1 // SPDX-License-Identifier: GPL-2.0+
3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
5 * Copyright (C) 2005-2007 AMD (https://www.amd.com)
6 * Author: Thomas Dahlmann
10 * This file does the core driver implementation for the UDC that is based
11 * on Synopsys device controller IP (different than HS OTG IP) that is either
12 * connected through PCI bus or integrated to SoC platforms.
16 #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
17 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/kernel.h>
22 #include <linux/delay.h>
23 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/timer.h>
28 #include <linux/list.h>
29 #include <linux/interrupt.h>
30 #include <linux/ioctl.h>
32 #include <linux/dmapool.h>
33 #include <linux/prefetch.h>
34 #include <linux/moduleparam.h>
35 #include <asm/byteorder.h>
36 #include <asm/unaligned.h>
37 #include "amd5536udc.h"
39 static void udc_tasklet_disconnect(unsigned long);
40 static void udc_setup_endpoints(struct udc
*dev
);
41 static void udc_soft_reset(struct udc
*dev
);
42 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
43 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
46 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
47 static const char name
[] = "udc";
49 /* structure to hold endpoint function pointers */
50 static const struct usb_ep_ops udc_ep_ops
;
52 /* received setup data */
53 static union udc_setup_data setup_data
;
55 /* pointer to device object */
56 static struct udc
*udc
;
58 /* irq spin lock for soft reset */
59 static DEFINE_SPINLOCK(udc_irq_spinlock
);
61 static DEFINE_SPINLOCK(udc_stall_spinlock
);
64 * slave mode: pending bytes in rx fifo after nyet,
65 * used if EPIN irq came but no req was available
67 static unsigned int udc_rxfifo_pending
;
69 /* count soft resets after suspend to avoid loop */
70 static int soft_reset_occured
;
71 static int soft_reset_after_usbreset_occured
;
74 static struct timer_list udc_timer
;
75 static int stop_timer
;
77 /* set_rde -- Is used to control enabling of RX DMA. Problem is
78 * that UDC has only one bit (RDE) to enable/disable RX DMA for
79 * all OUT endpoints. So we have to handle race conditions like
80 * when OUT data reaches the fifo but no request was queued yet.
81 * This cannot be solved by letting the RX DMA disabled until a
82 * request gets queued because there may be other OUT packets
83 * in the FIFO (important for not blocking control traffic).
84 * The value of set_rde controls the correspondig timer.
86 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
87 * set_rde 0 == do not touch RDE, do no start the RDE timer
88 * set_rde 1 == timer function will look whether FIFO has data
89 * set_rde 2 == set by timer function to enable RX DMA on next call
91 static int set_rde
= -1;
93 static DECLARE_COMPLETION(on_exit
);
94 static struct timer_list udc_pollstall_timer
;
95 static int stop_pollstall_timer
;
96 static DECLARE_COMPLETION(on_pollstall_exit
);
98 /* tasklet for usb disconnect */
99 static DECLARE_TASKLET_OLD(disconnect_tasklet
, udc_tasklet_disconnect
);
101 /* endpoint names used for print */
102 static const char ep0_string
[] = "ep0in";
103 static const struct {
105 const struct usb_ep_caps caps
;
107 #define EP_INFO(_name, _caps) \
114 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_IN
)),
116 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
117 EP_INFO("ep2in-bulk",
118 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
119 EP_INFO("ep3in-bulk",
120 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
121 EP_INFO("ep4in-bulk",
122 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
123 EP_INFO("ep5in-bulk",
124 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
125 EP_INFO("ep6in-bulk",
126 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
127 EP_INFO("ep7in-bulk",
128 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
129 EP_INFO("ep8in-bulk",
130 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
131 EP_INFO("ep9in-bulk",
132 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
133 EP_INFO("ep10in-bulk",
134 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
135 EP_INFO("ep11in-bulk",
136 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
137 EP_INFO("ep12in-bulk",
138 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
139 EP_INFO("ep13in-bulk",
140 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
141 EP_INFO("ep14in-bulk",
142 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
143 EP_INFO("ep15in-bulk",
144 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
146 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_OUT
)),
147 EP_INFO("ep1out-bulk",
148 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
149 EP_INFO("ep2out-bulk",
150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
151 EP_INFO("ep3out-bulk",
152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
153 EP_INFO("ep4out-bulk",
154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
155 EP_INFO("ep5out-bulk",
156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
157 EP_INFO("ep6out-bulk",
158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
159 EP_INFO("ep7out-bulk",
160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
161 EP_INFO("ep8out-bulk",
162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
163 EP_INFO("ep9out-bulk",
164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
165 EP_INFO("ep10out-bulk",
166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
167 EP_INFO("ep11out-bulk",
168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
169 EP_INFO("ep12out-bulk",
170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
171 EP_INFO("ep13out-bulk",
172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
173 EP_INFO("ep14out-bulk",
174 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
175 EP_INFO("ep15out-bulk",
176 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
181 /* buffer fill mode */
182 static int use_dma_bufferfill_mode
;
183 /* tx buffer size for high speed */
184 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
188 static void print_regs(struct udc
*dev
)
190 DBG(dev
, "------- Device registers -------\n");
191 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
192 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
193 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
195 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
196 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
198 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
199 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
201 DBG(dev
, "USE DMA = %d\n", use_dma
);
202 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
203 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(dev
->dev
, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
207 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(dev
->dev
, "DMA mode (%s)\n", "PPBDU");
211 if (use_dma
&& use_dma_bufferfill_mode
) {
212 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(dev
->dev
, "DMA mode (%s)\n", "BF");
216 dev_info(dev
->dev
, "FIFO mode\n");
217 DBG(dev
, "-------------------------------------------------------\n");
220 /* Masks unused interrupts */
221 int udc_mask_unused_interrupts(struct udc
*dev
)
225 /* mask all dev interrupts */
226 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
227 AMD_BIT(UDC_DEVINT_ENUM
) |
228 AMD_BIT(UDC_DEVINT_US
) |
229 AMD_BIT(UDC_DEVINT_UR
) |
230 AMD_BIT(UDC_DEVINT_ES
) |
231 AMD_BIT(UDC_DEVINT_SI
) |
232 AMD_BIT(UDC_DEVINT_SOF
)|
233 AMD_BIT(UDC_DEVINT_SC
);
234 writel(tmp
, &dev
->regs
->irqmsk
);
236 /* mask all ep interrupts */
237 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
241 EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts
);
243 /* Enables endpoint 0 interrupts */
244 static int udc_enable_ep0_interrupts(struct udc
*dev
)
248 DBG(dev
, "udc_enable_ep0_interrupts()\n");
251 tmp
= readl(&dev
->regs
->ep_irqmsk
);
252 /* enable ep0 irq's */
253 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
255 writel(tmp
, &dev
->regs
->ep_irqmsk
);
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
261 int udc_enable_dev_setup_interrupts(struct udc
*dev
)
265 DBG(dev
, "enable device interrupts for setup data\n");
268 tmp
= readl(&dev
->regs
->irqmsk
);
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
276 writel(tmp
, &dev
->regs
->irqmsk
);
280 EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts
);
282 /* Calculates fifo start of endpoint based on preceding endpoints */
283 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
289 if (!ep
|| !(ep
->in
))
293 ep
->txfifo
= dev
->txfifo
;
296 for (i
= 0; i
< ep
->num
; i
++) {
297 if (dev
->ep
[i
].regs
) {
299 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
300 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
307 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
308 static u32 cnak_pending
;
310 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
312 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
313 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
314 cnak_pending
|= 1 << (num
);
317 cnak_pending
= cnak_pending
& (~(1 << (num
)));
321 /* Enables endpoint, is called by gadget driver */
323 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
328 unsigned long iflags
;
333 || usbep
->name
== ep0_string
335 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
338 ep
= container_of(usbep
, struct udc_ep
, ep
);
341 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
343 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
346 spin_lock_irqsave(&dev
->lock
, iflags
);
351 /* set traffic type */
352 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
353 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
354 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
356 /* set max packet size */
357 maxpacket
= usb_endpoint_maxp(desc
);
358 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
359 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
360 ep
->ep
.maxpacket
= maxpacket
;
361 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
366 /* ep ix in UDC CSR register space */
367 udc_csr_epix
= ep
->num
;
369 /* set buffer size (tx fifo entries) */
370 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
371 /* double buffering: fifo size = 2 x max packet size */
374 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
377 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
379 /* calc. tx fifo base addr */
380 udc_set_txfifo_addr(ep
);
383 tmp
= readl(&ep
->regs
->ctl
);
384 tmp
|= AMD_BIT(UDC_EPCTL_F
);
385 writel(tmp
, &ep
->regs
->ctl
);
389 /* ep ix in UDC CSR register space */
390 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
392 /* set max packet size UDC CSR */
393 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
394 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
396 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
398 if (use_dma
&& !ep
->in
) {
399 /* alloc and init BNA dummy request */
400 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
401 ep
->bna_occurred
= 0;
404 if (ep
->num
!= UDC_EP0OUT_IX
)
405 dev
->data_ep_enabled
= 1;
409 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
411 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
413 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
415 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
417 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
419 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
421 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
423 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
425 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
428 tmp
= readl(&dev
->regs
->ep_irqmsk
);
429 tmp
&= AMD_UNMASK_BIT(ep
->num
);
430 writel(tmp
, &dev
->regs
->ep_irqmsk
);
433 * clear NAK by writing CNAK
434 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
436 if (!use_dma
|| ep
->in
) {
437 tmp
= readl(&ep
->regs
->ctl
);
438 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
439 writel(tmp
, &ep
->regs
->ctl
);
441 UDC_QUEUE_CNAK(ep
, ep
->num
);
443 tmp
= desc
->bEndpointAddress
;
444 DBG(dev
, "%s enabled\n", usbep
->name
);
446 spin_unlock_irqrestore(&dev
->lock
, iflags
);
450 /* Resets endpoint */
451 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
455 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
457 ep
->ep
.ops
= &udc_ep_ops
;
458 INIT_LIST_HEAD(&ep
->queue
);
460 usb_ep_set_maxpacket_limit(&ep
->ep
,(u16
) ~0);
462 tmp
= readl(&ep
->regs
->ctl
);
463 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
464 writel(tmp
, &ep
->regs
->ctl
);
467 /* disable interrupt */
468 tmp
= readl(®s
->ep_irqmsk
);
469 tmp
|= AMD_BIT(ep
->num
);
470 writel(tmp
, ®s
->ep_irqmsk
);
473 /* unset P and IN bit of potential former DMA */
474 tmp
= readl(&ep
->regs
->ctl
);
475 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
476 writel(tmp
, &ep
->regs
->ctl
);
478 tmp
= readl(&ep
->regs
->sts
);
479 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
480 writel(tmp
, &ep
->regs
->sts
);
483 tmp
= readl(&ep
->regs
->ctl
);
484 tmp
|= AMD_BIT(UDC_EPCTL_F
);
485 writel(tmp
, &ep
->regs
->ctl
);
488 /* reset desc pointer */
489 writel(0, &ep
->regs
->desptr
);
492 /* Disables endpoint, is called by gadget driver */
493 static int udc_ep_disable(struct usb_ep
*usbep
)
495 struct udc_ep
*ep
= NULL
;
496 unsigned long iflags
;
501 ep
= container_of(usbep
, struct udc_ep
, ep
);
502 if (usbep
->name
== ep0_string
|| !ep
->ep
.desc
)
505 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
507 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
508 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
510 ep_init(ep
->dev
->regs
, ep
);
511 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
516 /* Allocates request packet, called by gadget driver */
517 static struct usb_request
*
518 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
520 struct udc_request
*req
;
521 struct udc_data_dma
*dma_desc
;
527 ep
= container_of(usbep
, struct udc_ep
, ep
);
529 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
530 req
= kzalloc(sizeof(struct udc_request
), gfp
);
534 req
->req
.dma
= DMA_DONT_USE
;
535 INIT_LIST_HEAD(&req
->queue
);
538 /* ep0 in requests are allocated from data pool here */
539 dma_desc
= dma_pool_alloc(ep
->dev
->data_requests
, gfp
,
546 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
549 (unsigned long)req
->td_phys
);
550 /* prevent from using desc. - set HOST BUSY */
551 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
552 UDC_DMA_STP_STS_BS_HOST_BUSY
,
554 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
555 req
->td_data
= dma_desc
;
556 req
->td_data_last
= NULL
;
563 /* frees pci pool descriptors of a DMA chain */
564 static void udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
566 struct udc_data_dma
*td
= req
->td_data
;
569 dma_addr_t addr_next
= 0x00;
570 dma_addr_t addr
= (dma_addr_t
)td
->next
;
572 DBG(dev
, "free chain req = %p\n", req
);
574 /* do not free first desc., will be done by free for request */
575 for (i
= 1; i
< req
->chain_len
; i
++) {
576 td
= phys_to_virt(addr
);
577 addr_next
= (dma_addr_t
)td
->next
;
578 dma_pool_free(dev
->data_requests
, td
, addr
);
583 /* Frees request packet, called by gadget driver */
585 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
588 struct udc_request
*req
;
590 if (!usbep
|| !usbreq
)
593 ep
= container_of(usbep
, struct udc_ep
, ep
);
594 req
= container_of(usbreq
, struct udc_request
, req
);
595 VDBG(ep
->dev
, "free_req req=%p\n", req
);
596 BUG_ON(!list_empty(&req
->queue
));
598 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
600 /* free dma chain if created */
601 if (req
->chain_len
> 1)
602 udc_free_dma_chain(ep
->dev
, req
);
604 dma_pool_free(ep
->dev
->data_requests
, req
->td_data
,
610 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
611 static void udc_init_bna_dummy(struct udc_request
*req
)
615 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
616 /* set next pointer to itself */
617 req
->td_data
->next
= req
->td_phys
;
620 = AMD_ADDBITS(req
->td_data
->status
,
621 UDC_DMA_STP_STS_BS_DMA_DONE
,
624 pr_debug("bna desc = %p, sts = %08x\n",
625 req
->td_data
, req
->td_data
->status
);
630 /* Allocate BNA dummy descriptor */
631 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
633 struct udc_request
*req
= NULL
;
634 struct usb_request
*_req
= NULL
;
636 /* alloc the dummy request */
637 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
639 req
= container_of(_req
, struct udc_request
, req
);
640 ep
->bna_dummy_req
= req
;
641 udc_init_bna_dummy(req
);
646 /* Write data to TX fifo for IN packets */
648 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
654 unsigned remaining
= 0;
659 req_buf
= req
->buf
+ req
->actual
;
661 remaining
= req
->length
- req
->actual
;
663 buf
= (u32
*) req_buf
;
665 bytes
= ep
->ep
.maxpacket
;
666 if (bytes
> remaining
)
670 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
671 writel(*(buf
+ i
), ep
->txfifo
);
673 /* remaining bytes must be written by byte access */
674 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
675 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
679 /* dummy write confirm */
680 writel(0, &ep
->regs
->confirm
);
683 /* Read dwords from RX fifo for OUT transfers */
684 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
688 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
690 for (i
= 0; i
< dwords
; i
++)
691 *(buf
+ i
) = readl(dev
->rxfifo
);
695 /* Read bytes from RX fifo for OUT transfers */
696 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
701 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
704 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
705 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
707 /* remaining bytes must be read by byte access */
708 if (bytes
% UDC_DWORD_BYTES
) {
709 tmp
= readl(dev
->rxfifo
);
710 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
711 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
712 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
719 /* Read data from RX fifo for OUT transfers */
721 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
726 unsigned finished
= 0;
728 /* received number bytes */
729 bytes
= readl(&ep
->regs
->sts
);
730 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
732 buf_space
= req
->req
.length
- req
->req
.actual
;
733 buf
= req
->req
.buf
+ req
->req
.actual
;
734 if (bytes
> buf_space
) {
735 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
737 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
738 ep
->ep
.name
, bytes
, buf_space
);
739 req
->req
.status
= -EOVERFLOW
;
743 req
->req
.actual
+= bytes
;
746 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
747 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
750 /* read rx fifo bytes */
751 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
752 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
757 /* Creates or re-inits a DMA chain */
758 static int udc_create_dma_chain(
760 struct udc_request
*req
,
761 unsigned long buf_len
, gfp_t gfp_flags
764 unsigned long bytes
= req
->req
.length
;
767 struct udc_data_dma
*td
= NULL
;
768 struct udc_data_dma
*last
= NULL
;
769 unsigned long txbytes
;
770 unsigned create_new_chain
= 0;
773 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
775 dma_addr
= DMA_DONT_USE
;
777 /* unset L bit in first desc for OUT */
779 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
781 /* alloc only new desc's if not already available */
782 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
783 if (req
->req
.length
% ep
->ep
.maxpacket
)
786 if (len
> req
->chain_len
) {
787 /* shorter chain already allocated before */
788 if (req
->chain_len
> 1)
789 udc_free_dma_chain(ep
->dev
, req
);
790 req
->chain_len
= len
;
791 create_new_chain
= 1;
795 /* gen. required number of descriptors and buffers */
796 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
797 /* create or determine next desc. */
798 if (create_new_chain
) {
799 td
= dma_pool_alloc(ep
->dev
->data_requests
,
800 gfp_flags
, &dma_addr
);
805 } else if (i
== buf_len
) {
807 td
= (struct udc_data_dma
*)phys_to_virt(
811 td
= (struct udc_data_dma
*)phys_to_virt(last
->next
);
816 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
821 if ((bytes
- i
) >= buf_len
) {
828 /* link td and assign tx bytes */
830 if (create_new_chain
)
831 req
->td_data
->next
= dma_addr
;
834 * req->td_data->next = virt_to_phys(td);
839 req
->td_data
->status
=
840 AMD_ADDBITS(req
->td_data
->status
,
842 UDC_DMA_IN_STS_TXBYTES
);
844 td
->status
= AMD_ADDBITS(td
->status
,
846 UDC_DMA_IN_STS_TXBYTES
);
849 if (create_new_chain
)
850 last
->next
= dma_addr
;
853 * last->next = virt_to_phys(td);
857 td
->status
= AMD_ADDBITS(td
->status
,
859 UDC_DMA_IN_STS_TXBYTES
);
866 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
867 /* last desc. points to itself */
868 req
->td_data_last
= td
;
874 /* create/re-init a DMA descriptor or a DMA descriptor chain */
875 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
880 VDBG(ep
->dev
, "prep_dma\n");
881 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
882 ep
->num
, req
->td_data
);
884 /* set buffer pointer */
885 req
->td_data
->bufptr
= req
->req
.dma
;
888 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
890 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
893 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
895 if (retval
== -ENOMEM
)
896 DBG(ep
->dev
, "Out of DMA memory\n");
900 if (req
->req
.length
== ep
->ep
.maxpacket
) {
902 req
->td_data
->status
=
903 AMD_ADDBITS(req
->td_data
->status
,
905 UDC_DMA_IN_STS_TXBYTES
);
913 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
914 "maxpacket=%d ep%d\n",
915 use_dma_ppb
, req
->req
.length
,
916 ep
->ep
.maxpacket
, ep
->num
);
918 * if bytes < max packet then tx bytes must
919 * be written in packet per buffer mode
921 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
922 || ep
->num
== UDC_EP0OUT_IX
923 || ep
->num
== UDC_EP0IN_IX
) {
925 req
->td_data
->status
=
926 AMD_ADDBITS(req
->td_data
->status
,
928 UDC_DMA_IN_STS_TXBYTES
);
929 /* reset frame num */
930 req
->td_data
->status
=
931 AMD_ADDBITS(req
->td_data
->status
,
933 UDC_DMA_IN_STS_FRAMENUM
);
936 req
->td_data
->status
=
937 AMD_ADDBITS(req
->td_data
->status
,
938 UDC_DMA_STP_STS_BS_HOST_BUSY
,
941 VDBG(ep
->dev
, "OUT set host ready\n");
943 req
->td_data
->status
=
944 AMD_ADDBITS(req
->td_data
->status
,
945 UDC_DMA_STP_STS_BS_HOST_READY
,
948 /* clear NAK by writing CNAK */
950 tmp
= readl(&ep
->regs
->ctl
);
951 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
952 writel(tmp
, &ep
->regs
->ctl
);
954 UDC_QUEUE_CNAK(ep
, ep
->num
);
962 /* Completes request packet ... caller MUST hold lock */
964 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
965 __releases(ep
->dev
->lock
)
966 __acquires(ep
->dev
->lock
)
971 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
976 usb_gadget_unmap_request(&dev
->gadget
, &req
->req
, ep
->in
);
981 /* set new status if pending */
982 if (req
->req
.status
== -EINPROGRESS
)
983 req
->req
.status
= sts
;
985 /* remove from ep queue */
986 list_del_init(&req
->queue
);
988 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
989 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
991 spin_unlock(&dev
->lock
);
992 usb_gadget_giveback_request(&ep
->ep
, &req
->req
);
993 spin_lock(&dev
->lock
);
997 /* Iterates to the end of a DMA chain and returns last descriptor */
998 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
1000 struct udc_data_dma
*td
;
1003 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
)))
1004 td
= phys_to_virt(td
->next
);
1010 /* Iterates to the end of a DMA chain and counts bytes received */
1011 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
1013 struct udc_data_dma
*td
;
1017 /* received number bytes */
1018 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
1020 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
1021 td
= phys_to_virt(td
->next
);
1022 /* received number bytes */
1024 count
+= AMD_GETBITS(td
->status
,
1025 UDC_DMA_OUT_STS_RXBYTES
);
1033 /* Enabling RX DMA */
1034 static void udc_set_rde(struct udc
*dev
)
1038 VDBG(dev
, "udc_set_rde()\n");
1039 /* stop RDE timer */
1040 if (timer_pending(&udc_timer
)) {
1042 mod_timer(&udc_timer
, jiffies
- 1);
1045 tmp
= readl(&dev
->regs
->ctl
);
1046 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1047 writel(tmp
, &dev
->regs
->ctl
);
1050 /* Queues a request packet, called by gadget driver */
1052 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1056 unsigned long iflags
;
1058 struct udc_request
*req
;
1062 /* check the inputs */
1063 req
= container_of(usbreq
, struct udc_request
, req
);
1065 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1066 || !list_empty(&req
->queue
))
1069 ep
= container_of(usbep
, struct udc_ep
, ep
);
1070 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1073 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1076 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1079 /* map dma (usually done before) */
1081 VDBG(dev
, "DMA map req %p\n", req
);
1082 retval
= usb_gadget_map_request(&udc
->gadget
, usbreq
, ep
->in
);
1087 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1088 usbep
->name
, usbreq
, usbreq
->length
,
1089 req
->td_data
, usbreq
->buf
);
1091 spin_lock_irqsave(&dev
->lock
, iflags
);
1093 usbreq
->status
= -EINPROGRESS
;
1096 /* on empty queue just do first transfer */
1097 if (list_empty(&ep
->queue
)) {
1099 if (usbreq
->length
== 0) {
1100 /* IN zlp's are handled by hardware */
1101 complete_req(ep
, req
, 0);
1102 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1104 * if set_config or set_intf is waiting for ack by zlp
1107 if (dev
->set_cfg_not_acked
) {
1108 tmp
= readl(&dev
->regs
->ctl
);
1109 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1110 writel(tmp
, &dev
->regs
->ctl
);
1111 dev
->set_cfg_not_acked
= 0;
1113 /* setup command is ACK'ed now by zlp */
1114 if (dev
->waiting_zlp_ack_ep0in
) {
1115 /* clear NAK by writing CNAK in EP0_IN */
1116 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1117 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1118 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1119 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1120 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1122 dev
->waiting_zlp_ack_ep0in
= 0;
1127 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1130 /* write desc pointer to enable DMA */
1132 /* set HOST READY */
1133 req
->td_data
->status
=
1134 AMD_ADDBITS(req
->td_data
->status
,
1135 UDC_DMA_IN_STS_BS_HOST_READY
,
1139 /* disabled rx dma while descriptor update */
1141 /* stop RDE timer */
1142 if (timer_pending(&udc_timer
)) {
1144 mod_timer(&udc_timer
, jiffies
- 1);
1147 tmp
= readl(&dev
->regs
->ctl
);
1148 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1149 writel(tmp
, &dev
->regs
->ctl
);
1153 * if BNA occurred then let BNA dummy desc.
1154 * point to current desc.
1156 if (ep
->bna_occurred
) {
1157 VDBG(dev
, "copy to BNA dummy desc.\n");
1158 memcpy(ep
->bna_dummy_req
->td_data
,
1160 sizeof(struct udc_data_dma
));
1163 /* write desc pointer */
1164 writel(req
->td_phys
, &ep
->regs
->desptr
);
1166 /* clear NAK by writing CNAK */
1168 tmp
= readl(&ep
->regs
->ctl
);
1169 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1170 writel(tmp
, &ep
->regs
->ctl
);
1172 UDC_QUEUE_CNAK(ep
, ep
->num
);
1177 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1178 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1179 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1181 } else if (ep
->in
) {
1183 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1184 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1185 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1188 } else if (ep
->dma
) {
1191 * prep_dma not used for OUT ep's, this is not possible
1192 * for PPB modes, because of chain creation reasons
1195 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1200 VDBG(dev
, "list_add\n");
1201 /* add request to ep queue */
1204 list_add_tail(&req
->queue
, &ep
->queue
);
1206 /* open rxfifo if out data queued */
1211 if (ep
->num
!= UDC_EP0OUT_IX
)
1212 dev
->data_ep_queued
= 1;
1214 /* stop OUT naking */
1216 if (!use_dma
&& udc_rxfifo_pending
) {
1217 DBG(dev
, "udc_queue(): pending bytes in "
1218 "rxfifo after nyet\n");
1220 * read pending bytes afer nyet:
1223 if (udc_rxfifo_read(ep
, req
)) {
1225 complete_req(ep
, req
, 0);
1227 udc_rxfifo_pending
= 0;
1234 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1238 /* Empty request queue of an endpoint; caller holds spinlock */
1239 void empty_req_queue(struct udc_ep
*ep
)
1241 struct udc_request
*req
;
1244 while (!list_empty(&ep
->queue
)) {
1245 req
= list_entry(ep
->queue
.next
,
1248 complete_req(ep
, req
, -ESHUTDOWN
);
1251 EXPORT_SYMBOL_GPL(empty_req_queue
);
1253 /* Dequeues a request packet, called by gadget driver */
1254 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1257 struct udc_request
*req
;
1259 unsigned long iflags
;
1261 ep
= container_of(usbep
, struct udc_ep
, ep
);
1262 if (!usbep
|| !usbreq
|| (!ep
->ep
.desc
&& (ep
->num
!= 0
1263 && ep
->num
!= UDC_EP0OUT_IX
)))
1266 req
= container_of(usbreq
, struct udc_request
, req
);
1268 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1269 halted
= ep
->halted
;
1271 /* request in processing or next one */
1272 if (ep
->queue
.next
== &req
->queue
) {
1273 if (ep
->dma
&& req
->dma_going
) {
1275 ep
->cancel_transfer
= 1;
1279 /* stop potential receive DMA */
1280 tmp
= readl(&udc
->regs
->ctl
);
1281 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1284 * Cancel transfer later in ISR
1285 * if descriptor was touched.
1287 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1288 UDC_DMA_OUT_STS_BS
);
1289 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1290 ep
->cancel_transfer
= 1;
1292 udc_init_bna_dummy(ep
->req
);
1293 writel(ep
->bna_dummy_req
->td_phys
,
1296 writel(tmp
, &udc
->regs
->ctl
);
1300 complete_req(ep
, req
, -ECONNRESET
);
1301 ep
->halted
= halted
;
1303 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1307 /* Halt or clear halt of endpoint */
1309 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1313 unsigned long iflags
;
1319 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1321 ep
= container_of(usbep
, struct udc_ep
, ep
);
1322 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1324 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1327 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1328 /* halt or clear halt */
1331 ep
->dev
->stall_ep0in
= 1;
1335 * rxfifo empty not taken into acount
1337 tmp
= readl(&ep
->regs
->ctl
);
1338 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1339 writel(tmp
, &ep
->regs
->ctl
);
1342 /* setup poll timer */
1343 if (!timer_pending(&udc_pollstall_timer
)) {
1344 udc_pollstall_timer
.expires
= jiffies
+
1345 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1347 if (!stop_pollstall_timer
) {
1348 DBG(ep
->dev
, "start polltimer\n");
1349 add_timer(&udc_pollstall_timer
);
1354 /* ep is halted by set_halt() before */
1356 tmp
= readl(&ep
->regs
->ctl
);
1357 /* clear stall bit */
1358 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1359 /* clear NAK by writing CNAK */
1360 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1361 writel(tmp
, &ep
->regs
->ctl
);
1363 UDC_QUEUE_CNAK(ep
, ep
->num
);
1366 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1370 /* gadget interface */
1371 static const struct usb_ep_ops udc_ep_ops
= {
1372 .enable
= udc_ep_enable
,
1373 .disable
= udc_ep_disable
,
1375 .alloc_request
= udc_alloc_request
,
1376 .free_request
= udc_free_request
,
1379 .dequeue
= udc_dequeue
,
1381 .set_halt
= udc_set_halt
,
1382 /* fifo ops not implemented */
1385 /*-------------------------------------------------------------------------*/
1387 /* Get frame counter (not implemented) */
1388 static int udc_get_frame(struct usb_gadget
*gadget
)
1393 /* Initiates a remote wakeup */
1394 static int udc_remote_wakeup(struct udc
*dev
)
1396 unsigned long flags
;
1399 DBG(dev
, "UDC initiates remote wakeup\n");
1401 spin_lock_irqsave(&dev
->lock
, flags
);
1403 tmp
= readl(&dev
->regs
->ctl
);
1404 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
1405 writel(tmp
, &dev
->regs
->ctl
);
1406 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
1407 writel(tmp
, &dev
->regs
->ctl
);
1409 spin_unlock_irqrestore(&dev
->lock
, flags
);
1413 /* Remote wakeup gadget interface */
1414 static int udc_wakeup(struct usb_gadget
*gadget
)
1420 dev
= container_of(gadget
, struct udc
, gadget
);
1421 udc_remote_wakeup(dev
);
1426 static int amd5536_udc_start(struct usb_gadget
*g
,
1427 struct usb_gadget_driver
*driver
);
1428 static int amd5536_udc_stop(struct usb_gadget
*g
);
1430 static const struct usb_gadget_ops udc_ops
= {
1431 .wakeup
= udc_wakeup
,
1432 .get_frame
= udc_get_frame
,
1433 .udc_start
= amd5536_udc_start
,
1434 .udc_stop
= amd5536_udc_stop
,
1437 /* Setups endpoint parameters, adds endpoints to linked list */
1438 static void make_ep_lists(struct udc
*dev
)
1440 /* make gadget ep lists */
1441 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1442 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1443 &dev
->gadget
.ep_list
);
1444 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1445 &dev
->gadget
.ep_list
);
1446 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1447 &dev
->gadget
.ep_list
);
1450 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1451 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1452 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1453 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1454 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1455 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1458 /* Inits UDC context */
1459 void udc_basic_init(struct udc
*dev
)
1463 DBG(dev
, "udc_basic_init()\n");
1465 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1467 /* stop RDE timer */
1468 if (timer_pending(&udc_timer
)) {
1470 mod_timer(&udc_timer
, jiffies
- 1);
1472 /* stop poll stall timer */
1473 if (timer_pending(&udc_pollstall_timer
))
1474 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1476 tmp
= readl(&dev
->regs
->ctl
);
1477 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1478 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1479 writel(tmp
, &dev
->regs
->ctl
);
1481 /* enable dynamic CSR programming */
1482 tmp
= readl(&dev
->regs
->cfg
);
1483 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1484 /* set self powered */
1485 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1486 /* set remote wakeupable */
1487 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1488 writel(tmp
, &dev
->regs
->cfg
);
1492 dev
->data_ep_enabled
= 0;
1493 dev
->data_ep_queued
= 0;
1495 EXPORT_SYMBOL_GPL(udc_basic_init
);
1497 /* init registers at driver load time */
1498 static int startup_registers(struct udc
*dev
)
1502 /* init controller by soft reset */
1503 udc_soft_reset(dev
);
1505 /* mask not needed interrupts */
1506 udc_mask_unused_interrupts(dev
);
1508 /* put into initial config */
1509 udc_basic_init(dev
);
1510 /* link up all endpoints */
1511 udc_setup_endpoints(dev
);
1514 tmp
= readl(&dev
->regs
->cfg
);
1516 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1518 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1519 writel(tmp
, &dev
->regs
->cfg
);
1524 /* Sets initial endpoint parameters */
1525 static void udc_setup_endpoints(struct udc
*dev
)
1531 DBG(dev
, "udc_setup_endpoints()\n");
1533 /* read enum speed */
1534 tmp
= readl(&dev
->regs
->sts
);
1535 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1536 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
)
1537 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1538 else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
)
1539 dev
->gadget
.speed
= USB_SPEED_FULL
;
1541 /* set basic ep parameters */
1542 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1545 ep
->ep
.name
= ep_info
[tmp
].name
;
1546 ep
->ep
.caps
= ep_info
[tmp
].caps
;
1548 /* txfifo size is calculated at enable time */
1549 ep
->txfifo
= dev
->txfifo
;
1552 if (tmp
< UDC_EPIN_NUM
) {
1553 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1556 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1560 ep
->regs
= &dev
->ep_regs
[tmp
];
1562 * ep will be reset only if ep was not enabled before to avoid
1563 * disabling ep interrupts when ENUM interrupt occurs but ep is
1564 * not enabled by gadget driver
1567 ep_init(dev
->regs
, ep
);
1571 * ep->dma is not really used, just to indicate that
1572 * DMA is active: remove this
1573 * dma regs = dev control regs
1575 ep
->dma
= &dev
->regs
->ctl
;
1577 /* nak OUT endpoints until enable - not for ep0 */
1578 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1579 && tmp
> UDC_EPIN_NUM
) {
1581 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1582 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1583 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1584 dev
->ep
[tmp
].naking
= 1;
1589 /* EP0 max packet */
1590 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1591 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1592 UDC_FS_EP0IN_MAX_PKT_SIZE
);
1593 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1594 UDC_FS_EP0OUT_MAX_PKT_SIZE
);
1595 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1596 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1597 UDC_EP0IN_MAX_PKT_SIZE
);
1598 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1599 UDC_EP0OUT_MAX_PKT_SIZE
);
1603 * with suspend bug workaround, ep0 params for gadget driver
1604 * are set at gadget driver bind() call
1606 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1607 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1608 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1610 /* init cfg/alt/int */
1611 dev
->cur_config
= 0;
1616 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1617 static void usb_connect(struct udc
*dev
)
1619 /* Return if already connected */
1623 dev_info(dev
->dev
, "USB Connect\n");
1627 /* put into initial config */
1628 udc_basic_init(dev
);
1630 /* enable device setup interrupts */
1631 udc_enable_dev_setup_interrupts(dev
);
1635 * Calls gadget with disconnect event and resets the UDC and makes
1636 * initial bringup to be ready for ep0 events
1638 static void usb_disconnect(struct udc
*dev
)
1640 /* Return if already disconnected */
1641 if (!dev
->connected
)
1644 dev_info(dev
->dev
, "USB Disconnect\n");
1648 /* mask interrupts */
1649 udc_mask_unused_interrupts(dev
);
1651 /* REVISIT there doesn't seem to be a point to having this
1652 * talk to a tasklet ... do it directly, we already hold
1653 * the spinlock needed to process the disconnect.
1656 tasklet_schedule(&disconnect_tasklet
);
1659 /* Tasklet for disconnect to be outside of interrupt context */
1660 static void udc_tasklet_disconnect(unsigned long par
)
1662 struct udc
*dev
= udc
;
1665 DBG(dev
, "Tasklet disconnect\n");
1666 spin_lock_irq(&dev
->lock
);
1669 spin_unlock(&dev
->lock
);
1670 dev
->driver
->disconnect(&dev
->gadget
);
1671 spin_lock(&dev
->lock
);
1674 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
1675 empty_req_queue(&dev
->ep
[tmp
]);
1681 &dev
->ep
[UDC_EP0IN_IX
]);
1684 if (!soft_reset_occured
) {
1685 /* init controller by soft reset */
1686 udc_soft_reset(dev
);
1687 soft_reset_occured
++;
1690 /* re-enable dev interrupts */
1691 udc_enable_dev_setup_interrupts(dev
);
1692 /* back to full speed ? */
1693 if (use_fullspeed
) {
1694 tmp
= readl(&dev
->regs
->cfg
);
1695 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1696 writel(tmp
, &dev
->regs
->cfg
);
1699 spin_unlock_irq(&dev
->lock
);
1702 /* Reset the UDC core */
1703 static void udc_soft_reset(struct udc
*dev
)
1705 unsigned long flags
;
1707 DBG(dev
, "Soft reset\n");
1709 * reset possible waiting interrupts, because int.
1710 * status is lost after soft reset,
1711 * ep int. status reset
1713 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1714 /* device int. status reset */
1715 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1717 /* Don't do this for Broadcom UDC since this is a reserved
1720 if (dev
->chiprev
!= UDC_BCM_REV
) {
1721 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1722 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1723 readl(&dev
->regs
->cfg
);
1724 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1728 /* RDE timer callback to set RDE bit */
1729 static void udc_timer_function(struct timer_list
*unused
)
1733 spin_lock_irq(&udc_irq_spinlock
);
1737 * open the fifo if fifo was filled on last timer call
1741 /* set RDE to receive setup data */
1742 tmp
= readl(&udc
->regs
->ctl
);
1743 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1744 writel(tmp
, &udc
->regs
->ctl
);
1746 } else if (readl(&udc
->regs
->sts
)
1747 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1749 * if fifo empty setup polling, do not just
1752 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1754 add_timer(&udc_timer
);
1757 * fifo contains data now, setup timer for opening
1758 * the fifo when timer expires to be able to receive
1759 * setup packets, when data packets gets queued by
1760 * gadget layer then timer will forced to expire with
1761 * set_rde=0 (RDE is set in udc_queue())
1764 /* debug: lhadmot_timer_start = 221070 */
1765 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1767 add_timer(&udc_timer
);
1771 set_rde
= -1; /* RDE was set by udc_queue() */
1772 spin_unlock_irq(&udc_irq_spinlock
);
1778 /* Handle halt state, used in stall poll timer */
1779 static void udc_handle_halt_state(struct udc_ep
*ep
)
1782 /* set stall as long not halted */
1783 if (ep
->halted
== 1) {
1784 tmp
= readl(&ep
->regs
->ctl
);
1785 /* STALL cleared ? */
1786 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1788 * FIXME: MSC spec requires that stall remains
1789 * even on receivng of CLEAR_FEATURE HALT. So
1790 * we would set STALL again here to be compliant.
1791 * But with current mass storage drivers this does
1792 * not work (would produce endless host retries).
1793 * So we clear halt on CLEAR_FEATURE.
1795 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1796 tmp |= AMD_BIT(UDC_EPCTL_S);
1797 writel(tmp, &ep->regs->ctl);*/
1799 /* clear NAK by writing CNAK */
1800 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1801 writel(tmp
, &ep
->regs
->ctl
);
1803 UDC_QUEUE_CNAK(ep
, ep
->num
);
1808 /* Stall timer callback to poll S bit and set it again after */
1809 static void udc_pollstall_timer_function(struct timer_list
*unused
)
1814 spin_lock_irq(&udc_stall_spinlock
);
1816 * only one IN and OUT endpoints are handled
1819 ep
= &udc
->ep
[UDC_EPIN_IX
];
1820 udc_handle_halt_state(ep
);
1823 /* OUT poll stall */
1824 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1825 udc_handle_halt_state(ep
);
1829 /* setup timer again when still halted */
1830 if (!stop_pollstall_timer
&& halted
) {
1831 udc_pollstall_timer
.expires
= jiffies
+
1832 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1834 add_timer(&udc_pollstall_timer
);
1836 spin_unlock_irq(&udc_stall_spinlock
);
1838 if (stop_pollstall_timer
)
1839 complete(&on_pollstall_exit
);
1842 /* Inits endpoint 0 so that SETUP packets are processed */
1843 static void activate_control_endpoints(struct udc
*dev
)
1847 DBG(dev
, "activate_control_endpoints\n");
1850 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1851 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1852 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1854 /* set ep0 directions */
1855 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1856 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1858 /* set buffer size (tx fifo entries) of EP0_IN */
1859 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1860 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1861 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1862 UDC_EPIN_BUFF_SIZE
);
1863 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1864 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1865 UDC_EPIN_BUFF_SIZE
);
1866 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1868 /* set max packet size of EP0_IN */
1869 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1870 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1871 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1872 UDC_EP_MAX_PKT_SIZE
);
1873 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1874 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1875 UDC_EP_MAX_PKT_SIZE
);
1876 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1878 /* set max packet size of EP0_OUT */
1879 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1880 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1881 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1882 UDC_EP_MAX_PKT_SIZE
);
1883 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1884 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1885 UDC_EP_MAX_PKT_SIZE
);
1886 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1888 /* set max packet size of EP0 in UDC CSR */
1889 tmp
= readl(&dev
->csr
->ne
[0]);
1890 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1891 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1892 UDC_CSR_NE_MAX_PKT
);
1893 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1894 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1895 UDC_CSR_NE_MAX_PKT
);
1896 writel(tmp
, &dev
->csr
->ne
[0]);
1899 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1900 AMD_BIT(UDC_DMA_OUT_STS_L
);
1901 /* write dma desc address */
1902 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1903 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1904 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1905 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1906 /* stop RDE timer */
1907 if (timer_pending(&udc_timer
)) {
1909 mod_timer(&udc_timer
, jiffies
- 1);
1911 /* stop pollstall timer */
1912 if (timer_pending(&udc_pollstall_timer
))
1913 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1915 tmp
= readl(&dev
->regs
->ctl
);
1916 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1917 | AMD_BIT(UDC_DEVCTL_RDE
)
1918 | AMD_BIT(UDC_DEVCTL_TDE
);
1919 if (use_dma_bufferfill_mode
)
1920 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1921 else if (use_dma_ppb_du
)
1922 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1923 writel(tmp
, &dev
->regs
->ctl
);
1926 /* clear NAK by writing CNAK for EP0IN */
1927 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1928 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1929 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1930 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1931 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1933 /* clear NAK by writing CNAK for EP0OUT */
1934 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1935 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1936 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1937 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1938 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1941 /* Make endpoint 0 ready for control traffic */
1942 static int setup_ep0(struct udc
*dev
)
1944 activate_control_endpoints(dev
);
1945 /* enable ep0 interrupts */
1946 udc_enable_ep0_interrupts(dev
);
1947 /* enable device setup interrupts */
1948 udc_enable_dev_setup_interrupts(dev
);
1953 /* Called by gadget driver to register itself */
1954 static int amd5536_udc_start(struct usb_gadget
*g
,
1955 struct usb_gadget_driver
*driver
)
1957 struct udc
*dev
= to_amd5536_udc(g
);
1960 driver
->driver
.bus
= NULL
;
1961 dev
->driver
= driver
;
1963 /* Some gadget drivers use both ep0 directions.
1964 * NOTE: to gadget driver, ep0 is just one endpoint...
1966 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1967 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1969 /* get ready for ep0 traffic */
1973 tmp
= readl(&dev
->regs
->ctl
);
1974 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1975 writel(tmp
, &dev
->regs
->ctl
);
1982 /* shutdown requests and disconnect from gadget */
1984 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
1985 __releases(dev
->lock
)
1986 __acquires(dev
->lock
)
1990 /* empty queues and init hardware */
1991 udc_basic_init(dev
);
1993 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
1994 empty_req_queue(&dev
->ep
[tmp
]);
1996 udc_setup_endpoints(dev
);
1999 /* Called by gadget driver to unregister itself */
2000 static int amd5536_udc_stop(struct usb_gadget
*g
)
2002 struct udc
*dev
= to_amd5536_udc(g
);
2003 unsigned long flags
;
2006 spin_lock_irqsave(&dev
->lock
, flags
);
2007 udc_mask_unused_interrupts(dev
);
2008 shutdown(dev
, NULL
);
2009 spin_unlock_irqrestore(&dev
->lock
, flags
);
2014 tmp
= readl(&dev
->regs
->ctl
);
2015 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2016 writel(tmp
, &dev
->regs
->ctl
);
2021 /* Clear pending NAK bits */
2022 static void udc_process_cnak_queue(struct udc
*dev
)
2028 DBG(dev
, "CNAK pending queue processing\n");
2029 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2030 if (cnak_pending
& (1 << tmp
)) {
2031 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2032 /* clear NAK by writing CNAK */
2033 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2034 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2035 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2036 dev
->ep
[tmp
].naking
= 0;
2037 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2040 /* ... and ep0out */
2041 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2042 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2043 /* clear NAK by writing CNAK */
2044 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2045 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2046 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2047 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2048 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2049 dev
->ep
[UDC_EP0OUT_IX
].num
);
2053 /* Enabling RX DMA after setup packet */
2054 static void udc_ep0_set_rde(struct udc
*dev
)
2058 * only enable RXDMA when no data endpoint enabled
2061 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2065 * setup timer for enabling RDE (to not enable
2066 * RXFIFO DMA for data endpoints to early)
2068 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2070 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2073 add_timer(&udc_timer
);
2080 /* Interrupt handler for data OUT traffic */
2081 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2083 irqreturn_t ret_val
= IRQ_NONE
;
2086 struct udc_request
*req
;
2088 struct udc_data_dma
*td
= NULL
;
2091 VDBG(dev
, "ep%d irq\n", ep_ix
);
2092 ep
= &dev
->ep
[ep_ix
];
2094 tmp
= readl(&ep
->regs
->sts
);
2097 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2098 DBG(dev
, "BNA ep%dout occurred - DESPTR = %x\n",
2099 ep
->num
, readl(&ep
->regs
->desptr
));
2101 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2102 if (!ep
->cancel_transfer
)
2103 ep
->bna_occurred
= 1;
2105 ep
->cancel_transfer
= 0;
2106 ret_val
= IRQ_HANDLED
;
2111 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2112 dev_err(dev
->dev
, "HE ep%dout occurred\n", ep
->num
);
2115 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2116 ret_val
= IRQ_HANDLED
;
2120 if (!list_empty(&ep
->queue
)) {
2123 req
= list_entry(ep
->queue
.next
,
2124 struct udc_request
, queue
);
2127 udc_rxfifo_pending
= 1;
2129 VDBG(dev
, "req = %p\n", req
);
2134 if (req
&& udc_rxfifo_read(ep
, req
)) {
2135 ret_val
= IRQ_HANDLED
;
2138 complete_req(ep
, req
, 0);
2140 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2141 req
= list_entry(ep
->queue
.next
,
2142 struct udc_request
, queue
);
2148 } else if (!ep
->cancel_transfer
&& req
) {
2149 ret_val
= IRQ_HANDLED
;
2151 /* check for DMA done */
2153 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2154 UDC_DMA_OUT_STS_BS
);
2155 /* packet per buffer mode - rx bytes */
2158 * if BNA occurred then recover desc. from
2161 if (ep
->bna_occurred
) {
2162 VDBG(dev
, "Recover desc. from BNA dummy\n");
2163 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2164 sizeof(struct udc_data_dma
));
2165 ep
->bna_occurred
= 0;
2166 udc_init_bna_dummy(ep
->req
);
2168 td
= udc_get_last_dma_desc(req
);
2169 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2171 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2172 /* buffer fill mode - rx bytes */
2174 /* received number bytes */
2175 count
= AMD_GETBITS(req
->td_data
->status
,
2176 UDC_DMA_OUT_STS_RXBYTES
);
2177 VDBG(dev
, "rx bytes=%u\n", count
);
2178 /* packet per buffer mode - rx bytes */
2180 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2181 VDBG(dev
, "last desc = %p\n", td
);
2182 /* received number bytes */
2183 if (use_dma_ppb_du
) {
2184 /* every desc. counts bytes */
2185 count
= udc_get_ppbdu_rxbytes(req
);
2187 /* last desc. counts bytes */
2188 count
= AMD_GETBITS(td
->status
,
2189 UDC_DMA_OUT_STS_RXBYTES
);
2190 if (!count
&& req
->req
.length
2191 == UDC_DMA_MAXPACKET
) {
2193 * on 64k packets the RXBYTES
2196 count
= UDC_DMA_MAXPACKET
;
2199 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2202 tmp
= req
->req
.length
- req
->req
.actual
;
2204 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2205 DBG(dev
, "%s: rx %db, space=%db\n",
2206 ep
->ep
.name
, count
, tmp
);
2207 req
->req
.status
= -EOVERFLOW
;
2211 req
->req
.actual
+= count
;
2213 /* complete request */
2214 complete_req(ep
, req
, 0);
2217 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2218 req
= list_entry(ep
->queue
.next
,
2222 * DMA may be already started by udc_queue()
2223 * called by gadget drivers completion
2224 * routine. This happens when queue
2225 * holds one request only.
2227 if (req
->dma_going
== 0) {
2229 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2231 /* write desc pointer */
2232 writel(req
->td_phys
,
2240 * implant BNA dummy descriptor to allow
2241 * RXFIFO opening by RDE
2243 if (ep
->bna_dummy_req
) {
2244 /* write desc pointer */
2245 writel(ep
->bna_dummy_req
->td_phys
,
2247 ep
->bna_occurred
= 0;
2251 * schedule timer for setting RDE if queue
2252 * remains empty to allow ep0 packets pass
2256 && !timer_pending(&udc_timer
)) {
2259 + HZ
*UDC_RDE_TIMER_SECONDS
;
2262 add_timer(&udc_timer
);
2264 if (ep
->num
!= UDC_EP0OUT_IX
)
2265 dev
->data_ep_queued
= 0;
2270 * RX DMA must be reenabled for each desc in PPBDU mode
2271 * and must be enabled for PPBNDU mode in case of BNA
2276 } else if (ep
->cancel_transfer
) {
2277 ret_val
= IRQ_HANDLED
;
2278 ep
->cancel_transfer
= 0;
2281 /* check pending CNAKS */
2283 /* CNAk processing when rxfifo empty only */
2284 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2285 udc_process_cnak_queue(dev
);
2288 /* clear OUT bits in ep status */
2289 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2294 /* Interrupt handler for data IN traffic */
2295 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2297 irqreturn_t ret_val
= IRQ_NONE
;
2301 struct udc_request
*req
;
2302 struct udc_data_dma
*td
;
2305 ep
= &dev
->ep
[ep_ix
];
2307 epsts
= readl(&ep
->regs
->sts
);
2310 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2312 "BNA ep%din occurred - DESPTR = %08lx\n",
2314 (unsigned long) readl(&ep
->regs
->desptr
));
2317 writel(epsts
, &ep
->regs
->sts
);
2318 ret_val
= IRQ_HANDLED
;
2323 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2325 "HE ep%dn occurred - DESPTR = %08lx\n",
2326 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2329 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2330 ret_val
= IRQ_HANDLED
;
2334 /* DMA completion */
2335 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2336 VDBG(dev
, "TDC set- completion\n");
2337 ret_val
= IRQ_HANDLED
;
2338 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2339 req
= list_entry(ep
->queue
.next
,
2340 struct udc_request
, queue
);
2342 * length bytes transferred
2343 * check dma done of last desc. in PPBDU mode
2345 if (use_dma_ppb_du
) {
2346 td
= udc_get_last_dma_desc(req
);
2348 req
->req
.actual
= req
->req
.length
;
2350 /* assume all bytes transferred */
2351 req
->req
.actual
= req
->req
.length
;
2354 if (req
->req
.actual
== req
->req
.length
) {
2356 complete_req(ep
, req
, 0);
2358 /* further request available ? */
2359 if (list_empty(&ep
->queue
)) {
2360 /* disable interrupt */
2361 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2362 tmp
|= AMD_BIT(ep
->num
);
2363 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2367 ep
->cancel_transfer
= 0;
2371 * status reg has IN bit set and TDC not set (if TDC was handled,
2372 * IN must not be handled (UDC defect) ?
2374 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2375 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2376 ret_val
= IRQ_HANDLED
;
2377 if (!list_empty(&ep
->queue
)) {
2379 req
= list_entry(ep
->queue
.next
,
2380 struct udc_request
, queue
);
2384 udc_txfifo_write(ep
, &req
->req
);
2385 len
= req
->req
.length
- req
->req
.actual
;
2386 if (len
> ep
->ep
.maxpacket
)
2387 len
= ep
->ep
.maxpacket
;
2388 req
->req
.actual
+= len
;
2389 if (req
->req
.actual
== req
->req
.length
2390 || (len
!= ep
->ep
.maxpacket
)) {
2392 complete_req(ep
, req
, 0);
2395 } else if (req
&& !req
->dma_going
) {
2396 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2403 * unset L bit of first desc.
2406 if (use_dma_ppb
&& req
->req
.length
>
2408 req
->td_data
->status
&=
2413 /* write desc pointer */
2414 writel(req
->td_phys
, &ep
->regs
->desptr
);
2416 /* set HOST READY */
2417 req
->td_data
->status
=
2419 req
->td_data
->status
,
2420 UDC_DMA_IN_STS_BS_HOST_READY
,
2423 /* set poll demand bit */
2424 tmp
= readl(&ep
->regs
->ctl
);
2425 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2426 writel(tmp
, &ep
->regs
->ctl
);
2430 } else if (!use_dma
&& ep
->in
) {
2431 /* disable interrupt */
2433 &dev
->regs
->ep_irqmsk
);
2434 tmp
|= AMD_BIT(ep
->num
);
2436 &dev
->regs
->ep_irqmsk
);
2439 /* clear status bits */
2440 writel(epsts
, &ep
->regs
->sts
);
2447 /* Interrupt handler for Control OUT traffic */
2448 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2449 __releases(dev
->lock
)
2450 __acquires(dev
->lock
)
2452 irqreturn_t ret_val
= IRQ_NONE
;
2454 int setup_supported
;
2458 struct udc_ep
*ep_tmp
;
2460 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2463 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2465 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2466 /* check BNA and clear if set */
2467 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2468 VDBG(dev
, "ep0: BNA set\n");
2469 writel(AMD_BIT(UDC_EPSTS_BNA
),
2470 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2471 ep
->bna_occurred
= 1;
2472 ret_val
= IRQ_HANDLED
;
2476 /* type of data: SETUP or DATA 0 bytes */
2477 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2478 VDBG(dev
, "data_typ = %x\n", tmp
);
2481 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2482 ret_val
= IRQ_HANDLED
;
2484 ep
->dev
->stall_ep0in
= 0;
2485 dev
->waiting_zlp_ack_ep0in
= 0;
2487 /* set NAK for EP0_IN */
2488 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2489 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2490 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2491 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2492 /* get setup data */
2495 /* clear OUT bits in ep status */
2496 writel(UDC_EPSTS_OUT_CLEAR
,
2497 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2499 setup_data
.data
[0] =
2500 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2501 setup_data
.data
[1] =
2502 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2503 /* set HOST READY */
2504 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2505 UDC_DMA_STP_STS_BS_HOST_READY
;
2508 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2511 /* determine direction of control data */
2512 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2513 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2515 udc_ep0_set_rde(dev
);
2518 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2520 * implant BNA dummy descriptor to allow RXFIFO opening
2523 if (ep
->bna_dummy_req
) {
2524 /* write desc pointer */
2525 writel(ep
->bna_dummy_req
->td_phys
,
2526 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2527 ep
->bna_occurred
= 0;
2531 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2533 * setup timer for enabling RDE (to not enable
2534 * RXFIFO DMA for data to early)
2537 if (!timer_pending(&udc_timer
)) {
2538 udc_timer
.expires
= jiffies
+
2539 HZ
/UDC_RDE_TIMER_DIV
;
2541 add_timer(&udc_timer
);
2546 * mass storage reset must be processed here because
2547 * next packet may be a CLEAR_FEATURE HALT which would not
2548 * clear the stall bit when no STALL handshake was received
2549 * before (autostall can cause this)
2551 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2552 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2553 DBG(dev
, "MSC Reset\n");
2556 * only one IN and OUT endpoints are handled
2558 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2559 udc_set_halt(&ep_tmp
->ep
, 0);
2560 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2561 udc_set_halt(&ep_tmp
->ep
, 0);
2564 /* call gadget with setup data received */
2565 spin_unlock(&dev
->lock
);
2566 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2567 &setup_data
.request
);
2568 spin_lock(&dev
->lock
);
2570 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2571 /* ep0 in returns data (not zlp) on IN phase */
2572 if (setup_supported
>= 0 && setup_supported
<
2573 UDC_EP0IN_MAXPACKET
) {
2574 /* clear NAK by writing CNAK in EP0_IN */
2575 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2576 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2577 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2578 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2580 /* if unsupported request then stall */
2581 } else if (setup_supported
< 0) {
2582 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2583 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2585 dev
->waiting_zlp_ack_ep0in
= 1;
2588 /* clear NAK by writing CNAK in EP0_OUT */
2590 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2591 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2592 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2593 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2594 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2598 /* clear OUT bits in ep status */
2599 writel(UDC_EPSTS_OUT_CLEAR
,
2600 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2603 /* data packet 0 bytes */
2604 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2605 /* clear OUT bits in ep status */
2606 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2608 /* get setup data: only 0 packet */
2610 /* no req if 0 packet, just reactivate */
2611 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2614 /* set HOST READY */
2615 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2617 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2618 UDC_DMA_OUT_STS_BS_HOST_READY
,
2619 UDC_DMA_OUT_STS_BS
);
2621 udc_ep0_set_rde(dev
);
2622 ret_val
= IRQ_HANDLED
;
2626 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2627 /* re-program desc. pointer for possible ZLPs */
2628 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2629 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2631 udc_ep0_set_rde(dev
);
2635 /* received number bytes */
2636 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2637 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2638 /* out data for fifo mode not working */
2641 /* 0 packet or real data ? */
2643 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2645 /* dummy read confirm */
2646 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2647 ret_val
= IRQ_HANDLED
;
2652 /* check pending CNAKS */
2654 /* CNAk processing when rxfifo empty only */
2655 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2656 udc_process_cnak_queue(dev
);
2663 /* Interrupt handler for Control IN traffic */
2664 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2666 irqreturn_t ret_val
= IRQ_NONE
;
2669 struct udc_request
*req
;
2672 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2675 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2677 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2678 /* DMA completion */
2679 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2680 VDBG(dev
, "isr: TDC clear\n");
2681 ret_val
= IRQ_HANDLED
;
2684 writel(AMD_BIT(UDC_EPSTS_TDC
),
2685 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2687 /* status reg has IN bit set ? */
2688 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2689 ret_val
= IRQ_HANDLED
;
2693 writel(AMD_BIT(UDC_EPSTS_IN
),
2694 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2696 if (dev
->stall_ep0in
) {
2697 DBG(dev
, "stall ep0in\n");
2699 tmp
= readl(&ep
->regs
->ctl
);
2700 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2701 writel(tmp
, &ep
->regs
->ctl
);
2703 if (!list_empty(&ep
->queue
)) {
2705 req
= list_entry(ep
->queue
.next
,
2706 struct udc_request
, queue
);
2709 /* write desc pointer */
2710 writel(req
->td_phys
, &ep
->regs
->desptr
);
2711 /* set HOST READY */
2712 req
->td_data
->status
=
2714 req
->td_data
->status
,
2715 UDC_DMA_STP_STS_BS_HOST_READY
,
2716 UDC_DMA_STP_STS_BS
);
2718 /* set poll demand bit */
2720 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2721 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2723 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2725 /* all bytes will be transferred */
2726 req
->req
.actual
= req
->req
.length
;
2729 complete_req(ep
, req
, 0);
2733 udc_txfifo_write(ep
, &req
->req
);
2735 /* lengh bytes transferred */
2736 len
= req
->req
.length
- req
->req
.actual
;
2737 if (len
> ep
->ep
.maxpacket
)
2738 len
= ep
->ep
.maxpacket
;
2740 req
->req
.actual
+= len
;
2741 if (req
->req
.actual
== req
->req
.length
2742 || (len
!= ep
->ep
.maxpacket
)) {
2744 complete_req(ep
, req
, 0);
2751 dev
->stall_ep0in
= 0;
2754 writel(AMD_BIT(UDC_EPSTS_IN
),
2755 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2763 /* Interrupt handler for global device events */
2764 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2765 __releases(dev
->lock
)
2766 __acquires(dev
->lock
)
2768 irqreturn_t ret_val
= IRQ_NONE
;
2775 /* SET_CONFIG irq ? */
2776 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2777 ret_val
= IRQ_HANDLED
;
2779 /* read config value */
2780 tmp
= readl(&dev
->regs
->sts
);
2781 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2782 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2783 dev
->cur_config
= cfg
;
2784 dev
->set_cfg_not_acked
= 1;
2786 /* make usb request for gadget driver */
2787 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2788 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2789 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2791 /* programm the NE registers */
2792 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2796 /* ep ix in UDC CSR register space */
2797 udc_csr_epix
= ep
->num
;
2802 /* ep ix in UDC CSR register space */
2803 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2806 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2808 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2811 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2813 /* clear stall bits */
2815 tmp
= readl(&ep
->regs
->ctl
);
2816 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2817 writel(tmp
, &ep
->regs
->ctl
);
2819 /* call gadget zero with setup data received */
2820 spin_unlock(&dev
->lock
);
2821 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2822 spin_lock(&dev
->lock
);
2824 } /* SET_INTERFACE ? */
2825 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2826 ret_val
= IRQ_HANDLED
;
2828 dev
->set_cfg_not_acked
= 1;
2829 /* read interface and alt setting values */
2830 tmp
= readl(&dev
->regs
->sts
);
2831 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2832 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2834 /* make usb request for gadget driver */
2835 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2836 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2837 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2838 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2839 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2841 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2842 dev
->cur_alt
, dev
->cur_intf
);
2844 /* programm the NE registers */
2845 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix
= ep
->num
;
2855 /* ep ix in UDC CSR register space */
2856 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2861 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2863 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2865 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2867 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2870 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2872 /* clear stall bits */
2874 tmp
= readl(&ep
->regs
->ctl
);
2875 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2876 writel(tmp
, &ep
->regs
->ctl
);
2879 /* call gadget zero with setup data received */
2880 spin_unlock(&dev
->lock
);
2881 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2882 spin_lock(&dev
->lock
);
2885 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2886 DBG(dev
, "USB Reset interrupt\n");
2887 ret_val
= IRQ_HANDLED
;
2889 /* allow soft reset when suspend occurs */
2890 soft_reset_occured
= 0;
2892 dev
->waiting_zlp_ack_ep0in
= 0;
2893 dev
->set_cfg_not_acked
= 0;
2895 /* mask not needed interrupts */
2896 udc_mask_unused_interrupts(dev
);
2898 /* call gadget to resume and reset configs etc. */
2899 spin_unlock(&dev
->lock
);
2900 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2901 dev
->driver
->resume(&dev
->gadget
);
2902 dev
->sys_suspended
= 0;
2904 usb_gadget_udc_reset(&dev
->gadget
, dev
->driver
);
2905 spin_lock(&dev
->lock
);
2907 /* disable ep0 to empty req queue */
2908 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2909 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2911 /* soft reset when rxfifo not empty */
2912 tmp
= readl(&dev
->regs
->sts
);
2913 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2914 && !soft_reset_after_usbreset_occured
) {
2915 udc_soft_reset(dev
);
2916 soft_reset_after_usbreset_occured
++;
2920 * DMA reset to kill potential old DMA hw hang,
2921 * POLL bit is already reset by ep_init() through
2924 DBG(dev
, "DMA machine reset\n");
2925 tmp
= readl(&dev
->regs
->cfg
);
2926 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2927 writel(tmp
, &dev
->regs
->cfg
);
2929 /* put into initial config */
2930 udc_basic_init(dev
);
2932 /* enable device setup interrupts */
2933 udc_enable_dev_setup_interrupts(dev
);
2935 /* enable suspend interrupt */
2936 tmp
= readl(&dev
->regs
->irqmsk
);
2937 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2938 writel(tmp
, &dev
->regs
->irqmsk
);
2941 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2942 DBG(dev
, "USB Suspend interrupt\n");
2943 ret_val
= IRQ_HANDLED
;
2944 if (dev
->driver
->suspend
) {
2945 spin_unlock(&dev
->lock
);
2946 dev
->sys_suspended
= 1;
2947 dev
->driver
->suspend(&dev
->gadget
);
2948 spin_lock(&dev
->lock
);
2951 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2952 DBG(dev
, "ENUM interrupt\n");
2953 ret_val
= IRQ_HANDLED
;
2954 soft_reset_after_usbreset_occured
= 0;
2956 /* disable ep0 to empty req queue */
2957 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2958 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2960 /* link up all endpoints */
2961 udc_setup_endpoints(dev
);
2962 dev_info(dev
->dev
, "Connect: %s\n",
2963 usb_speed_string(dev
->gadget
.speed
));
2966 activate_control_endpoints(dev
);
2968 /* enable ep0 interrupts */
2969 udc_enable_ep0_interrupts(dev
);
2971 /* session valid change interrupt */
2972 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
2973 DBG(dev
, "USB SVC interrupt\n");
2974 ret_val
= IRQ_HANDLED
;
2976 /* check that session is not valid to detect disconnect */
2977 tmp
= readl(&dev
->regs
->sts
);
2978 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
2979 /* disable suspend interrupt */
2980 tmp
= readl(&dev
->regs
->irqmsk
);
2981 tmp
|= AMD_BIT(UDC_DEVINT_US
);
2982 writel(tmp
, &dev
->regs
->irqmsk
);
2983 DBG(dev
, "USB Disconnect (session valid low)\n");
2984 /* cleanup on disconnect */
2985 usb_disconnect(udc
);
2993 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2994 irqreturn_t
udc_irq(int irq
, void *pdev
)
2996 struct udc
*dev
= pdev
;
3000 irqreturn_t ret_val
= IRQ_NONE
;
3002 spin_lock(&dev
->lock
);
3004 /* check for ep irq */
3005 reg
= readl(&dev
->regs
->ep_irqsts
);
3007 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3008 ret_val
|= udc_control_out_isr(dev
);
3009 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3010 ret_val
|= udc_control_in_isr(dev
);
3016 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3018 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3021 /* clear irq status */
3022 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3024 /* irq for out ep ? */
3025 if (i
> UDC_EPIN_NUM
)
3026 ret_val
|= udc_data_out_isr(dev
, i
);
3028 ret_val
|= udc_data_in_isr(dev
, i
);
3034 /* check for dev irq */
3035 reg
= readl(&dev
->regs
->irqsts
);
3038 writel(reg
, &dev
->regs
->irqsts
);
3039 ret_val
|= udc_dev_isr(dev
, reg
);
3043 spin_unlock(&dev
->lock
);
3046 EXPORT_SYMBOL_GPL(udc_irq
);
3048 /* Tears down device */
3049 void gadget_release(struct device
*pdev
)
3051 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3054 EXPORT_SYMBOL_GPL(gadget_release
);
3056 /* Cleanup on device remove */
3057 void udc_remove(struct udc
*dev
)
3061 if (timer_pending(&udc_timer
))
3062 wait_for_completion(&on_exit
);
3063 del_timer_sync(&udc_timer
);
3064 /* remove pollstall timer */
3065 stop_pollstall_timer
++;
3066 if (timer_pending(&udc_pollstall_timer
))
3067 wait_for_completion(&on_pollstall_exit
);
3068 del_timer_sync(&udc_pollstall_timer
);
3071 EXPORT_SYMBOL_GPL(udc_remove
);
3073 /* free all the dma pools */
3074 void free_dma_pools(struct udc
*dev
)
3076 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td
,
3077 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3078 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3079 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3080 dma_pool_destroy(dev
->stp_requests
);
3081 dma_pool_destroy(dev
->data_requests
);
3083 EXPORT_SYMBOL_GPL(free_dma_pools
);
3085 /* create dma pools on init */
3086 int init_dma_pools(struct udc
*dev
)
3088 struct udc_stp_dma
*td_stp
;
3089 struct udc_data_dma
*td_data
;
3092 /* consistent DMA mode setting ? */
3094 use_dma_bufferfill_mode
= 0;
3097 use_dma_bufferfill_mode
= 1;
3101 dev
->data_requests
= dma_pool_create("data_requests", dev
->dev
,
3102 sizeof(struct udc_data_dma
), 0, 0);
3103 if (!dev
->data_requests
) {
3104 DBG(dev
, "can't get request data pool\n");
3108 /* EP0 in dma regs = dev control regs */
3109 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3111 /* dma desc for setup data */
3112 dev
->stp_requests
= dma_pool_create("setup requests", dev
->dev
,
3113 sizeof(struct udc_stp_dma
), 0, 0);
3114 if (!dev
->stp_requests
) {
3115 DBG(dev
, "can't get stp request pool\n");
3117 goto err_create_dma_pool
;
3120 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3121 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3126 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3128 /* data: 0 packets !? */
3129 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3130 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3133 goto err_alloc_phys
;
3135 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3139 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3140 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3142 dma_pool_destroy(dev
->stp_requests
);
3143 dev
->stp_requests
= NULL
;
3144 err_create_dma_pool
:
3145 dma_pool_destroy(dev
->data_requests
);
3146 dev
->data_requests
= NULL
;
3149 EXPORT_SYMBOL_GPL(init_dma_pools
);
3152 int udc_probe(struct udc
*dev
)
3158 /* device struct setup */
3159 dev
->gadget
.ops
= &udc_ops
;
3161 dev_set_name(&dev
->gadget
.dev
, "gadget");
3162 dev
->gadget
.name
= name
;
3163 dev
->gadget
.max_speed
= USB_SPEED_HIGH
;
3165 /* init registers, interrupts, ... */
3166 startup_registers(dev
);
3168 dev_info(dev
->dev
, "%s\n", mod_desc
);
3170 snprintf(tmp
, sizeof(tmp
), "%d", dev
->irq
);
3172 /* Print this device info for AMD chips only*/
3173 if (dev
->chiprev
== UDC_HSA0_REV
||
3174 dev
->chiprev
== UDC_HSB1_REV
) {
3175 dev_info(dev
->dev
, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3176 tmp
, dev
->phys_addr
, dev
->chiprev
,
3177 (dev
->chiprev
== UDC_HSA0_REV
) ?
3179 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3180 if (dev
->chiprev
== UDC_HSA0_REV
) {
3181 dev_err(dev
->dev
, "chip revision is A0; too old\n");
3186 "driver version: %s(for Geode5536 B1)\n", tmp
);
3191 retval
= usb_add_gadget_udc_release(udc
->dev
, &dev
->gadget
,
3197 timer_setup(&udc_timer
, udc_timer_function
, 0);
3198 timer_setup(&udc_pollstall_timer
, udc_pollstall_timer_function
, 0);
3201 reg
= readl(&dev
->regs
->ctl
);
3202 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3203 writel(reg
, &dev
->regs
->ctl
);
3205 /* print dev register info */
3213 EXPORT_SYMBOL_GPL(udc_probe
);
3215 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3216 MODULE_AUTHOR("Thomas Dahlmann");
3217 MODULE_LICENSE("GPL");