msgid = cmd_msgid;
496 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
498 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
499 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
500 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
501 trace_rpmh_send_msg(drv, tcs_id, j, msgid, cmd);
504 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
505 cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
506 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
510 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
511 * @drv: The controller.
512 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
513 * @msg: The message we want to send, which will contain several addr/data
514 * pairs to program (but few enough that they all fit in one TCS).
516 * This will walk through the TCSes in the group and check if any of them
517 * appear to be sending to addresses referenced in the message. If it finds
518 * one it'll return -EBUSY.
520 * Only for use for active-only transfers.
522 * Must be called with the drv->lock held since that protects tcs_in_use.
524 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
525 * The caller must re-enable interrupts between tries since that's
526 * the only way tcs_is_free() will ever return true and the only way
527 * RSC_DRV_CMD_ENABLE will ever be cleared.
529 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
530 const struct tcs_request *msg)
532 unsigned long curr_enabled;
533 u32 addr;
534 int i, j, k;
535 int tcs_id = tcs->offset;
537 for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
538 if (tcs_is_free(drv, tcs_id))
539 continue;
541 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
543 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
544 addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
545 for (k = 0; k < msg->num_cmds; k++) {
546 if (addr == msg->cmds[k].addr)
547 return -EBUSY;
552 return 0;
556 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
557 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
558 * we borrowed it because there are zero active-only ones).
560 * Must be called with the drv->lock held since that protects tcs_in_use.
562 * Return: The first tcs that's free.
564 static int find_free_tcs(struct tcs_group *tcs)
566 int i;
568 for (i = 0; i < tcs->num_tcs; i++) {
569 if (tcs_is_free(tcs->drv, tcs->offset + i))
570 return tcs->offset + i;
573 return -EBUSY;
577 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
578 * @drv: The controller.
579 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
580 * @msg: The data to be sent.
582 * Claims a tcs in the given tcs_group while making sure that no existing cmd
583 * is in flight that would conflict with the one in @msg.
585 * Context: Must be called with the drv->lock held since that protects
586 * tcs_in_use.
588 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
589 * or the tcs_group is full.
591 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
592 const struct tcs_request *msg)
594 int ret;
597 * The h/w does not like if we send a request to the same address,
598 * when one is already in-flight or being processed.
600 ret = check_for_req_inflight(drv, tcs, msg);
601 if (ret)
602 return ret;
604 return find_free_tcs(tcs);
608 * rpmh_rsc_send_data() - Write / trigger active-only message.
609 * @drv: The controller.
610 * @msg: The data to be sent.
612 * NOTES:
613 * - This is only used for "ACTIVE_ONLY" since the limitations of this
614 * function don't make sense for sleep/wake cases.
615 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
616 * try to share. If there are none available we'll wait indefinitely
617 * for a free one.
618 * - This function will not wait for the commands to be finished, only for
619 * data to be programmed into the RPMh. See rpmh_tx_done() which will
620 * be called when the transfer is fully complete.
621 * - This function must be called with interrupts enabled. If the hardware
622 * is busy doing someone else's transfer we need that transfer to fully
623 * finish so that we can have the hardware, and to fully finish it needs
624 * the interrupt handler to run. If the interrupts is set to run on the
625 * active CPU this can never happen if interrupts are disabled.
627 * Return: 0 on success, -EINVAL on error.
629 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
631 struct tcs_group *tcs;
632 int tcs_id;
633 unsigned long flags;
635 tcs = get_tcs_for_msg(drv, msg);
636 if (IS_ERR(tcs))
637 return PTR_ERR(tcs);
639 spin_lock_irqsave(&drv->lock, flags);
641 /* Wait forever for a free tcs. It better be there eventually! */
642 wait_event_lock_irq(drv->tcs_wait,
643 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
644 drv->lock);
646 tcs->req[tcs_id - tcs->offset] = msg;
647 set_bit(tcs_id, drv->tcs_in_use);
648 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
650 * Clear previously programmed WAKE commands in selected
651 * repurposed TCS to avoid triggering them. tcs->slots will be
652 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
654 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
655 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
656 enable_tcs_irq(drv, tcs_id, true);
658 spin_unlock_irqrestore(&drv->lock, flags);
661 * These two can be done after the lock is released because:
662 * - We marked "tcs_in_use" under lock.
663 * - Once "tcs_in_use" has been marked nobody else could be writing
664 * to these registers until the interrupt goes off.
665 * - The interrupt can't go off until we trigger w/ the last line
666 * of __tcs_set_trigger() below.
668 __tcs_buffer_write(drv, tcs_id, 0, msg);
669 __tcs_set_trigger(drv, tcs_id, true);
671 return 0;
675 * find_slots() - Find a place to write the given message.
676 * @tcs: The tcs group to search.
677 * @msg: The message we want to find room for.
678 * @tcs_id: If we return 0 from the function, we return the global ID of the
679 * TCS to write to here.
680 * @cmd_id: If we return 0 from the function, we return the index of
681 * the command array of the returned TCS where the client should
682 * start writing the message.
684 * Only for use on sleep/wake TCSes since those are the only ones we maintain
685 * tcs->slots for.
687 * Return: -ENOMEM if there was no room, else 0.
689 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
690 int *tcs_id, int *cmd_id)
692 int slot, offset;
693 int i = 0;
695 /* Do over, until we can fit the full payload in a single TCS */
696 do {
697 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
698 i, msg->num_cmds, 0);
699 if (slot >= tcs->num_tcs * tcs->ncpt)
700 return -ENOMEM;
701 i += tcs->ncpt;
702 } while (slot + msg->num_cmds - 1 >= i);
704 bitmap_set(tcs->slots, slot, msg->num_cmds);
706 offset = slot / tcs->ncpt;
707 *tcs_id = offset + tcs->offset;
708 *cmd_id = slot % tcs->ncpt;
710 return 0;
714 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
715 * @drv: The controller.
716 * @msg: The data to be written to the controller.
718 * This should only be called for for sleep/wake state, never active-only
719 * state.
721 * The caller must ensure that no other RPMH actions are happening and the
722 * controller is idle when this function is called since it runs lockless.
724 * Return: 0 if no error; else -error.
726 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
728 struct tcs_group *tcs;
729 int tcs_id = 0, cmd_id = 0;
730 int ret;
732 tcs = get_tcs_for_msg(drv, msg);
733 if (IS_ERR(tcs))
734 return PTR_ERR(tcs);
736 /* find the TCS id and the command in the TCS to write to */
737 ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
738 if (!ret)
739 __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
741 return ret;
745 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
746 * @drv: The controller
748 * Checks if any of the AMCs are busy in handling ACTIVE sets.
749 * This is called from the last cpu powering down before flushing
750 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
751 * power collapse, so deny from the last cpu's pm notification.
753 * Context: Must be called with the drv->lock held.
755 * Return:
756 * * False - AMCs are idle
757 * * True - AMCs are busy
759 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
761 int m;
762 struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
765 * If we made an active request on a RSC that does not have a
766 * dedicated TCS for active state use, then re-purposed wake TCSes
767 * should be checked for not busy, because we used wake TCSes for
768 * active requests in this case.
770 if (!tcs->num_tcs)
771 tcs = &drv->tcs[WAKE_TCS];
773 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
774 if (!tcs_is_free(drv, m))
775 return true;
778 return false;
782 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
783 * @nfb: Pointer to the notifier block in struct rsc_drv.
784 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
785 * @v: Unused
787 * This function is given to cpu_pm_register_notifier so we can be informed
788 * about when CPUs go down. When all CPUs go down we know no more active
789 * transfers will be started so we write sleep/wake sets. This function gets
790 * called from cpuidle code paths and also at system suspend time.
792 * If its last CPU going down and AMCs are not busy then writes cached sleep
793 * and wake messages to TCSes. The firmware then takes care of triggering
794 * them when entering deepest low power modes.
796 * Return: See cpu_pm_register_notifier()
798 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
799 unsigned long action, void *v)
801 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
802 int ret = NOTIFY_OK;
803 int cpus_in_pm;
805 switch (action) {
806 case CPU_PM_ENTER:
807 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
809 * NOTE: comments for num_online_cpus() point out that it's
810 * only a snapshot so we need to be careful. It should be OK
811 * for us to use, though. It's important for us not to miss
812 * if we're the last CPU going down so it would only be a
813 * problem if a CPU went offline right after we did the check
814 * AND that CPU was not idle AND that CPU was the last non-idle
815 * CPU. That can't happen. CPUs would have to come out of idle
816 * before the CPU could go offline.
818 if (cpus_in_pm < num_online_cpus())
819 return NOTIFY_OK;
820 break;
821 case CPU_PM_ENTER_FAILED:
822 case CPU_PM_EXIT:
823 atomic_dec(&drv->cpus_in_pm);
824 return NOTIFY_OK;
825 default:
826 return NOTIFY_DONE;
830 * It's likely we're on the last CPU. Grab the drv->lock and write
831 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
832 * means that if we race with another CPU coming up we are still
833 * guaranteed to be safe. If another CPU came up just after we checked
834 * and has grabbed the lock or started an active transfer then we'll
835 * notice we're busy and abort. If another CPU comes up after we start
836 * flushing it will be blocked from starting an active transfer until
837 * we're done flushing. If another CPU starts an active transfer after
838 * we release the lock we're still OK because we're no longer the last
839 * CPU.
841 if (spin_trylock(&drv->lock)) {
842 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
843 ret = NOTIFY_BAD;
844 spin_unlock(&drv->lock);
845 } else {
846 /* Another CPU must be up */
847 return NOTIFY_OK;
850 if (ret == NOTIFY_BAD) {
851 /* Double-check if we're here because someone else is up */
852 if (cpus_in_pm < num_online_cpus())
853 ret = NOTIFY_OK;
854 else
855 /* We won't be called w/ CPU_PM_ENTER_FAILED */
856 atomic_dec(&drv->cpus_in_pm);
859 return ret;
862 static int rpmh_probe_tcs_config(struct platform_device *pdev,
863 struct rsc_drv *drv, void __iomem *base)
865 struct tcs_type_config {
866 u32 type;
867 u32 n;
868 } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
869 struct device_node *dn = pdev->dev.of_node;
870 u32 config, max_tcs, ncpt, offset;
871 int i, ret, n, st = 0;
872 struct tcs_group *tcs;
874 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
875 if (ret)
876 return ret;
877 drv->tcs_base = base + offset;
879 config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
881 max_tcs = config;
882 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
883 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
885 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
886 ncpt = ncpt >> DRV_NCPT_SHIFT;
888 n = of_property_count_u32_elems(dn, "qcom,tcs-config");
889 if (n != 2 * TCS_TYPE_NR)
890 return -EINVAL;
892 for (i = 0; i < TCS_TYPE_NR; i++) {
893 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
894 i * 2, &tcs_cfg[i].type);
895 if (ret)
896 return ret;
897 if (tcs_cfg[i].type >= TCS_TYPE_NR)
898 return -EINVAL;
900 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
901 i * 2 + 1, &tcs_cfg[i].n);
902 if (ret)
903 return ret;
904 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
905 return -EINVAL;
908 for (i = 0; i < TCS_TYPE_NR; i++) {
909 tcs = &drv->tcs[tcs_cfg[i].type];
910 if (tcs->drv)
911 return -EINVAL;
912 tcs->drv = drv;
913 tcs->type = tcs_cfg[i].type;
914 tcs->num_tcs = tcs_cfg[i].n;
915 tcs->ncpt = ncpt;
917 if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
918 continue;
920 if (st + tcs->num_tcs > max_tcs ||
921 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
922 return -EINVAL;
924 tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
925 tcs->offset = st;
926 st += tcs->num_tcs;
929 drv->num_tcs = st;
931 return 0;
934 static int rpmh_rsc_probe(struct platform_device *pdev)
936 struct device_node *dn = pdev->dev.of_node;
937 struct rsc_drv *drv;
938 struct resource *res;
939 char drv_id[10] = {0};
940 int ret, irq;
941 u32 solver_config;
942 void __iomem *base;
945 * Even though RPMh doesn't directly use cmd-db, all of its children
946 * do. To avoid adding this check to our children we'll do it now.
948 ret = cmd_db_ready();
949 if (ret) {
950 if (ret != -EPROBE_DEFER)
951 dev_err(&pdev->dev, "Command DB not available (%d)\n",
952 ret);
953 return ret;
956 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
957 if (!drv)
958 return -ENOMEM;
960 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
961 if (ret)
962 return ret;
964 drv->name = of_get_property(dn, "label", NULL);
965 if (!drv->name)
966 drv->name = dev_name(&pdev->dev);
968 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
969 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
970 base = devm_ioremap_resource(&pdev->dev, res);
971 if (IS_ERR(base))
972 return PTR_ERR(base);
974 ret = rpmh_probe_tcs_config(pdev, drv, base);
975 if (ret)
976 return ret;
978 spin_lock_init(&drv->lock);
979 init_waitqueue_head(&drv->tcs_wait);
980 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
982 irq = platform_get_irq(pdev, drv->id);
983 if (irq < 0)
984 return irq;
986 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
987 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
988 drv->name, drv);
989 if (ret)
990 return ret;
993 * CPU PM notification are not required for controllers that support
994 * 'HW solver' mode where they can be in autonomous mode executing low
995 * power mode to power down.
997 solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
998 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
999 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1000 if (!solver_config) {
1001 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1002 cpu_pm_register_notifier(&drv->rsc_pm);
1005 /* Enable the active TCS to send requests immediately */
1006 writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1007 drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1009 spin_lock_init(&drv->client.cache_lock);
1010 INIT_LIST_HEAD(&drv->client.cache);
1011 INIT_LIST_HEAD(&drv->client.batch_cache);
1013 dev_set_drvdata(&pdev->dev, drv);
1015 return devm_of_platform_populate(&pdev->dev);
1018 static const struct of_device_id rpmh_drv_match[] = {
1019 { .compatible = "qcom,rpmh-rsc", },
1022 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1024 static struct platform_driver rpmh_driver = {
1025 .probe = rpmh_rsc_probe,
1026 .driver = {
1027 .name = "rpmh",
1028 .of_match_table = rpmh_drv_match,
1029 .suppress_bind_attrs = true,
1033 static int __init rpmh_driver_init(void)
1035 return platform_driver_register(&rpmh_driver);
1037 arch_initcall(rpmh_driver_init);
1039 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1040 MODULE_LICENSE("GPL v2");