WIP FPC-III support
[linux/fpc-iii.git] / drivers / usb / host / ehci-q.c
bloba826715ae9bdfa3e4857c3ea09dc12b6e4708b82
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2001-2004 by David Brownell
4 */
6 /* this file is part of ehci-hcd.c */
8 /*-------------------------------------------------------------------------*/
11 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
13 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number). We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling. Performance improvements can be
20 * an ongoing challenge. That's in "ehci-sched.c".
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries. TTs will
25 * buffer low/full speed data so the host collects it at high speed.
28 /*-------------------------------------------------------------------------*/
30 /* PID Codes that are used here, from EHCI specification, Table 3-16. */
31 #define PID_CODE_IN 1
32 #define PID_CODE_SETUP 2
34 /* fill a qtd, returning how much of the buffer we were able to queue up */
36 static int
37 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
38 size_t len, int token, int maxpacket)
40 int i, count;
41 u64 addr = buf;
43 /* one buffer entry per 4K ... first might be short or unaligned */
44 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
45 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
46 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
47 if (likely (len < count)) /* ... iff needed */
48 count = len;
49 else {
50 buf += 0x1000;
51 buf &= ~0x0fff;
53 /* per-qtd limit: from 16K to 20K (best alignment) */
54 for (i = 1; count < len && i < 5; i++) {
55 addr = buf;
56 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
57 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
58 (u32)(addr >> 32));
59 buf += 0x1000;
60 if ((count + 0x1000) < len)
61 count += 0x1000;
62 else
63 count = len;
66 /* short packets may only terminate transfers */
67 if (count != len)
68 count -= (count % maxpacket);
70 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
71 qtd->length = count;
73 return count;
76 /*-------------------------------------------------------------------------*/
78 static inline void
79 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
81 struct ehci_qh_hw *hw = qh->hw;
83 /* writes to an active overlay are unsafe */
84 WARN_ON(qh->qh_state != QH_STATE_IDLE);
86 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
87 hw->hw_alt_next = EHCI_LIST_END(ehci);
89 /* Except for control endpoints, we make hardware maintain data
90 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
91 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
92 * ever clear it.
94 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
95 unsigned is_out, epnum;
97 is_out = qh->is_out;
98 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
99 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
100 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
101 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
105 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
108 /* if it weren't for a common silicon quirk (writing the dummy into the qh
109 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
110 * recovery (including urb dequeue) would need software changes to a QH...
112 static void
113 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
115 struct ehci_qtd *qtd;
117 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
120 * first qtd may already be partially processed.
121 * If we come here during unlink, the QH overlay region
122 * might have reference to the just unlinked qtd. The
123 * qtd is updated in qh_completions(). Update the QH
124 * overlay here.
126 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
127 qh->hw->hw_qtd_next = qtd->hw_next;
128 if (qh->should_be_inactive)
129 ehci_warn(ehci, "qh %p should be inactive!\n", qh);
130 } else {
131 qh_update(ehci, qh, qtd);
133 qh->should_be_inactive = 0;
136 /*-------------------------------------------------------------------------*/
138 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
140 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
141 struct usb_host_endpoint *ep)
143 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
144 struct ehci_qh *qh = ep->hcpriv;
145 unsigned long flags;
147 spin_lock_irqsave(&ehci->lock, flags);
148 qh->clearing_tt = 0;
149 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
150 && ehci->rh_state == EHCI_RH_RUNNING)
151 qh_link_async(ehci, qh);
152 spin_unlock_irqrestore(&ehci->lock, flags);
155 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
156 struct urb *urb, u32 token)
159 /* If an async split transaction gets an error or is unlinked,
160 * the TT buffer may be left in an indeterminate state. We
161 * have to clear the TT buffer.
163 * Note: this routine is never called for Isochronous transfers.
165 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
166 #ifdef CONFIG_DYNAMIC_DEBUG
167 struct usb_device *tt = urb->dev->tt->hub;
168 dev_dbg(&tt->dev,
169 "clear tt buffer port %d, a%d ep%d t%08x\n",
170 urb->dev->ttport, urb->dev->devnum,
171 usb_pipeendpoint(urb->pipe), token);
172 #endif /* CONFIG_DYNAMIC_DEBUG */
173 if (!ehci_is_TDI(ehci)
174 || urb->dev->tt->hub !=
175 ehci_to_hcd(ehci)->self.root_hub) {
176 if (usb_hub_clear_tt_buffer(urb) == 0)
177 qh->clearing_tt = 1;
178 } else {
180 /* REVISIT ARC-derived cores don't clear the root
181 * hub TT buffer in this way...
187 static int qtd_copy_status (
188 struct ehci_hcd *ehci,
189 struct urb *urb,
190 size_t length,
191 u32 token
194 int status = -EINPROGRESS;
196 /* count IN/OUT bytes, not SETUP (even short packets) */
197 if (likely(QTD_PID(token) != PID_CODE_SETUP))
198 urb->actual_length += length - QTD_LENGTH (token);
200 /* don't modify error codes */
201 if (unlikely(urb->unlinked))
202 return status;
204 /* force cleanup after short read; not always an error */
205 if (unlikely (IS_SHORT_READ (token)))
206 status = -EREMOTEIO;
208 /* serious "can't proceed" faults reported by the hardware */
209 if (token & QTD_STS_HALT) {
210 if (token & QTD_STS_BABBLE) {
211 /* FIXME "must" disable babbling device's port too */
212 status = -EOVERFLOW;
214 * When MMF is active and PID Code is IN, queue is halted.
215 * EHCI Specification, Table 4-13.
217 } else if ((token & QTD_STS_MMF) &&
218 (QTD_PID(token) == PID_CODE_IN)) {
219 status = -EPROTO;
220 /* CERR nonzero + halt --> stall */
221 } else if (QTD_CERR(token)) {
222 status = -EPIPE;
224 /* In theory, more than one of the following bits can be set
225 * since they are sticky and the transaction is retried.
226 * Which to test first is rather arbitrary.
228 } else if (token & QTD_STS_MMF) {
229 /* fs/ls interrupt xfer missed the complete-split */
230 status = -EPROTO;
231 } else if (token & QTD_STS_DBE) {
232 status = (QTD_PID (token) == 1) /* IN ? */
233 ? -ENOSR /* hc couldn't read data */
234 : -ECOMM; /* hc couldn't write data */
235 } else if (token & QTD_STS_XACT) {
236 /* timeout, bad CRC, wrong PID, etc */
237 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
238 urb->dev->devpath,
239 usb_pipeendpoint(urb->pipe),
240 usb_pipein(urb->pipe) ? "in" : "out");
241 status = -EPROTO;
242 } else { /* unknown */
243 status = -EPROTO;
247 return status;
250 static void
251 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
253 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
254 /* ... update hc-wide periodic stats */
255 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
258 if (unlikely(urb->unlinked)) {
259 INCR(ehci->stats.unlink);
260 } else {
261 /* report non-error and short read status as zero */
262 if (status == -EINPROGRESS || status == -EREMOTEIO)
263 status = 0;
264 INCR(ehci->stats.complete);
267 #ifdef EHCI_URB_TRACE
268 ehci_dbg (ehci,
269 "%s %s urb %p ep%d%s status %d len %d/%d\n",
270 __func__, urb->dev->devpath, urb,
271 usb_pipeendpoint (urb->pipe),
272 usb_pipein (urb->pipe) ? "in" : "out",
273 status,
274 urb->actual_length, urb->transfer_buffer_length);
275 #endif
277 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
278 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
281 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
284 * Process and free completed qtds for a qh, returning URBs to drivers.
285 * Chases up to qh->hw_current. Returns nonzero if the caller should
286 * unlink qh.
288 static unsigned
289 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
291 struct ehci_qtd *last, *end = qh->dummy;
292 struct list_head *entry, *tmp;
293 int last_status;
294 int stopped;
295 u8 state;
296 struct ehci_qh_hw *hw = qh->hw;
298 /* completions (or tasks on other cpus) must never clobber HALT
299 * till we've gone through and cleaned everything up, even when
300 * they add urbs to this qh's queue or mark them for unlinking.
302 * NOTE: unlinking expects to be done in queue order.
304 * It's a bug for qh->qh_state to be anything other than
305 * QH_STATE_IDLE, unless our caller is scan_async() or
306 * scan_intr().
308 state = qh->qh_state;
309 qh->qh_state = QH_STATE_COMPLETING;
310 stopped = (state == QH_STATE_IDLE);
312 rescan:
313 last = NULL;
314 last_status = -EINPROGRESS;
315 qh->dequeue_during_giveback = 0;
317 /* remove de-activated QTDs from front of queue.
318 * after faults (including short reads), cleanup this urb
319 * then let the queue advance.
320 * if queue is stopped, handles unlinks.
322 list_for_each_safe (entry, tmp, &qh->qtd_list) {
323 struct ehci_qtd *qtd;
324 struct urb *urb;
325 u32 token = 0;
327 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
328 urb = qtd->urb;
330 /* clean up any state from previous QTD ...*/
331 if (last) {
332 if (likely (last->urb != urb)) {
333 ehci_urb_done(ehci, last->urb, last_status);
334 last_status = -EINPROGRESS;
336 ehci_qtd_free (ehci, last);
337 last = NULL;
340 /* ignore urbs submitted during completions we reported */
341 if (qtd == end)
342 break;
344 /* hardware copies qtd out of qh overlay */
345 rmb ();
346 token = hc32_to_cpu(ehci, qtd->hw_token);
348 /* always clean up qtds the hc de-activated */
349 retry_xacterr:
350 if ((token & QTD_STS_ACTIVE) == 0) {
352 /* Report Data Buffer Error: non-fatal but useful */
353 if (token & QTD_STS_DBE)
354 ehci_dbg(ehci,
355 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
356 urb,
357 usb_endpoint_num(&urb->ep->desc),
358 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
359 urb->transfer_buffer_length,
360 qtd,
361 qh);
363 /* on STALL, error, and short reads this urb must
364 * complete and all its qtds must be recycled.
366 if ((token & QTD_STS_HALT) != 0) {
368 /* retry transaction errors until we
369 * reach the software xacterr limit
371 if ((token & QTD_STS_XACT) &&
372 QTD_CERR(token) == 0 &&
373 ++qh->xacterrs < QH_XACTERR_MAX &&
374 !urb->unlinked) {
375 ehci_dbg(ehci,
376 "detected XactErr len %zu/%zu retry %d\n",
377 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
379 /* reset the token in the qtd and the
380 * qh overlay (which still contains
381 * the qtd) so that we pick up from
382 * where we left off
384 token &= ~QTD_STS_HALT;
385 token |= QTD_STS_ACTIVE |
386 (EHCI_TUNE_CERR << 10);
387 qtd->hw_token = cpu_to_hc32(ehci,
388 token);
389 wmb();
390 hw->hw_token = cpu_to_hc32(ehci,
391 token);
392 goto retry_xacterr;
394 stopped = 1;
395 qh->unlink_reason |= QH_UNLINK_HALTED;
397 /* magic dummy for some short reads; qh won't advance.
398 * that silicon quirk can kick in with this dummy too.
400 * other short reads won't stop the queue, including
401 * control transfers (status stage handles that) or
402 * most other single-qtd reads ... the queue stops if
403 * URB_SHORT_NOT_OK was set so the driver submitting
404 * the urbs could clean it up.
406 } else if (IS_SHORT_READ (token)
407 && !(qtd->hw_alt_next
408 & EHCI_LIST_END(ehci))) {
409 stopped = 1;
410 qh->unlink_reason |= QH_UNLINK_SHORT_READ;
413 /* stop scanning when we reach qtds the hc is using */
414 } else if (likely (!stopped
415 && ehci->rh_state >= EHCI_RH_RUNNING)) {
416 break;
418 /* scan the whole queue for unlinks whenever it stops */
419 } else {
420 stopped = 1;
422 /* cancel everything if we halt, suspend, etc */
423 if (ehci->rh_state < EHCI_RH_RUNNING) {
424 last_status = -ESHUTDOWN;
425 qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
428 /* this qtd is active; skip it unless a previous qtd
429 * for its urb faulted, or its urb was canceled.
431 else if (last_status == -EINPROGRESS && !urb->unlinked)
432 continue;
435 * If this was the active qtd when the qh was unlinked
436 * and the overlay's token is active, then the overlay
437 * hasn't been written back to the qtd yet so use its
438 * token instead of the qtd's. After the qtd is
439 * processed and removed, the overlay won't be valid
440 * any more.
442 if (state == QH_STATE_IDLE &&
443 qh->qtd_list.next == &qtd->qtd_list &&
444 (hw->hw_token & ACTIVE_BIT(ehci))) {
445 token = hc32_to_cpu(ehci, hw->hw_token);
446 hw->hw_token &= ~ACTIVE_BIT(ehci);
447 qh->should_be_inactive = 1;
449 /* An unlink may leave an incomplete
450 * async transaction in the TT buffer.
451 * We have to clear it.
453 ehci_clear_tt_buffer(ehci, qh, urb, token);
457 /* unless we already know the urb's status, collect qtd status
458 * and update count of bytes transferred. in common short read
459 * cases with only one data qtd (including control transfers),
460 * queue processing won't halt. but with two or more qtds (for
461 * example, with a 32 KB transfer), when the first qtd gets a
462 * short read the second must be removed by hand.
464 if (last_status == -EINPROGRESS) {
465 last_status = qtd_copy_status(ehci, urb,
466 qtd->length, token);
467 if (last_status == -EREMOTEIO
468 && (qtd->hw_alt_next
469 & EHCI_LIST_END(ehci)))
470 last_status = -EINPROGRESS;
472 /* As part of low/full-speed endpoint-halt processing
473 * we must clear the TT buffer (11.17.5).
475 if (unlikely(last_status != -EINPROGRESS &&
476 last_status != -EREMOTEIO)) {
477 /* The TT's in some hubs malfunction when they
478 * receive this request following a STALL (they
479 * stop sending isochronous packets). Since a
480 * STALL can't leave the TT buffer in a busy
481 * state (if you believe Figures 11-48 - 11-51
482 * in the USB 2.0 spec), we won't clear the TT
483 * buffer in this case. Strictly speaking this
484 * is a violation of the spec.
486 if (last_status != -EPIPE)
487 ehci_clear_tt_buffer(ehci, qh, urb,
488 token);
492 /* if we're removing something not at the queue head,
493 * patch the hardware queue pointer.
495 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
496 last = list_entry (qtd->qtd_list.prev,
497 struct ehci_qtd, qtd_list);
498 last->hw_next = qtd->hw_next;
501 /* remove qtd; it's recycled after possible urb completion */
502 list_del (&qtd->qtd_list);
503 last = qtd;
505 /* reinit the xacterr counter for the next qtd */
506 qh->xacterrs = 0;
509 /* last urb's completion might still need calling */
510 if (likely (last != NULL)) {
511 ehci_urb_done(ehci, last->urb, last_status);
512 ehci_qtd_free (ehci, last);
515 /* Do we need to rescan for URBs dequeued during a giveback? */
516 if (unlikely(qh->dequeue_during_giveback)) {
517 /* If the QH is already unlinked, do the rescan now. */
518 if (state == QH_STATE_IDLE)
519 goto rescan;
521 /* Otherwise the caller must unlink the QH. */
524 /* restore original state; caller must unlink or relink */
525 qh->qh_state = state;
527 /* be sure the hardware's done with the qh before refreshing
528 * it after fault cleanup, or recovering from silicon wrongly
529 * overlaying the dummy qtd (which reduces DMA chatter).
531 * We won't refresh a QH that's linked (after the HC
532 * stopped the queue). That avoids a race:
533 * - HC reads first part of QH;
534 * - CPU updates that first part and the token;
535 * - HC reads rest of that QH, including token
536 * Result: HC gets an inconsistent image, and then
537 * DMAs to/from the wrong memory (corrupting it).
539 * That should be rare for interrupt transfers,
540 * except maybe high bandwidth ...
542 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
543 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
545 /* Let the caller know if the QH needs to be unlinked. */
546 return qh->unlink_reason;
549 /*-------------------------------------------------------------------------*/
552 * reverse of qh_urb_transaction: free a list of TDs.
553 * used for cleanup after errors, before HC sees an URB's TDs.
555 static void qtd_list_free (
556 struct ehci_hcd *ehci,
557 struct urb *urb,
558 struct list_head *qtd_list
560 struct list_head *entry, *temp;
562 list_for_each_safe (entry, temp, qtd_list) {
563 struct ehci_qtd *qtd;
565 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
566 list_del (&qtd->qtd_list);
567 ehci_qtd_free (ehci, qtd);
572 * create a list of filled qtds for this URB; won't link into qh.
574 static struct list_head *
575 qh_urb_transaction (
576 struct ehci_hcd *ehci,
577 struct urb *urb,
578 struct list_head *head,
579 gfp_t flags
581 struct ehci_qtd *qtd, *qtd_prev;
582 dma_addr_t buf;
583 int len, this_sg_len, maxpacket;
584 int is_input;
585 u32 token;
586 int i;
587 struct scatterlist *sg;
590 * URBs map to sequences of QTDs: one logical transaction
592 qtd = ehci_qtd_alloc (ehci, flags);
593 if (unlikely (!qtd))
594 return NULL;
595 list_add_tail (&qtd->qtd_list, head);
596 qtd->urb = urb;
598 token = QTD_STS_ACTIVE;
599 token |= (EHCI_TUNE_CERR << 10);
600 /* for split transactions, SplitXState initialized to zero */
602 len = urb->transfer_buffer_length;
603 is_input = usb_pipein (urb->pipe);
604 if (usb_pipecontrol (urb->pipe)) {
605 /* SETUP pid */
606 qtd_fill(ehci, qtd, urb->setup_dma,
607 sizeof (struct usb_ctrlrequest),
608 token | (2 /* "setup" */ << 8), 8);
610 /* ... and always at least one more pid */
611 token ^= QTD_TOGGLE;
612 qtd_prev = qtd;
613 qtd = ehci_qtd_alloc (ehci, flags);
614 if (unlikely (!qtd))
615 goto cleanup;
616 qtd->urb = urb;
617 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
618 list_add_tail (&qtd->qtd_list, head);
620 /* for zero length DATA stages, STATUS is always IN */
621 if (len == 0)
622 token |= (1 /* "in" */ << 8);
626 * data transfer stage: buffer setup
628 i = urb->num_mapped_sgs;
629 if (len > 0 && i > 0) {
630 sg = urb->sg;
631 buf = sg_dma_address(sg);
633 /* urb->transfer_buffer_length may be smaller than the
634 * size of the scatterlist (or vice versa)
636 this_sg_len = min_t(int, sg_dma_len(sg), len);
637 } else {
638 sg = NULL;
639 buf = urb->transfer_dma;
640 this_sg_len = len;
643 if (is_input)
644 token |= (1 /* "in" */ << 8);
645 /* else it's already initted to "out" pid (0 << 8) */
647 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
650 * buffer gets wrapped in one or more qtds;
651 * last one may be "short" (including zero len)
652 * and may serve as a control status ack
654 for (;;) {
655 int this_qtd_len;
657 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
658 maxpacket);
659 this_sg_len -= this_qtd_len;
660 len -= this_qtd_len;
661 buf += this_qtd_len;
664 * short reads advance to a "magic" dummy instead of the next
665 * qtd ... that forces the queue to stop, for manual cleanup.
666 * (this will usually be overridden later.)
668 if (is_input)
669 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
671 /* qh makes control packets use qtd toggle; maybe switch it */
672 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
673 token ^= QTD_TOGGLE;
675 if (likely(this_sg_len <= 0)) {
676 if (--i <= 0 || len <= 0)
677 break;
678 sg = sg_next(sg);
679 buf = sg_dma_address(sg);
680 this_sg_len = min_t(int, sg_dma_len(sg), len);
683 qtd_prev = qtd;
684 qtd = ehci_qtd_alloc (ehci, flags);
685 if (unlikely (!qtd))
686 goto cleanup;
687 qtd->urb = urb;
688 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
689 list_add_tail (&qtd->qtd_list, head);
693 * unless the caller requires manual cleanup after short reads,
694 * have the alt_next mechanism keep the queue running after the
695 * last data qtd (the only one, for control and most other cases).
697 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
698 || usb_pipecontrol (urb->pipe)))
699 qtd->hw_alt_next = EHCI_LIST_END(ehci);
702 * control requests may need a terminating data "status" ack;
703 * other OUT ones may need a terminating short packet
704 * (zero length).
706 if (likely (urb->transfer_buffer_length != 0)) {
707 int one_more = 0;
709 if (usb_pipecontrol (urb->pipe)) {
710 one_more = 1;
711 token ^= 0x0100; /* "in" <--> "out" */
712 token |= QTD_TOGGLE; /* force DATA1 */
713 } else if (usb_pipeout(urb->pipe)
714 && (urb->transfer_flags & URB_ZERO_PACKET)
715 && !(urb->transfer_buffer_length % maxpacket)) {
716 one_more = 1;
718 if (one_more) {
719 qtd_prev = qtd;
720 qtd = ehci_qtd_alloc (ehci, flags);
721 if (unlikely (!qtd))
722 goto cleanup;
723 qtd->urb = urb;
724 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
725 list_add_tail (&qtd->qtd_list, head);
727 /* never any data in such packets */
728 qtd_fill(ehci, qtd, 0, 0, token, 0);
732 /* by default, enable interrupt on urb completion */
733 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
734 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
735 return head;
737 cleanup:
738 qtd_list_free (ehci, urb, head);
739 return NULL;
742 /*-------------------------------------------------------------------------*/
744 // Would be best to create all qh's from config descriptors,
745 // when each interface/altsetting is established. Unlink
746 // any previous qh and cancel its urbs first; endpoints are
747 // implicitly reset then (data toggle too).
748 // That'd mean updating how usbcore talks to HCDs. (2.7?)
752 * Each QH holds a qtd list; a QH is used for everything except iso.
754 * For interrupt urbs, the scheduler must set the microframe scheduling
755 * mask(s) each time the QH gets scheduled. For highspeed, that's
756 * just one microframe in the s-mask. For split interrupt transactions
757 * there are additional complications: c-mask, maybe FSTNs.
759 static struct ehci_qh *
760 qh_make (
761 struct ehci_hcd *ehci,
762 struct urb *urb,
763 gfp_t flags
765 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
766 struct usb_host_endpoint *ep;
767 u32 info1 = 0, info2 = 0;
768 int is_input, type;
769 int maxp = 0;
770 int mult;
771 struct usb_tt *tt = urb->dev->tt;
772 struct ehci_qh_hw *hw;
774 if (!qh)
775 return qh;
778 * init endpoint/device data for this QH
780 info1 |= usb_pipeendpoint (urb->pipe) << 8;
781 info1 |= usb_pipedevice (urb->pipe) << 0;
783 is_input = usb_pipein (urb->pipe);
784 type = usb_pipetype (urb->pipe);
785 ep = usb_pipe_endpoint (urb->dev, urb->pipe);
786 maxp = usb_endpoint_maxp (&ep->desc);
787 mult = usb_endpoint_maxp_mult (&ep->desc);
789 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
790 * acts like up to 3KB, but is built from smaller packets.
792 if (maxp > 1024) {
793 ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
794 goto done;
797 /* Compute interrupt scheduling parameters just once, and save.
798 * - allowing for high bandwidth, how many nsec/uframe are used?
799 * - split transactions need a second CSPLIT uframe; same question
800 * - splits also need a schedule gap (for full/low speed I/O)
801 * - qh has a polling interval
803 * For control/bulk requests, the HC or TT handles these.
805 if (type == PIPE_INTERRUPT) {
806 unsigned tmp;
808 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
809 is_input, 0, mult * maxp));
810 qh->ps.phase = NO_FRAME;
812 if (urb->dev->speed == USB_SPEED_HIGH) {
813 qh->ps.c_usecs = 0;
814 qh->gap_uf = 0;
816 if (urb->interval > 1 && urb->interval < 8) {
817 /* NOTE interval 2 or 4 uframes could work.
818 * But interval 1 scheduling is simpler, and
819 * includes high bandwidth.
821 urb->interval = 1;
822 } else if (urb->interval > ehci->periodic_size << 3) {
823 urb->interval = ehci->periodic_size << 3;
825 qh->ps.period = urb->interval >> 3;
827 /* period for bandwidth allocation */
828 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
829 1 << (urb->ep->desc.bInterval - 1));
831 /* Allow urb->interval to override */
832 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
833 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
834 } else {
835 int think_time;
837 /* gap is f(FS/LS transfer times) */
838 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
839 is_input, 0, maxp) / (125 * 1000);
841 /* FIXME this just approximates SPLIT/CSPLIT times */
842 if (is_input) { // SPLIT, gap, CSPLIT+DATA
843 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
844 qh->ps.usecs = HS_USECS(1);
845 } else { // SPLIT+DATA, gap, CSPLIT
846 qh->ps.usecs += HS_USECS(1);
847 qh->ps.c_usecs = HS_USECS(0);
850 think_time = tt ? tt->think_time : 0;
851 qh->ps.tt_usecs = NS_TO_US(think_time +
852 usb_calc_bus_time (urb->dev->speed,
853 is_input, 0, maxp));
854 if (urb->interval > ehci->periodic_size)
855 urb->interval = ehci->periodic_size;
856 qh->ps.period = urb->interval;
858 /* period for bandwidth allocation */
859 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
860 urb->ep->desc.bInterval);
861 tmp = rounddown_pow_of_two(tmp);
863 /* Allow urb->interval to override */
864 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
865 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
869 /* support for tt scheduling, and access to toggles */
870 qh->ps.udev = urb->dev;
871 qh->ps.ep = urb->ep;
873 /* using TT? */
874 switch (urb->dev->speed) {
875 case USB_SPEED_LOW:
876 info1 |= QH_LOW_SPEED;
877 fallthrough;
879 case USB_SPEED_FULL:
880 /* EPS 0 means "full" */
881 if (type != PIPE_INTERRUPT)
882 info1 |= (EHCI_TUNE_RL_TT << 28);
883 if (type == PIPE_CONTROL) {
884 info1 |= QH_CONTROL_EP; /* for TT */
885 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
887 info1 |= maxp << 16;
889 info2 |= (EHCI_TUNE_MULT_TT << 30);
891 /* Some Freescale processors have an erratum in which the
892 * port number in the queue head was 0..N-1 instead of 1..N.
894 if (ehci_has_fsl_portno_bug(ehci))
895 info2 |= (urb->dev->ttport-1) << 23;
896 else
897 info2 |= urb->dev->ttport << 23;
899 /* set the address of the TT; for TDI's integrated
900 * root hub tt, leave it zeroed.
902 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
903 info2 |= tt->hub->devnum << 16;
905 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
907 break;
909 case USB_SPEED_HIGH: /* no TT involved */
910 info1 |= QH_HIGH_SPEED;
911 if (type == PIPE_CONTROL) {
912 info1 |= (EHCI_TUNE_RL_HS << 28);
913 info1 |= 64 << 16; /* usb2 fixed maxpacket */
914 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
915 info2 |= (EHCI_TUNE_MULT_HS << 30);
916 } else if (type == PIPE_BULK) {
917 info1 |= (EHCI_TUNE_RL_HS << 28);
918 /* The USB spec says that high speed bulk endpoints
919 * always use 512 byte maxpacket. But some device
920 * vendors decided to ignore that, and MSFT is happy
921 * to help them do so. So now people expect to use
922 * such nonconformant devices with Linux too; sigh.
924 info1 |= maxp << 16;
925 info2 |= (EHCI_TUNE_MULT_HS << 30);
926 } else { /* PIPE_INTERRUPT */
927 info1 |= maxp << 16;
928 info2 |= mult << 30;
930 break;
931 default:
932 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
933 urb->dev->speed);
934 done:
935 qh_destroy(ehci, qh);
936 return NULL;
939 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
941 /* init as live, toggle clear */
942 qh->qh_state = QH_STATE_IDLE;
943 hw = qh->hw;
944 hw->hw_info1 = cpu_to_hc32(ehci, info1);
945 hw->hw_info2 = cpu_to_hc32(ehci, info2);
946 qh->is_out = !is_input;
947 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
948 return qh;
951 /*-------------------------------------------------------------------------*/
953 static void enable_async(struct ehci_hcd *ehci)
955 if (ehci->async_count++)
956 return;
958 /* Stop waiting to turn off the async schedule */
959 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
961 /* Don't start the schedule until ASS is 0 */
962 ehci_poll_ASS(ehci);
963 turn_on_io_watchdog(ehci);
966 static void disable_async(struct ehci_hcd *ehci)
968 if (--ehci->async_count)
969 return;
971 /* The async schedule and unlink lists are supposed to be empty */
972 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
973 !list_empty(&ehci->async_idle));
975 /* Don't turn off the schedule until ASS is 1 */
976 ehci_poll_ASS(ehci);
979 /* move qh (and its qtds) onto async queue; maybe enable queue. */
981 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
983 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
984 struct ehci_qh *head;
986 /* Don't link a QH if there's a Clear-TT-Buffer pending */
987 if (unlikely(qh->clearing_tt))
988 return;
990 WARN_ON(qh->qh_state != QH_STATE_IDLE);
992 /* clear halt and/or toggle; and maybe recover from silicon quirk */
993 qh_refresh(ehci, qh);
995 /* splice right after start */
996 head = ehci->async;
997 qh->qh_next = head->qh_next;
998 qh->hw->hw_next = head->hw->hw_next;
999 wmb ();
1001 head->qh_next.qh = qh;
1002 head->hw->hw_next = dma;
1004 qh->qh_state = QH_STATE_LINKED;
1005 qh->xacterrs = 0;
1006 qh->unlink_reason = 0;
1007 /* qtd completions reported later by interrupt */
1009 enable_async(ehci);
1012 /*-------------------------------------------------------------------------*/
1015 * For control/bulk/interrupt, return QH with these TDs appended.
1016 * Allocates and initializes the QH if necessary.
1017 * Returns null if it can't allocate a QH it needs to.
1018 * If the QH has TDs (urbs) already, that's great.
1020 static struct ehci_qh *qh_append_tds (
1021 struct ehci_hcd *ehci,
1022 struct urb *urb,
1023 struct list_head *qtd_list,
1024 int epnum,
1025 void **ptr
1028 struct ehci_qh *qh = NULL;
1029 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1031 qh = (struct ehci_qh *) *ptr;
1032 if (unlikely (qh == NULL)) {
1033 /* can't sleep here, we have ehci->lock... */
1034 qh = qh_make (ehci, urb, GFP_ATOMIC);
1035 *ptr = qh;
1037 if (likely (qh != NULL)) {
1038 struct ehci_qtd *qtd;
1040 if (unlikely (list_empty (qtd_list)))
1041 qtd = NULL;
1042 else
1043 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1044 qtd_list);
1046 /* control qh may need patching ... */
1047 if (unlikely (epnum == 0)) {
1049 /* usb_reset_device() briefly reverts to address 0 */
1050 if (usb_pipedevice (urb->pipe) == 0)
1051 qh->hw->hw_info1 &= ~qh_addr_mask;
1054 /* just one way to queue requests: swap with the dummy qtd.
1055 * only hc or qh_refresh() ever modify the overlay.
1057 if (likely (qtd != NULL)) {
1058 struct ehci_qtd *dummy;
1059 dma_addr_t dma;
1060 __hc32 token;
1062 /* to avoid racing the HC, use the dummy td instead of
1063 * the first td of our list (becomes new dummy). both
1064 * tds stay deactivated until we're done, when the
1065 * HC is allowed to fetch the old dummy (4.10.2).
1067 token = qtd->hw_token;
1068 qtd->hw_token = HALT_BIT(ehci);
1070 dummy = qh->dummy;
1072 dma = dummy->qtd_dma;
1073 *dummy = *qtd;
1074 dummy->qtd_dma = dma;
1076 list_del (&qtd->qtd_list);
1077 list_add (&dummy->qtd_list, qtd_list);
1078 list_splice_tail(qtd_list, &qh->qtd_list);
1080 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1081 qh->dummy = qtd;
1083 /* hc must see the new dummy at list end */
1084 dma = qtd->qtd_dma;
1085 qtd = list_entry (qh->qtd_list.prev,
1086 struct ehci_qtd, qtd_list);
1087 qtd->hw_next = QTD_NEXT(ehci, dma);
1089 /* let the hc process these next qtds */
1090 wmb ();
1091 dummy->hw_token = token;
1093 urb->hcpriv = qh;
1096 return qh;
1099 /*-------------------------------------------------------------------------*/
1101 static int
1102 submit_async (
1103 struct ehci_hcd *ehci,
1104 struct urb *urb,
1105 struct list_head *qtd_list,
1106 gfp_t mem_flags
1108 int epnum;
1109 unsigned long flags;
1110 struct ehci_qh *qh = NULL;
1111 int rc;
1113 epnum = urb->ep->desc.bEndpointAddress;
1115 #ifdef EHCI_URB_TRACE
1117 struct ehci_qtd *qtd;
1118 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1119 ehci_dbg(ehci,
1120 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1121 __func__, urb->dev->devpath, urb,
1122 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1123 urb->transfer_buffer_length,
1124 qtd, urb->ep->hcpriv);
1126 #endif
1128 spin_lock_irqsave (&ehci->lock, flags);
1129 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1130 rc = -ESHUTDOWN;
1131 goto done;
1133 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1134 if (unlikely(rc))
1135 goto done;
1137 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1138 if (unlikely(qh == NULL)) {
1139 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1140 rc = -ENOMEM;
1141 goto done;
1144 /* Control/bulk operations through TTs don't need scheduling,
1145 * the HC and TT handle it when the TT has a buffer ready.
1147 if (likely (qh->qh_state == QH_STATE_IDLE))
1148 qh_link_async(ehci, qh);
1149 done:
1150 spin_unlock_irqrestore (&ehci->lock, flags);
1151 if (unlikely (qh == NULL))
1152 qtd_list_free (ehci, urb, qtd_list);
1153 return rc;
1156 /*-------------------------------------------------------------------------*/
1157 #ifdef CONFIG_USB_HCD_TEST_MODE
1159 * This function creates the qtds and submits them for the
1160 * SINGLE_STEP_SET_FEATURE Test.
1161 * This is done in two parts: first SETUP req for GetDesc is sent then
1162 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1164 * is_setup : i/p arguement decides which of the two stage needs to be
1165 * performed; TRUE - SETUP and FALSE - IN+STATUS
1166 * Returns 0 if success
1168 static int submit_single_step_set_feature(
1169 struct usb_hcd *hcd,
1170 struct urb *urb,
1171 int is_setup
1173 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1174 struct list_head qtd_list;
1175 struct list_head *head;
1177 struct ehci_qtd *qtd, *qtd_prev;
1178 dma_addr_t buf;
1179 int len, maxpacket;
1180 u32 token;
1182 INIT_LIST_HEAD(&qtd_list);
1183 head = &qtd_list;
1185 /* URBs map to sequences of QTDs: one logical transaction */
1186 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1187 if (unlikely(!qtd))
1188 return -1;
1189 list_add_tail(&qtd->qtd_list, head);
1190 qtd->urb = urb;
1192 token = QTD_STS_ACTIVE;
1193 token |= (EHCI_TUNE_CERR << 10);
1195 len = urb->transfer_buffer_length;
1197 * Check if the request is to perform just the SETUP stage (getDesc)
1198 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1199 * 15 secs after the setup
1201 if (is_setup) {
1202 /* SETUP pid, and interrupt after SETUP completion */
1203 qtd_fill(ehci, qtd, urb->setup_dma,
1204 sizeof(struct usb_ctrlrequest),
1205 QTD_IOC | token | (2 /* "setup" */ << 8), 8);
1207 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1208 return 0; /*Return now; we shall come back after 15 seconds*/
1212 * IN: data transfer stage: buffer setup : start the IN txn phase for
1213 * the get_Desc SETUP which was sent 15seconds back
1215 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1216 buf = urb->transfer_dma;
1218 token |= (1 /* "in" */ << 8); /*This is IN stage*/
1220 maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1222 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1225 * Our IN phase shall always be a short read; so keep the queue running
1226 * and let it advance to the next qtd which zero length OUT status
1228 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1230 /* STATUS stage for GetDesc control request */
1231 token ^= 0x0100; /* "in" <--> "out" */
1232 token |= QTD_TOGGLE; /* force DATA1 */
1234 qtd_prev = qtd;
1235 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1236 if (unlikely(!qtd))
1237 goto cleanup;
1238 qtd->urb = urb;
1239 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1240 list_add_tail(&qtd->qtd_list, head);
1242 /* Interrupt after STATUS completion */
1243 qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1245 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1247 return 0;
1249 cleanup:
1250 qtd_list_free(ehci, urb, head);
1251 return -1;
1253 #endif /* CONFIG_USB_HCD_TEST_MODE */
1255 /*-------------------------------------------------------------------------*/
1257 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1259 struct ehci_qh *prev;
1261 /* Add to the end of the list of QHs waiting for the next IAAD */
1262 qh->qh_state = QH_STATE_UNLINK_WAIT;
1263 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1265 /* Unlink it from the schedule */
1266 prev = ehci->async;
1267 while (prev->qh_next.qh != qh)
1268 prev = prev->qh_next.qh;
1270 prev->hw->hw_next = qh->hw->hw_next;
1271 prev->qh_next = qh->qh_next;
1272 if (ehci->qh_scan_next == qh)
1273 ehci->qh_scan_next = qh->qh_next.qh;
1276 static void start_iaa_cycle(struct ehci_hcd *ehci)
1278 /* If the controller isn't running, we don't have to wait for it */
1279 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1280 end_unlink_async(ehci);
1282 /* Otherwise start a new IAA cycle if one isn't already running */
1283 } else if (ehci->rh_state == EHCI_RH_RUNNING &&
1284 !ehci->iaa_in_progress) {
1286 /* Make sure the unlinks are all visible to the hardware */
1287 wmb();
1289 ehci_writel(ehci, ehci->command | CMD_IAAD,
1290 &ehci->regs->command);
1291 ehci_readl(ehci, &ehci->regs->command);
1292 ehci->iaa_in_progress = true;
1293 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1297 static void end_iaa_cycle(struct ehci_hcd *ehci)
1299 if (ehci->has_synopsys_hc_bug)
1300 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1301 &ehci->regs->async_next);
1303 /* The current IAA cycle has ended */
1304 ehci->iaa_in_progress = false;
1306 end_unlink_async(ehci);
1309 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1311 static void end_unlink_async(struct ehci_hcd *ehci)
1313 struct ehci_qh *qh;
1314 bool early_exit;
1316 if (list_empty(&ehci->async_unlink))
1317 return;
1318 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1319 unlink_node); /* QH whose IAA cycle just ended */
1322 * If async_unlinking is set then this routine is already running,
1323 * either on the stack or on another CPU.
1325 early_exit = ehci->async_unlinking;
1327 /* If the controller isn't running, process all the waiting QHs */
1328 if (ehci->rh_state < EHCI_RH_RUNNING)
1329 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1332 * Intel (?) bug: The HC can write back the overlay region even
1333 * after the IAA interrupt occurs. In self-defense, always go
1334 * through two IAA cycles for each QH.
1336 else if (qh->qh_state == QH_STATE_UNLINK) {
1338 * Second IAA cycle has finished. Process only the first
1339 * waiting QH (NVIDIA (?) bug).
1341 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1345 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1346 * after the IAA interrupt occurs. To prevent problems, QHs that
1347 * may still be active will wait until 2 ms have passed with no
1348 * change to the hw_current and hw_token fields (this delay occurs
1349 * between the two IAA cycles).
1351 * The EHCI spec (4.8.2) says that active QHs must not be removed
1352 * from the async schedule and recommends waiting until the QH
1353 * goes inactive. This is ridiculous because the QH will _never_
1354 * become inactive if the endpoint NAKs indefinitely.
1357 /* Some reasons for unlinking guarantee the QH can't be active */
1358 else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1359 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1360 goto DelayDone;
1362 /* The QH can't be active if the queue was and still is empty... */
1363 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1364 list_empty(&qh->qtd_list))
1365 goto DelayDone;
1367 /* ... or if the QH has halted */
1368 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1369 goto DelayDone;
1371 /* Otherwise we have to wait until the QH stops changing */
1372 else {
1373 __hc32 qh_current, qh_token;
1375 qh_current = qh->hw->hw_current;
1376 qh_token = qh->hw->hw_token;
1377 if (qh_current != ehci->old_current ||
1378 qh_token != ehci->old_token) {
1379 ehci->old_current = qh_current;
1380 ehci->old_token = qh_token;
1381 ehci_enable_event(ehci,
1382 EHCI_HRTIMER_ACTIVE_UNLINK, true);
1383 return;
1385 DelayDone:
1386 qh->qh_state = QH_STATE_UNLINK;
1387 early_exit = true;
1389 ehci->old_current = ~0; /* Prepare for next QH */
1391 /* Start a new IAA cycle if any QHs are waiting for it */
1392 if (!list_empty(&ehci->async_unlink))
1393 start_iaa_cycle(ehci);
1396 * Don't allow nesting or concurrent calls,
1397 * or wait for the second IAA cycle for the next QH.
1399 if (early_exit)
1400 return;
1402 /* Process the idle QHs */
1403 ehci->async_unlinking = true;
1404 while (!list_empty(&ehci->async_idle)) {
1405 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1406 unlink_node);
1407 list_del(&qh->unlink_node);
1409 qh->qh_state = QH_STATE_IDLE;
1410 qh->qh_next.qh = NULL;
1412 if (!list_empty(&qh->qtd_list))
1413 qh_completions(ehci, qh);
1414 if (!list_empty(&qh->qtd_list) &&
1415 ehci->rh_state == EHCI_RH_RUNNING)
1416 qh_link_async(ehci, qh);
1417 disable_async(ehci);
1419 ehci->async_unlinking = false;
1422 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1424 static void unlink_empty_async(struct ehci_hcd *ehci)
1426 struct ehci_qh *qh;
1427 struct ehci_qh *qh_to_unlink = NULL;
1428 int count = 0;
1430 /* Find the last async QH which has been empty for a timer cycle */
1431 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1432 if (list_empty(&qh->qtd_list) &&
1433 qh->qh_state == QH_STATE_LINKED) {
1434 ++count;
1435 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1436 qh_to_unlink = qh;
1440 /* If nothing else is being unlinked, unlink the last empty QH */
1441 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1442 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1443 start_unlink_async(ehci, qh_to_unlink);
1444 --count;
1447 /* Other QHs will be handled later */
1448 if (count > 0) {
1449 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1450 ++ehci->async_unlink_cycle;
1454 #ifdef CONFIG_PM
1456 /* The root hub is suspended; unlink all the async QHs */
1457 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1459 struct ehci_qh *qh;
1461 while (ehci->async->qh_next.qh) {
1462 qh = ehci->async->qh_next.qh;
1463 WARN_ON(!list_empty(&qh->qtd_list));
1464 single_unlink_async(ehci, qh);
1468 #endif
1470 /* makes sure the async qh will become idle */
1471 /* caller must own ehci->lock */
1473 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1475 /* If the QH isn't linked then there's nothing we can do. */
1476 if (qh->qh_state != QH_STATE_LINKED)
1477 return;
1479 single_unlink_async(ehci, qh);
1480 start_iaa_cycle(ehci);
1483 /*-------------------------------------------------------------------------*/
1485 static void scan_async (struct ehci_hcd *ehci)
1487 struct ehci_qh *qh;
1488 bool check_unlinks_later = false;
1490 ehci->qh_scan_next = ehci->async->qh_next.qh;
1491 while (ehci->qh_scan_next) {
1492 qh = ehci->qh_scan_next;
1493 ehci->qh_scan_next = qh->qh_next.qh;
1495 /* clean any finished work for this qh */
1496 if (!list_empty(&qh->qtd_list)) {
1497 int temp;
1500 * Unlinks could happen here; completion reporting
1501 * drops the lock. That's why ehci->qh_scan_next
1502 * always holds the next qh to scan; if the next qh
1503 * gets unlinked then ehci->qh_scan_next is adjusted
1504 * in single_unlink_async().
1506 temp = qh_completions(ehci, qh);
1507 if (unlikely(temp)) {
1508 start_unlink_async(ehci, qh);
1509 } else if (list_empty(&qh->qtd_list)
1510 && qh->qh_state == QH_STATE_LINKED) {
1511 qh->unlink_cycle = ehci->async_unlink_cycle;
1512 check_unlinks_later = true;
1518 * Unlink empty entries, reducing DMA usage as well
1519 * as HCD schedule-scanning costs. Delay for any qh
1520 * we just scanned, there's a not-unusual case that it
1521 * doesn't stay idle for long.
1523 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1524 !(ehci->enabled_hrtimer_events &
1525 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1526 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1527 ++ehci->async_unlink_cycle;