1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
29 unsigned int cycle_state
,
30 unsigned int max_packet
,
33 struct xhci_segment
*seg
;
36 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
38 seg
= kzalloc_node(sizeof(*seg
), flags
, dev_to_node(dev
));
42 seg
->trbs
= dma_pool_zalloc(xhci
->segment_pool
, flags
, &dma
);
49 seg
->bounce_buf
= kzalloc_node(max_packet
, flags
,
51 if (!seg
->bounce_buf
) {
52 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, dma
);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state
== 0) {
59 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
60 seg
->trbs
[i
].link
.control
|= cpu_to_le32(TRB_CYCLE
);
68 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
71 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
74 kfree(seg
->bounce_buf
);
78 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
79 struct xhci_segment
*first
)
81 struct xhci_segment
*seg
;
84 while (seg
!= first
) {
85 struct xhci_segment
*next
= seg
->next
;
86 xhci_segment_free(xhci
, seg
);
89 xhci_segment_free(xhci
, first
);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_segment
*prev
,
100 struct xhci_segment
*next
,
101 enum xhci_ring_type type
, bool chain_links
)
108 if (type
!= TYPE_EVENT
) {
109 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
110 cpu_to_le64(next
->dma
);
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
114 val
&= ~TRB_TYPE_BITMASK
;
115 val
|= TRB_TYPE(TRB_LINK
);
118 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
126 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
127 struct xhci_segment
*first
, struct xhci_segment
*last
,
128 unsigned int num_segs
)
130 struct xhci_segment
*next
;
133 if (!ring
|| !first
|| !last
)
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links
= !!(xhci_link_trb_quirk(xhci
) ||
138 (ring
->type
== TYPE_ISOC
&&
139 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)));
141 next
= ring
->enq_seg
->next
;
142 xhci_link_segments(ring
->enq_seg
, first
, ring
->type
, chain_links
);
143 xhci_link_segments(last
, next
, ring
->type
, chain_links
);
144 ring
->num_segs
+= num_segs
;
145 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
147 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
148 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
149 &= ~cpu_to_le32(LINK_TOGGLE
);
150 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
151 |= cpu_to_le32(LINK_TOGGLE
);
152 ring
->last_seg
= last
;
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
177 * Caveats for the radix tree:
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
187 static int xhci_insert_segment_mapping(struct radix_tree_root
*trb_address_map
,
188 struct xhci_ring
*ring
,
189 struct xhci_segment
*seg
,
195 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map
, key
))
200 ret
= radix_tree_maybe_preload(mem_flags
);
203 ret
= radix_tree_insert(trb_address_map
,
205 radix_tree_preload_end();
209 static void xhci_remove_segment_mapping(struct radix_tree_root
*trb_address_map
,
210 struct xhci_segment
*seg
)
214 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
215 if (radix_tree_lookup(trb_address_map
, key
))
216 radix_tree_delete(trb_address_map
, key
);
219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root
*trb_address_map
,
221 struct xhci_ring
*ring
,
222 struct xhci_segment
*first_seg
,
223 struct xhci_segment
*last_seg
,
226 struct xhci_segment
*seg
;
227 struct xhci_segment
*failed_seg
;
230 if (WARN_ON_ONCE(trb_address_map
== NULL
))
235 ret
= xhci_insert_segment_mapping(trb_address_map
,
236 ring
, seg
, mem_flags
);
242 } while (seg
!= first_seg
);
250 xhci_remove_segment_mapping(trb_address_map
, seg
);
251 if (seg
== failed_seg
)
254 } while (seg
!= first_seg
);
259 static void xhci_remove_stream_mapping(struct xhci_ring
*ring
)
261 struct xhci_segment
*seg
;
263 if (WARN_ON_ONCE(ring
->trb_address_map
== NULL
))
266 seg
= ring
->first_seg
;
268 xhci_remove_segment_mapping(ring
->trb_address_map
, seg
);
270 } while (seg
!= ring
->first_seg
);
273 static int xhci_update_stream_mapping(struct xhci_ring
*ring
, gfp_t mem_flags
)
275 return xhci_update_stream_segment_mapping(ring
->trb_address_map
, ring
,
276 ring
->first_seg
, ring
->last_seg
, mem_flags
);
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
285 trace_xhci_ring_free(ring
);
287 if (ring
->first_seg
) {
288 if (ring
->type
== TYPE_STREAM
)
289 xhci_remove_stream_mapping(ring
);
290 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
296 void xhci_initialize_ring_info(struct xhci_ring
*ring
,
297 unsigned int cycle_state
)
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring
->enqueue
= ring
->first_seg
->trbs
;
301 ring
->enq_seg
= ring
->first_seg
;
302 ring
->dequeue
= ring
->enqueue
;
303 ring
->deq_seg
= ring
->first_seg
;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
311 ring
->cycle_state
= cycle_state
;
314 * Each segment has a link TRB, and leave an extra TRB for SW
317 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
322 struct xhci_segment
**first
, struct xhci_segment
**last
,
323 unsigned int num_segs
, unsigned int cycle_state
,
324 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
326 struct xhci_segment
*prev
;
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links
= !!(xhci_link_trb_quirk(xhci
) ||
331 (type
== TYPE_ISOC
&&
332 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)));
334 prev
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
340 while (num_segs
> 0) {
341 struct xhci_segment
*next
;
343 next
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
348 xhci_segment_free(xhci
, prev
);
353 xhci_link_segments(prev
, next
, type
, chain_links
);
358 xhci_link_segments(prev
, *first
, type
, chain_links
);
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
372 unsigned int num_segs
, unsigned int cycle_state
,
373 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
375 struct xhci_ring
*ring
;
377 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
379 ring
= kzalloc_node(sizeof(*ring
), flags
, dev_to_node(dev
));
383 ring
->num_segs
= num_segs
;
384 ring
->bounce_buf_len
= max_packet
;
385 INIT_LIST_HEAD(&ring
->td_list
);
390 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
391 &ring
->last_seg
, num_segs
, cycle_state
, type
,
396 /* Only event ring does not use link TRB */
397 if (type
!= TYPE_EVENT
) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
400 cpu_to_le32(LINK_TOGGLE
);
402 xhci_initialize_ring_info(ring
, cycle_state
);
403 trace_xhci_ring_alloc(ring
);
411 void xhci_free_endpoint_ring(struct xhci_hcd
*xhci
,
412 struct xhci_virt_device
*virt_dev
,
413 unsigned int ep_index
)
415 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
416 virt_dev
->eps
[ep_index
].ring
= NULL
;
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
423 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
424 unsigned int num_trbs
, gfp_t flags
)
426 struct xhci_segment
*first
;
427 struct xhci_segment
*last
;
428 unsigned int num_segs
;
429 unsigned int num_segs_needed
;
432 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
433 (TRBS_PER_SEGMENT
- 1);
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs
= ring
->num_segs
> num_segs_needed
?
437 ring
->num_segs
: num_segs_needed
;
439 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
440 num_segs
, ring
->cycle_state
, ring
->type
,
441 ring
->bounce_buf_len
, flags
);
445 if (ring
->type
== TYPE_STREAM
)
446 ret
= xhci_update_stream_segment_mapping(ring
->trb_address_map
,
447 ring
, first
, last
, flags
);
449 struct xhci_segment
*next
;
452 xhci_segment_free(xhci
, first
);
460 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
461 trace_xhci_ring_expansion(ring
);
462 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
463 "ring expansion succeed, now has %d segments",
469 struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
470 int type
, gfp_t flags
)
472 struct xhci_container_ctx
*ctx
;
473 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
475 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
478 ctx
= kzalloc_node(sizeof(*ctx
), flags
, dev_to_node(dev
));
483 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
484 if (type
== XHCI_CTX_TYPE_INPUT
)
485 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
487 ctx
->bytes
= dma_pool_zalloc(xhci
->device_pool
, flags
, &ctx
->dma
);
495 void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
496 struct xhci_container_ctx
*ctx
)
500 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
504 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(
505 struct xhci_container_ctx
*ctx
)
507 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
510 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
513 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
514 struct xhci_container_ctx
*ctx
)
516 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
517 return (struct xhci_slot_ctx
*)ctx
->bytes
;
519 return (struct xhci_slot_ctx
*)
520 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
523 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
524 struct xhci_container_ctx
*ctx
,
525 unsigned int ep_index
)
527 /* increment ep index by offset of start of ep ctx array */
529 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
532 return (struct xhci_ep_ctx
*)
533 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
537 /***************** Streams structures manipulation *************************/
539 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
540 unsigned int num_stream_ctxs
,
541 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
543 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
544 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
546 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
547 dma_free_coherent(dev
, size
,
549 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
550 return dma_pool_free(xhci
->small_streams_pool
,
553 return dma_pool_free(xhci
->medium_streams_pool
,
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
567 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
568 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
571 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
572 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
574 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
575 return dma_alloc_coherent(dev
, size
,
577 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
578 return dma_pool_alloc(xhci
->small_streams_pool
,
581 return dma_pool_alloc(xhci
->medium_streams_pool
,
585 struct xhci_ring
*xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep
*ep
,
589 if (ep
->ep_state
& EP_HAS_STREAMS
)
590 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
591 address
>> TRB_SEGMENT_SHIFT
);
595 struct xhci_ring
*xhci_stream_id_to_ring(
596 struct xhci_virt_device
*dev
,
597 unsigned int ep_index
,
598 unsigned int stream_id
)
600 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
604 if (!ep
->stream_info
)
607 if (stream_id
>= ep
->stream_info
->num_streams
)
609 return ep
->stream_info
->stream_rings
[stream_id
];
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
621 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
622 unsigned int num_stream_ctxs
,
623 unsigned int num_streams
,
624 unsigned int max_packet
, gfp_t mem_flags
)
626 struct xhci_stream_info
*stream_info
;
628 struct xhci_ring
*cur_ring
;
631 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
633 xhci_dbg(xhci
, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams
, num_stream_ctxs
);
636 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
637 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
640 xhci
->cmd_ring_reserved_trbs
++;
642 stream_info
= kzalloc_node(sizeof(*stream_info
), mem_flags
,
647 stream_info
->num_streams
= num_streams
;
648 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info
->stream_rings
= kcalloc_node(
652 num_streams
, sizeof(struct xhci_ring
*), mem_flags
,
654 if (!stream_info
->stream_rings
)
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
659 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
661 if (!stream_info
->stream_ctx_array
)
663 memset(stream_info
->stream_ctx_array
, 0,
664 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
666 /* Allocate everything needed to free the stream rings later */
667 stream_info
->free_streams_command
=
668 xhci_alloc_command_with_ctx(xhci
, true, mem_flags
);
669 if (!stream_info
->free_streams_command
)
672 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
679 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
680 stream_info
->stream_rings
[cur_stream
] =
681 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, max_packet
,
683 cur_ring
= stream_info
->stream_rings
[cur_stream
];
686 cur_ring
->stream_id
= cur_stream
;
687 cur_ring
->trb_address_map
= &stream_info
->trb_address_map
;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr
= cur_ring
->first_seg
->dma
|
690 SCT_FOR_CTX(SCT_PRI_TR
) |
691 cur_ring
->cycle_state
;
692 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
694 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream
, (unsigned long long) addr
);
697 ret
= xhci_update_stream_mapping(cur_ring
, mem_flags
);
699 xhci_ring_free(xhci
, cur_ring
);
700 stream_info
->stream_rings
[cur_stream
] = NULL
;
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
714 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
715 cur_ring
= stream_info
->stream_rings
[cur_stream
];
717 xhci_ring_free(xhci
, cur_ring
);
718 stream_info
->stream_rings
[cur_stream
] = NULL
;
721 xhci_free_command(xhci
, stream_info
->free_streams_command
);
723 kfree(stream_info
->stream_rings
);
727 xhci
->cmd_ring_reserved_trbs
--;
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
735 struct xhci_ep_ctx
*ep_ctx
,
736 struct xhci_stream_info
*stream_info
)
738 u32 max_primary_streams
;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
743 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
744 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams
+ 1));
747 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
748 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
750 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx
*ep_ctx
,
759 struct xhci_virt_ep
*ep
)
762 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
763 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
764 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
767 /* Frees all stream contexts associated with the endpoint,
769 * Caller should fix the endpoint context streams fields.
771 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
772 struct xhci_stream_info
*stream_info
)
775 struct xhci_ring
*cur_ring
;
780 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
782 cur_ring
= stream_info
->stream_rings
[cur_stream
];
784 xhci_ring_free(xhci
, cur_ring
);
785 stream_info
->stream_rings
[cur_stream
] = NULL
;
788 xhci_free_command(xhci
, stream_info
->free_streams_command
);
789 xhci
->cmd_ring_reserved_trbs
--;
790 if (stream_info
->stream_ctx_array
)
791 xhci_free_stream_ctx(xhci
,
792 stream_info
->num_stream_ctxs
,
793 stream_info
->stream_ctx_array
,
794 stream_info
->ctx_array_dma
);
796 kfree(stream_info
->stream_rings
);
801 /***************** Device context manipulation *************************/
803 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
804 struct xhci_virt_ep
*ep
)
806 timer_setup(&ep
->stop_cmd_timer
, xhci_stop_endpoint_command_watchdog
,
811 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
812 struct xhci_virt_device
*virt_dev
,
815 struct list_head
*tt_list_head
;
816 struct xhci_tt_bw_info
*tt_info
, *next
;
817 bool slot_found
= false;
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
822 if (virt_dev
->real_port
== 0 ||
823 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
824 xhci_dbg(xhci
, "Bad real port.\n");
828 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
829 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info
->slot_id
== slot_id
) {
833 list_del(&tt_info
->tt_list
);
835 } else if (slot_found
) {
841 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
842 struct xhci_virt_device
*virt_dev
,
843 struct usb_device
*hdev
,
844 struct usb_tt
*tt
, gfp_t mem_flags
)
846 struct xhci_tt_bw_info
*tt_info
;
847 unsigned int num_ports
;
849 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
854 num_ports
= hdev
->maxchild
;
856 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
857 struct xhci_interval_bw_table
*bw_table
;
859 tt_info
= kzalloc_node(sizeof(*tt_info
), mem_flags
,
863 INIT_LIST_HEAD(&tt_info
->tt_list
);
864 list_add(&tt_info
->tt_list
,
865 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
866 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
868 tt_info
->ttport
= i
+1;
869 bw_table
= &tt_info
->bw_table
;
870 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
871 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
876 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
886 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
888 struct xhci_virt_device
*dev
;
890 int old_active_eps
= 0;
892 /* Slot ID 0 is reserved */
893 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
896 dev
= xhci
->devs
[slot_id
];
898 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
902 trace_xhci_free_virt_device(dev
);
905 old_active_eps
= dev
->tt_info
->active_eps
;
907 for (i
= 0; i
< 31; i
++) {
908 if (dev
->eps
[i
].ring
)
909 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
910 if (dev
->eps
[i
].stream_info
)
911 xhci_free_stream_info(xhci
,
912 dev
->eps
[i
].stream_info
);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
918 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
919 xhci_warn(xhci
, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci
, dev
, slot_id
);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
929 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
931 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
933 if (dev
->udev
&& dev
->udev
->slot_id
)
934 dev
->udev
->slot_id
= 0;
935 kfree(xhci
->devs
[slot_id
]);
936 xhci
->devs
[slot_id
] = NULL
;
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd
*xhci
, int slot_id
)
947 struct xhci_virt_device
*vdev
;
948 struct list_head
*tt_list_head
;
949 struct xhci_tt_bw_info
*tt_info
, *next
;
952 vdev
= xhci
->devs
[slot_id
];
956 if (vdev
->real_port
== 0 ||
957 vdev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
958 xhci_dbg(xhci
, "Bad vdev->real_port.\n");
962 tt_list_head
= &(xhci
->rh_bw
[vdev
->real_port
- 1].tts
);
963 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info
->slot_id
== slot_id
) {
966 /* are any devices using this tt_info? */
967 for (i
= 1; i
< HCS_MAX_SLOTS(xhci
->hcs_params1
); i
++) {
968 vdev
= xhci
->devs
[i
];
969 if (vdev
&& (vdev
->tt_info
== tt_info
))
970 xhci_free_virt_devices_depth_first(
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci
, slot_id
);
978 xhci_free_virt_device(xhci
, slot_id
);
981 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
982 struct usb_device
*udev
, gfp_t flags
)
984 struct xhci_virt_device
*dev
;
987 /* Slot ID 0 is reserved */
988 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
989 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
993 dev
= kzalloc(sizeof(*dev
), flags
);
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
1002 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
1003 (unsigned long long)dev
->out_ctx
->dma
);
1005 /* Allocate the (input) device context for address device command */
1006 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
1010 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
1011 (unsigned long long)dev
->in_ctx
->dma
);
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i
= 0; i
< 31; i
++) {
1015 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
1016 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
1017 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
1020 /* Allocate endpoint 0 ring */
1021 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, 0, flags
);
1022 if (!dev
->eps
[0].ring
)
1027 /* Point to output device context in dcbaa. */
1028 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
1029 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1031 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
1032 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
1034 trace_xhci_alloc_virt_device(dev
);
1036 xhci
->devs
[slot_id
] = dev
;
1042 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
1044 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
1051 struct usb_device
*udev
)
1053 struct xhci_virt_device
*virt_dev
;
1054 struct xhci_ep_ctx
*ep0_ctx
;
1055 struct xhci_ring
*ep_ring
;
1057 virt_dev
= xhci
->devs
[udev
->slot_id
];
1058 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
1059 ep_ring
= virt_dev
->eps
[0].ring
;
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1067 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
1069 | ep_ring
->cycle_state
);
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1082 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
1083 struct usb_device
*udev
)
1085 struct usb_device
*top_dev
;
1086 struct usb_hcd
*hcd
;
1088 if (udev
->speed
>= USB_SPEED_SUPER
)
1089 hcd
= xhci
->shared_hcd
;
1091 hcd
= xhci
->main_hcd
;
1093 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1094 top_dev
= top_dev
->parent
)
1095 /* Found device below root hub */;
1097 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
1100 /* Setup an xHCI virtual device for a Set Address command */
1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
1103 struct xhci_virt_device
*dev
;
1104 struct xhci_ep_ctx
*ep0_ctx
;
1105 struct xhci_slot_ctx
*slot_ctx
;
1108 struct usb_device
*top_dev
;
1110 dev
= xhci
->devs
[udev
->slot_id
];
1111 /* Slot ID 0 is reserved */
1112 if (udev
->slot_id
== 0 || !dev
) {
1113 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1117 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1118 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1122 switch (udev
->speed
) {
1123 case USB_SPEED_SUPER_PLUS
:
1124 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SSP
);
1125 max_packets
= MAX_PACKET(512);
1127 case USB_SPEED_SUPER
:
1128 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1129 max_packets
= MAX_PACKET(512);
1131 case USB_SPEED_HIGH
:
1132 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1133 max_packets
= MAX_PACKET(64);
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL
:
1137 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1138 max_packets
= MAX_PACKET(64);
1141 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1142 max_packets
= MAX_PACKET(8);
1144 case USB_SPEED_WIRELESS
:
1145 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1148 /* Speed was set earlier, this shouldn't happen. */
1151 /* Find the root hub port this device is under */
1152 port_num
= xhci_find_real_port_number(xhci
, udev
);
1155 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1156 /* Set the port number in the virtual_device to the faked port number */
1157 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1158 top_dev
= top_dev
->parent
)
1159 /* Found device below root hub */;
1160 dev
->fake_port
= top_dev
->portnum
;
1161 dev
->real_port
= port_num
;
1162 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1163 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1165 /* Find the right bandwidth table that this device will be a part of.
1166 * If this is a full speed device attached directly to a root port (or a
1167 * decendent of one), it counts as a primary bandwidth domain, not a
1168 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1169 * will never be created for the HS root hub.
1171 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1172 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1174 struct xhci_root_port_bw_info
*rh_bw
;
1175 struct xhci_tt_bw_info
*tt_bw
;
1177 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1178 /* Find the right TT. */
1179 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1180 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1183 if (!dev
->udev
->tt
->multi
||
1185 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1186 dev
->bw_table
= &tt_bw
->bw_table
;
1187 dev
->tt_info
= tt_bw
;
1192 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1195 /* Is this a LS/FS device under an external HS hub? */
1196 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1197 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1198 (udev
->ttport
<< 8));
1199 if (udev
->tt
->multi
)
1200 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1202 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1203 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1205 /* Step 4 - ring already allocated */
1207 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1209 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1210 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1213 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1214 dev
->eps
[0].ring
->cycle_state
);
1216 trace_xhci_setup_addressable_virt_device(dev
);
1218 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1224 * Convert interval expressed as 2^(bInterval - 1) == interval into
1225 * straight exponent value 2^n == interval.
1228 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1229 struct usb_host_endpoint
*ep
)
1231 unsigned int interval
;
1233 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1234 if (interval
!= ep
->desc
.bInterval
- 1)
1235 dev_warn(&udev
->dev
,
1236 "ep %#x - rounding interval to %d %sframes\n",
1237 ep
->desc
.bEndpointAddress
,
1239 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1241 if (udev
->speed
== USB_SPEED_FULL
) {
1243 * Full speed isoc endpoints specify interval in frames,
1244 * not microframes. We are using microframes everywhere,
1245 * so adjust accordingly.
1247 interval
+= 3; /* 1 frame = 2^3 uframes */
1254 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1255 * microframes, rounded down to nearest power of 2.
1257 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1258 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1259 unsigned int min_exponent
, unsigned int max_exponent
)
1261 unsigned int interval
;
1263 interval
= fls(desc_interval
) - 1;
1264 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1265 if ((1 << interval
) != desc_interval
)
1267 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1268 ep
->desc
.bEndpointAddress
,
1275 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1276 struct usb_host_endpoint
*ep
)
1278 if (ep
->desc
.bInterval
== 0)
1280 return xhci_microframes_to_exponent(udev
, ep
,
1281 ep
->desc
.bInterval
, 0, 15);
1285 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1286 struct usb_host_endpoint
*ep
)
1288 return xhci_microframes_to_exponent(udev
, ep
,
1289 ep
->desc
.bInterval
* 8, 3, 10);
1292 /* Return the polling or NAK interval.
1294 * The polling interval is expressed in "microframes". If xHCI's Interval field
1295 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1300 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1301 struct usb_host_endpoint
*ep
)
1303 unsigned int interval
= 0;
1305 switch (udev
->speed
) {
1306 case USB_SPEED_HIGH
:
1308 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1309 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1310 interval
= xhci_parse_microframe_interval(udev
, ep
);
1313 fallthrough
; /* SS and HS isoc/int have same decoding */
1315 case USB_SPEED_SUPER_PLUS
:
1316 case USB_SPEED_SUPER
:
1317 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1318 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1319 interval
= xhci_parse_exponent_interval(udev
, ep
);
1323 case USB_SPEED_FULL
:
1324 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1325 interval
= xhci_parse_exponent_interval(udev
, ep
);
1329 * Fall through for interrupt endpoint interval decoding
1330 * since it uses the same rules as low speed interrupt
1336 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1337 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1339 interval
= xhci_parse_frame_interval(udev
, ep
);
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350 * High speed endpoint descriptors can define "the number of additional
1351 * transaction opportunities per microframe", but that goes in the Max Burst
1352 * endpoint context field.
1354 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1355 struct usb_host_endpoint
*ep
)
1357 if (udev
->speed
< USB_SPEED_SUPER
||
1358 !usb_endpoint_xfer_isoc(&ep
->desc
))
1360 return ep
->ss_ep_comp
.bmAttributes
;
1363 static u32
xhci_get_endpoint_max_burst(struct usb_device
*udev
,
1364 struct usb_host_endpoint
*ep
)
1366 /* Super speed and Plus have max burst in ep companion desc */
1367 if (udev
->speed
>= USB_SPEED_SUPER
)
1368 return ep
->ss_ep_comp
.bMaxBurst
;
1370 if (udev
->speed
== USB_SPEED_HIGH
&&
1371 (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1372 usb_endpoint_xfer_int(&ep
->desc
)))
1373 return usb_endpoint_maxp_mult(&ep
->desc
) - 1;
1378 static u32
xhci_get_endpoint_type(struct usb_host_endpoint
*ep
)
1382 in
= usb_endpoint_dir_in(&ep
->desc
);
1384 switch (usb_endpoint_type(&ep
->desc
)) {
1385 case USB_ENDPOINT_XFER_CONTROL
:
1387 case USB_ENDPOINT_XFER_BULK
:
1388 return in
? BULK_IN_EP
: BULK_OUT_EP
;
1389 case USB_ENDPOINT_XFER_ISOC
:
1390 return in
? ISOC_IN_EP
: ISOC_OUT_EP
;
1391 case USB_ENDPOINT_XFER_INT
:
1392 return in
? INT_IN_EP
: INT_OUT_EP
;
1397 /* Return the maximum endpoint service interval time (ESIT) payload.
1398 * Basically, this is the maxpacket size, multiplied by the burst size
1401 static u32
xhci_get_max_esit_payload(struct usb_device
*udev
,
1402 struct usb_host_endpoint
*ep
)
1407 /* Only applies for interrupt or isochronous endpoints */
1408 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1409 usb_endpoint_xfer_bulk(&ep
->desc
))
1412 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1413 if ((udev
->speed
>= USB_SPEED_SUPER_PLUS
) &&
1414 USB_SS_SSP_ISOC_COMP(ep
->ss_ep_comp
.bmAttributes
))
1415 return le32_to_cpu(ep
->ssp_isoc_ep_comp
.dwBytesPerInterval
);
1416 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1417 else if (udev
->speed
>= USB_SPEED_SUPER
)
1418 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1420 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1421 max_burst
= usb_endpoint_maxp_mult(&ep
->desc
);
1422 /* A 0 in max burst means 1 transfer per ESIT */
1423 return max_packet
* max_burst
;
1426 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1427 * Drivers will have to call usb_alloc_streams() to do that.
1429 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1430 struct xhci_virt_device
*virt_dev
,
1431 struct usb_device
*udev
,
1432 struct usb_host_endpoint
*ep
,
1435 unsigned int ep_index
;
1436 struct xhci_ep_ctx
*ep_ctx
;
1437 struct xhci_ring
*ep_ring
;
1438 unsigned int max_packet
;
1439 enum xhci_ring_type ring_type
;
1440 u32 max_esit_payload
;
1442 unsigned int max_burst
;
1443 unsigned int interval
;
1445 unsigned int avg_trb_len
;
1446 unsigned int err_count
= 0;
1448 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1449 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1451 endpoint_type
= xhci_get_endpoint_type(ep
);
1455 ring_type
= usb_endpoint_type(&ep
->desc
);
1458 * Get values to fill the endpoint context, mostly from ep descriptor.
1459 * The average TRB buffer lengt for bulk endpoints is unclear as we
1460 * have no clue on scatter gather list entry size. For Isoc and Int,
1461 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463 max_esit_payload
= xhci_get_max_esit_payload(udev
, ep
);
1464 interval
= xhci_get_endpoint_interval(udev
, ep
);
1466 /* Periodic endpoint bInterval limit quirk */
1467 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1468 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1469 if ((xhci
->quirks
& XHCI_LIMIT_ENDPOINT_INTERVAL_7
) &&
1470 udev
->speed
>= USB_SPEED_HIGH
&&
1476 mult
= xhci_get_endpoint_mult(udev
, ep
);
1477 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1478 max_burst
= xhci_get_endpoint_max_burst(udev
, ep
);
1479 avg_trb_len
= max_esit_payload
;
1481 /* FIXME dig Mult and streams info out of ep companion desc */
1483 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1484 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1486 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1487 if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1488 if (udev
->speed
== USB_SPEED_HIGH
)
1490 if (udev
->speed
== USB_SPEED_FULL
) {
1491 max_packet
= rounddown_pow_of_two(max_packet
);
1492 max_packet
= clamp_val(max_packet
, 8, 64);
1495 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1496 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
>= 0x100)
1498 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1499 if ((xhci
->hci_version
> 0x100) && HCC2_LEC(xhci
->hcc_params2
))
1502 /* Set up the endpoint ring */
1503 virt_dev
->eps
[ep_index
].new_ring
=
1504 xhci_ring_alloc(xhci
, 2, 1, ring_type
, max_packet
, mem_flags
);
1505 if (!virt_dev
->eps
[ep_index
].new_ring
)
1508 virt_dev
->eps
[ep_index
].skip
= false;
1509 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1511 /* Fill the endpoint context */
1512 ep_ctx
->ep_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload
) |
1513 EP_INTERVAL(interval
) |
1515 ep_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(endpoint_type
) |
1516 MAX_PACKET(max_packet
) |
1517 MAX_BURST(max_burst
) |
1518 ERROR_COUNT(err_count
));
1519 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
|
1520 ep_ring
->cycle_state
);
1522 ep_ctx
->tx_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload
) |
1523 EP_AVG_TRB_LENGTH(avg_trb_len
));
1528 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1529 struct xhci_virt_device
*virt_dev
,
1530 struct usb_host_endpoint
*ep
)
1532 unsigned int ep_index
;
1533 struct xhci_ep_ctx
*ep_ctx
;
1535 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1536 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1538 ep_ctx
->ep_info
= 0;
1539 ep_ctx
->ep_info2
= 0;
1541 ep_ctx
->tx_info
= 0;
1542 /* Don't free the endpoint ring until the set interface or configuration
1547 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1549 bw_info
->ep_interval
= 0;
1551 bw_info
->num_packets
= 0;
1552 bw_info
->max_packet_size
= 0;
1554 bw_info
->max_esit_payload
= 0;
1557 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1558 struct xhci_container_ctx
*in_ctx
,
1559 struct xhci_input_control_ctx
*ctrl_ctx
,
1560 struct xhci_virt_device
*virt_dev
)
1562 struct xhci_bw_info
*bw_info
;
1563 struct xhci_ep_ctx
*ep_ctx
;
1564 unsigned int ep_type
;
1567 for (i
= 1; i
< 31; i
++) {
1568 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1570 /* We can't tell what endpoint type is being dropped, but
1571 * unconditionally clearing the bandwidth info for non-periodic
1572 * endpoints should be harmless because the info will never be
1573 * set in the first place.
1575 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1576 /* Dropped endpoint */
1577 xhci_clear_endpoint_bw_info(bw_info
);
1581 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1582 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1583 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1585 /* Ignore non-periodic endpoints */
1586 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1587 ep_type
!= ISOC_IN_EP
&&
1588 ep_type
!= INT_IN_EP
)
1591 /* Added or changed endpoint */
1592 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1593 le32_to_cpu(ep_ctx
->ep_info
));
1594 /* Number of packets and mult are zero-based in the
1595 * input context, but we want one-based for the
1598 bw_info
->mult
= CTX_TO_EP_MULT(
1599 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1600 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1601 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1602 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1603 le32_to_cpu(ep_ctx
->ep_info2
));
1604 bw_info
->type
= ep_type
;
1605 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1606 le32_to_cpu(ep_ctx
->tx_info
));
1611 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command.
1615 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1616 struct xhci_container_ctx
*in_ctx
,
1617 struct xhci_container_ctx
*out_ctx
,
1618 unsigned int ep_index
)
1620 struct xhci_ep_ctx
*out_ep_ctx
;
1621 struct xhci_ep_ctx
*in_ep_ctx
;
1623 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1624 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1626 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1627 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1628 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1629 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1630 if (xhci
->quirks
& XHCI_MTK_HOST
) {
1631 in_ep_ctx
->reserved
[0] = out_ep_ctx
->reserved
[0];
1632 in_ep_ctx
->reserved
[1] = out_ep_ctx
->reserved
[1];
1636 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1637 * Useful when you want to change one particular aspect of the endpoint and then
1638 * issue a configure endpoint command. Only the context entries field matters,
1639 * but we'll copy the whole thing anyway.
1641 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1642 struct xhci_container_ctx
*in_ctx
,
1643 struct xhci_container_ctx
*out_ctx
)
1645 struct xhci_slot_ctx
*in_slot_ctx
;
1646 struct xhci_slot_ctx
*out_slot_ctx
;
1648 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1649 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1651 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1652 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1653 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1654 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1657 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1658 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1661 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1662 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1664 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1665 "Allocating %d scratchpad buffers", num_sp
);
1670 xhci
->scratchpad
= kzalloc_node(sizeof(*xhci
->scratchpad
), flags
,
1672 if (!xhci
->scratchpad
)
1675 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1676 num_sp
* sizeof(u64
),
1677 &xhci
->scratchpad
->sp_dma
, flags
);
1678 if (!xhci
->scratchpad
->sp_array
)
1681 xhci
->scratchpad
->sp_buffers
= kcalloc_node(num_sp
, sizeof(void *),
1682 flags
, dev_to_node(dev
));
1683 if (!xhci
->scratchpad
->sp_buffers
)
1686 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1687 for (i
= 0; i
< num_sp
; i
++) {
1689 void *buf
= dma_alloc_coherent(dev
, xhci
->page_size
, &dma
,
1694 xhci
->scratchpad
->sp_array
[i
] = dma
;
1695 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1701 for (i
= i
- 1; i
>= 0; i
--) {
1702 dma_free_coherent(dev
, xhci
->page_size
,
1703 xhci
->scratchpad
->sp_buffers
[i
],
1704 xhci
->scratchpad
->sp_array
[i
]);
1707 kfree(xhci
->scratchpad
->sp_buffers
);
1710 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1711 xhci
->scratchpad
->sp_array
,
1712 xhci
->scratchpad
->sp_dma
);
1715 kfree(xhci
->scratchpad
);
1716 xhci
->scratchpad
= NULL
;
1722 static void scratchpad_free(struct xhci_hcd
*xhci
)
1726 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1728 if (!xhci
->scratchpad
)
1731 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1733 for (i
= 0; i
< num_sp
; i
++) {
1734 dma_free_coherent(dev
, xhci
->page_size
,
1735 xhci
->scratchpad
->sp_buffers
[i
],
1736 xhci
->scratchpad
->sp_array
[i
]);
1738 kfree(xhci
->scratchpad
->sp_buffers
);
1739 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1740 xhci
->scratchpad
->sp_array
,
1741 xhci
->scratchpad
->sp_dma
);
1742 kfree(xhci
->scratchpad
);
1743 xhci
->scratchpad
= NULL
;
1746 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1747 bool allocate_completion
, gfp_t mem_flags
)
1749 struct xhci_command
*command
;
1750 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1752 command
= kzalloc_node(sizeof(*command
), mem_flags
, dev_to_node(dev
));
1756 if (allocate_completion
) {
1757 command
->completion
=
1758 kzalloc_node(sizeof(struct completion
), mem_flags
,
1760 if (!command
->completion
) {
1764 init_completion(command
->completion
);
1767 command
->status
= 0;
1768 INIT_LIST_HEAD(&command
->cmd_list
);
1772 struct xhci_command
*xhci_alloc_command_with_ctx(struct xhci_hcd
*xhci
,
1773 bool allocate_completion
, gfp_t mem_flags
)
1775 struct xhci_command
*command
;
1777 command
= xhci_alloc_command(xhci
, allocate_completion
, mem_flags
);
1781 command
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1783 if (!command
->in_ctx
) {
1784 kfree(command
->completion
);
1791 void xhci_urb_free_priv(struct urb_priv
*urb_priv
)
1796 void xhci_free_command(struct xhci_hcd
*xhci
,
1797 struct xhci_command
*command
)
1799 xhci_free_container_ctx(xhci
,
1801 kfree(command
->completion
);
1805 int xhci_alloc_erst(struct xhci_hcd
*xhci
,
1806 struct xhci_ring
*evt_ring
,
1807 struct xhci_erst
*erst
,
1812 struct xhci_segment
*seg
;
1813 struct xhci_erst_entry
*entry
;
1815 size
= sizeof(struct xhci_erst_entry
) * evt_ring
->num_segs
;
1816 erst
->entries
= dma_alloc_coherent(xhci_to_hcd(xhci
)->self
.sysdev
,
1817 size
, &erst
->erst_dma_addr
, flags
);
1821 erst
->num_entries
= evt_ring
->num_segs
;
1823 seg
= evt_ring
->first_seg
;
1824 for (val
= 0; val
< evt_ring
->num_segs
; val
++) {
1825 entry
= &erst
->entries
[val
];
1826 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
1827 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
1835 void xhci_free_erst(struct xhci_hcd
*xhci
, struct xhci_erst
*erst
)
1838 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1840 size
= sizeof(struct xhci_erst_entry
) * (erst
->num_entries
);
1842 dma_free_coherent(dev
, size
,
1844 erst
->erst_dma_addr
);
1845 erst
->entries
= NULL
;
1848 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1850 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1851 int i
, j
, num_ports
;
1853 cancel_delayed_work_sync(&xhci
->cmd_timer
);
1855 xhci_free_erst(xhci
, &xhci
->erst
);
1857 if (xhci
->event_ring
)
1858 xhci_ring_free(xhci
, xhci
->event_ring
);
1859 xhci
->event_ring
= NULL
;
1860 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1862 if (xhci
->lpm_command
)
1863 xhci_free_command(xhci
, xhci
->lpm_command
);
1864 xhci
->lpm_command
= NULL
;
1866 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1867 xhci
->cmd_ring
= NULL
;
1868 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1869 xhci_cleanup_command_queue(xhci
);
1871 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1872 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1873 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1874 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1875 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1876 while (!list_empty(ep
))
1877 list_del_init(ep
->next
);
1881 for (i
= HCS_MAX_SLOTS(xhci
->hcs_params1
); i
> 0; i
--)
1882 xhci_free_virt_devices_depth_first(xhci
, i
);
1884 dma_pool_destroy(xhci
->segment_pool
);
1885 xhci
->segment_pool
= NULL
;
1886 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1888 dma_pool_destroy(xhci
->device_pool
);
1889 xhci
->device_pool
= NULL
;
1890 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1892 dma_pool_destroy(xhci
->small_streams_pool
);
1893 xhci
->small_streams_pool
= NULL
;
1894 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1895 "Freed small stream array pool");
1897 dma_pool_destroy(xhci
->medium_streams_pool
);
1898 xhci
->medium_streams_pool
= NULL
;
1899 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1900 "Freed medium stream array pool");
1903 dma_free_coherent(dev
, sizeof(*xhci
->dcbaa
),
1904 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1907 scratchpad_free(xhci
);
1912 for (i
= 0; i
< num_ports
; i
++) {
1913 struct xhci_tt_bw_info
*tt
, *n
;
1914 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1915 list_del(&tt
->tt_list
);
1921 xhci
->cmd_ring_reserved_trbs
= 0;
1922 xhci
->usb2_rhub
.num_ports
= 0;
1923 xhci
->usb3_rhub
.num_ports
= 0;
1924 xhci
->num_active_eps
= 0;
1925 kfree(xhci
->usb2_rhub
.ports
);
1926 kfree(xhci
->usb3_rhub
.ports
);
1927 kfree(xhci
->hw_ports
);
1929 kfree(xhci
->ext_caps
);
1930 for (i
= 0; i
< xhci
->num_port_caps
; i
++)
1931 kfree(xhci
->port_caps
[i
].psi
);
1932 kfree(xhci
->port_caps
);
1933 xhci
->num_port_caps
= 0;
1935 xhci
->usb2_rhub
.ports
= NULL
;
1936 xhci
->usb3_rhub
.ports
= NULL
;
1937 xhci
->hw_ports
= NULL
;
1939 xhci
->ext_caps
= NULL
;
1941 xhci
->page_size
= 0;
1942 xhci
->page_shift
= 0;
1943 xhci
->usb2_rhub
.bus_state
.bus_suspended
= 0;
1944 xhci
->usb3_rhub
.bus_state
.bus_suspended
= 0;
1947 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1948 struct xhci_segment
*input_seg
,
1949 union xhci_trb
*start_trb
,
1950 union xhci_trb
*end_trb
,
1951 dma_addr_t input_dma
,
1952 struct xhci_segment
*result_seg
,
1953 char *test_name
, int test_number
)
1955 unsigned long long start_dma
;
1956 unsigned long long end_dma
;
1957 struct xhci_segment
*seg
;
1959 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1960 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1962 seg
= trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
, false);
1963 if (seg
!= result_seg
) {
1964 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1965 test_name
, test_number
);
1966 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1967 "input DMA 0x%llx\n",
1969 (unsigned long long) input_dma
);
1970 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1971 "ending TRB %p (0x%llx DMA)\n",
1972 start_trb
, start_dma
,
1974 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1976 trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
,
1983 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1984 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
)
1987 dma_addr_t input_dma
;
1988 struct xhci_segment
*result_seg
;
1989 } simple_test_vector
[] = {
1990 /* A zeroed DMA field should fail */
1992 /* One TRB before the ring start should fail */
1993 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1994 /* One byte before the ring start should fail */
1995 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1996 /* Starting TRB should succeed */
1997 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1998 /* Ending TRB should succeed */
1999 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
2000 xhci
->event_ring
->first_seg
},
2001 /* One byte after the ring end should fail */
2002 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
2003 /* One TRB after the ring end should fail */
2004 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
2005 /* An address of all ones should fail */
2006 { (dma_addr_t
) (~0), NULL
},
2009 struct xhci_segment
*input_seg
;
2010 union xhci_trb
*start_trb
;
2011 union xhci_trb
*end_trb
;
2012 dma_addr_t input_dma
;
2013 struct xhci_segment
*result_seg
;
2014 } complex_test_vector
[] = {
2015 /* Test feeding a valid DMA address from a different ring */
2016 { .input_seg
= xhci
->event_ring
->first_seg
,
2017 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
2018 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2019 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2022 /* Test feeding a valid end TRB from a different ring */
2023 { .input_seg
= xhci
->event_ring
->first_seg
,
2024 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
2025 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2026 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2029 /* Test feeding a valid start and end TRB from a different ring */
2030 { .input_seg
= xhci
->event_ring
->first_seg
,
2031 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
2032 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2033 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2036 /* TRB in this ring, but after this TD */
2037 { .input_seg
= xhci
->event_ring
->first_seg
,
2038 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
2039 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2040 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
2043 /* TRB in this ring, but before this TD */
2044 { .input_seg
= xhci
->event_ring
->first_seg
,
2045 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2046 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
2047 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2050 /* TRB in this ring, but after this wrapped TD */
2051 { .input_seg
= xhci
->event_ring
->first_seg
,
2052 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2053 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2054 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2057 /* TRB in this ring, but before this wrapped TD */
2058 { .input_seg
= xhci
->event_ring
->first_seg
,
2059 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2060 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2061 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
2064 /* TRB not in this ring, and we have a wrapped TD */
2065 { .input_seg
= xhci
->event_ring
->first_seg
,
2066 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2067 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2068 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
2073 unsigned int num_tests
;
2076 num_tests
= ARRAY_SIZE(simple_test_vector
);
2077 for (i
= 0; i
< num_tests
; i
++) {
2078 ret
= xhci_test_trb_in_td(xhci
,
2079 xhci
->event_ring
->first_seg
,
2080 xhci
->event_ring
->first_seg
->trbs
,
2081 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2082 simple_test_vector
[i
].input_dma
,
2083 simple_test_vector
[i
].result_seg
,
2089 num_tests
= ARRAY_SIZE(complex_test_vector
);
2090 for (i
= 0; i
< num_tests
; i
++) {
2091 ret
= xhci_test_trb_in_td(xhci
,
2092 complex_test_vector
[i
].input_seg
,
2093 complex_test_vector
[i
].start_trb
,
2094 complex_test_vector
[i
].end_trb
,
2095 complex_test_vector
[i
].input_dma
,
2096 complex_test_vector
[i
].result_seg
,
2101 xhci_dbg(xhci
, "TRB math tests passed.\n");
2105 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
2110 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2111 xhci
->event_ring
->dequeue
);
2113 xhci_warn(xhci
, "WARN something wrong with SW event ring "
2115 /* Update HC event ring dequeue pointer */
2116 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2117 temp
&= ERST_PTR_MASK
;
2118 /* Don't clear the EHB bit (which is RW1C) because
2119 * there might be more events to service.
2122 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2123 "// Write event ring dequeue pointer, "
2124 "preserving EHB bit");
2125 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
2126 &xhci
->ir_set
->erst_dequeue
);
2129 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
2130 __le32 __iomem
*addr
, int max_caps
)
2132 u32 temp
, port_offset
, port_count
;
2134 u8 major_revision
, minor_revision
;
2135 struct xhci_hub
*rhub
;
2136 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2137 struct xhci_port_cap
*port_cap
;
2140 major_revision
= XHCI_EXT_PORT_MAJOR(temp
);
2141 minor_revision
= XHCI_EXT_PORT_MINOR(temp
);
2143 if (major_revision
== 0x03) {
2144 rhub
= &xhci
->usb3_rhub
;
2145 } else if (major_revision
<= 0x02) {
2146 rhub
= &xhci
->usb2_rhub
;
2148 xhci_warn(xhci
, "Ignoring unknown port speed, "
2149 "Ext Cap %p, revision = 0x%x\n",
2150 addr
, major_revision
);
2151 /* Ignoring port protocol we can't understand. FIXME */
2154 rhub
->maj_rev
= XHCI_EXT_PORT_MAJOR(temp
);
2156 if (rhub
->min_rev
< minor_revision
)
2157 rhub
->min_rev
= minor_revision
;
2159 /* Port offset and count in the third dword, see section 7.2 */
2160 temp
= readl(addr
+ 2);
2161 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2162 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2163 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2164 "Ext Cap %p, port offset = %u, "
2165 "count = %u, revision = 0x%x",
2166 addr
, port_offset
, port_count
, major_revision
);
2167 /* Port count includes the current port offset */
2168 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2169 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2172 port_cap
= &xhci
->port_caps
[xhci
->num_port_caps
++];
2173 if (xhci
->num_port_caps
> max_caps
)
2176 port_cap
->maj_rev
= major_revision
;
2177 port_cap
->min_rev
= minor_revision
;
2178 port_cap
->psi_count
= XHCI_EXT_PORT_PSIC(temp
);
2180 if (port_cap
->psi_count
) {
2181 port_cap
->psi
= kcalloc_node(port_cap
->psi_count
,
2182 sizeof(*port_cap
->psi
),
2183 GFP_KERNEL
, dev_to_node(dev
));
2185 port_cap
->psi_count
= 0;
2187 port_cap
->psi_uid_count
++;
2188 for (i
= 0; i
< port_cap
->psi_count
; i
++) {
2189 port_cap
->psi
[i
] = readl(addr
+ 4 + i
);
2191 /* count unique ID values, two consecutive entries can
2192 * have the same ID if link is assymetric
2194 if (i
&& (XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
]) !=
2195 XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
- 1])))
2196 port_cap
->psi_uid_count
++;
2198 xhci_dbg(xhci
, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2199 XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
]),
2200 XHCI_EXT_PORT_PSIE(port_cap
->psi
[i
]),
2201 XHCI_EXT_PORT_PLT(port_cap
->psi
[i
]),
2202 XHCI_EXT_PORT_PFD(port_cap
->psi
[i
]),
2203 XHCI_EXT_PORT_LP(port_cap
->psi
[i
]),
2204 XHCI_EXT_PORT_PSIM(port_cap
->psi
[i
]));
2207 /* cache usb2 port capabilities */
2208 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2209 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2211 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03) &&
2212 (temp
& XHCI_HLC
)) {
2213 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2214 "xHCI 1.0: support USB2 hardware lpm");
2215 xhci
->hw_lpm_support
= 1;
2219 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2220 struct xhci_port
*hw_port
= &xhci
->hw_ports
[i
];
2221 /* Duplicate entry. Ignore the port if the revisions differ. */
2222 if (hw_port
->rhub
) {
2223 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2224 " port %u\n", addr
, i
);
2225 xhci_warn(xhci
, "Port was marked as USB %u, "
2226 "duplicated as USB %u\n",
2227 hw_port
->rhub
->maj_rev
, major_revision
);
2228 /* Only adjust the roothub port counts if we haven't
2229 * found a similar duplicate.
2231 if (hw_port
->rhub
!= rhub
&&
2232 hw_port
->hcd_portnum
!= DUPLICATE_ENTRY
) {
2233 hw_port
->rhub
->num_ports
--;
2234 hw_port
->hcd_portnum
= DUPLICATE_ENTRY
;
2238 hw_port
->rhub
= rhub
;
2239 hw_port
->port_cap
= port_cap
;
2242 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2245 static void xhci_create_rhub_port_array(struct xhci_hcd
*xhci
,
2246 struct xhci_hub
*rhub
, gfp_t flags
)
2250 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2252 if (!rhub
->num_ports
)
2254 rhub
->ports
= kcalloc_node(rhub
->num_ports
, sizeof(*rhub
->ports
),
2255 flags
, dev_to_node(dev
));
2256 for (i
= 0; i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
2257 if (xhci
->hw_ports
[i
].rhub
!= rhub
||
2258 xhci
->hw_ports
[i
].hcd_portnum
== DUPLICATE_ENTRY
)
2260 xhci
->hw_ports
[i
].hcd_portnum
= port_index
;
2261 rhub
->ports
[port_index
] = &xhci
->hw_ports
[i
];
2263 if (port_index
== rhub
->num_ports
)
2269 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2270 * specify what speeds each port is supposed to be. We can't count on the port
2271 * speed bits in the PORTSC register being correct until a device is connected,
2272 * but we need to set up the two fake roothubs with the correct number of USB
2273 * 3.0 and USB 2.0 ports at host controller initialization time.
2275 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2279 unsigned int num_ports
;
2283 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2285 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2286 xhci
->hw_ports
= kcalloc_node(num_ports
, sizeof(*xhci
->hw_ports
),
2287 flags
, dev_to_node(dev
));
2288 if (!xhci
->hw_ports
)
2291 for (i
= 0; i
< num_ports
; i
++) {
2292 xhci
->hw_ports
[i
].addr
= &xhci
->op_regs
->port_status_base
+
2294 xhci
->hw_ports
[i
].hw_portnum
= i
;
2297 xhci
->rh_bw
= kcalloc_node(num_ports
, sizeof(*xhci
->rh_bw
), flags
,
2301 for (i
= 0; i
< num_ports
; i
++) {
2302 struct xhci_interval_bw_table
*bw_table
;
2304 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2305 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2306 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2307 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2309 base
= &xhci
->cap_regs
->hc_capbase
;
2311 cap_start
= xhci_find_next_ext_cap(base
, 0, XHCI_EXT_CAPS_PROTOCOL
);
2313 xhci_err(xhci
, "No Extended Capability registers, unable to set up roothub\n");
2318 /* count extended protocol capability entries for later caching */
2321 offset
= xhci_find_next_ext_cap(base
, offset
,
2322 XHCI_EXT_CAPS_PROTOCOL
);
2325 xhci
->ext_caps
= kcalloc_node(cap_count
, sizeof(*xhci
->ext_caps
),
2326 flags
, dev_to_node(dev
));
2327 if (!xhci
->ext_caps
)
2330 xhci
->port_caps
= kcalloc_node(cap_count
, sizeof(*xhci
->port_caps
),
2331 flags
, dev_to_node(dev
));
2332 if (!xhci
->port_caps
)
2338 xhci_add_in_port(xhci
, num_ports
, base
+ offset
, cap_count
);
2339 if (xhci
->usb2_rhub
.num_ports
+ xhci
->usb3_rhub
.num_ports
==
2342 offset
= xhci_find_next_ext_cap(base
, offset
,
2343 XHCI_EXT_CAPS_PROTOCOL
);
2345 if (xhci
->usb2_rhub
.num_ports
== 0 && xhci
->usb3_rhub
.num_ports
== 0) {
2346 xhci_warn(xhci
, "No ports on the roothubs?\n");
2349 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2350 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2351 xhci
->usb2_rhub
.num_ports
, xhci
->usb3_rhub
.num_ports
);
2353 /* Place limits on the number of roothub ports so that the hub
2354 * descriptors aren't longer than the USB core will allocate.
2356 if (xhci
->usb3_rhub
.num_ports
> USB_SS_MAXPORTS
) {
2357 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2358 "Limiting USB 3.0 roothub ports to %u.",
2360 xhci
->usb3_rhub
.num_ports
= USB_SS_MAXPORTS
;
2362 if (xhci
->usb2_rhub
.num_ports
> USB_MAXCHILDREN
) {
2363 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2364 "Limiting USB 2.0 roothub ports to %u.",
2366 xhci
->usb2_rhub
.num_ports
= USB_MAXCHILDREN
;
2370 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2371 * Not sure how the USB core will handle a hub with no ports...
2374 xhci_create_rhub_port_array(xhci
, &xhci
->usb2_rhub
, flags
);
2375 xhci_create_rhub_port_array(xhci
, &xhci
->usb3_rhub
, flags
);
2380 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2383 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2384 unsigned int val
, val2
;
2386 u32 page_size
, temp
;
2389 INIT_LIST_HEAD(&xhci
->cmd_list
);
2391 /* init command timeout work */
2392 INIT_DELAYED_WORK(&xhci
->cmd_timer
, xhci_handle_command_timeout
);
2393 init_completion(&xhci
->cmd_ring_stop_completion
);
2395 page_size
= readl(&xhci
->op_regs
->page_size
);
2396 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2397 "Supported page size register = 0x%x", page_size
);
2398 for (i
= 0; i
< 16; i
++) {
2399 if ((0x1 & page_size
) != 0)
2401 page_size
= page_size
>> 1;
2404 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2405 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2407 xhci_warn(xhci
, "WARN: no supported page size\n");
2408 /* Use 4K pages, since that's common and the minimum the HC supports */
2409 xhci
->page_shift
= 12;
2410 xhci
->page_size
= 1 << xhci
->page_shift
;
2411 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2412 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2415 * Program the Number of Device Slots Enabled field in the CONFIG
2416 * register with the max value of slots the HC can handle.
2418 val
= HCS_MAX_SLOTS(readl(&xhci
->cap_regs
->hcs_params1
));
2419 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2420 "// xHC can handle at most %d device slots.", val
);
2421 val2
= readl(&xhci
->op_regs
->config_reg
);
2422 val
|= (val2
& ~HCS_SLOTS_MASK
);
2423 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2424 "// Setting Max device slots reg = 0x%x.", val
);
2425 writel(val
, &xhci
->op_regs
->config_reg
);
2428 * xHCI section 5.4.6 - doorbell array must be
2429 * "physically contiguous and 64-byte (cache line) aligned".
2431 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2435 xhci
->dcbaa
->dma
= dma
;
2436 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2437 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2438 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2439 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2442 * Initialize the ring segment pool. The ring must be a contiguous
2443 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2444 * however, the command ring segment needs 64-byte aligned segments
2445 * and our use of dma addresses in the trb_address_map radix tree needs
2446 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2449 TRB_SEGMENT_SIZE
, TRB_SEGMENT_SIZE
, xhci
->page_size
);
2451 /* See Table 46 and Note on Figure 55 */
2452 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2453 2112, 64, xhci
->page_size
);
2454 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2457 /* Linear stream context arrays don't have any boundary restrictions,
2458 * and only need to be 16-byte aligned.
2460 xhci
->small_streams_pool
=
2461 dma_pool_create("xHCI 256 byte stream ctx arrays",
2462 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2463 xhci
->medium_streams_pool
=
2464 dma_pool_create("xHCI 1KB stream ctx arrays",
2465 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2466 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2467 * will be allocated with dma_alloc_coherent()
2470 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2473 /* Set up the command ring to have one segments for now. */
2474 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, 0, flags
);
2475 if (!xhci
->cmd_ring
)
2477 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2478 "Allocated command ring at %p", xhci
->cmd_ring
);
2479 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2480 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2482 /* Set the address in the Command Ring Control register */
2483 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2484 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2485 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2486 xhci
->cmd_ring
->cycle_state
;
2487 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2488 "// Setting command ring address to 0x%016llx", val_64
);
2489 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2491 xhci
->lpm_command
= xhci_alloc_command_with_ctx(xhci
, true, flags
);
2492 if (!xhci
->lpm_command
)
2495 /* Reserve one command ring TRB for disabling LPM.
2496 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497 * disabling LPM, we only need to reserve one TRB for all devices.
2499 xhci
->cmd_ring_reserved_trbs
++;
2501 val
= readl(&xhci
->cap_regs
->db_off
);
2503 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2504 "// Doorbell array is located at offset 0x%x"
2505 " from cap regs base addr", val
);
2506 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2507 /* Set ir_set to interrupt register set 0 */
2508 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2511 * Event ring setup: Allocate a normal ring, but also setup
2512 * the event ring segment table (ERST). Section 4.9.3.
2514 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2515 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2517 if (!xhci
->event_ring
)
2519 if (xhci_check_trb_in_td_math(xhci
) < 0)
2522 ret
= xhci_alloc_erst(xhci
, xhci
->event_ring
, &xhci
->erst
, flags
);
2526 /* set ERST count with the number of entries in the segment table */
2527 val
= readl(&xhci
->ir_set
->erst_size
);
2528 val
&= ERST_SIZE_MASK
;
2529 val
|= ERST_NUM_SEGS
;
2530 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2531 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2533 writel(val
, &xhci
->ir_set
->erst_size
);
2535 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2536 "// Set ERST entries to point to event ring.");
2537 /* set the segment table base address */
2538 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2539 "// Set ERST base address for ir_set 0 = 0x%llx",
2540 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2541 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2542 val_64
&= ERST_PTR_MASK
;
2543 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2544 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2546 /* Set the event ring dequeue address */
2547 xhci_set_hc_event_deq(xhci
);
2548 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2549 "Wrote ERST address to ir_set 0.");
2552 * XXX: Might need to set the Interrupter Moderation Register to
2553 * something other than the default (~1ms minimum between interrupts).
2554 * See section 5.5.1.2.
2556 for (i
= 0; i
< MAX_HC_SLOTS
; i
++)
2557 xhci
->devs
[i
] = NULL
;
2558 for (i
= 0; i
< USB_MAXCHILDREN
; i
++) {
2559 xhci
->usb2_rhub
.bus_state
.resume_done
[i
] = 0;
2560 xhci
->usb3_rhub
.bus_state
.resume_done
[i
] = 0;
2561 /* Only the USB 2.0 completions will ever be used. */
2562 init_completion(&xhci
->usb2_rhub
.bus_state
.rexit_done
[i
]);
2563 init_completion(&xhci
->usb3_rhub
.bus_state
.u3exit_done
[i
]);
2566 if (scratchpad_alloc(xhci
, flags
))
2568 if (xhci_setup_port_arrays(xhci
, flags
))
2571 /* Enable USB 3.0 device notifications for function remote wake, which
2572 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2573 * U3 (device suspend).
2575 temp
= readl(&xhci
->op_regs
->dev_notification
);
2576 temp
&= ~DEV_NOTE_MASK
;
2577 temp
|= DEV_NOTE_FWAKE
;
2578 writel(temp
, &xhci
->op_regs
->dev_notification
);
2585 xhci_mem_cleanup(xhci
);