1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
11 #include "sysfs_local.h"
13 static DEFINE_IDA(sdw_ida
);
15 static int sdw_get_id(struct sdw_bus
*bus
)
17 int rc
= ida_alloc(&sdw_ida
, GFP_KERNEL
);
27 * sdw_bus_master_add() - add a bus Master instance
29 * @parent: parent device
30 * @fwnode: firmware node handle
32 * Initializes the bus instance, read properties and create child
35 int sdw_bus_master_add(struct sdw_bus
*bus
, struct device
*parent
,
36 struct fwnode_handle
*fwnode
)
38 struct sdw_master_prop
*prop
= NULL
;
42 pr_err("SoundWire parent device is not set\n");
46 ret
= sdw_get_id(bus
);
48 dev_err(parent
, "Failed to get bus id\n");
52 ret
= sdw_master_device_add(bus
, parent
, fwnode
);
54 dev_err(parent
, "Failed to add master device at link %d\n",
60 dev_err(bus
->dev
, "SoundWire Bus ops are not set\n");
64 if (!bus
->compute_params
) {
66 "Bandwidth allocation not configured, compute_params no set\n");
70 mutex_init(&bus
->msg_lock
);
71 mutex_init(&bus
->bus_lock
);
72 INIT_LIST_HEAD(&bus
->slaves
);
73 INIT_LIST_HEAD(&bus
->m_rt_list
);
76 * Initialize multi_link flag
77 * TODO: populate this flag by reading property from FW node
79 bus
->multi_link
= false;
80 if (bus
->ops
->read_prop
) {
81 ret
= bus
->ops
->read_prop(bus
);
84 "Bus read properties failed:%d\n", ret
);
89 sdw_bus_debugfs_init(bus
);
92 * Device numbers in SoundWire are 0 through 15. Enumeration device
93 * number (0), Broadcast device number (15), Group numbers (12 and
94 * 13) and Master device number (14) are not used for assignment so
95 * mask these and other higher bits.
98 /* Set higher order bits */
99 *bus
->assigned
= ~GENMASK(SDW_BROADCAST_DEV_NUM
, SDW_ENUM_DEV_NUM
);
101 /* Set enumuration device number and broadcast device number */
102 set_bit(SDW_ENUM_DEV_NUM
, bus
->assigned
);
103 set_bit(SDW_BROADCAST_DEV_NUM
, bus
->assigned
);
105 /* Set group device numbers and master device number */
106 set_bit(SDW_GROUP12_DEV_NUM
, bus
->assigned
);
107 set_bit(SDW_GROUP13_DEV_NUM
, bus
->assigned
);
108 set_bit(SDW_MASTER_DEV_NUM
, bus
->assigned
);
111 * SDW is an enumerable bus, but devices can be powered off. So,
112 * they won't be able to report as present.
114 * Create Slave devices based on Slaves described in
115 * the respective firmware (ACPI/DT)
117 if (IS_ENABLED(CONFIG_ACPI
) && ACPI_HANDLE(bus
->dev
))
118 ret
= sdw_acpi_find_slaves(bus
);
119 else if (IS_ENABLED(CONFIG_OF
) && bus
->dev
->of_node
)
120 ret
= sdw_of_find_slaves(bus
);
122 ret
= -ENOTSUPP
; /* No ACPI/DT so error out */
125 dev_err(bus
->dev
, "Finding slaves failed:%d\n", ret
);
130 * Initialize clock values based on Master properties. The max
131 * frequency is read from max_clk_freq property. Current assumption
132 * is that the bus will start at highest clock frequency when
135 * Default active bank will be 0 as out of reset the Slaves have
136 * to start with bank 0 (Table 40 of Spec)
139 bus
->params
.max_dr_freq
= prop
->max_clk_freq
* SDW_DOUBLE_RATE_FACTOR
;
140 bus
->params
.curr_dr_freq
= bus
->params
.max_dr_freq
;
141 bus
->params
.curr_bank
= SDW_BANK0
;
142 bus
->params
.next_bank
= SDW_BANK1
;
146 EXPORT_SYMBOL(sdw_bus_master_add
);
148 static int sdw_delete_slave(struct device
*dev
, void *data
)
150 struct sdw_slave
*slave
= dev_to_sdw_dev(dev
);
151 struct sdw_bus
*bus
= slave
->bus
;
153 pm_runtime_disable(dev
);
155 sdw_slave_debugfs_exit(slave
);
157 mutex_lock(&bus
->bus_lock
);
159 if (slave
->dev_num
) /* clear dev_num if assigned */
160 clear_bit(slave
->dev_num
, bus
->assigned
);
162 list_del_init(&slave
->node
);
163 mutex_unlock(&bus
->bus_lock
);
165 device_unregister(dev
);
170 * sdw_bus_master_delete() - delete the bus master instance
171 * @bus: bus to be deleted
173 * Remove the instance, delete the child devices.
175 void sdw_bus_master_delete(struct sdw_bus
*bus
)
177 device_for_each_child(bus
->dev
, NULL
, sdw_delete_slave
);
178 sdw_master_device_del(bus
);
180 sdw_bus_debugfs_exit(bus
);
181 ida_free(&sdw_ida
, bus
->id
);
183 EXPORT_SYMBOL(sdw_bus_master_delete
);
189 static inline int find_response_code(enum sdw_command_response resp
)
195 case SDW_CMD_IGNORED
:
198 case SDW_CMD_TIMEOUT
:
206 static inline int do_transfer(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
208 int retry
= bus
->prop
.err_threshold
;
209 enum sdw_command_response resp
;
212 for (i
= 0; i
<= retry
; i
++) {
213 resp
= bus
->ops
->xfer_msg(bus
, msg
);
214 ret
= find_response_code(resp
);
216 /* if cmd is ok or ignored return */
217 if (ret
== 0 || ret
== -ENODATA
)
224 static inline int do_transfer_defer(struct sdw_bus
*bus
,
226 struct sdw_defer
*defer
)
228 int retry
= bus
->prop
.err_threshold
;
229 enum sdw_command_response resp
;
233 defer
->length
= msg
->len
;
234 init_completion(&defer
->complete
);
236 for (i
= 0; i
<= retry
; i
++) {
237 resp
= bus
->ops
->xfer_msg_defer(bus
, msg
, defer
);
238 ret
= find_response_code(resp
);
239 /* if cmd is ok or ignored return */
240 if (ret
== 0 || ret
== -ENODATA
)
247 static int sdw_reset_page(struct sdw_bus
*bus
, u16 dev_num
)
249 int retry
= bus
->prop
.err_threshold
;
250 enum sdw_command_response resp
;
253 for (i
= 0; i
<= retry
; i
++) {
254 resp
= bus
->ops
->reset_page_addr(bus
, dev_num
);
255 ret
= find_response_code(resp
);
256 /* if cmd is ok or ignored return */
257 if (ret
== 0 || ret
== -ENODATA
)
264 static int sdw_transfer_unlocked(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
268 ret
= do_transfer(bus
, msg
);
269 if (ret
!= 0 && ret
!= -ENODATA
)
270 dev_err(bus
->dev
, "trf on Slave %d failed:%d\n",
274 sdw_reset_page(bus
, msg
->dev_num
);
280 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
282 * @msg: SDW message to be xfered
284 int sdw_transfer(struct sdw_bus
*bus
, struct sdw_msg
*msg
)
288 mutex_lock(&bus
->msg_lock
);
290 ret
= sdw_transfer_unlocked(bus
, msg
);
292 mutex_unlock(&bus
->msg_lock
);
298 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
300 * @msg: SDW message to be xfered
301 * @defer: Defer block for signal completion
303 * Caller needs to hold the msg_lock lock while calling this
305 int sdw_transfer_defer(struct sdw_bus
*bus
, struct sdw_msg
*msg
,
306 struct sdw_defer
*defer
)
310 if (!bus
->ops
->xfer_msg_defer
)
313 ret
= do_transfer_defer(bus
, msg
, defer
);
314 if (ret
!= 0 && ret
!= -ENODATA
)
315 dev_err(bus
->dev
, "Defer trf on Slave %d failed:%d\n",
319 sdw_reset_page(bus
, msg
->dev_num
);
324 int sdw_fill_msg(struct sdw_msg
*msg
, struct sdw_slave
*slave
,
325 u32 addr
, size_t count
, u16 dev_num
, u8 flags
, u8
*buf
)
327 memset(msg
, 0, sizeof(*msg
));
328 msg
->addr
= addr
; /* addr is 16 bit and truncated here */
330 msg
->dev_num
= dev_num
;
334 if (addr
< SDW_REG_NO_PAGE
) /* no paging area */
337 if (addr
>= SDW_REG_MAX
) { /* illegal addr */
338 pr_err("SDW: Invalid address %x passed\n", addr
);
342 if (addr
< SDW_REG_OPTIONAL_PAGE
) { /* 32k but no page */
343 if (slave
&& !slave
->prop
.paging_support
)
345 /* no need for else as that will fall-through to paging */
348 /* paging mandatory */
349 if (dev_num
== SDW_ENUM_DEV_NUM
|| dev_num
== SDW_BROADCAST_DEV_NUM
) {
350 pr_err("SDW: Invalid device for paging :%d\n", dev_num
);
355 pr_err("SDW: No slave for paging addr\n");
359 if (!slave
->prop
.paging_support
) {
361 "address %x needs paging but no support\n", addr
);
365 msg
->addr_page1
= FIELD_GET(SDW_SCP_ADDRPAGE1_MASK
, addr
);
366 msg
->addr_page2
= FIELD_GET(SDW_SCP_ADDRPAGE2_MASK
, addr
);
367 msg
->addr
|= BIT(15);
374 * Read/Write IO functions.
375 * no_pm versions can only be called by the bus, e.g. while enumerating or
376 * handling suspend-resume sequences.
377 * all clients need to use the pm versions
381 sdw_nread_no_pm(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
386 ret
= sdw_fill_msg(&msg
, slave
, addr
, count
,
387 slave
->dev_num
, SDW_MSG_FLAG_READ
, val
);
391 return sdw_transfer(slave
->bus
, &msg
);
395 sdw_nwrite_no_pm(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
400 ret
= sdw_fill_msg(&msg
, slave
, addr
, count
,
401 slave
->dev_num
, SDW_MSG_FLAG_WRITE
, val
);
405 return sdw_transfer(slave
->bus
, &msg
);
408 static int sdw_write_no_pm(struct sdw_slave
*slave
, u32 addr
, u8 value
)
410 return sdw_nwrite_no_pm(slave
, addr
, 1, &value
);
414 sdw_bread_no_pm(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
)
420 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
421 SDW_MSG_FLAG_READ
, &buf
);
425 ret
= sdw_transfer(bus
, &msg
);
433 sdw_bwrite_no_pm(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
, u8 value
)
438 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
439 SDW_MSG_FLAG_WRITE
, &value
);
443 return sdw_transfer(bus
, &msg
);
446 int sdw_bread_no_pm_unlocked(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
)
452 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
453 SDW_MSG_FLAG_READ
, &buf
);
457 ret
= sdw_transfer_unlocked(bus
, &msg
);
463 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked
);
465 int sdw_bwrite_no_pm_unlocked(struct sdw_bus
*bus
, u16 dev_num
, u32 addr
, u8 value
)
470 ret
= sdw_fill_msg(&msg
, NULL
, addr
, 1, dev_num
,
471 SDW_MSG_FLAG_WRITE
, &value
);
475 return sdw_transfer_unlocked(bus
, &msg
);
477 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked
);
480 sdw_read_no_pm(struct sdw_slave
*slave
, u32 addr
)
485 ret
= sdw_nread_no_pm(slave
, addr
, 1, &buf
);
493 * sdw_nread() - Read "n" contiguous SDW Slave registers
495 * @addr: Register address
497 * @val: Buffer for values to be read
499 int sdw_nread(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
503 ret
= pm_runtime_get_sync(slave
->bus
->dev
);
504 if (ret
< 0 && ret
!= -EACCES
) {
505 pm_runtime_put_noidle(slave
->bus
->dev
);
509 ret
= sdw_nread_no_pm(slave
, addr
, count
, val
);
511 pm_runtime_mark_last_busy(slave
->bus
->dev
);
512 pm_runtime_put(slave
->bus
->dev
);
516 EXPORT_SYMBOL(sdw_nread
);
519 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
521 * @addr: Register address
523 * @val: Buffer for values to be read
525 int sdw_nwrite(struct sdw_slave
*slave
, u32 addr
, size_t count
, u8
*val
)
529 ret
= pm_runtime_get_sync(slave
->bus
->dev
);
530 if (ret
< 0 && ret
!= -EACCES
) {
531 pm_runtime_put_noidle(slave
->bus
->dev
);
535 ret
= sdw_nwrite_no_pm(slave
, addr
, count
, val
);
537 pm_runtime_mark_last_busy(slave
->bus
->dev
);
538 pm_runtime_put(slave
->bus
->dev
);
542 EXPORT_SYMBOL(sdw_nwrite
);
545 * sdw_read() - Read a SDW Slave register
547 * @addr: Register address
549 int sdw_read(struct sdw_slave
*slave
, u32 addr
)
554 ret
= sdw_nread(slave
, addr
, 1, &buf
);
560 EXPORT_SYMBOL(sdw_read
);
563 * sdw_write() - Write a SDW Slave register
565 * @addr: Register address
566 * @value: Register value
568 int sdw_write(struct sdw_slave
*slave
, u32 addr
, u8 value
)
570 return sdw_nwrite(slave
, addr
, 1, &value
);
572 EXPORT_SYMBOL(sdw_write
);
578 /* called with bus_lock held */
579 static struct sdw_slave
*sdw_get_slave(struct sdw_bus
*bus
, int i
)
581 struct sdw_slave
*slave
= NULL
;
583 list_for_each_entry(slave
, &bus
->slaves
, node
) {
584 if (slave
->dev_num
== i
)
591 static int sdw_compare_devid(struct sdw_slave
*slave
, struct sdw_slave_id id
)
593 if (slave
->id
.mfg_id
!= id
.mfg_id
||
594 slave
->id
.part_id
!= id
.part_id
||
595 slave
->id
.class_id
!= id
.class_id
||
596 (slave
->id
.unique_id
!= SDW_IGNORED_UNIQUE_ID
&&
597 slave
->id
.unique_id
!= id
.unique_id
))
603 /* called with bus_lock held */
604 static int sdw_get_device_num(struct sdw_slave
*slave
)
608 bit
= find_first_zero_bit(slave
->bus
->assigned
, SDW_MAX_DEVICES
);
609 if (bit
== SDW_MAX_DEVICES
) {
615 * Do not update dev_num in Slave data structure here,
616 * Update once program dev_num is successful
618 set_bit(bit
, slave
->bus
->assigned
);
624 static int sdw_assign_device_num(struct sdw_slave
*slave
)
627 bool new_device
= false;
629 /* check first if device number is assigned, if so reuse that */
630 if (!slave
->dev_num
) {
631 if (!slave
->dev_num_sticky
) {
632 mutex_lock(&slave
->bus
->bus_lock
);
633 dev_num
= sdw_get_device_num(slave
);
634 mutex_unlock(&slave
->bus
->bus_lock
);
636 dev_err(slave
->bus
->dev
, "Get dev_num failed: %d\n",
640 slave
->dev_num
= dev_num
;
641 slave
->dev_num_sticky
= dev_num
;
644 slave
->dev_num
= slave
->dev_num_sticky
;
649 dev_dbg(slave
->bus
->dev
,
650 "Slave already registered, reusing dev_num:%d\n",
653 /* Clear the slave->dev_num to transfer message on device 0 */
654 dev_num
= slave
->dev_num
;
657 ret
= sdw_write_no_pm(slave
, SDW_SCP_DEVNUMBER
, dev_num
);
659 dev_err(&slave
->dev
, "Program device_num %d failed: %d\n",
664 /* After xfer of msg, restore dev_num */
665 slave
->dev_num
= slave
->dev_num_sticky
;
670 void sdw_extract_slave_id(struct sdw_bus
*bus
,
671 u64 addr
, struct sdw_slave_id
*id
)
673 dev_dbg(bus
->dev
, "SDW Slave Addr: %llx\n", addr
);
675 id
->sdw_version
= SDW_VERSION(addr
);
676 id
->unique_id
= SDW_UNIQUE_ID(addr
);
677 id
->mfg_id
= SDW_MFG_ID(addr
);
678 id
->part_id
= SDW_PART_ID(addr
);
679 id
->class_id
= SDW_CLASS_ID(addr
);
682 "SDW Slave class_id %x, part_id %x, mfg_id %x, unique_id %x, version %x\n",
683 id
->class_id
, id
->part_id
, id
->mfg_id
,
684 id
->unique_id
, id
->sdw_version
);
687 static int sdw_program_device_num(struct sdw_bus
*bus
)
689 u8 buf
[SDW_NUM_DEV_ID_REGISTERS
] = {0};
690 struct sdw_slave
*slave
, *_s
;
691 struct sdw_slave_id id
;
697 /* No Slave, so use raw xfer api */
698 ret
= sdw_fill_msg(&msg
, NULL
, SDW_SCP_DEVID_0
,
699 SDW_NUM_DEV_ID_REGISTERS
, 0, SDW_MSG_FLAG_READ
, buf
);
704 ret
= sdw_transfer(bus
, &msg
);
705 if (ret
== -ENODATA
) { /* end of device id reads */
706 dev_dbg(bus
->dev
, "No more devices to enumerate\n");
711 dev_err(bus
->dev
, "DEVID read fail:%d\n", ret
);
716 * Construct the addr and extract. Cast the higher shift
717 * bits to avoid truncation due to size limit.
719 addr
= buf
[5] | (buf
[4] << 8) | (buf
[3] << 16) |
720 ((u64
)buf
[2] << 24) | ((u64
)buf
[1] << 32) |
723 sdw_extract_slave_id(bus
, addr
, &id
);
725 /* Now compare with entries */
726 list_for_each_entry_safe(slave
, _s
, &bus
->slaves
, node
) {
727 if (sdw_compare_devid(slave
, id
) == 0) {
731 * Assign a new dev_num to this Slave and
732 * not mark it present. It will be marked
733 * present after it reports ATTACHED on new
736 ret
= sdw_assign_device_num(slave
);
738 dev_err(slave
->bus
->dev
,
739 "Assign dev_num failed:%d\n",
749 /* TODO: Park this device in Group 13 */
752 * add Slave device even if there is no platform
753 * firmware description. There will be no driver probe
754 * but the user/integration will be able to see the
755 * device, enumeration status and device number in sysfs
757 sdw_slave_add(bus
, &id
, NULL
);
759 dev_err(bus
->dev
, "Slave Entry not found\n");
765 * Check till error out or retry (count) exhausts.
766 * Device can drop off and rejoin during enumeration
767 * so count till twice the bound.
770 } while (ret
== 0 && count
< (SDW_MAX_DEVICES
* 2));
775 static void sdw_modify_slave_status(struct sdw_slave
*slave
,
776 enum sdw_slave_status status
)
778 mutex_lock(&slave
->bus
->bus_lock
);
780 dev_vdbg(&slave
->dev
,
781 "%s: changing status slave %d status %d new status %d\n",
782 __func__
, slave
->dev_num
, slave
->status
, status
);
784 if (status
== SDW_SLAVE_UNATTACHED
) {
786 "%s: initializing completion for Slave %d\n",
787 __func__
, slave
->dev_num
);
789 init_completion(&slave
->enumeration_complete
);
790 init_completion(&slave
->initialization_complete
);
792 } else if ((status
== SDW_SLAVE_ATTACHED
) &&
793 (slave
->status
== SDW_SLAVE_UNATTACHED
)) {
795 "%s: signaling completion for Slave %d\n",
796 __func__
, slave
->dev_num
);
798 complete(&slave
->enumeration_complete
);
800 slave
->status
= status
;
801 mutex_unlock(&slave
->bus
->bus_lock
);
804 static enum sdw_clk_stop_mode
sdw_get_clk_stop_mode(struct sdw_slave
*slave
)
806 enum sdw_clk_stop_mode mode
;
809 * Query for clock stop mode if Slave implements
810 * ops->get_clk_stop_mode, else read from property.
812 if (slave
->ops
&& slave
->ops
->get_clk_stop_mode
) {
813 mode
= slave
->ops
->get_clk_stop_mode(slave
);
815 if (slave
->prop
.clk_stop_mode1
)
816 mode
= SDW_CLK_STOP_MODE1
;
818 mode
= SDW_CLK_STOP_MODE0
;
824 static int sdw_slave_clk_stop_callback(struct sdw_slave
*slave
,
825 enum sdw_clk_stop_mode mode
,
826 enum sdw_clk_stop_type type
)
830 if (slave
->ops
&& slave
->ops
->clk_stop
) {
831 ret
= slave
->ops
->clk_stop(slave
, mode
, type
);
834 "Clk Stop type =%d failed: %d\n", type
, ret
);
842 static int sdw_slave_clk_stop_prepare(struct sdw_slave
*slave
,
843 enum sdw_clk_stop_mode mode
,
850 wake_en
= slave
->prop
.wake_capable
;
853 val
= SDW_SCP_SYSTEMCTRL_CLK_STP_PREP
;
855 if (mode
== SDW_CLK_STOP_MODE1
)
856 val
|= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1
;
859 val
|= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN
;
861 val
= sdw_read_no_pm(slave
, SDW_SCP_SYSTEMCTRL
);
863 val
&= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP
);
866 ret
= sdw_write_no_pm(slave
, SDW_SCP_SYSTEMCTRL
, val
);
870 "Clock Stop prepare failed for slave: %d", ret
);
875 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus
*bus
, u16 dev_num
)
877 int retry
= bus
->clk_stop_timeout
;
881 val
= sdw_bread_no_pm(bus
, dev_num
, SDW_SCP_STAT
) &
882 SDW_SCP_STAT_CLK_STP_NF
;
884 dev_info(bus
->dev
, "clock stop prep/de-prep done slave:%d",
889 usleep_range(1000, 1500);
893 dev_err(bus
->dev
, "clock stop prep/de-prep failed slave:%d",
900 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
902 * @bus: SDW bus instance
904 * Query Slave for clock stop mode and prepare for that mode.
906 int sdw_bus_prep_clk_stop(struct sdw_bus
*bus
)
908 enum sdw_clk_stop_mode slave_mode
;
909 bool simple_clk_stop
= true;
910 struct sdw_slave
*slave
;
911 bool is_slave
= false;
915 * In order to save on transition time, prepare
916 * each Slave and then wait for all Slave(s) to be
917 * prepared for clock stop.
919 list_for_each_entry(slave
, &bus
->slaves
, node
) {
923 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
924 slave
->status
!= SDW_SLAVE_ALERT
)
927 /* Identify if Slave(s) are available on Bus */
930 slave_mode
= sdw_get_clk_stop_mode(slave
);
931 slave
->curr_clk_stop_mode
= slave_mode
;
933 ret
= sdw_slave_clk_stop_callback(slave
, slave_mode
,
934 SDW_CLK_PRE_PREPARE
);
937 "pre-prepare failed:%d", ret
);
941 ret
= sdw_slave_clk_stop_prepare(slave
,
945 "pre-prepare failed:%d", ret
);
949 if (slave_mode
== SDW_CLK_STOP_MODE1
)
950 simple_clk_stop
= false;
953 if (is_slave
&& !simple_clk_stop
) {
954 ret
= sdw_bus_wait_for_clk_prep_deprep(bus
,
955 SDW_BROADCAST_DEV_NUM
);
960 /* Don't need to inform slaves if there is no slave attached */
964 /* Inform slaves that prep is done */
965 list_for_each_entry(slave
, &bus
->slaves
, node
) {
969 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
970 slave
->status
!= SDW_SLAVE_ALERT
)
973 slave_mode
= slave
->curr_clk_stop_mode
;
975 if (slave_mode
== SDW_CLK_STOP_MODE1
) {
976 ret
= sdw_slave_clk_stop_callback(slave
,
978 SDW_CLK_POST_PREPARE
);
982 "post-prepare failed:%d", ret
);
989 EXPORT_SYMBOL(sdw_bus_prep_clk_stop
);
992 * sdw_bus_clk_stop: stop bus clock
994 * @bus: SDW bus instance
996 * After preparing the Slaves for clock stop, stop the clock by broadcasting
997 * write to SCP_CTRL register.
999 int sdw_bus_clk_stop(struct sdw_bus
*bus
)
1004 * broadcast clock stop now, attached Slaves will ACK this,
1005 * unattached will ignore
1007 ret
= sdw_bwrite_no_pm(bus
, SDW_BROADCAST_DEV_NUM
,
1008 SDW_SCP_CTRL
, SDW_SCP_CTRL_CLK_STP_NOW
);
1010 if (ret
== -ENODATA
)
1012 "ClockStopNow Broadcast msg ignored %d", ret
);
1015 "ClockStopNow Broadcast msg failed %d", ret
);
1021 EXPORT_SYMBOL(sdw_bus_clk_stop
);
1024 * sdw_bus_exit_clk_stop: Exit clock stop mode
1026 * @bus: SDW bus instance
1028 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1029 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1032 int sdw_bus_exit_clk_stop(struct sdw_bus
*bus
)
1034 enum sdw_clk_stop_mode mode
;
1035 bool simple_clk_stop
= true;
1036 struct sdw_slave
*slave
;
1037 bool is_slave
= false;
1041 * In order to save on transition time, de-prepare
1042 * each Slave and then wait for all Slave(s) to be
1043 * de-prepared after clock resume.
1045 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1046 if (!slave
->dev_num
)
1049 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1050 slave
->status
!= SDW_SLAVE_ALERT
)
1053 /* Identify if Slave(s) are available on Bus */
1056 mode
= slave
->curr_clk_stop_mode
;
1058 if (mode
== SDW_CLK_STOP_MODE1
) {
1059 simple_clk_stop
= false;
1063 ret
= sdw_slave_clk_stop_callback(slave
, mode
,
1064 SDW_CLK_PRE_DEPREPARE
);
1066 dev_warn(&slave
->dev
,
1067 "clk stop deprep failed:%d", ret
);
1069 ret
= sdw_slave_clk_stop_prepare(slave
, mode
,
1073 dev_warn(&slave
->dev
,
1074 "clk stop deprep failed:%d", ret
);
1077 if (is_slave
&& !simple_clk_stop
)
1078 sdw_bus_wait_for_clk_prep_deprep(bus
, SDW_BROADCAST_DEV_NUM
);
1081 * Don't need to call slave callback function if there is no slave
1087 list_for_each_entry(slave
, &bus
->slaves
, node
) {
1088 if (!slave
->dev_num
)
1091 if (slave
->status
!= SDW_SLAVE_ATTACHED
&&
1092 slave
->status
!= SDW_SLAVE_ALERT
)
1095 mode
= slave
->curr_clk_stop_mode
;
1096 sdw_slave_clk_stop_callback(slave
, mode
,
1097 SDW_CLK_POST_DEPREPARE
);
1102 EXPORT_SYMBOL(sdw_bus_exit_clk_stop
);
1104 int sdw_configure_dpn_intr(struct sdw_slave
*slave
,
1105 int port
, bool enable
, int mask
)
1111 if (slave
->bus
->params
.s_data_mode
!= SDW_PORT_DATA_MODE_NORMAL
) {
1112 dev_dbg(&slave
->dev
, "TEST FAIL interrupt %s\n",
1113 enable
? "on" : "off");
1114 mask
|= SDW_DPN_INT_TEST_FAIL
;
1117 addr
= SDW_DPN_INTMASK(port
);
1119 /* Set/Clear port ready interrupt mask */
1122 val
|= SDW_DPN_INT_PORT_READY
;
1125 val
&= ~SDW_DPN_INT_PORT_READY
;
1128 ret
= sdw_update(slave
, addr
, (mask
| SDW_DPN_INT_PORT_READY
), val
);
1130 dev_err(slave
->bus
->dev
,
1131 "SDW_DPN_INTMASK write failed:%d\n", val
);
1136 static int sdw_slave_set_frequency(struct sdw_slave
*slave
)
1138 u32 mclk_freq
= slave
->bus
->prop
.mclk_freq
;
1139 u32 curr_freq
= slave
->bus
->params
.curr_dr_freq
>> 1;
1146 * frequency base and scale registers are required for SDCA
1147 * devices. They may also be used for 1.2+/non-SDCA devices,
1148 * but we will need a DisCo property to cover this case
1150 if (!slave
->id
.class_id
)
1154 dev_err(&slave
->dev
,
1155 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1160 * map base frequency using Table 89 of SoundWire 1.2 spec.
1161 * The order of the tests just follows the specification, this
1162 * is not a selection between possible values or a search for
1163 * the best value but just a mapping. Only one case per platform
1165 * Some BIOS have inconsistent values for mclk_freq but a
1166 * correct root so we force the mclk_freq to avoid variations.
1168 if (!(19200000 % mclk_freq
)) {
1169 mclk_freq
= 19200000;
1170 base
= SDW_SCP_BASE_CLOCK_19200000_HZ
;
1171 } else if (!(24000000 % mclk_freq
)) {
1172 mclk_freq
= 24000000;
1173 base
= SDW_SCP_BASE_CLOCK_24000000_HZ
;
1174 } else if (!(24576000 % mclk_freq
)) {
1175 mclk_freq
= 24576000;
1176 base
= SDW_SCP_BASE_CLOCK_24576000_HZ
;
1177 } else if (!(22579200 % mclk_freq
)) {
1178 mclk_freq
= 22579200;
1179 base
= SDW_SCP_BASE_CLOCK_22579200_HZ
;
1180 } else if (!(32000000 % mclk_freq
)) {
1181 mclk_freq
= 32000000;
1182 base
= SDW_SCP_BASE_CLOCK_32000000_HZ
;
1184 dev_err(&slave
->dev
,
1185 "Unsupported clock base, mclk %d\n",
1190 if (mclk_freq
% curr_freq
) {
1191 dev_err(&slave
->dev
,
1192 "mclk %d is not multiple of bus curr_freq %d\n",
1193 mclk_freq
, curr_freq
);
1197 scale
= mclk_freq
/ curr_freq
;
1200 * map scale to Table 90 of SoundWire 1.2 spec - and check
1201 * that the scale is a power of two and maximum 64
1203 scale_index
= ilog2(scale
);
1205 if (BIT(scale_index
) != scale
|| scale_index
> 6) {
1206 dev_err(&slave
->dev
,
1207 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1208 scale
, mclk_freq
, curr_freq
);
1213 ret
= sdw_write(slave
, SDW_SCP_BUS_CLOCK_BASE
, base
);
1215 dev_err(&slave
->dev
,
1216 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret
);
1220 /* initialize scale for both banks */
1221 ret
= sdw_write(slave
, SDW_SCP_BUSCLOCK_SCALE_B0
, scale_index
);
1223 dev_err(&slave
->dev
,
1224 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret
);
1227 ret
= sdw_write(slave
, SDW_SCP_BUSCLOCK_SCALE_B1
, scale_index
);
1229 dev_err(&slave
->dev
,
1230 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret
);
1232 dev_dbg(&slave
->dev
,
1233 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1234 base
, scale_index
, mclk_freq
, curr_freq
);
1239 static int sdw_initialize_slave(struct sdw_slave
*slave
)
1241 struct sdw_slave_prop
*prop
= &slave
->prop
;
1245 ret
= sdw_slave_set_frequency(slave
);
1250 * Set SCP_INT1_MASK register, typically bus clash and
1251 * implementation-defined interrupt mask. The Parity detection
1252 * may not always be correct on startup so its use is
1253 * device-dependent, it might e.g. only be enabled in
1254 * steady-state after a couple of frames.
1256 val
= slave
->prop
.scp_int1_mask
;
1258 /* Enable SCP interrupts */
1259 ret
= sdw_update(slave
, SDW_SCP_INTMASK1
, val
, val
);
1261 dev_err(slave
->bus
->dev
,
1262 "SDW_SCP_INTMASK1 write failed:%d\n", ret
);
1266 /* No need to continue if DP0 is not present */
1267 if (!slave
->prop
.dp0_prop
)
1270 /* Enable DP0 interrupts */
1271 val
= prop
->dp0_prop
->imp_def_interrupts
;
1272 val
|= SDW_DP0_INT_PORT_READY
| SDW_DP0_INT_BRA_FAILURE
;
1274 ret
= sdw_update(slave
, SDW_DP0_INTMASK
, val
, val
);
1276 dev_err(slave
->bus
->dev
,
1277 "SDW_DP0_INTMASK read failed:%d\n", ret
);
1281 static int sdw_handle_dp0_interrupt(struct sdw_slave
*slave
, u8
*slave_status
)
1283 u8 clear
, impl_int_mask
;
1284 int status
, status2
, ret
, count
= 0;
1286 status
= sdw_read(slave
, SDW_DP0_INT
);
1288 dev_err(slave
->bus
->dev
,
1289 "SDW_DP0_INT read failed:%d\n", status
);
1294 clear
= status
& ~SDW_DP0_INTERRUPTS
;
1296 if (status
& SDW_DP0_INT_TEST_FAIL
) {
1297 dev_err(&slave
->dev
, "Test fail for port 0\n");
1298 clear
|= SDW_DP0_INT_TEST_FAIL
;
1302 * Assumption: PORT_READY interrupt will be received only for
1303 * ports implementing Channel Prepare state machine (CP_SM)
1306 if (status
& SDW_DP0_INT_PORT_READY
) {
1307 complete(&slave
->port_ready
[0]);
1308 clear
|= SDW_DP0_INT_PORT_READY
;
1311 if (status
& SDW_DP0_INT_BRA_FAILURE
) {
1312 dev_err(&slave
->dev
, "BRA failed\n");
1313 clear
|= SDW_DP0_INT_BRA_FAILURE
;
1316 impl_int_mask
= SDW_DP0_INT_IMPDEF1
|
1317 SDW_DP0_INT_IMPDEF2
| SDW_DP0_INT_IMPDEF3
;
1319 if (status
& impl_int_mask
) {
1320 clear
|= impl_int_mask
;
1321 *slave_status
= clear
;
1324 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1325 ret
= sdw_write(slave
, SDW_DP0_INT
, clear
);
1327 dev_err(slave
->bus
->dev
,
1328 "SDW_DP0_INT write failed:%d\n", ret
);
1332 /* Read DP0 interrupt again */
1333 status2
= sdw_read(slave
, SDW_DP0_INT
);
1335 dev_err(slave
->bus
->dev
,
1336 "SDW_DP0_INT read failed:%d\n", status2
);
1339 /* filter to limit loop to interrupts identified in the first status read */
1344 /* we can get alerts while processing so keep retrying */
1345 } while ((status
& SDW_DP0_INTERRUPTS
) && (count
< SDW_READ_INTR_CLEAR_RETRY
));
1347 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1348 dev_warn(slave
->bus
->dev
, "Reached MAX_RETRY on DP0 read\n");
1353 static int sdw_handle_port_interrupt(struct sdw_slave
*slave
,
1354 int port
, u8
*slave_status
)
1356 u8 clear
, impl_int_mask
;
1357 int status
, status2
, ret
, count
= 0;
1361 return sdw_handle_dp0_interrupt(slave
, slave_status
);
1363 addr
= SDW_DPN_INT(port
);
1364 status
= sdw_read(slave
, addr
);
1366 dev_err(slave
->bus
->dev
,
1367 "SDW_DPN_INT read failed:%d\n", status
);
1373 clear
= status
& ~SDW_DPN_INTERRUPTS
;
1375 if (status
& SDW_DPN_INT_TEST_FAIL
) {
1376 dev_err(&slave
->dev
, "Test fail for port:%d\n", port
);
1377 clear
|= SDW_DPN_INT_TEST_FAIL
;
1381 * Assumption: PORT_READY interrupt will be received only
1382 * for ports implementing CP_SM.
1384 if (status
& SDW_DPN_INT_PORT_READY
) {
1385 complete(&slave
->port_ready
[port
]);
1386 clear
|= SDW_DPN_INT_PORT_READY
;
1389 impl_int_mask
= SDW_DPN_INT_IMPDEF1
|
1390 SDW_DPN_INT_IMPDEF2
| SDW_DPN_INT_IMPDEF3
;
1392 if (status
& impl_int_mask
) {
1393 clear
|= impl_int_mask
;
1394 *slave_status
= clear
;
1397 /* clear the interrupt but don't touch reserved fields */
1398 ret
= sdw_write(slave
, addr
, clear
);
1400 dev_err(slave
->bus
->dev
,
1401 "SDW_DPN_INT write failed:%d\n", ret
);
1405 /* Read DPN interrupt again */
1406 status2
= sdw_read(slave
, addr
);
1408 dev_err(slave
->bus
->dev
,
1409 "SDW_DPN_INT read failed:%d\n", status2
);
1412 /* filter to limit loop to interrupts identified in the first status read */
1417 /* we can get alerts while processing so keep retrying */
1418 } while ((status
& SDW_DPN_INTERRUPTS
) && (count
< SDW_READ_INTR_CLEAR_RETRY
));
1420 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1421 dev_warn(slave
->bus
->dev
, "Reached MAX_RETRY on port read");
1426 static int sdw_handle_slave_alerts(struct sdw_slave
*slave
)
1428 struct sdw_slave_intr_status slave_intr
;
1429 u8 clear
= 0, bit
, port_status
[15] = {0};
1430 int port_num
, stat
, ret
, count
= 0;
1433 u8 sdca_cascade
= 0;
1434 u8 buf
, buf2
[2], _buf
, _buf2
[2];
1438 sdw_modify_slave_status(slave
, SDW_SLAVE_ALERT
);
1440 ret
= pm_runtime_get_sync(&slave
->dev
);
1441 if (ret
< 0 && ret
!= -EACCES
) {
1442 dev_err(&slave
->dev
, "Failed to resume device: %d\n", ret
);
1443 pm_runtime_put_noidle(slave
->bus
->dev
);
1447 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1448 ret
= sdw_read(slave
, SDW_SCP_INT1
);
1450 dev_err(slave
->bus
->dev
,
1451 "SDW_SCP_INT1 read failed:%d\n", ret
);
1456 ret
= sdw_nread(slave
, SDW_SCP_INTSTAT2
, 2, buf2
);
1458 dev_err(slave
->bus
->dev
,
1459 "SDW_SCP_INT2/3 read failed:%d\n", ret
);
1463 if (slave
->prop
.is_sdca
) {
1464 ret
= sdw_read(slave
, SDW_DP0_INT
);
1466 dev_err(slave
->bus
->dev
,
1467 "SDW_DP0_INT read failed:%d\n", ret
);
1470 sdca_cascade
= ret
& SDW_DP0_SDCA_CASCADE
;
1474 slave_notify
= false;
1477 * Check parity, bus clash and Slave (impl defined)
1480 if (buf
& SDW_SCP_INT1_PARITY
) {
1481 parity_check
= slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_PARITY
;
1482 parity_quirk
= !slave
->first_interrupt_done
&&
1483 (slave
->prop
.quirks
& SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY
);
1485 if (parity_check
&& !parity_quirk
)
1486 dev_err(&slave
->dev
, "Parity error detected\n");
1487 clear
|= SDW_SCP_INT1_PARITY
;
1490 if (buf
& SDW_SCP_INT1_BUS_CLASH
) {
1491 if (slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_BUS_CLASH
)
1492 dev_err(&slave
->dev
, "Bus clash detected\n");
1493 clear
|= SDW_SCP_INT1_BUS_CLASH
;
1497 * When bus clash or parity errors are detected, such errors
1498 * are unlikely to be recoverable errors.
1499 * TODO: In such scenario, reset bus. Make this configurable
1500 * via sysfs property with bus reset being the default.
1503 if (buf
& SDW_SCP_INT1_IMPL_DEF
) {
1504 if (slave
->prop
.scp_int1_mask
& SDW_SCP_INT1_IMPL_DEF
) {
1505 dev_dbg(&slave
->dev
, "Slave impl defined interrupt\n");
1506 slave_notify
= true;
1508 clear
|= SDW_SCP_INT1_IMPL_DEF
;
1511 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1513 slave_notify
= true;
1515 /* Check port 0 - 3 interrupts */
1516 port
= buf
& SDW_SCP_INT1_PORT0_3
;
1518 /* To get port number corresponding to bits, shift it */
1519 port
= FIELD_GET(SDW_SCP_INT1_PORT0_3
, port
);
1520 for_each_set_bit(bit
, &port
, 8) {
1521 sdw_handle_port_interrupt(slave
, bit
,
1525 /* Check if cascade 2 interrupt is present */
1526 if (buf
& SDW_SCP_INT1_SCP2_CASCADE
) {
1527 port
= buf2
[0] & SDW_SCP_INTSTAT2_PORT4_10
;
1528 for_each_set_bit(bit
, &port
, 8) {
1529 /* scp2 ports start from 4 */
1531 sdw_handle_port_interrupt(slave
,
1533 &port_status
[port_num
]);
1537 /* now check last cascade */
1538 if (buf2
[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE
) {
1539 port
= buf2
[1] & SDW_SCP_INTSTAT3_PORT11_14
;
1540 for_each_set_bit(bit
, &port
, 8) {
1541 /* scp3 ports start from 11 */
1542 port_num
= bit
+ 10;
1543 sdw_handle_port_interrupt(slave
,
1545 &port_status
[port_num
]);
1549 /* Update the Slave driver */
1550 if (slave_notify
&& slave
->ops
&&
1551 slave
->ops
->interrupt_callback
) {
1552 slave_intr
.sdca_cascade
= sdca_cascade
;
1553 slave_intr
.control_port
= clear
;
1554 memcpy(slave_intr
.port
, &port_status
,
1555 sizeof(slave_intr
.port
));
1557 slave
->ops
->interrupt_callback(slave
, &slave_intr
);
1561 ret
= sdw_write(slave
, SDW_SCP_INT1
, clear
);
1563 dev_err(slave
->bus
->dev
,
1564 "SDW_SCP_INT1 write failed:%d\n", ret
);
1568 /* at this point all initial interrupt sources were handled */
1569 slave
->first_interrupt_done
= true;
1572 * Read status again to ensure no new interrupts arrived
1573 * while servicing interrupts.
1575 ret
= sdw_read(slave
, SDW_SCP_INT1
);
1577 dev_err(slave
->bus
->dev
,
1578 "SDW_SCP_INT1 read failed:%d\n", ret
);
1583 ret
= sdw_nread(slave
, SDW_SCP_INTSTAT2
, 2, _buf2
);
1585 dev_err(slave
->bus
->dev
,
1586 "SDW_SCP_INT2/3 read failed:%d\n", ret
);
1590 if (slave
->prop
.is_sdca
) {
1591 ret
= sdw_read(slave
, SDW_DP0_INT
);
1593 dev_err(slave
->bus
->dev
,
1594 "SDW_DP0_INT read failed:%d\n", ret
);
1597 sdca_cascade
= ret
& SDW_DP0_SDCA_CASCADE
;
1601 * Make sure no interrupts are pending, but filter to limit loop
1602 * to interrupts identified in the first status read
1605 buf2
[0] &= _buf2
[0];
1606 buf2
[1] &= _buf2
[1];
1607 stat
= buf
|| buf2
[0] || buf2
[1] || sdca_cascade
;
1610 * Exit loop if Slave is continuously in ALERT state even
1611 * after servicing the interrupt multiple times.
1615 /* we can get alerts while processing so keep retrying */
1616 } while (stat
!= 0 && count
< SDW_READ_INTR_CLEAR_RETRY
);
1618 if (count
== SDW_READ_INTR_CLEAR_RETRY
)
1619 dev_warn(slave
->bus
->dev
, "Reached MAX_RETRY on alert read\n");
1622 pm_runtime_mark_last_busy(&slave
->dev
);
1623 pm_runtime_put_autosuspend(&slave
->dev
);
1628 static int sdw_update_slave_status(struct sdw_slave
*slave
,
1629 enum sdw_slave_status status
)
1633 if (!slave
->probed
) {
1635 * the slave status update is typically handled in an
1636 * interrupt thread, which can race with the driver
1637 * probe, e.g. when a module needs to be loaded.
1639 * make sure the probe is complete before updating
1642 time
= wait_for_completion_timeout(&slave
->probe_complete
,
1643 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT
));
1645 dev_err(&slave
->dev
, "Probe not complete, timed out\n");
1650 if (!slave
->ops
|| !slave
->ops
->update_status
)
1653 return slave
->ops
->update_status(slave
, status
);
1657 * sdw_handle_slave_status() - Handle Slave status
1658 * @bus: SDW bus instance
1659 * @status: Status for all Slave(s)
1661 int sdw_handle_slave_status(struct sdw_bus
*bus
,
1662 enum sdw_slave_status status
[])
1664 enum sdw_slave_status prev_status
;
1665 struct sdw_slave
*slave
;
1666 bool attached_initializing
;
1669 /* first check if any Slaves fell off the bus */
1670 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1671 mutex_lock(&bus
->bus_lock
);
1672 if (test_bit(i
, bus
->assigned
) == false) {
1673 mutex_unlock(&bus
->bus_lock
);
1676 mutex_unlock(&bus
->bus_lock
);
1678 slave
= sdw_get_slave(bus
, i
);
1682 if (status
[i
] == SDW_SLAVE_UNATTACHED
&&
1683 slave
->status
!= SDW_SLAVE_UNATTACHED
)
1684 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
1687 if (status
[0] == SDW_SLAVE_ATTACHED
) {
1688 dev_dbg(bus
->dev
, "Slave attached, programming device number\n");
1689 ret
= sdw_program_device_num(bus
);
1691 dev_err(bus
->dev
, "Slave attach failed: %d\n", ret
);
1693 * programming a device number will have side effects,
1694 * so we deal with other devices at a later time
1699 /* Continue to check other slave statuses */
1700 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1701 mutex_lock(&bus
->bus_lock
);
1702 if (test_bit(i
, bus
->assigned
) == false) {
1703 mutex_unlock(&bus
->bus_lock
);
1706 mutex_unlock(&bus
->bus_lock
);
1708 slave
= sdw_get_slave(bus
, i
);
1712 attached_initializing
= false;
1714 switch (status
[i
]) {
1715 case SDW_SLAVE_UNATTACHED
:
1716 if (slave
->status
== SDW_SLAVE_UNATTACHED
)
1719 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
1722 case SDW_SLAVE_ALERT
:
1723 ret
= sdw_handle_slave_alerts(slave
);
1726 "Slave %d alert handling failed: %d\n",
1730 case SDW_SLAVE_ATTACHED
:
1731 if (slave
->status
== SDW_SLAVE_ATTACHED
)
1734 prev_status
= slave
->status
;
1735 sdw_modify_slave_status(slave
, SDW_SLAVE_ATTACHED
);
1737 if (prev_status
== SDW_SLAVE_ALERT
)
1740 attached_initializing
= true;
1742 ret
= sdw_initialize_slave(slave
);
1745 "Slave %d initialization failed: %d\n",
1751 dev_err(bus
->dev
, "Invalid slave %d status:%d\n",
1756 ret
= sdw_update_slave_status(slave
, status
[i
]);
1758 dev_err(slave
->bus
->dev
,
1759 "Update Slave status failed:%d\n", ret
);
1760 if (attached_initializing
)
1761 complete(&slave
->initialization_complete
);
1766 EXPORT_SYMBOL(sdw_handle_slave_status
);
1768 void sdw_clear_slave_status(struct sdw_bus
*bus
, u32 request
)
1770 struct sdw_slave
*slave
;
1773 /* Check all non-zero devices */
1774 for (i
= 1; i
<= SDW_MAX_DEVICES
; i
++) {
1775 mutex_lock(&bus
->bus_lock
);
1776 if (test_bit(i
, bus
->assigned
) == false) {
1777 mutex_unlock(&bus
->bus_lock
);
1780 mutex_unlock(&bus
->bus_lock
);
1782 slave
= sdw_get_slave(bus
, i
);
1786 if (slave
->status
!= SDW_SLAVE_UNATTACHED
) {
1787 sdw_modify_slave_status(slave
, SDW_SLAVE_UNATTACHED
);
1788 slave
->first_interrupt_done
= false;
1791 /* keep track of request, used in pm_runtime resume */
1792 slave
->unattach_request
= request
;
1795 EXPORT_SYMBOL(sdw_clear_slave_status
);