WIP FPC-III support
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob3589b49b6c8b4e3b0e97af64e702084bc3a3feb2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
62 seg->dma = dma;
63 seg->next = NULL;
65 return seg;
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
74 kfree(seg->bounce_buf);
75 kfree(seg);
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
81 struct xhci_segment *seg;
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
89 xhci_segment_free(xhci, first);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
103 u32 val;
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
130 struct xhci_segment *next;
131 bool chain_links;
133 if (!ring || !first || !last)
134 return;
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
177 * Caveats for the radix tree:
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
192 unsigned long key;
193 int ret;
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
212 unsigned long key;
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
244 return 0;
246 remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
256 return ret;
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
261 struct xhci_segment *seg;
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
282 if (!ring)
283 return;
285 trace_xhci_ring_free(ring);
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
293 kfree(ring);
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
311 ring->cycle_state = cycle_state;
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
326 struct xhci_segment *prev;
327 bool chain_links;
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
351 return -ENOMEM;
353 xhci_link_segments(prev, next, type, chain_links);
355 prev = next;
356 num_segs--;
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
361 return 0;
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
406 fail:
407 kfree(ring);
408 return NULL;
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
442 if (ret)
443 return -ENOMEM;
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
448 if (ret) {
449 struct xhci_segment *next;
450 do {
451 next = first->next;
452 xhci_segment_free(xhci, first);
453 if (first == last)
454 break;
455 first = next;
456 } while (true);
457 return ret;
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
464 ring->num_segs);
466 return 0;
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 if (!ctx)
480 return NULL;
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
492 return ctx;
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
510 return (struct xhci_input_control_ctx *)ctx->bytes;
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
537 /***************** Streams structures manipulation *************************/
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
595 struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 return NULL;
640 xhci->cmd_ring_reserved_trbs++;
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 dev_to_node(dev));
644 if (!stream_info)
645 goto cleanup_trbs;
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
653 dev_to_node(dev));
654 if (!stream_info->stream_rings)
655 goto cleanup_info;
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
660 mem_flags);
661 if (!stream_info->stream_ctx_array)
662 goto cleanup_ctx;
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
670 goto cleanup_ctx;
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 mem_flags);
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (!cur_ring)
685 goto cleanup_rings;
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
693 cpu_to_le64(addr);
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 if (ret) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 goto cleanup_rings;
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
711 return stream_info;
713 cleanup_rings:
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
716 if (cur_ring) {
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
721 xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723 kfree(stream_info->stream_rings);
724 cleanup_info:
725 kfree(stream_info);
726 cleanup_trbs:
727 xhci->cmd_ring_reserved_trbs--;
728 return NULL;
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 struct xhci_ep_ctx *ep_ctx,
736 struct xhci_stream_info *stream_info)
738 u32 max_primary_streams;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
743 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams + 1));
747 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749 | EP_HAS_LSA);
750 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 struct xhci_virt_ep *ep)
761 dma_addr_t addr;
762 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
767 /* Frees all stream contexts associated with the endpoint,
769 * Caller should fix the endpoint context streams fields.
771 void xhci_free_stream_info(struct xhci_hcd *xhci,
772 struct xhci_stream_info *stream_info)
774 int cur_stream;
775 struct xhci_ring *cur_ring;
777 if (!stream_info)
778 return;
780 for (cur_stream = 1; cur_stream < stream_info->num_streams;
781 cur_stream++) {
782 cur_ring = stream_info->stream_rings[cur_stream];
783 if (cur_ring) {
784 xhci_ring_free(xhci, cur_ring);
785 stream_info->stream_rings[cur_stream] = NULL;
788 xhci_free_command(xhci, stream_info->free_streams_command);
789 xhci->cmd_ring_reserved_trbs--;
790 if (stream_info->stream_ctx_array)
791 xhci_free_stream_ctx(xhci,
792 stream_info->num_stream_ctxs,
793 stream_info->stream_ctx_array,
794 stream_info->ctx_array_dma);
796 kfree(stream_info->stream_rings);
797 kfree(stream_info);
801 /***************** Device context manipulation *************************/
803 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 struct xhci_virt_ep *ep)
806 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
808 ep->xhci = xhci;
811 static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 struct xhci_virt_device *virt_dev,
813 int slot_id)
815 struct list_head *tt_list_head;
816 struct xhci_tt_bw_info *tt_info, *next;
817 bool slot_found = false;
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
822 if (virt_dev->real_port == 0 ||
823 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 xhci_dbg(xhci, "Bad real port.\n");
825 return;
828 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info->slot_id == slot_id) {
832 slot_found = true;
833 list_del(&tt_info->tt_list);
834 kfree(tt_info);
835 } else if (slot_found) {
836 break;
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 struct xhci_virt_device *virt_dev,
843 struct usb_device *hdev,
844 struct usb_tt *tt, gfp_t mem_flags)
846 struct xhci_tt_bw_info *tt_info;
847 unsigned int num_ports;
848 int i, j;
849 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
851 if (!tt->multi)
852 num_ports = 1;
853 else
854 num_ports = hdev->maxchild;
856 for (i = 0; i < num_ports; i++, tt_info++) {
857 struct xhci_interval_bw_table *bw_table;
859 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860 dev_to_node(dev));
861 if (!tt_info)
862 goto free_tts;
863 INIT_LIST_HEAD(&tt_info->tt_list);
864 list_add(&tt_info->tt_list,
865 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866 tt_info->slot_id = virt_dev->udev->slot_id;
867 if (tt->multi)
868 tt_info->ttport = i+1;
869 bw_table = &tt_info->bw_table;
870 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
873 return 0;
875 free_tts:
876 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877 return -ENOMEM;
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
886 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
888 struct xhci_virt_device *dev;
889 int i;
890 int old_active_eps = 0;
892 /* Slot ID 0 is reserved */
893 if (slot_id == 0 || !xhci->devs[slot_id])
894 return;
896 dev = xhci->devs[slot_id];
898 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899 if (!dev)
900 return;
902 trace_xhci_free_virt_device(dev);
904 if (dev->tt_info)
905 old_active_eps = dev->tt_info->active_eps;
907 for (i = 0; i < 31; i++) {
908 if (dev->eps[i].ring)
909 xhci_ring_free(xhci, dev->eps[i].ring);
910 if (dev->eps[i].stream_info)
911 xhci_free_stream_info(xhci,
912 dev->eps[i].stream_info);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
918 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 xhci_warn(xhci, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
921 slot_id, i);
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci, dev, slot_id);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
928 if (dev->in_ctx)
929 xhci_free_container_ctx(xhci, dev->in_ctx);
930 if (dev->out_ctx)
931 xhci_free_container_ctx(xhci, dev->out_ctx);
933 if (dev->udev && dev->udev->slot_id)
934 dev->udev->slot_id = 0;
935 kfree(xhci->devs[slot_id]);
936 xhci->devs[slot_id] = NULL;
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
947 struct xhci_virt_device *vdev;
948 struct list_head *tt_list_head;
949 struct xhci_tt_bw_info *tt_info, *next;
950 int i;
952 vdev = xhci->devs[slot_id];
953 if (!vdev)
954 return;
956 if (vdev->real_port == 0 ||
957 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 xhci_dbg(xhci, "Bad vdev->real_port.\n");
959 goto out;
962 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info->slot_id == slot_id) {
966 /* are any devices using this tt_info? */
967 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 vdev = xhci->devs[i];
969 if (vdev && (vdev->tt_info == tt_info))
970 xhci_free_virt_devices_depth_first(
971 xhci, i);
975 out:
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci, slot_id);
978 xhci_free_virt_device(xhci, slot_id);
981 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 struct usb_device *udev, gfp_t flags)
984 struct xhci_virt_device *dev;
985 int i;
987 /* Slot ID 0 is reserved */
988 if (slot_id == 0 || xhci->devs[slot_id]) {
989 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990 return 0;
993 dev = kzalloc(sizeof(*dev), flags);
994 if (!dev)
995 return 0;
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999 if (!dev->out_ctx)
1000 goto fail;
1002 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 (unsigned long long)dev->out_ctx->dma);
1005 /* Allocate the (input) device context for address device command */
1006 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007 if (!dev->in_ctx)
1008 goto fail;
1010 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 (unsigned long long)dev->in_ctx->dma);
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i = 0; i < 31; i++) {
1015 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1020 /* Allocate endpoint 0 ring */
1021 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 if (!dev->eps[0].ring)
1023 goto fail;
1025 dev->udev = udev;
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 slot_id,
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1034 trace_xhci_alloc_virt_device(dev);
1036 xhci->devs[slot_id] = dev;
1038 return 1;
1039 fail:
1041 if (dev->in_ctx)
1042 xhci_free_container_ctx(xhci, dev->in_ctx);
1043 if (dev->out_ctx)
1044 xhci_free_container_ctx(xhci, dev->out_ctx);
1045 kfree(dev);
1047 return 0;
1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1053 struct xhci_virt_device *virt_dev;
1054 struct xhci_ep_ctx *ep0_ctx;
1055 struct xhci_ring *ep_ring;
1057 virt_dev = xhci->devs[udev->slot_id];
1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 ep_ring = virt_dev->eps[0].ring;
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068 ep_ring->enqueue)
1069 | ep_ring->cycle_state);
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1074 * status registers.
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1082 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 struct usb_device *udev)
1085 struct usb_device *top_dev;
1086 struct usb_hcd *hcd;
1088 if (udev->speed >= USB_SPEED_SUPER)
1089 hcd = xhci->shared_hcd;
1090 else
1091 hcd = xhci->main_hcd;
1093 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 top_dev = top_dev->parent)
1095 /* Found device below root hub */;
1097 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1100 /* Setup an xHCI virtual device for a Set Address command */
1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1103 struct xhci_virt_device *dev;
1104 struct xhci_ep_ctx *ep0_ctx;
1105 struct xhci_slot_ctx *slot_ctx;
1106 u32 port_num;
1107 u32 max_packets;
1108 struct usb_device *top_dev;
1110 dev = xhci->devs[udev->slot_id];
1111 /* Slot ID 0 is reserved */
1112 if (udev->slot_id == 0 || !dev) {
1113 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114 udev->slot_id);
1115 return -EINVAL;
1117 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 switch (udev->speed) {
1123 case USB_SPEED_SUPER_PLUS:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 max_packets = MAX_PACKET(512);
1126 break;
1127 case USB_SPEED_SUPER:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 max_packets = MAX_PACKET(512);
1130 break;
1131 case USB_SPEED_HIGH:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 max_packets = MAX_PACKET(64);
1134 break;
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 max_packets = MAX_PACKET(64);
1139 break;
1140 case USB_SPEED_LOW:
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 max_packets = MAX_PACKET(8);
1143 break;
1144 case USB_SPEED_WIRELESS:
1145 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146 return -EINVAL;
1147 default:
1148 /* Speed was set earlier, this shouldn't happen. */
1149 return -EINVAL;
1151 /* Find the root hub port this device is under */
1152 port_num = xhci_find_real_port_number(xhci, udev);
1153 if (!port_num)
1154 return -EINVAL;
1155 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1156 /* Set the port number in the virtual_device to the faked port number */
1157 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1158 top_dev = top_dev->parent)
1159 /* Found device below root hub */;
1160 dev->fake_port = top_dev->portnum;
1161 dev->real_port = port_num;
1162 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1163 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165 /* Find the right bandwidth table that this device will be a part of.
1166 * If this is a full speed device attached directly to a root port (or a
1167 * decendent of one), it counts as a primary bandwidth domain, not a
1168 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1169 * will never be created for the HS root hub.
1171 if (!udev->tt || !udev->tt->hub->parent) {
1172 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1173 } else {
1174 struct xhci_root_port_bw_info *rh_bw;
1175 struct xhci_tt_bw_info *tt_bw;
1177 rh_bw = &xhci->rh_bw[port_num - 1];
1178 /* Find the right TT. */
1179 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1180 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1181 continue;
1183 if (!dev->udev->tt->multi ||
1184 (udev->tt->multi &&
1185 tt_bw->ttport == dev->udev->ttport)) {
1186 dev->bw_table = &tt_bw->bw_table;
1187 dev->tt_info = tt_bw;
1188 break;
1191 if (!dev->tt_info)
1192 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1195 /* Is this a LS/FS device under an external HS hub? */
1196 if (udev->tt && udev->tt->hub->parent) {
1197 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1198 (udev->ttport << 8));
1199 if (udev->tt->multi)
1200 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1203 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205 /* Step 4 - ring already allocated */
1206 /* Step 5 */
1207 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1210 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1211 max_packets);
1213 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1214 dev->eps[0].ring->cycle_state);
1216 trace_xhci_setup_addressable_virt_device(dev);
1218 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220 return 0;
1224 * Convert interval expressed as 2^(bInterval - 1) == interval into
1225 * straight exponent value 2^n == interval.
1228 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1229 struct usb_host_endpoint *ep)
1231 unsigned int interval;
1233 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1234 if (interval != ep->desc.bInterval - 1)
1235 dev_warn(&udev->dev,
1236 "ep %#x - rounding interval to %d %sframes\n",
1237 ep->desc.bEndpointAddress,
1238 1 << interval,
1239 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241 if (udev->speed == USB_SPEED_FULL) {
1243 * Full speed isoc endpoints specify interval in frames,
1244 * not microframes. We are using microframes everywhere,
1245 * so adjust accordingly.
1247 interval += 3; /* 1 frame = 2^3 uframes */
1250 return interval;
1254 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1255 * microframes, rounded down to nearest power of 2.
1257 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1258 struct usb_host_endpoint *ep, unsigned int desc_interval,
1259 unsigned int min_exponent, unsigned int max_exponent)
1261 unsigned int interval;
1263 interval = fls(desc_interval) - 1;
1264 interval = clamp_val(interval, min_exponent, max_exponent);
1265 if ((1 << interval) != desc_interval)
1266 dev_dbg(&udev->dev,
1267 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1268 ep->desc.bEndpointAddress,
1269 1 << interval,
1270 desc_interval);
1272 return interval;
1275 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1276 struct usb_host_endpoint *ep)
1278 if (ep->desc.bInterval == 0)
1279 return 0;
1280 return xhci_microframes_to_exponent(udev, ep,
1281 ep->desc.bInterval, 0, 15);
1285 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1286 struct usb_host_endpoint *ep)
1288 return xhci_microframes_to_exponent(udev, ep,
1289 ep->desc.bInterval * 8, 3, 10);
1292 /* Return the polling or NAK interval.
1294 * The polling interval is expressed in "microframes". If xHCI's Interval field
1295 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1298 * is set to 0.
1300 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1301 struct usb_host_endpoint *ep)
1303 unsigned int interval = 0;
1305 switch (udev->speed) {
1306 case USB_SPEED_HIGH:
1307 /* Max NAK rate */
1308 if (usb_endpoint_xfer_control(&ep->desc) ||
1309 usb_endpoint_xfer_bulk(&ep->desc)) {
1310 interval = xhci_parse_microframe_interval(udev, ep);
1311 break;
1313 fallthrough; /* SS and HS isoc/int have same decoding */
1315 case USB_SPEED_SUPER_PLUS:
1316 case USB_SPEED_SUPER:
1317 if (usb_endpoint_xfer_int(&ep->desc) ||
1318 usb_endpoint_xfer_isoc(&ep->desc)) {
1319 interval = xhci_parse_exponent_interval(udev, ep);
1321 break;
1323 case USB_SPEED_FULL:
1324 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1325 interval = xhci_parse_exponent_interval(udev, ep);
1326 break;
1329 * Fall through for interrupt endpoint interval decoding
1330 * since it uses the same rules as low speed interrupt
1331 * endpoints.
1333 fallthrough;
1335 case USB_SPEED_LOW:
1336 if (usb_endpoint_xfer_int(&ep->desc) ||
1337 usb_endpoint_xfer_isoc(&ep->desc)) {
1339 interval = xhci_parse_frame_interval(udev, ep);
1341 break;
1343 default:
1344 BUG();
1346 return interval;
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350 * High speed endpoint descriptors can define "the number of additional
1351 * transaction opportunities per microframe", but that goes in the Max Burst
1352 * endpoint context field.
1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1355 struct usb_host_endpoint *ep)
1357 if (udev->speed < USB_SPEED_SUPER ||
1358 !usb_endpoint_xfer_isoc(&ep->desc))
1359 return 0;
1360 return ep->ss_ep_comp.bmAttributes;
1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1364 struct usb_host_endpoint *ep)
1366 /* Super speed and Plus have max burst in ep companion desc */
1367 if (udev->speed >= USB_SPEED_SUPER)
1368 return ep->ss_ep_comp.bMaxBurst;
1370 if (udev->speed == USB_SPEED_HIGH &&
1371 (usb_endpoint_xfer_isoc(&ep->desc) ||
1372 usb_endpoint_xfer_int(&ep->desc)))
1373 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375 return 0;
1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380 int in;
1382 in = usb_endpoint_dir_in(&ep->desc);
1384 switch (usb_endpoint_type(&ep->desc)) {
1385 case USB_ENDPOINT_XFER_CONTROL:
1386 return CTRL_EP;
1387 case USB_ENDPOINT_XFER_BULK:
1388 return in ? BULK_IN_EP : BULK_OUT_EP;
1389 case USB_ENDPOINT_XFER_ISOC:
1390 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1391 case USB_ENDPOINT_XFER_INT:
1392 return in ? INT_IN_EP : INT_OUT_EP;
1394 return 0;
1397 /* Return the maximum endpoint service interval time (ESIT) payload.
1398 * Basically, this is the maxpacket size, multiplied by the burst size
1399 * and mult size.
1401 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1402 struct usb_host_endpoint *ep)
1404 int max_burst;
1405 int max_packet;
1407 /* Only applies for interrupt or isochronous endpoints */
1408 if (usb_endpoint_xfer_control(&ep->desc) ||
1409 usb_endpoint_xfer_bulk(&ep->desc))
1410 return 0;
1412 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1413 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1414 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1415 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1416 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1417 else if (udev->speed >= USB_SPEED_SUPER)
1418 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420 max_packet = usb_endpoint_maxp(&ep->desc);
1421 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1422 /* A 0 in max burst means 1 transfer per ESIT */
1423 return max_packet * max_burst;
1426 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1427 * Drivers will have to call usb_alloc_streams() to do that.
1429 int xhci_endpoint_init(struct xhci_hcd *xhci,
1430 struct xhci_virt_device *virt_dev,
1431 struct usb_device *udev,
1432 struct usb_host_endpoint *ep,
1433 gfp_t mem_flags)
1435 unsigned int ep_index;
1436 struct xhci_ep_ctx *ep_ctx;
1437 struct xhci_ring *ep_ring;
1438 unsigned int max_packet;
1439 enum xhci_ring_type ring_type;
1440 u32 max_esit_payload;
1441 u32 endpoint_type;
1442 unsigned int max_burst;
1443 unsigned int interval;
1444 unsigned int mult;
1445 unsigned int avg_trb_len;
1446 unsigned int err_count = 0;
1448 ep_index = xhci_get_endpoint_index(&ep->desc);
1449 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451 endpoint_type = xhci_get_endpoint_type(ep);
1452 if (!endpoint_type)
1453 return -EINVAL;
1455 ring_type = usb_endpoint_type(&ep->desc);
1458 * Get values to fill the endpoint context, mostly from ep descriptor.
1459 * The average TRB buffer lengt for bulk endpoints is unclear as we
1460 * have no clue on scatter gather list entry size. For Isoc and Int,
1461 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1464 interval = xhci_get_endpoint_interval(udev, ep);
1466 /* Periodic endpoint bInterval limit quirk */
1467 if (usb_endpoint_xfer_int(&ep->desc) ||
1468 usb_endpoint_xfer_isoc(&ep->desc)) {
1469 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1470 udev->speed >= USB_SPEED_HIGH &&
1471 interval >= 7) {
1472 interval = 6;
1476 mult = xhci_get_endpoint_mult(udev, ep);
1477 max_packet = usb_endpoint_maxp(&ep->desc);
1478 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1479 avg_trb_len = max_esit_payload;
1481 /* FIXME dig Mult and streams info out of ep companion desc */
1483 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1484 if (!usb_endpoint_xfer_isoc(&ep->desc))
1485 err_count = 3;
1486 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1487 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1488 if (udev->speed == USB_SPEED_HIGH)
1489 max_packet = 512;
1490 if (udev->speed == USB_SPEED_FULL) {
1491 max_packet = rounddown_pow_of_two(max_packet);
1492 max_packet = clamp_val(max_packet, 8, 64);
1495 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1496 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1497 avg_trb_len = 8;
1498 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1499 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1500 mult = 0;
1502 /* Set up the endpoint ring */
1503 virt_dev->eps[ep_index].new_ring =
1504 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1505 if (!virt_dev->eps[ep_index].new_ring)
1506 return -ENOMEM;
1508 virt_dev->eps[ep_index].skip = false;
1509 ep_ring = virt_dev->eps[ep_index].new_ring;
1511 /* Fill the endpoint context */
1512 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1513 EP_INTERVAL(interval) |
1514 EP_MULT(mult));
1515 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1516 MAX_PACKET(max_packet) |
1517 MAX_BURST(max_burst) |
1518 ERROR_COUNT(err_count));
1519 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1520 ep_ring->cycle_state);
1522 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1523 EP_AVG_TRB_LENGTH(avg_trb_len));
1525 return 0;
1528 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1529 struct xhci_virt_device *virt_dev,
1530 struct usb_host_endpoint *ep)
1532 unsigned int ep_index;
1533 struct xhci_ep_ctx *ep_ctx;
1535 ep_index = xhci_get_endpoint_index(&ep->desc);
1536 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538 ep_ctx->ep_info = 0;
1539 ep_ctx->ep_info2 = 0;
1540 ep_ctx->deq = 0;
1541 ep_ctx->tx_info = 0;
1542 /* Don't free the endpoint ring until the set interface or configuration
1543 * request succeeds.
1547 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549 bw_info->ep_interval = 0;
1550 bw_info->mult = 0;
1551 bw_info->num_packets = 0;
1552 bw_info->max_packet_size = 0;
1553 bw_info->type = 0;
1554 bw_info->max_esit_payload = 0;
1557 void xhci_update_bw_info(struct xhci_hcd *xhci,
1558 struct xhci_container_ctx *in_ctx,
1559 struct xhci_input_control_ctx *ctrl_ctx,
1560 struct xhci_virt_device *virt_dev)
1562 struct xhci_bw_info *bw_info;
1563 struct xhci_ep_ctx *ep_ctx;
1564 unsigned int ep_type;
1565 int i;
1567 for (i = 1; i < 31; i++) {
1568 bw_info = &virt_dev->eps[i].bw_info;
1570 /* We can't tell what endpoint type is being dropped, but
1571 * unconditionally clearing the bandwidth info for non-periodic
1572 * endpoints should be harmless because the info will never be
1573 * set in the first place.
1575 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1576 /* Dropped endpoint */
1577 xhci_clear_endpoint_bw_info(bw_info);
1578 continue;
1581 if (EP_IS_ADDED(ctrl_ctx, i)) {
1582 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1583 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585 /* Ignore non-periodic endpoints */
1586 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1587 ep_type != ISOC_IN_EP &&
1588 ep_type != INT_IN_EP)
1589 continue;
1591 /* Added or changed endpoint */
1592 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1593 le32_to_cpu(ep_ctx->ep_info));
1594 /* Number of packets and mult are zero-based in the
1595 * input context, but we want one-based for the
1596 * interval table.
1598 bw_info->mult = CTX_TO_EP_MULT(
1599 le32_to_cpu(ep_ctx->ep_info)) + 1;
1600 bw_info->num_packets = CTX_TO_MAX_BURST(
1601 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1602 bw_info->max_packet_size = MAX_PACKET_DECODED(
1603 le32_to_cpu(ep_ctx->ep_info2));
1604 bw_info->type = ep_type;
1605 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1606 le32_to_cpu(ep_ctx->tx_info));
1611 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command.
1615 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1616 struct xhci_container_ctx *in_ctx,
1617 struct xhci_container_ctx *out_ctx,
1618 unsigned int ep_index)
1620 struct xhci_ep_ctx *out_ep_ctx;
1621 struct xhci_ep_ctx *in_ep_ctx;
1623 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1624 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1627 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1628 in_ep_ctx->deq = out_ep_ctx->deq;
1629 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1630 if (xhci->quirks & XHCI_MTK_HOST) {
1631 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1632 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1636 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1637 * Useful when you want to change one particular aspect of the endpoint and then
1638 * issue a configure endpoint command. Only the context entries field matters,
1639 * but we'll copy the whole thing anyway.
1641 void xhci_slot_copy(struct xhci_hcd *xhci,
1642 struct xhci_container_ctx *in_ctx,
1643 struct xhci_container_ctx *out_ctx)
1645 struct xhci_slot_ctx *in_slot_ctx;
1646 struct xhci_slot_ctx *out_slot_ctx;
1648 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1649 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1652 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1653 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1654 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1657 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1658 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660 int i;
1661 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1662 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1665 "Allocating %d scratchpad buffers", num_sp);
1667 if (!num_sp)
1668 return 0;
1670 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1671 dev_to_node(dev));
1672 if (!xhci->scratchpad)
1673 goto fail_sp;
1675 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1676 num_sp * sizeof(u64),
1677 &xhci->scratchpad->sp_dma, flags);
1678 if (!xhci->scratchpad->sp_array)
1679 goto fail_sp2;
1681 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1682 flags, dev_to_node(dev));
1683 if (!xhci->scratchpad->sp_buffers)
1684 goto fail_sp3;
1686 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1687 for (i = 0; i < num_sp; i++) {
1688 dma_addr_t dma;
1689 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1690 flags);
1691 if (!buf)
1692 goto fail_sp4;
1694 xhci->scratchpad->sp_array[i] = dma;
1695 xhci->scratchpad->sp_buffers[i] = buf;
1698 return 0;
1700 fail_sp4:
1701 for (i = i - 1; i >= 0; i--) {
1702 dma_free_coherent(dev, xhci->page_size,
1703 xhci->scratchpad->sp_buffers[i],
1704 xhci->scratchpad->sp_array[i]);
1707 kfree(xhci->scratchpad->sp_buffers);
1709 fail_sp3:
1710 dma_free_coherent(dev, num_sp * sizeof(u64),
1711 xhci->scratchpad->sp_array,
1712 xhci->scratchpad->sp_dma);
1714 fail_sp2:
1715 kfree(xhci->scratchpad);
1716 xhci->scratchpad = NULL;
1718 fail_sp:
1719 return -ENOMEM;
1722 static void scratchpad_free(struct xhci_hcd *xhci)
1724 int num_sp;
1725 int i;
1726 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728 if (!xhci->scratchpad)
1729 return;
1731 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733 for (i = 0; i < num_sp; i++) {
1734 dma_free_coherent(dev, xhci->page_size,
1735 xhci->scratchpad->sp_buffers[i],
1736 xhci->scratchpad->sp_array[i]);
1738 kfree(xhci->scratchpad->sp_buffers);
1739 dma_free_coherent(dev, num_sp * sizeof(u64),
1740 xhci->scratchpad->sp_array,
1741 xhci->scratchpad->sp_dma);
1742 kfree(xhci->scratchpad);
1743 xhci->scratchpad = NULL;
1746 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1747 bool allocate_completion, gfp_t mem_flags)
1749 struct xhci_command *command;
1750 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1753 if (!command)
1754 return NULL;
1756 if (allocate_completion) {
1757 command->completion =
1758 kzalloc_node(sizeof(struct completion), mem_flags,
1759 dev_to_node(dev));
1760 if (!command->completion) {
1761 kfree(command);
1762 return NULL;
1764 init_completion(command->completion);
1767 command->status = 0;
1768 INIT_LIST_HEAD(&command->cmd_list);
1769 return command;
1772 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1773 bool allocate_completion, gfp_t mem_flags)
1775 struct xhci_command *command;
1777 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1778 if (!command)
1779 return NULL;
1781 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1782 mem_flags);
1783 if (!command->in_ctx) {
1784 kfree(command->completion);
1785 kfree(command);
1786 return NULL;
1788 return command;
1791 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793 kfree(urb_priv);
1796 void xhci_free_command(struct xhci_hcd *xhci,
1797 struct xhci_command *command)
1799 xhci_free_container_ctx(xhci,
1800 command->in_ctx);
1801 kfree(command->completion);
1802 kfree(command);
1805 int xhci_alloc_erst(struct xhci_hcd *xhci,
1806 struct xhci_ring *evt_ring,
1807 struct xhci_erst *erst,
1808 gfp_t flags)
1810 size_t size;
1811 unsigned int val;
1812 struct xhci_segment *seg;
1813 struct xhci_erst_entry *entry;
1815 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1816 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1817 size, &erst->erst_dma_addr, flags);
1818 if (!erst->entries)
1819 return -ENOMEM;
1821 erst->num_entries = evt_ring->num_segs;
1823 seg = evt_ring->first_seg;
1824 for (val = 0; val < evt_ring->num_segs; val++) {
1825 entry = &erst->entries[val];
1826 entry->seg_addr = cpu_to_le64(seg->dma);
1827 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1828 entry->rsvd = 0;
1829 seg = seg->next;
1832 return 0;
1835 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837 size_t size;
1838 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1841 if (erst->entries)
1842 dma_free_coherent(dev, size,
1843 erst->entries,
1844 erst->erst_dma_addr);
1845 erst->entries = NULL;
1848 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1851 int i, j, num_ports;
1853 cancel_delayed_work_sync(&xhci->cmd_timer);
1855 xhci_free_erst(xhci, &xhci->erst);
1857 if (xhci->event_ring)
1858 xhci_ring_free(xhci, xhci->event_ring);
1859 xhci->event_ring = NULL;
1860 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862 if (xhci->lpm_command)
1863 xhci_free_command(xhci, xhci->lpm_command);
1864 xhci->lpm_command = NULL;
1865 if (xhci->cmd_ring)
1866 xhci_ring_free(xhci, xhci->cmd_ring);
1867 xhci->cmd_ring = NULL;
1868 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1869 xhci_cleanup_command_queue(xhci);
1871 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1872 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1873 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1874 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1875 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1876 while (!list_empty(ep))
1877 list_del_init(ep->next);
1881 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1882 xhci_free_virt_devices_depth_first(xhci, i);
1884 dma_pool_destroy(xhci->segment_pool);
1885 xhci->segment_pool = NULL;
1886 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888 dma_pool_destroy(xhci->device_pool);
1889 xhci->device_pool = NULL;
1890 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892 dma_pool_destroy(xhci->small_streams_pool);
1893 xhci->small_streams_pool = NULL;
1894 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1895 "Freed small stream array pool");
1897 dma_pool_destroy(xhci->medium_streams_pool);
1898 xhci->medium_streams_pool = NULL;
1899 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1900 "Freed medium stream array pool");
1902 if (xhci->dcbaa)
1903 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1904 xhci->dcbaa, xhci->dcbaa->dma);
1905 xhci->dcbaa = NULL;
1907 scratchpad_free(xhci);
1909 if (!xhci->rh_bw)
1910 goto no_bw;
1912 for (i = 0; i < num_ports; i++) {
1913 struct xhci_tt_bw_info *tt, *n;
1914 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1915 list_del(&tt->tt_list);
1916 kfree(tt);
1920 no_bw:
1921 xhci->cmd_ring_reserved_trbs = 0;
1922 xhci->usb2_rhub.num_ports = 0;
1923 xhci->usb3_rhub.num_ports = 0;
1924 xhci->num_active_eps = 0;
1925 kfree(xhci->usb2_rhub.ports);
1926 kfree(xhci->usb3_rhub.ports);
1927 kfree(xhci->hw_ports);
1928 kfree(xhci->rh_bw);
1929 kfree(xhci->ext_caps);
1930 for (i = 0; i < xhci->num_port_caps; i++)
1931 kfree(xhci->port_caps[i].psi);
1932 kfree(xhci->port_caps);
1933 xhci->num_port_caps = 0;
1935 xhci->usb2_rhub.ports = NULL;
1936 xhci->usb3_rhub.ports = NULL;
1937 xhci->hw_ports = NULL;
1938 xhci->rh_bw = NULL;
1939 xhci->ext_caps = NULL;
1941 xhci->page_size = 0;
1942 xhci->page_shift = 0;
1943 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1944 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1947 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1948 struct xhci_segment *input_seg,
1949 union xhci_trb *start_trb,
1950 union xhci_trb *end_trb,
1951 dma_addr_t input_dma,
1952 struct xhci_segment *result_seg,
1953 char *test_name, int test_number)
1955 unsigned long long start_dma;
1956 unsigned long long end_dma;
1957 struct xhci_segment *seg;
1959 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1960 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1963 if (seg != result_seg) {
1964 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1965 test_name, test_number);
1966 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1967 "input DMA 0x%llx\n",
1968 input_seg,
1969 (unsigned long long) input_dma);
1970 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1971 "ending TRB %p (0x%llx DMA)\n",
1972 start_trb, start_dma,
1973 end_trb, end_dma);
1974 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1975 result_seg, seg);
1976 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1977 true);
1978 return -1;
1980 return 0;
1983 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1984 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986 struct {
1987 dma_addr_t input_dma;
1988 struct xhci_segment *result_seg;
1989 } simple_test_vector [] = {
1990 /* A zeroed DMA field should fail */
1991 { 0, NULL },
1992 /* One TRB before the ring start should fail */
1993 { xhci->event_ring->first_seg->dma - 16, NULL },
1994 /* One byte before the ring start should fail */
1995 { xhci->event_ring->first_seg->dma - 1, NULL },
1996 /* Starting TRB should succeed */
1997 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1998 /* Ending TRB should succeed */
1999 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2000 xhci->event_ring->first_seg },
2001 /* One byte after the ring end should fail */
2002 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2003 /* One TRB after the ring end should fail */
2004 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2005 /* An address of all ones should fail */
2006 { (dma_addr_t) (~0), NULL },
2008 struct {
2009 struct xhci_segment *input_seg;
2010 union xhci_trb *start_trb;
2011 union xhci_trb *end_trb;
2012 dma_addr_t input_dma;
2013 struct xhci_segment *result_seg;
2014 } complex_test_vector [] = {
2015 /* Test feeding a valid DMA address from a different ring */
2016 { .input_seg = xhci->event_ring->first_seg,
2017 .start_trb = xhci->event_ring->first_seg->trbs,
2018 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2019 .input_dma = xhci->cmd_ring->first_seg->dma,
2020 .result_seg = NULL,
2022 /* Test feeding a valid end TRB from a different ring */
2023 { .input_seg = xhci->event_ring->first_seg,
2024 .start_trb = xhci->event_ring->first_seg->trbs,
2025 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2026 .input_dma = xhci->cmd_ring->first_seg->dma,
2027 .result_seg = NULL,
2029 /* Test feeding a valid start and end TRB from a different ring */
2030 { .input_seg = xhci->event_ring->first_seg,
2031 .start_trb = xhci->cmd_ring->first_seg->trbs,
2032 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2033 .input_dma = xhci->cmd_ring->first_seg->dma,
2034 .result_seg = NULL,
2036 /* TRB in this ring, but after this TD */
2037 { .input_seg = xhci->event_ring->first_seg,
2038 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2039 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2040 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2041 .result_seg = NULL,
2043 /* TRB in this ring, but before this TD */
2044 { .input_seg = xhci->event_ring->first_seg,
2045 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2046 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2047 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2048 .result_seg = NULL,
2050 /* TRB in this ring, but after this wrapped TD */
2051 { .input_seg = xhci->event_ring->first_seg,
2052 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2053 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2054 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2055 .result_seg = NULL,
2057 /* TRB in this ring, but before this wrapped TD */
2058 { .input_seg = xhci->event_ring->first_seg,
2059 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2060 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2061 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2062 .result_seg = NULL,
2064 /* TRB not in this ring, and we have a wrapped TD */
2065 { .input_seg = xhci->event_ring->first_seg,
2066 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2067 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2068 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2069 .result_seg = NULL,
2073 unsigned int num_tests;
2074 int i, ret;
2076 num_tests = ARRAY_SIZE(simple_test_vector);
2077 for (i = 0; i < num_tests; i++) {
2078 ret = xhci_test_trb_in_td(xhci,
2079 xhci->event_ring->first_seg,
2080 xhci->event_ring->first_seg->trbs,
2081 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2082 simple_test_vector[i].input_dma,
2083 simple_test_vector[i].result_seg,
2084 "Simple", i);
2085 if (ret < 0)
2086 return ret;
2089 num_tests = ARRAY_SIZE(complex_test_vector);
2090 for (i = 0; i < num_tests; i++) {
2091 ret = xhci_test_trb_in_td(xhci,
2092 complex_test_vector[i].input_seg,
2093 complex_test_vector[i].start_trb,
2094 complex_test_vector[i].end_trb,
2095 complex_test_vector[i].input_dma,
2096 complex_test_vector[i].result_seg,
2097 "Complex", i);
2098 if (ret < 0)
2099 return ret;
2101 xhci_dbg(xhci, "TRB math tests passed.\n");
2102 return 0;
2105 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107 u64 temp;
2108 dma_addr_t deq;
2110 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2111 xhci->event_ring->dequeue);
2112 if (!deq)
2113 xhci_warn(xhci, "WARN something wrong with SW event ring "
2114 "dequeue ptr.\n");
2115 /* Update HC event ring dequeue pointer */
2116 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2117 temp &= ERST_PTR_MASK;
2118 /* Don't clear the EHB bit (which is RW1C) because
2119 * there might be more events to service.
2121 temp &= ~ERST_EHB;
2122 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2123 "// Write event ring dequeue pointer, "
2124 "preserving EHB bit");
2125 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2126 &xhci->ir_set->erst_dequeue);
2129 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2130 __le32 __iomem *addr, int max_caps)
2132 u32 temp, port_offset, port_count;
2133 int i;
2134 u8 major_revision, minor_revision;
2135 struct xhci_hub *rhub;
2136 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2137 struct xhci_port_cap *port_cap;
2139 temp = readl(addr);
2140 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2141 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2143 if (major_revision == 0x03) {
2144 rhub = &xhci->usb3_rhub;
2145 } else if (major_revision <= 0x02) {
2146 rhub = &xhci->usb2_rhub;
2147 } else {
2148 xhci_warn(xhci, "Ignoring unknown port speed, "
2149 "Ext Cap %p, revision = 0x%x\n",
2150 addr, major_revision);
2151 /* Ignoring port protocol we can't understand. FIXME */
2152 return;
2154 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2156 if (rhub->min_rev < minor_revision)
2157 rhub->min_rev = minor_revision;
2159 /* Port offset and count in the third dword, see section 7.2 */
2160 temp = readl(addr + 2);
2161 port_offset = XHCI_EXT_PORT_OFF(temp);
2162 port_count = XHCI_EXT_PORT_COUNT(temp);
2163 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2164 "Ext Cap %p, port offset = %u, "
2165 "count = %u, revision = 0x%x",
2166 addr, port_offset, port_count, major_revision);
2167 /* Port count includes the current port offset */
2168 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2169 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2170 return;
2172 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2173 if (xhci->num_port_caps > max_caps)
2174 return;
2176 port_cap->maj_rev = major_revision;
2177 port_cap->min_rev = minor_revision;
2178 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180 if (port_cap->psi_count) {
2181 port_cap->psi = kcalloc_node(port_cap->psi_count,
2182 sizeof(*port_cap->psi),
2183 GFP_KERNEL, dev_to_node(dev));
2184 if (!port_cap->psi)
2185 port_cap->psi_count = 0;
2187 port_cap->psi_uid_count++;
2188 for (i = 0; i < port_cap->psi_count; i++) {
2189 port_cap->psi[i] = readl(addr + 4 + i);
2191 /* count unique ID values, two consecutive entries can
2192 * have the same ID if link is assymetric
2194 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2195 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2196 port_cap->psi_uid_count++;
2198 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2199 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2200 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2201 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2202 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2203 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2204 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2207 /* cache usb2 port capabilities */
2208 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2209 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2211 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2212 (temp & XHCI_HLC)) {
2213 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2214 "xHCI 1.0: support USB2 hardware lpm");
2215 xhci->hw_lpm_support = 1;
2218 port_offset--;
2219 for (i = port_offset; i < (port_offset + port_count); i++) {
2220 struct xhci_port *hw_port = &xhci->hw_ports[i];
2221 /* Duplicate entry. Ignore the port if the revisions differ. */
2222 if (hw_port->rhub) {
2223 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2224 " port %u\n", addr, i);
2225 xhci_warn(xhci, "Port was marked as USB %u, "
2226 "duplicated as USB %u\n",
2227 hw_port->rhub->maj_rev, major_revision);
2228 /* Only adjust the roothub port counts if we haven't
2229 * found a similar duplicate.
2231 if (hw_port->rhub != rhub &&
2232 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2233 hw_port->rhub->num_ports--;
2234 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2236 continue;
2238 hw_port->rhub = rhub;
2239 hw_port->port_cap = port_cap;
2240 rhub->num_ports++;
2242 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2245 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2246 struct xhci_hub *rhub, gfp_t flags)
2248 int port_index = 0;
2249 int i;
2250 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252 if (!rhub->num_ports)
2253 return;
2254 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2255 flags, dev_to_node(dev));
2256 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2257 if (xhci->hw_ports[i].rhub != rhub ||
2258 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2259 continue;
2260 xhci->hw_ports[i].hcd_portnum = port_index;
2261 rhub->ports[port_index] = &xhci->hw_ports[i];
2262 port_index++;
2263 if (port_index == rhub->num_ports)
2264 break;
2269 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2270 * specify what speeds each port is supposed to be. We can't count on the port
2271 * speed bits in the PORTSC register being correct until a device is connected,
2272 * but we need to set up the two fake roothubs with the correct number of USB
2273 * 3.0 and USB 2.0 ports at host controller initialization time.
2275 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2277 void __iomem *base;
2278 u32 offset;
2279 unsigned int num_ports;
2280 int i, j;
2281 int cap_count = 0;
2282 u32 cap_start;
2283 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2285 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2286 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2287 flags, dev_to_node(dev));
2288 if (!xhci->hw_ports)
2289 return -ENOMEM;
2291 for (i = 0; i < num_ports; i++) {
2292 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2293 NUM_PORT_REGS * i;
2294 xhci->hw_ports[i].hw_portnum = i;
2297 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2298 dev_to_node(dev));
2299 if (!xhci->rh_bw)
2300 return -ENOMEM;
2301 for (i = 0; i < num_ports; i++) {
2302 struct xhci_interval_bw_table *bw_table;
2304 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2305 bw_table = &xhci->rh_bw[i].bw_table;
2306 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2307 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2309 base = &xhci->cap_regs->hc_capbase;
2311 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2312 if (!cap_start) {
2313 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2314 return -ENODEV;
2317 offset = cap_start;
2318 /* count extended protocol capability entries for later caching */
2319 while (offset) {
2320 cap_count++;
2321 offset = xhci_find_next_ext_cap(base, offset,
2322 XHCI_EXT_CAPS_PROTOCOL);
2325 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2326 flags, dev_to_node(dev));
2327 if (!xhci->ext_caps)
2328 return -ENOMEM;
2330 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2331 flags, dev_to_node(dev));
2332 if (!xhci->port_caps)
2333 return -ENOMEM;
2335 offset = cap_start;
2337 while (offset) {
2338 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2339 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2340 num_ports)
2341 break;
2342 offset = xhci_find_next_ext_cap(base, offset,
2343 XHCI_EXT_CAPS_PROTOCOL);
2345 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2346 xhci_warn(xhci, "No ports on the roothubs?\n");
2347 return -ENODEV;
2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2351 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2353 /* Place limits on the number of roothub ports so that the hub
2354 * descriptors aren't longer than the USB core will allocate.
2356 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2357 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2358 "Limiting USB 3.0 roothub ports to %u.",
2359 USB_SS_MAXPORTS);
2360 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2362 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2363 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364 "Limiting USB 2.0 roothub ports to %u.",
2365 USB_MAXCHILDREN);
2366 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2370 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2371 * Not sure how the USB core will handle a hub with no ports...
2374 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2375 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2377 return 0;
2380 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382 dma_addr_t dma;
2383 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2384 unsigned int val, val2;
2385 u64 val_64;
2386 u32 page_size, temp;
2387 int i, ret;
2389 INIT_LIST_HEAD(&xhci->cmd_list);
2391 /* init command timeout work */
2392 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2393 init_completion(&xhci->cmd_ring_stop_completion);
2395 page_size = readl(&xhci->op_regs->page_size);
2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 "Supported page size register = 0x%x", page_size);
2398 for (i = 0; i < 16; i++) {
2399 if ((0x1 & page_size) != 0)
2400 break;
2401 page_size = page_size >> 1;
2403 if (i < 16)
2404 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405 "Supported page size of %iK", (1 << (i+12)) / 1024);
2406 else
2407 xhci_warn(xhci, "WARN: no supported page size\n");
2408 /* Use 4K pages, since that's common and the minimum the HC supports */
2409 xhci->page_shift = 12;
2410 xhci->page_size = 1 << xhci->page_shift;
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 "HCD page size set to %iK", xhci->page_size / 1024);
2415 * Program the Number of Device Slots Enabled field in the CONFIG
2416 * register with the max value of slots the HC can handle.
2418 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 "// xHC can handle at most %d device slots.", val);
2421 val2 = readl(&xhci->op_regs->config_reg);
2422 val |= (val2 & ~HCS_SLOTS_MASK);
2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 "// Setting Max device slots reg = 0x%x.", val);
2425 writel(val, &xhci->op_regs->config_reg);
2428 * xHCI section 5.4.6 - doorbell array must be
2429 * "physically contiguous and 64-byte (cache line) aligned".
2431 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2432 flags);
2433 if (!xhci->dcbaa)
2434 goto fail;
2435 xhci->dcbaa->dma = dma;
2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2438 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2439 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2442 * Initialize the ring segment pool. The ring must be a contiguous
2443 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2444 * however, the command ring segment needs 64-byte aligned segments
2445 * and our use of dma addresses in the trb_address_map radix tree needs
2446 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2449 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2451 /* See Table 46 and Note on Figure 55 */
2452 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2453 2112, 64, xhci->page_size);
2454 if (!xhci->segment_pool || !xhci->device_pool)
2455 goto fail;
2457 /* Linear stream context arrays don't have any boundary restrictions,
2458 * and only need to be 16-byte aligned.
2460 xhci->small_streams_pool =
2461 dma_pool_create("xHCI 256 byte stream ctx arrays",
2462 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2463 xhci->medium_streams_pool =
2464 dma_pool_create("xHCI 1KB stream ctx arrays",
2465 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2466 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2467 * will be allocated with dma_alloc_coherent()
2470 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2471 goto fail;
2473 /* Set up the command ring to have one segments for now. */
2474 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2475 if (!xhci->cmd_ring)
2476 goto fail;
2477 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2478 "Allocated command ring at %p", xhci->cmd_ring);
2479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2480 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2482 /* Set the address in the Command Ring Control register */
2483 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2484 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2485 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2486 xhci->cmd_ring->cycle_state;
2487 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488 "// Setting command ring address to 0x%016llx", val_64);
2489 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2491 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2492 if (!xhci->lpm_command)
2493 goto fail;
2495 /* Reserve one command ring TRB for disabling LPM.
2496 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497 * disabling LPM, we only need to reserve one TRB for all devices.
2499 xhci->cmd_ring_reserved_trbs++;
2501 val = readl(&xhci->cap_regs->db_off);
2502 val &= DBOFF_MASK;
2503 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504 "// Doorbell array is located at offset 0x%x"
2505 " from cap regs base addr", val);
2506 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507 /* Set ir_set to interrupt register set 0 */
2508 xhci->ir_set = &xhci->run_regs->ir_set[0];
2511 * Event ring setup: Allocate a normal ring, but also setup
2512 * the event ring segment table (ERST). Section 4.9.3.
2514 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2515 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2516 0, flags);
2517 if (!xhci->event_ring)
2518 goto fail;
2519 if (xhci_check_trb_in_td_math(xhci) < 0)
2520 goto fail;
2522 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2523 if (ret)
2524 goto fail;
2526 /* set ERST count with the number of entries in the segment table */
2527 val = readl(&xhci->ir_set->erst_size);
2528 val &= ERST_SIZE_MASK;
2529 val |= ERST_NUM_SEGS;
2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2532 val);
2533 writel(val, &xhci->ir_set->erst_size);
2535 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536 "// Set ERST entries to point to event ring.");
2537 /* set the segment table base address */
2538 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539 "// Set ERST base address for ir_set 0 = 0x%llx",
2540 (unsigned long long)xhci->erst.erst_dma_addr);
2541 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2542 val_64 &= ERST_PTR_MASK;
2543 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2544 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2546 /* Set the event ring dequeue address */
2547 xhci_set_hc_event_deq(xhci);
2548 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2549 "Wrote ERST address to ir_set 0.");
2552 * XXX: Might need to set the Interrupter Moderation Register to
2553 * something other than the default (~1ms minimum between interrupts).
2554 * See section 5.5.1.2.
2556 for (i = 0; i < MAX_HC_SLOTS; i++)
2557 xhci->devs[i] = NULL;
2558 for (i = 0; i < USB_MAXCHILDREN; i++) {
2559 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2560 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2561 /* Only the USB 2.0 completions will ever be used. */
2562 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2563 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2566 if (scratchpad_alloc(xhci, flags))
2567 goto fail;
2568 if (xhci_setup_port_arrays(xhci, flags))
2569 goto fail;
2571 /* Enable USB 3.0 device notifications for function remote wake, which
2572 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2573 * U3 (device suspend).
2575 temp = readl(&xhci->op_regs->dev_notification);
2576 temp &= ~DEV_NOTE_MASK;
2577 temp |= DEV_NOTE_FWAKE;
2578 writel(temp, &xhci->op_regs->dev_notification);
2580 return 0;
2582 fail:
2583 xhci_halt(xhci);
2584 xhci_reset(xhci);
2585 xhci_mem_cleanup(xhci);
2586 return -ENOMEM;