1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
12 #include <net/af_rxrpc.h>
15 #include "protocol_yfs.h"
17 struct workqueue_struct
*afs_async_calls
;
19 static void afs_wake_up_call_waiter(struct sock
*, struct rxrpc_call
*, unsigned long);
20 static void afs_wake_up_async_call(struct sock
*, struct rxrpc_call
*, unsigned long);
21 static void afs_process_async_call(struct work_struct
*);
22 static void afs_rx_new_call(struct sock
*, struct rxrpc_call
*, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call
*, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call
*);
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx
= {
29 .deliver
= afs_deliver_cm_op_id
,
33 * open an RxRPC socket and bind it to be a server for callback notifications
34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
36 int afs_open_socket(struct afs_net
*net
)
38 struct sockaddr_rxrpc srx
;
39 struct socket
*socket
;
44 ret
= sock_create_kern(net
->net
, AF_RXRPC
, SOCK_DGRAM
, PF_INET6
, &socket
);
48 socket
->sk
->sk_allocation
= GFP_NOFS
;
50 /* bind the callback manager's address to make this a server socket */
51 memset(&srx
, 0, sizeof(srx
));
52 srx
.srx_family
= AF_RXRPC
;
53 srx
.srx_service
= CM_SERVICE
;
54 srx
.transport_type
= SOCK_DGRAM
;
55 srx
.transport_len
= sizeof(srx
.transport
.sin6
);
56 srx
.transport
.sin6
.sin6_family
= AF_INET6
;
57 srx
.transport
.sin6
.sin6_port
= htons(AFS_CM_PORT
);
59 ret
= rxrpc_sock_set_min_security_level(socket
->sk
,
60 RXRPC_SECURITY_ENCRYPT
);
64 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
65 if (ret
== -EADDRINUSE
) {
66 srx
.transport
.sin6
.sin6_port
= 0;
67 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
72 srx
.srx_service
= YFS_CM_SERVICE
;
73 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
77 /* Ideally, we'd turn on service upgrade here, but we can't because
78 * OpenAFS is buggy and leaks the userStatus field from packet to
79 * packet and between FS packets and CB packets - so if we try to do an
80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81 * it sends back to us.
84 rxrpc_kernel_new_call_notification(socket
, afs_rx_new_call
,
85 afs_rx_discard_new_call
);
87 ret
= kernel_listen(socket
, INT_MAX
);
92 afs_charge_preallocation(&net
->charge_preallocation_work
);
104 * close the RxRPC socket AFS was using
106 void afs_close_socket(struct afs_net
*net
)
110 kernel_listen(net
->socket
, 0);
111 flush_workqueue(afs_async_calls
);
113 if (net
->spare_incoming_call
) {
114 afs_put_call(net
->spare_incoming_call
);
115 net
->spare_incoming_call
= NULL
;
118 _debug("outstanding %u", atomic_read(&net
->nr_outstanding_calls
));
119 wait_var_event(&net
->nr_outstanding_calls
,
120 !atomic_read(&net
->nr_outstanding_calls
));
121 _debug("no outstanding calls");
123 kernel_sock_shutdown(net
->socket
, SHUT_RDWR
);
124 flush_workqueue(afs_async_calls
);
125 sock_release(net
->socket
);
134 static struct afs_call
*afs_alloc_call(struct afs_net
*net
,
135 const struct afs_call_type
*type
,
138 struct afs_call
*call
;
141 call
= kzalloc(sizeof(*call
), gfp
);
147 call
->debug_id
= atomic_inc_return(&rxrpc_debug_id
);
148 atomic_set(&call
->usage
, 1);
149 INIT_WORK(&call
->async_work
, afs_process_async_call
);
150 init_waitqueue_head(&call
->waitq
);
151 spin_lock_init(&call
->state_lock
);
152 call
->iter
= &call
->def_iter
;
154 o
= atomic_inc_return(&net
->nr_outstanding_calls
);
155 trace_afs_call(call
, afs_call_trace_alloc
, 1, o
,
156 __builtin_return_address(0));
161 * Dispose of a reference on a call.
163 void afs_put_call(struct afs_call
*call
)
165 struct afs_net
*net
= call
->net
;
166 int n
= atomic_dec_return(&call
->usage
);
167 int o
= atomic_read(&net
->nr_outstanding_calls
);
169 trace_afs_call(call
, afs_call_trace_put
, n
, o
,
170 __builtin_return_address(0));
174 ASSERT(!work_pending(&call
->async_work
));
175 ASSERT(call
->type
->name
!= NULL
);
178 rxrpc_kernel_end_call(net
->socket
, call
->rxcall
);
181 if (call
->type
->destructor
)
182 call
->type
->destructor(call
);
184 afs_unuse_server_notime(call
->net
, call
->server
, afs_server_trace_put_call
);
185 afs_put_addrlist(call
->alist
);
186 kfree(call
->request
);
188 trace_afs_call(call
, afs_call_trace_free
, 0, o
,
189 __builtin_return_address(0));
192 o
= atomic_dec_return(&net
->nr_outstanding_calls
);
194 wake_up_var(&net
->nr_outstanding_calls
);
198 static struct afs_call
*afs_get_call(struct afs_call
*call
,
199 enum afs_call_trace why
)
201 int u
= atomic_inc_return(&call
->usage
);
203 trace_afs_call(call
, why
, u
,
204 atomic_read(&call
->net
->nr_outstanding_calls
),
205 __builtin_return_address(0));
210 * Queue the call for actual work.
212 static void afs_queue_call_work(struct afs_call
*call
)
214 if (call
->type
->work
) {
215 INIT_WORK(&call
->work
, call
->type
->work
);
217 afs_get_call(call
, afs_call_trace_work
);
218 if (!queue_work(afs_wq
, &call
->work
))
224 * allocate a call with flat request and reply buffers
226 struct afs_call
*afs_alloc_flat_call(struct afs_net
*net
,
227 const struct afs_call_type
*type
,
228 size_t request_size
, size_t reply_max
)
230 struct afs_call
*call
;
232 call
= afs_alloc_call(net
, type
, GFP_NOFS
);
237 call
->request_size
= request_size
;
238 call
->request
= kmalloc(request_size
, GFP_NOFS
);
244 call
->reply_max
= reply_max
;
245 call
->buffer
= kmalloc(reply_max
, GFP_NOFS
);
250 afs_extract_to_buf(call
, call
->reply_max
);
251 call
->operation_ID
= type
->op
;
252 init_waitqueue_head(&call
->waitq
);
262 * clean up a call with flat buffer
264 void afs_flat_call_destructor(struct afs_call
*call
)
268 kfree(call
->request
);
269 call
->request
= NULL
;
274 #define AFS_BVEC_MAX 8
277 * Load the given bvec with the next few pages.
279 static void afs_load_bvec(struct afs_call
*call
, struct msghdr
*msg
,
280 struct bio_vec
*bv
, pgoff_t first
, pgoff_t last
,
283 struct afs_operation
*op
= call
->op
;
284 struct page
*pages
[AFS_BVEC_MAX
];
285 unsigned int nr
, n
, i
, to
, bytes
= 0;
287 nr
= min_t(pgoff_t
, last
- first
+ 1, AFS_BVEC_MAX
);
288 n
= find_get_pages_contig(op
->store
.mapping
, first
, nr
, pages
);
289 ASSERTCMP(n
, ==, nr
);
291 msg
->msg_flags
|= MSG_MORE
;
292 for (i
= 0; i
< nr
; i
++) {
294 if (first
+ i
>= last
) {
295 to
= op
->store
.last_to
;
296 msg
->msg_flags
&= ~MSG_MORE
;
298 bv
[i
].bv_page
= pages
[i
];
299 bv
[i
].bv_len
= to
- offset
;
300 bv
[i
].bv_offset
= offset
;
301 bytes
+= to
- offset
;
305 iov_iter_bvec(&msg
->msg_iter
, WRITE
, bv
, nr
, bytes
);
309 * Advance the AFS call state when the RxRPC call ends the transmit phase.
311 static void afs_notify_end_request_tx(struct sock
*sock
,
312 struct rxrpc_call
*rxcall
,
313 unsigned long call_user_ID
)
315 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
317 afs_set_call_state(call
, AFS_CALL_CL_REQUESTING
, AFS_CALL_CL_AWAIT_REPLY
);
321 * attach the data from a bunch of pages on an inode to a call
323 static int afs_send_pages(struct afs_call
*call
, struct msghdr
*msg
)
325 struct afs_operation
*op
= call
->op
;
326 struct bio_vec bv
[AFS_BVEC_MAX
];
327 unsigned int bytes
, nr
, loop
, offset
;
328 pgoff_t first
= op
->store
.first
, last
= op
->store
.last
;
331 offset
= op
->store
.first_offset
;
332 op
->store
.first_offset
= 0;
335 afs_load_bvec(call
, msg
, bv
, first
, last
, offset
);
336 trace_afs_send_pages(call
, msg
, first
, last
, offset
);
339 bytes
= msg
->msg_iter
.count
;
340 nr
= msg
->msg_iter
.nr_segs
;
342 ret
= rxrpc_kernel_send_data(op
->net
->socket
, call
->rxcall
, msg
,
343 bytes
, afs_notify_end_request_tx
);
344 for (loop
= 0; loop
< nr
; loop
++)
345 put_page(bv
[loop
].bv_page
);
350 } while (first
<= last
);
352 trace_afs_sent_pages(call
, op
->store
.first
, last
, first
, ret
);
357 * Initiate a call and synchronously queue up the parameters for dispatch. Any
358 * error is stored into the call struct, which the caller must check for.
360 void afs_make_call(struct afs_addr_cursor
*ac
, struct afs_call
*call
, gfp_t gfp
)
362 struct sockaddr_rxrpc
*srx
= &ac
->alist
->addrs
[ac
->index
];
363 struct rxrpc_call
*rxcall
;
369 _enter(",{%pISp},", &srx
->transport
);
371 ASSERT(call
->type
!= NULL
);
372 ASSERT(call
->type
->name
!= NULL
);
374 _debug("____MAKE %p{%s,%x} [%d]____",
375 call
, call
->type
->name
, key_serial(call
->key
),
376 atomic_read(&call
->net
->nr_outstanding_calls
));
378 call
->addr_ix
= ac
->index
;
379 call
->alist
= afs_get_addrlist(ac
->alist
);
381 /* Work out the length we're going to transmit. This is awkward for
382 * calls such as FS.StoreData where there's an extra injection of data
383 * after the initial fixed part.
385 tx_total_len
= call
->request_size
;
386 if (call
->send_pages
) {
387 struct afs_operation
*op
= call
->op
;
389 if (op
->store
.last
== op
->store
.first
) {
390 tx_total_len
+= op
->store
.last_to
- op
->store
.first_offset
;
392 /* It looks mathematically like you should be able to
393 * combine the following lines with the ones above, but
394 * unsigned arithmetic is fun when it wraps...
396 tx_total_len
+= PAGE_SIZE
- op
->store
.first_offset
;
397 tx_total_len
+= op
->store
.last_to
;
398 tx_total_len
+= (op
->store
.last
- op
->store
.first
- 1) * PAGE_SIZE
;
402 /* If the call is going to be asynchronous, we need an extra ref for
403 * the call to hold itself so the caller need not hang on to its ref.
406 afs_get_call(call
, afs_call_trace_get
);
407 call
->drop_ref
= true;
411 rxcall
= rxrpc_kernel_begin_call(call
->net
->socket
, srx
, call
->key
,
415 afs_wake_up_async_call
:
416 afs_wake_up_call_waiter
),
418 (call
->intr
? RXRPC_PREINTERRUPTIBLE
:
419 RXRPC_UNINTERRUPTIBLE
),
421 if (IS_ERR(rxcall
)) {
422 ret
= PTR_ERR(rxcall
);
424 goto error_kill_call
;
427 call
->rxcall
= rxcall
;
429 if (call
->max_lifespan
)
430 rxrpc_kernel_set_max_life(call
->net
->socket
, rxcall
,
433 /* send the request */
434 iov
[0].iov_base
= call
->request
;
435 iov
[0].iov_len
= call
->request_size
;
439 iov_iter_kvec(&msg
.msg_iter
, WRITE
, iov
, 1, call
->request_size
);
440 msg
.msg_control
= NULL
;
441 msg
.msg_controllen
= 0;
442 msg
.msg_flags
= MSG_WAITALL
| (call
->send_pages
? MSG_MORE
: 0);
444 ret
= rxrpc_kernel_send_data(call
->net
->socket
, rxcall
,
445 &msg
, call
->request_size
,
446 afs_notify_end_request_tx
);
450 if (call
->send_pages
) {
451 ret
= afs_send_pages(call
, &msg
);
456 /* Note that at this point, we may have received the reply or an abort
457 * - and an asynchronous call may already have completed.
459 * afs_wait_for_call_to_complete(call, ac)
460 * must be called to synchronously clean up.
465 if (ret
!= -ECONNABORTED
) {
466 rxrpc_kernel_abort_call(call
->net
->socket
, rxcall
,
467 RX_USER_ABORT
, ret
, "KSD");
469 iov_iter_kvec(&msg
.msg_iter
, READ
, NULL
, 0, 0);
470 rxrpc_kernel_recv_data(call
->net
->socket
, rxcall
,
471 &msg
.msg_iter
, false,
472 &call
->abort_code
, &call
->service_id
);
473 ac
->abort_code
= call
->abort_code
;
474 ac
->responded
= true;
477 trace_afs_call_done(call
);
479 if (call
->type
->done
)
480 call
->type
->done(call
);
482 /* We need to dispose of the extra ref we grabbed for an async call.
483 * The call, however, might be queued on afs_async_calls and we need to
484 * make sure we don't get any more notifications that might requeue it.
487 rxrpc_kernel_end_call(call
->net
->socket
, call
->rxcall
);
491 if (cancel_work_sync(&call
->async_work
))
497 call
->state
= AFS_CALL_COMPLETE
;
498 _leave(" = %d", ret
);
502 * deliver messages to a call
504 static void afs_deliver_to_call(struct afs_call
*call
)
506 enum afs_call_state state
;
507 u32 abort_code
, remote_abort
= 0;
510 _enter("%s", call
->type
->name
);
512 while (state
= READ_ONCE(call
->state
),
513 state
== AFS_CALL_CL_AWAIT_REPLY
||
514 state
== AFS_CALL_SV_AWAIT_OP_ID
||
515 state
== AFS_CALL_SV_AWAIT_REQUEST
||
516 state
== AFS_CALL_SV_AWAIT_ACK
518 if (state
== AFS_CALL_SV_AWAIT_ACK
) {
519 iov_iter_kvec(&call
->def_iter
, READ
, NULL
, 0, 0);
520 ret
= rxrpc_kernel_recv_data(call
->net
->socket
,
521 call
->rxcall
, &call
->def_iter
,
522 false, &remote_abort
,
524 trace_afs_receive_data(call
, &call
->def_iter
, false, ret
);
526 if (ret
== -EINPROGRESS
|| ret
== -EAGAIN
)
528 if (ret
< 0 || ret
== 1) {
536 if (!call
->have_reply_time
&&
537 rxrpc_kernel_get_reply_time(call
->net
->socket
,
540 call
->have_reply_time
= true;
542 ret
= call
->type
->deliver(call
);
543 state
= READ_ONCE(call
->state
);
544 if (ret
== 0 && call
->unmarshalling_error
)
548 afs_queue_call_work(call
);
549 if (state
== AFS_CALL_CL_PROC_REPLY
) {
551 set_bit(AFS_SERVER_FL_MAY_HAVE_CB
,
552 &call
->op
->server
->flags
);
555 ASSERTCMP(state
, >, AFS_CALL_CL_PROC_REPLY
);
561 ASSERTCMP(state
, ==, AFS_CALL_COMPLETE
);
564 abort_code
= RXGEN_OPCODE
;
565 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
566 abort_code
, ret
, "KIV");
569 pr_err("kAFS: Call %u in bad state %u\n",
570 call
->debug_id
, state
);
575 abort_code
= RXGEN_CC_UNMARSHAL
;
576 if (state
!= AFS_CALL_CL_AWAIT_REPLY
)
577 abort_code
= RXGEN_SS_UNMARSHAL
;
578 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
579 abort_code
, ret
, "KUM");
582 abort_code
= RX_USER_ABORT
;
583 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
584 abort_code
, ret
, "KER");
590 if (call
->type
->done
)
591 call
->type
->done(call
);
599 afs_set_call_complete(call
, ret
, remote_abort
);
600 state
= AFS_CALL_COMPLETE
;
605 * Wait synchronously for a call to complete and clean up the call struct.
607 long afs_wait_for_call_to_complete(struct afs_call
*call
,
608 struct afs_addr_cursor
*ac
)
611 bool rxrpc_complete
= false;
613 DECLARE_WAITQUEUE(myself
, current
);
621 add_wait_queue(&call
->waitq
, &myself
);
623 set_current_state(TASK_UNINTERRUPTIBLE
);
625 /* deliver any messages that are in the queue */
626 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
) &&
627 call
->need_attention
) {
628 call
->need_attention
= false;
629 __set_current_state(TASK_RUNNING
);
630 afs_deliver_to_call(call
);
634 if (afs_check_call_state(call
, AFS_CALL_COMPLETE
))
637 if (!rxrpc_kernel_check_life(call
->net
->socket
, call
->rxcall
)) {
638 /* rxrpc terminated the call. */
639 rxrpc_complete
= true;
646 remove_wait_queue(&call
->waitq
, &myself
);
647 __set_current_state(TASK_RUNNING
);
649 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
)) {
650 if (rxrpc_complete
) {
651 afs_set_call_complete(call
, call
->error
, call
->abort_code
);
653 /* Kill off the call if it's still live. */
654 _debug("call interrupted");
655 if (rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
656 RX_USER_ABORT
, -EINTR
, "KWI"))
657 afs_set_call_complete(call
, -EINTR
, 0);
661 spin_lock_bh(&call
->state_lock
);
662 ac
->abort_code
= call
->abort_code
;
663 ac
->error
= call
->error
;
664 spin_unlock_bh(&call
->state_lock
);
674 ac
->responded
= true;
679 _debug("call complete");
681 _leave(" = %p", (void *)ret
);
686 * wake up a waiting call
688 static void afs_wake_up_call_waiter(struct sock
*sk
, struct rxrpc_call
*rxcall
,
689 unsigned long call_user_ID
)
691 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
693 call
->need_attention
= true;
694 wake_up(&call
->waitq
);
698 * wake up an asynchronous call
700 static void afs_wake_up_async_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
701 unsigned long call_user_ID
)
703 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
706 trace_afs_notify_call(rxcall
, call
);
707 call
->need_attention
= true;
709 u
= atomic_fetch_add_unless(&call
->usage
, 1, 0);
711 trace_afs_call(call
, afs_call_trace_wake
, u
+ 1,
712 atomic_read(&call
->net
->nr_outstanding_calls
),
713 __builtin_return_address(0));
715 if (!queue_work(afs_async_calls
, &call
->async_work
))
721 * Perform I/O processing on an asynchronous call. The work item carries a ref
722 * to the call struct that we either need to release or to pass on.
724 static void afs_process_async_call(struct work_struct
*work
)
726 struct afs_call
*call
= container_of(work
, struct afs_call
, async_work
);
730 if (call
->state
< AFS_CALL_COMPLETE
&& call
->need_attention
) {
731 call
->need_attention
= false;
732 afs_deliver_to_call(call
);
739 static void afs_rx_attach(struct rxrpc_call
*rxcall
, unsigned long user_call_ID
)
741 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
743 call
->rxcall
= rxcall
;
747 * Charge the incoming call preallocation.
749 void afs_charge_preallocation(struct work_struct
*work
)
751 struct afs_net
*net
=
752 container_of(work
, struct afs_net
, charge_preallocation_work
);
753 struct afs_call
*call
= net
->spare_incoming_call
;
757 call
= afs_alloc_call(net
, &afs_RXCMxxxx
, GFP_KERNEL
);
761 call
->drop_ref
= true;
763 call
->state
= AFS_CALL_SV_AWAIT_OP_ID
;
764 init_waitqueue_head(&call
->waitq
);
765 afs_extract_to_tmp(call
);
768 if (rxrpc_kernel_charge_accept(net
->socket
,
769 afs_wake_up_async_call
,
777 net
->spare_incoming_call
= call
;
781 * Discard a preallocated call when a socket is shut down.
783 static void afs_rx_discard_new_call(struct rxrpc_call
*rxcall
,
784 unsigned long user_call_ID
)
786 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
793 * Notification of an incoming call.
795 static void afs_rx_new_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
796 unsigned long user_call_ID
)
798 struct afs_net
*net
= afs_sock2net(sk
);
800 queue_work(afs_wq
, &net
->charge_preallocation_work
);
804 * Grab the operation ID from an incoming cache manager call. The socket
805 * buffer is discarded on error or if we don't yet have sufficient data.
807 static int afs_deliver_cm_op_id(struct afs_call
*call
)
811 _enter("{%zu}", iov_iter_count(call
->iter
));
813 /* the operation ID forms the first four bytes of the request data */
814 ret
= afs_extract_data(call
, true);
818 call
->operation_ID
= ntohl(call
->tmp
);
819 afs_set_call_state(call
, AFS_CALL_SV_AWAIT_OP_ID
, AFS_CALL_SV_AWAIT_REQUEST
);
821 /* ask the cache manager to route the call (it'll change the call type
823 if (!afs_cm_incoming_call(call
))
826 trace_afs_cb_call(call
);
828 /* pass responsibility for the remainer of this message off to the
829 * cache manager op */
830 return call
->type
->deliver(call
);
834 * Advance the AFS call state when an RxRPC service call ends the transmit
837 static void afs_notify_end_reply_tx(struct sock
*sock
,
838 struct rxrpc_call
*rxcall
,
839 unsigned long call_user_ID
)
841 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
843 afs_set_call_state(call
, AFS_CALL_SV_REPLYING
, AFS_CALL_SV_AWAIT_ACK
);
847 * send an empty reply
849 void afs_send_empty_reply(struct afs_call
*call
)
851 struct afs_net
*net
= call
->net
;
856 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, 0);
860 iov_iter_kvec(&msg
.msg_iter
, WRITE
, NULL
, 0, 0);
861 msg
.msg_control
= NULL
;
862 msg
.msg_controllen
= 0;
865 switch (rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, 0,
866 afs_notify_end_reply_tx
)) {
868 _leave(" [replied]");
873 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
874 RX_USER_ABORT
, -ENOMEM
, "KOO");
883 * send a simple reply
885 void afs_send_simple_reply(struct afs_call
*call
, const void *buf
, size_t len
)
887 struct afs_net
*net
= call
->net
;
894 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, len
);
896 iov
[0].iov_base
= (void *) buf
;
897 iov
[0].iov_len
= len
;
900 iov_iter_kvec(&msg
.msg_iter
, WRITE
, iov
, 1, len
);
901 msg
.msg_control
= NULL
;
902 msg
.msg_controllen
= 0;
905 n
= rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, len
,
906 afs_notify_end_reply_tx
);
909 _leave(" [replied]");
915 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
916 RX_USER_ABORT
, -ENOMEM
, "KOO");
922 * Extract a piece of data from the received data socket buffers.
924 int afs_extract_data(struct afs_call
*call
, bool want_more
)
926 struct afs_net
*net
= call
->net
;
927 struct iov_iter
*iter
= call
->iter
;
928 enum afs_call_state state
;
929 u32 remote_abort
= 0;
932 _enter("{%s,%zu},%d", call
->type
->name
, iov_iter_count(iter
), want_more
);
934 ret
= rxrpc_kernel_recv_data(net
->socket
, call
->rxcall
, iter
,
935 want_more
, &remote_abort
,
937 if (ret
== 0 || ret
== -EAGAIN
)
940 state
= READ_ONCE(call
->state
);
943 case AFS_CALL_CL_AWAIT_REPLY
:
944 afs_set_call_state(call
, state
, AFS_CALL_CL_PROC_REPLY
);
946 case AFS_CALL_SV_AWAIT_REQUEST
:
947 afs_set_call_state(call
, state
, AFS_CALL_SV_REPLYING
);
949 case AFS_CALL_COMPLETE
:
950 kdebug("prem complete %d", call
->error
);
951 return afs_io_error(call
, afs_io_error_extract
);
958 afs_set_call_complete(call
, ret
, remote_abort
);
963 * Log protocol error production.
965 noinline
int afs_protocol_error(struct afs_call
*call
,
966 enum afs_eproto_cause cause
)
968 trace_afs_protocol_error(call
, cause
);
970 call
->unmarshalling_error
= true;