WIP FPC-III support
[linux/fpc-iii.git] / drivers / spi / spi-fsi.c
blob3920cd3286d8a7d24c2430b9ec5e3c52f734c822
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
13 #define FSI_ENGID_SPI 0x23
14 #define FSI_MBOX_ROOT_CTRL_8 0x2860
15 #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000
17 #define FSI2SPI_DATA0 0x00
18 #define FSI2SPI_DATA1 0x04
19 #define FSI2SPI_CMD 0x08
20 #define FSI2SPI_CMD_WRITE BIT(31)
21 #define FSI2SPI_RESET 0x18
22 #define FSI2SPI_STATUS 0x1c
23 #define FSI2SPI_STATUS_ANY_ERROR BIT(31)
24 #define FSI2SPI_IRQ 0x20
26 #define SPI_FSI_BASE 0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS 1000
28 #define SPI_FSI_MAX_XFR_SIZE 2048
29 #define SPI_FSI_MAX_XFR_SIZE_RESTRICTED 32
31 #define SPI_FSI_ERROR 0x0
32 #define SPI_FSI_COUNTER_CFG 0x1
33 #define SPI_FSI_COUNTER_CFG_LOOPS(x) (((u64)(x) & 0xffULL) << 32)
34 #define SPI_FSI_COUNTER_CFG_N2_RX BIT_ULL(8)
35 #define SPI_FSI_COUNTER_CFG_N2_TX BIT_ULL(9)
36 #define SPI_FSI_COUNTER_CFG_N2_IMPLICIT BIT_ULL(10)
37 #define SPI_FSI_COUNTER_CFG_N2_RELOAD BIT_ULL(11)
38 #define SPI_FSI_CFG1 0x2
39 #define SPI_FSI_CLOCK_CFG 0x3
40 #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32)
41 #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33))
42 #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38))
43 #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39))
44 #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42))
45 #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44)
46 #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51)
47 #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52)
48 #define SPI_FSI_MMAP 0x4
49 #define SPI_FSI_DATA_TX 0x5
50 #define SPI_FSI_DATA_RX 0x6
51 #define SPI_FSI_SEQUENCE 0x7
52 #define SPI_FSI_SEQUENCE_STOP 0x00
53 #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf))
54 #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf))
55 #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf))
56 #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0
57 #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf))
58 #define SPI_FSI_STATUS 0x8
59 #define SPI_FSI_STATUS_ERROR \
60 (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
61 #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48)
62 #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48)
63 #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57)
64 #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58)
65 #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59)
66 #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61)
67 #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62)
68 #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63)
69 #define SPI_FSI_STATUS_ANY_ERROR \
70 (SPI_FSI_STATUS_ERROR | \
71 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
72 SPI_FSI_STATUS_RDR_OVERRUN)
73 #define SPI_FSI_PORT_CTRL 0x9
75 struct fsi_spi {
76 struct device *dev; /* SPI controller device */
77 struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
78 u32 base;
79 size_t max_xfr_size;
80 bool restricted;
83 struct fsi_spi_sequence {
84 int bit;
85 u64 data;
88 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
90 int rc;
91 u32 root_ctrl_8;
92 __be32 root_ctrl_8_be;
94 rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
95 sizeof(root_ctrl_8_be));
96 if (rc)
97 return rc;
99 root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
100 dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
101 if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
102 FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
103 return 0;
105 return -ENOLINK;
108 static int fsi_spi_check_status(struct fsi_spi *ctx)
110 int rc;
111 u32 sts;
112 __be32 sts_be;
114 rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
115 sizeof(sts_be));
116 if (rc)
117 return rc;
119 sts = be32_to_cpu(sts_be);
120 if (sts & FSI2SPI_STATUS_ANY_ERROR) {
121 dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
122 return -EIO;
125 return 0;
128 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
130 int rc;
131 __be32 cmd_be;
132 __be32 data_be;
133 u32 cmd = offset + ctx->base;
135 *value = 0ULL;
137 if (cmd & FSI2SPI_CMD_WRITE)
138 return -EINVAL;
140 cmd_be = cpu_to_be32(cmd);
141 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
142 if (rc)
143 return rc;
145 rc = fsi_spi_check_status(ctx);
146 if (rc)
147 return rc;
149 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
150 sizeof(data_be));
151 if (rc)
152 return rc;
154 *value |= (u64)be32_to_cpu(data_be) << 32;
156 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
157 sizeof(data_be));
158 if (rc)
159 return rc;
161 *value |= (u64)be32_to_cpu(data_be);
162 dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
164 return 0;
167 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
169 int rc;
170 __be32 cmd_be;
171 __be32 data_be;
172 u32 cmd = offset + ctx->base;
174 if (cmd & FSI2SPI_CMD_WRITE)
175 return -EINVAL;
177 dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
179 data_be = cpu_to_be32(upper_32_bits(value));
180 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
181 sizeof(data_be));
182 if (rc)
183 return rc;
185 data_be = cpu_to_be32(lower_32_bits(value));
186 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
187 sizeof(data_be));
188 if (rc)
189 return rc;
191 cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
192 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
193 if (rc)
194 return rc;
196 return fsi_spi_check_status(ctx);
199 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
201 int i;
202 int num_bytes = min(len, 8);
204 for (i = 0; i < num_bytes; ++i)
205 rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
207 return num_bytes;
210 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
212 int i;
213 int num_bytes = min(len, 8);
214 u8 *out_bytes = (u8 *)out;
216 /* Unused bytes of the tx data should be 0. */
217 *out = 0ULL;
219 for (i = 0; i < num_bytes; ++i)
220 out_bytes[8 - (i + 1)] = tx[i];
222 return num_bytes;
225 static int fsi_spi_reset(struct fsi_spi *ctx)
227 int rc;
229 dev_dbg(ctx->dev, "Resetting SPI controller.\n");
231 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
232 SPI_FSI_CLOCK_CFG_RESET1);
233 if (rc)
234 return rc;
236 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
237 SPI_FSI_CLOCK_CFG_RESET2);
238 if (rc)
239 return rc;
241 return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
244 static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
247 * Add the next byte of instruction to the 8-byte sequence register.
248 * Then decrement the counter so that the next instruction will go in
249 * the right place. Return the index of the slot we just filled in the
250 * sequence register.
252 seq->data |= (u64)val << seq->bit;
253 seq->bit -= 8;
255 return ((64 - seq->bit) / 8) - 2;
258 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
260 seq->bit = 56;
261 seq->data = 0ULL;
264 static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
265 struct fsi_spi_sequence *seq,
266 struct spi_transfer *transfer)
268 bool docfg = false;
269 int loops;
270 int idx;
271 int rc;
272 u8 val = 0;
273 u8 len = min(transfer->len, 8U);
274 u8 rem = transfer->len % len;
275 u64 cfg = 0ULL;
277 loops = transfer->len / len;
279 if (transfer->tx_buf) {
280 val = SPI_FSI_SEQUENCE_SHIFT_OUT(len);
281 idx = fsi_spi_sequence_add(seq, val);
283 if (rem)
284 rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
285 } else if (transfer->rx_buf) {
286 val = SPI_FSI_SEQUENCE_SHIFT_IN(len);
287 idx = fsi_spi_sequence_add(seq, val);
289 if (rem)
290 rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
291 } else {
292 return -EINVAL;
295 if (ctx->restricted) {
296 const int eidx = rem ? 5 : 6;
298 while (loops > 1 && idx <= eidx) {
299 idx = fsi_spi_sequence_add(seq, val);
300 loops--;
301 docfg = true;
304 if (loops > 1) {
305 dev_warn(ctx->dev, "No sequencer slots; aborting.\n");
306 return -EINVAL;
310 if (loops > 1) {
311 fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
312 docfg = true;
315 if (docfg) {
316 cfg = SPI_FSI_COUNTER_CFG_LOOPS(loops - 1);
317 if (transfer->rx_buf)
318 cfg |= SPI_FSI_COUNTER_CFG_N2_RX |
319 SPI_FSI_COUNTER_CFG_N2_TX |
320 SPI_FSI_COUNTER_CFG_N2_IMPLICIT |
321 SPI_FSI_COUNTER_CFG_N2_RELOAD;
323 rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, cfg);
324 if (rc)
325 return rc;
326 } else {
327 fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
330 if (rem)
331 fsi_spi_sequence_add(seq, rem);
333 return 0;
336 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
337 struct spi_transfer *transfer)
339 int rc = 0;
340 u64 status = 0ULL;
341 u64 cfg = 0ULL;
343 if (transfer->tx_buf) {
344 int nb;
345 int sent = 0;
346 u64 out = 0ULL;
347 const u8 *tx = transfer->tx_buf;
349 while (transfer->len > sent) {
350 nb = fsi_spi_data_out(&out, &tx[sent],
351 (int)transfer->len - sent);
353 rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
354 if (rc)
355 return rc;
357 do {
358 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
359 &status);
360 if (rc)
361 return rc;
363 if (status & SPI_FSI_STATUS_ANY_ERROR) {
364 rc = fsi_spi_reset(ctx);
365 if (rc)
366 return rc;
368 return -EREMOTEIO;
370 } while (status & SPI_FSI_STATUS_TDR_FULL);
372 sent += nb;
374 } else if (transfer->rx_buf) {
375 int recv = 0;
376 u64 in = 0ULL;
377 u8 *rx = transfer->rx_buf;
379 rc = fsi_spi_read_reg(ctx, SPI_FSI_COUNTER_CFG, &cfg);
380 if (rc)
381 return rc;
383 if (cfg & SPI_FSI_COUNTER_CFG_N2_IMPLICIT) {
384 rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, 0);
385 if (rc)
386 return rc;
389 while (transfer->len > recv) {
390 do {
391 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
392 &status);
393 if (rc)
394 return rc;
396 if (status & SPI_FSI_STATUS_ANY_ERROR) {
397 rc = fsi_spi_reset(ctx);
398 if (rc)
399 return rc;
401 return -EREMOTEIO;
403 } while (!(status & SPI_FSI_STATUS_RDR_FULL));
405 rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
406 if (rc)
407 return rc;
409 recv += fsi_spi_data_in(in, &rx[recv],
410 (int)transfer->len - recv);
414 return 0;
417 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
419 int rc;
420 bool reset = false;
421 unsigned long end;
422 u64 seq_state;
423 u64 clock_cfg = 0ULL;
424 u64 status = 0ULL;
425 u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
426 SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
427 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
429 end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
430 do {
431 if (time_after(jiffies, end))
432 return -ETIMEDOUT;
434 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
435 if (rc)
436 return rc;
438 seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
440 if (status & (SPI_FSI_STATUS_ANY_ERROR |
441 SPI_FSI_STATUS_TDR_FULL |
442 SPI_FSI_STATUS_RDR_FULL)) {
443 if (reset)
444 return -EIO;
446 rc = fsi_spi_reset(ctx);
447 if (rc)
448 return rc;
450 reset = true;
451 continue;
453 } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
455 rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
456 if (rc)
457 return rc;
459 if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
460 SPI_FSI_CLOCK_CFG_ECC_DISABLE |
461 SPI_FSI_CLOCK_CFG_MODE |
462 SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
463 SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
464 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
465 wanted_clock_cfg);
467 return rc;
470 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
471 struct spi_message *mesg)
473 int rc;
474 u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
475 struct spi_transfer *transfer;
476 struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
478 rc = fsi_spi_check_mux(ctx->fsi, ctx->dev);
479 if (rc)
480 goto error;
482 list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
483 struct fsi_spi_sequence seq;
484 struct spi_transfer *next = NULL;
486 /* Sequencer must do shift out (tx) first. */
487 if (!transfer->tx_buf ||
488 transfer->len > (ctx->max_xfr_size + 8)) {
489 rc = -EINVAL;
490 goto error;
493 dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
495 rc = fsi_spi_transfer_init(ctx);
496 if (rc < 0)
497 goto error;
499 fsi_spi_sequence_init(&seq);
500 fsi_spi_sequence_add(&seq, seq_slave);
502 rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
503 if (rc)
504 goto error;
506 if (!list_is_last(&transfer->transfer_list,
507 &mesg->transfers)) {
508 next = list_next_entry(transfer, transfer_list);
510 /* Sequencer can only do shift in (rx) after tx. */
511 if (next->rx_buf) {
512 if (next->len > ctx->max_xfr_size) {
513 rc = -EINVAL;
514 goto error;
517 dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
518 next->len);
520 rc = fsi_spi_sequence_transfer(ctx, &seq,
521 next);
522 if (rc)
523 goto error;
524 } else {
525 next = NULL;
529 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
531 rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
532 if (rc)
533 goto error;
535 rc = fsi_spi_transfer_data(ctx, transfer);
536 if (rc)
537 goto error;
539 if (next) {
540 rc = fsi_spi_transfer_data(ctx, next);
541 if (rc)
542 goto error;
544 transfer = next;
548 error:
549 mesg->status = rc;
550 spi_finalize_current_message(ctlr);
552 return rc;
555 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
557 struct fsi_spi *ctx = spi_controller_get_devdata(spi->controller);
559 return ctx->max_xfr_size;
562 static int fsi_spi_probe(struct device *dev)
564 int rc;
565 struct device_node *np;
566 int num_controllers_registered = 0;
567 struct fsi_device *fsi = to_fsi_dev(dev);
569 rc = fsi_spi_check_mux(fsi, dev);
570 if (rc)
571 return -ENODEV;
573 for_each_available_child_of_node(dev->of_node, np) {
574 u32 base;
575 struct fsi_spi *ctx;
576 struct spi_controller *ctlr;
578 if (of_property_read_u32(np, "reg", &base))
579 continue;
581 ctlr = spi_alloc_master(dev, sizeof(*ctx));
582 if (!ctlr)
583 break;
585 ctlr->dev.of_node = np;
586 ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
587 ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
588 ctlr->max_transfer_size = fsi_spi_max_transfer_size;
589 ctlr->transfer_one_message = fsi_spi_transfer_one_message;
591 ctx = spi_controller_get_devdata(ctlr);
592 ctx->dev = &ctlr->dev;
593 ctx->fsi = fsi;
594 ctx->base = base + SPI_FSI_BASE;
596 if (of_device_is_compatible(np, "ibm,fsi2spi-restricted")) {
597 ctx->restricted = true;
598 ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE_RESTRICTED;
599 } else {
600 ctx->restricted = false;
601 ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE;
604 rc = devm_spi_register_controller(dev, ctlr);
605 if (rc)
606 spi_controller_put(ctlr);
607 else
608 num_controllers_registered++;
611 if (!num_controllers_registered)
612 return -ENODEV;
614 return 0;
617 static const struct fsi_device_id fsi_spi_ids[] = {
618 { FSI_ENGID_SPI, FSI_VERSION_ANY },
621 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
623 static struct fsi_driver fsi_spi_driver = {
624 .id_table = fsi_spi_ids,
625 .drv = {
626 .name = "spi-fsi",
627 .bus = &fsi_bus_type,
628 .probe = fsi_spi_probe,
631 module_fsi_driver(fsi_spi_driver);
633 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
634 MODULE_DESCRIPTION("FSI attached SPI controller");
635 MODULE_LICENSE("GPL");