WIP FPC-III support
[linux/fpc-iii.git] / fs / btrfs / discard.c
blob2b8383d4114490bcc162f174a95ff1d6b2ef79e1
1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
16 * This contains the logic to handle async discard.
18 * Async discard manages trimming of free space outside of transaction commit.
19 * Discarding is done by managing the block_groups on a LRU list based on free
20 * space recency. Two passes are used to first prioritize discarding extents
21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
22 * The block_groups are maintained on multiple lists to allow for multiple
23 * passes with different discard filter requirements. A delayed work item is
24 * used to manage discarding with timeout determined by a max of the delay
25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
26 * BTRFS_DISCARD_MAX_DELAY.
28 * Note, this only keeps track of block_groups that are explicitly for data.
29 * Mixed block_groups are not supported.
31 * The first list is special to manage discarding of fully free block groups.
32 * This is necessary because we issue a final trim for a full free block group
33 * after forgetting it. When a block group becomes unused, instead of directly
34 * being added to the unused_bgs list, we add it to this first list. Then
35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
36 * list.
38 * The in-memory free space cache serves as the backing state for discard.
39 * Consequently this means there is no persistence. We opt to load all the
40 * block groups in as not discarded, so the mount case degenerates to the
41 * crashing case.
43 * As the free space cache uses bitmaps, there exists a tradeoff between
44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
45 * Here we opt to let untrimmed regions merge with everything while only letting
46 * trimmed regions merge with other trimmed regions. This can cause
47 * overtrimming, but the coalescing benefit seems to be worth it. Additionally,
48 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap,
49 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in,
50 * this resets the state and we will retry trimming the whole bitmap. This is a
51 * tradeoff between discard state accuracy and the cost of accounting.
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC)
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS (10U)
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
67 BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 BTRFS_ASYNC_DISCARD_MIN_FILTER
71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 struct btrfs_block_group *block_group)
74 return &discard_ctl->discard_list[block_group->discard_index];
77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 struct btrfs_block_group *block_group)
80 if (!btrfs_run_discard_work(discard_ctl))
81 return;
83 if (list_empty(&block_group->discard_list) ||
84 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
85 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
86 block_group->discard_index = BTRFS_DISCARD_INDEX_START;
87 block_group->discard_eligible_time = (ktime_get_ns() +
88 BTRFS_DISCARD_DELAY);
89 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
92 list_move_tail(&block_group->discard_list,
93 get_discard_list(discard_ctl, block_group));
96 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
97 struct btrfs_block_group *block_group)
99 if (!btrfs_is_block_group_data_only(block_group))
100 return;
102 spin_lock(&discard_ctl->lock);
103 __add_to_discard_list(discard_ctl, block_group);
104 spin_unlock(&discard_ctl->lock);
107 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108 struct btrfs_block_group *block_group)
110 spin_lock(&discard_ctl->lock);
112 if (!btrfs_run_discard_work(discard_ctl)) {
113 spin_unlock(&discard_ctl->lock);
114 return;
117 list_del_init(&block_group->discard_list);
119 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120 block_group->discard_eligible_time = (ktime_get_ns() +
121 BTRFS_DISCARD_UNUSED_DELAY);
122 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123 list_add_tail(&block_group->discard_list,
124 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
126 spin_unlock(&discard_ctl->lock);
129 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130 struct btrfs_block_group *block_group)
132 bool running = false;
134 spin_lock(&discard_ctl->lock);
136 if (block_group == discard_ctl->block_group) {
137 running = true;
138 discard_ctl->block_group = NULL;
141 block_group->discard_eligible_time = 0;
142 list_del_init(&block_group->discard_list);
144 spin_unlock(&discard_ctl->lock);
146 return running;
150 * find_next_block_group - find block_group that's up next for discarding
151 * @discard_ctl: discard control
152 * @now: current time
154 * Iterate over the discard lists to find the next block_group up for
155 * discarding checking the discard_eligible_time of block_group.
157 static struct btrfs_block_group *find_next_block_group(
158 struct btrfs_discard_ctl *discard_ctl,
159 u64 now)
161 struct btrfs_block_group *ret_block_group = NULL, *block_group;
162 int i;
164 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165 struct list_head *discard_list = &discard_ctl->discard_list[i];
167 if (!list_empty(discard_list)) {
168 block_group = list_first_entry(discard_list,
169 struct btrfs_block_group,
170 discard_list);
172 if (!ret_block_group)
173 ret_block_group = block_group;
175 if (ret_block_group->discard_eligible_time < now)
176 break;
178 if (ret_block_group->discard_eligible_time >
179 block_group->discard_eligible_time)
180 ret_block_group = block_group;
184 return ret_block_group;
188 * peek_discard_list - wrap find_next_block_group()
189 * @discard_ctl: discard control
190 * @discard_state: the discard_state of the block_group after state management
191 * @discard_index: the discard_index of the block_group after state management
193 * This wraps find_next_block_group() and sets the block_group to be in use.
194 * discard_state's control flow is managed here. Variables related to
195 * discard_state are reset here as needed (eg discard_cursor). @discard_state
196 * and @discard_index are remembered as it may change while we're discarding,
197 * but we want the discard to execute in the context determined here.
199 static struct btrfs_block_group *peek_discard_list(
200 struct btrfs_discard_ctl *discard_ctl,
201 enum btrfs_discard_state *discard_state,
202 int *discard_index, u64 now)
204 struct btrfs_block_group *block_group;
206 spin_lock(&discard_ctl->lock);
207 again:
208 block_group = find_next_block_group(discard_ctl, now);
210 if (block_group && now >= block_group->discard_eligible_time) {
211 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
212 block_group->used != 0) {
213 if (btrfs_is_block_group_data_only(block_group))
214 __add_to_discard_list(discard_ctl, block_group);
215 else
216 list_del_init(&block_group->discard_list);
217 goto again;
219 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
220 block_group->discard_cursor = block_group->start;
221 block_group->discard_state = BTRFS_DISCARD_EXTENTS;
223 discard_ctl->block_group = block_group;
225 if (block_group) {
226 *discard_state = block_group->discard_state;
227 *discard_index = block_group->discard_index;
229 spin_unlock(&discard_ctl->lock);
231 return block_group;
235 * btrfs_discard_check_filter - updates a block groups filters
236 * @block_group: block group of interest
237 * @bytes: recently freed region size after coalescing
239 * Async discard maintains multiple lists with progressively smaller filters
240 * to prioritize discarding based on size. Should a free space that matches
241 * a larger filter be returned to the free_space_cache, prioritize that discard
242 * by moving @block_group to the proper filter.
244 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
245 u64 bytes)
247 struct btrfs_discard_ctl *discard_ctl;
249 if (!block_group ||
250 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
251 return;
253 discard_ctl = &block_group->fs_info->discard_ctl;
255 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
256 bytes >= discard_minlen[block_group->discard_index - 1]) {
257 int i;
259 remove_from_discard_list(discard_ctl, block_group);
261 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
262 i++) {
263 if (bytes >= discard_minlen[i]) {
264 block_group->discard_index = i;
265 add_to_discard_list(discard_ctl, block_group);
266 break;
273 * btrfs_update_discard_index - moves a block group along the discard lists
274 * @discard_ctl: discard control
275 * @block_group: block_group of interest
277 * Increment @block_group's discard_index. If it falls of the list, let it be.
278 * Otherwise add it back to the appropriate list.
280 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
281 struct btrfs_block_group *block_group)
283 block_group->discard_index++;
284 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
285 block_group->discard_index = 1;
286 return;
289 add_to_discard_list(discard_ctl, block_group);
293 * btrfs_discard_cancel_work - remove a block_group from the discard lists
294 * @discard_ctl: discard control
295 * @block_group: block_group of interest
297 * This removes @block_group from the discard lists. If necessary, it waits on
298 * the current work and then reschedules the delayed work.
300 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
301 struct btrfs_block_group *block_group)
303 if (remove_from_discard_list(discard_ctl, block_group)) {
304 cancel_delayed_work_sync(&discard_ctl->work);
305 btrfs_discard_schedule_work(discard_ctl, true);
310 * btrfs_discard_queue_work - handles queuing the block_groups
311 * @discard_ctl: discard control
312 * @block_group: block_group of interest
314 * This maintains the LRU order of the discard lists.
316 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
317 struct btrfs_block_group *block_group)
319 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
320 return;
322 if (block_group->used == 0)
323 add_to_discard_unused_list(discard_ctl, block_group);
324 else
325 add_to_discard_list(discard_ctl, block_group);
327 if (!delayed_work_pending(&discard_ctl->work))
328 btrfs_discard_schedule_work(discard_ctl, false);
331 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
332 u64 now, bool override)
334 struct btrfs_block_group *block_group;
336 if (!btrfs_run_discard_work(discard_ctl))
337 return;
338 if (!override && delayed_work_pending(&discard_ctl->work))
339 return;
341 block_group = find_next_block_group(discard_ctl, now);
342 if (block_group) {
343 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
344 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
347 * A single delayed workqueue item is responsible for
348 * discarding, so we can manage the bytes rate limit by keeping
349 * track of the previous discard.
351 if (kbps_limit && discard_ctl->prev_discard) {
352 u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
353 u64 bps_delay = div64_u64(discard_ctl->prev_discard *
354 NSEC_PER_SEC, bps_limit);
356 delay = max(delay, bps_delay);
360 * This timeout is to hopefully prevent immediate discarding
361 * in a recently allocated block group.
363 if (now < block_group->discard_eligible_time) {
364 u64 bg_timeout = block_group->discard_eligible_time - now;
366 delay = max(delay, bg_timeout);
369 if (override && discard_ctl->prev_discard) {
370 u64 elapsed = now - discard_ctl->prev_discard_time;
372 if (delay > elapsed)
373 delay -= elapsed;
374 else
375 delay = 0;
378 mod_delayed_work(discard_ctl->discard_workers,
379 &discard_ctl->work, nsecs_to_jiffies(delay));
384 * btrfs_discard_schedule_work - responsible for scheduling the discard work
385 * @discard_ctl: discard control
386 * @override: override the current timer
388 * Discards are issued by a delayed workqueue item. @override is used to
389 * update the current delay as the baseline delay interval is reevaluated on
390 * transaction commit. This is also maxed with any other rate limit.
392 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
393 bool override)
395 const u64 now = ktime_get_ns();
397 spin_lock(&discard_ctl->lock);
398 __btrfs_discard_schedule_work(discard_ctl, now, override);
399 spin_unlock(&discard_ctl->lock);
403 * btrfs_finish_discard_pass - determine next step of a block_group
404 * @discard_ctl: discard control
405 * @block_group: block_group of interest
407 * This determines the next step for a block group after it's finished going
408 * through a pass on a discard list. If it is unused and fully trimmed, we can
409 * mark it unused and send it to the unused_bgs path. Otherwise, pass it onto
410 * the appropriate filter list or let it fall off.
412 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
413 struct btrfs_block_group *block_group)
415 remove_from_discard_list(discard_ctl, block_group);
417 if (block_group->used == 0) {
418 if (btrfs_is_free_space_trimmed(block_group))
419 btrfs_mark_bg_unused(block_group);
420 else
421 add_to_discard_unused_list(discard_ctl, block_group);
422 } else {
423 btrfs_update_discard_index(discard_ctl, block_group);
428 * btrfs_discard_workfn - discard work function
429 * @work: work
431 * This finds the next block_group to start discarding and then discards a
432 * single region. It does this in a two-pass fashion: first extents and second
433 * bitmaps. Completely discarded block groups are sent to the unused_bgs path.
435 static void btrfs_discard_workfn(struct work_struct *work)
437 struct btrfs_discard_ctl *discard_ctl;
438 struct btrfs_block_group *block_group;
439 enum btrfs_discard_state discard_state;
440 int discard_index = 0;
441 u64 trimmed = 0;
442 u64 minlen = 0;
443 u64 now = ktime_get_ns();
445 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
447 block_group = peek_discard_list(discard_ctl, &discard_state,
448 &discard_index, now);
449 if (!block_group || !btrfs_run_discard_work(discard_ctl))
450 return;
451 if (now < block_group->discard_eligible_time) {
452 btrfs_discard_schedule_work(discard_ctl, false);
453 return;
456 /* Perform discarding */
457 minlen = discard_minlen[discard_index];
459 if (discard_state == BTRFS_DISCARD_BITMAPS) {
460 u64 maxlen = 0;
463 * Use the previous levels minimum discard length as the max
464 * length filter. In the case something is added to make a
465 * region go beyond the max filter, the entire bitmap is set
466 * back to BTRFS_TRIM_STATE_UNTRIMMED.
468 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
469 maxlen = discard_minlen[discard_index - 1];
471 btrfs_trim_block_group_bitmaps(block_group, &trimmed,
472 block_group->discard_cursor,
473 btrfs_block_group_end(block_group),
474 minlen, maxlen, true);
475 discard_ctl->discard_bitmap_bytes += trimmed;
476 } else {
477 btrfs_trim_block_group_extents(block_group, &trimmed,
478 block_group->discard_cursor,
479 btrfs_block_group_end(block_group),
480 minlen, true);
481 discard_ctl->discard_extent_bytes += trimmed;
484 /* Determine next steps for a block_group */
485 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
486 if (discard_state == BTRFS_DISCARD_BITMAPS) {
487 btrfs_finish_discard_pass(discard_ctl, block_group);
488 } else {
489 block_group->discard_cursor = block_group->start;
490 spin_lock(&discard_ctl->lock);
491 if (block_group->discard_state !=
492 BTRFS_DISCARD_RESET_CURSOR)
493 block_group->discard_state =
494 BTRFS_DISCARD_BITMAPS;
495 spin_unlock(&discard_ctl->lock);
499 now = ktime_get_ns();
500 spin_lock(&discard_ctl->lock);
501 discard_ctl->prev_discard = trimmed;
502 discard_ctl->prev_discard_time = now;
503 discard_ctl->block_group = NULL;
504 __btrfs_discard_schedule_work(discard_ctl, now, false);
505 spin_unlock(&discard_ctl->lock);
509 * btrfs_run_discard_work - determines if async discard should be running
510 * @discard_ctl: discard control
512 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
514 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
516 struct btrfs_fs_info *fs_info = container_of(discard_ctl,
517 struct btrfs_fs_info,
518 discard_ctl);
520 return (!(fs_info->sb->s_flags & SB_RDONLY) &&
521 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
525 * btrfs_discard_calc_delay - recalculate the base delay
526 * @discard_ctl: discard control
528 * Recalculate the base delay which is based off the total number of
529 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms)
530 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
532 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
534 s32 discardable_extents;
535 s64 discardable_bytes;
536 u32 iops_limit;
537 unsigned long delay;
539 discardable_extents = atomic_read(&discard_ctl->discardable_extents);
540 if (!discardable_extents)
541 return;
543 spin_lock(&discard_ctl->lock);
546 * The following is to fix a potential -1 discrepenancy that we're not
547 * sure how to reproduce. But given that this is the only place that
548 * utilizes these numbers and this is only called by from
549 * btrfs_finish_extent_commit() which is synchronized, we can correct
550 * here.
552 if (discardable_extents < 0)
553 atomic_add(-discardable_extents,
554 &discard_ctl->discardable_extents);
556 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
557 if (discardable_bytes < 0)
558 atomic64_add(-discardable_bytes,
559 &discard_ctl->discardable_bytes);
561 if (discardable_extents <= 0) {
562 spin_unlock(&discard_ctl->lock);
563 return;
566 iops_limit = READ_ONCE(discard_ctl->iops_limit);
567 if (iops_limit)
568 delay = MSEC_PER_SEC / iops_limit;
569 else
570 delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
572 delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
573 BTRFS_DISCARD_MAX_DELAY_MSEC);
574 discard_ctl->delay_ms = delay;
576 spin_unlock(&discard_ctl->lock);
580 * btrfs_discard_update_discardable - propagate discard counters
581 * @block_group: block_group of interest
583 * This propagates deltas of counters up to the discard_ctl. It maintains a
584 * current counter and a previous counter passing the delta up to the global
585 * stat. Then the current counter value becomes the previous counter value.
587 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
589 struct btrfs_free_space_ctl *ctl;
590 struct btrfs_discard_ctl *discard_ctl;
591 s32 extents_delta;
592 s64 bytes_delta;
594 if (!block_group ||
595 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
596 !btrfs_is_block_group_data_only(block_group))
597 return;
599 ctl = block_group->free_space_ctl;
600 discard_ctl = &block_group->fs_info->discard_ctl;
602 lockdep_assert_held(&ctl->tree_lock);
603 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
604 ctl->discardable_extents[BTRFS_STAT_PREV];
605 if (extents_delta) {
606 atomic_add(extents_delta, &discard_ctl->discardable_extents);
607 ctl->discardable_extents[BTRFS_STAT_PREV] =
608 ctl->discardable_extents[BTRFS_STAT_CURR];
611 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
612 ctl->discardable_bytes[BTRFS_STAT_PREV];
613 if (bytes_delta) {
614 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
615 ctl->discardable_bytes[BTRFS_STAT_PREV] =
616 ctl->discardable_bytes[BTRFS_STAT_CURR];
621 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
622 * @fs_info: fs_info of interest
624 * The unused_bgs list needs to be punted to the discard lists because the
625 * order of operations is changed. In the normal sychronous discard path, the
626 * block groups are trimmed via a single large trim in transaction commit. This
627 * is ultimately what we are trying to avoid with asynchronous discard. Thus,
628 * it must be done before going down the unused_bgs path.
630 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
632 struct btrfs_block_group *block_group, *next;
634 spin_lock(&fs_info->unused_bgs_lock);
635 /* We enabled async discard, so punt all to the queue */
636 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
637 bg_list) {
638 list_del_init(&block_group->bg_list);
639 btrfs_put_block_group(block_group);
640 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
642 spin_unlock(&fs_info->unused_bgs_lock);
646 * btrfs_discard_purge_list - purge discard lists
647 * @discard_ctl: discard control
649 * If we are disabling async discard, we may have intercepted block groups that
650 * are completely free and ready for the unused_bgs path. As discarding will
651 * now happen in transaction commit or not at all, we can safely mark the
652 * corresponding block groups as unused and they will be sent on their merry
653 * way to the unused_bgs list.
655 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
657 struct btrfs_block_group *block_group, *next;
658 int i;
660 spin_lock(&discard_ctl->lock);
661 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
662 list_for_each_entry_safe(block_group, next,
663 &discard_ctl->discard_list[i],
664 discard_list) {
665 list_del_init(&block_group->discard_list);
666 spin_unlock(&discard_ctl->lock);
667 if (block_group->used == 0)
668 btrfs_mark_bg_unused(block_group);
669 spin_lock(&discard_ctl->lock);
672 spin_unlock(&discard_ctl->lock);
675 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
677 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
678 btrfs_discard_cleanup(fs_info);
679 return;
682 btrfs_discard_punt_unused_bgs_list(fs_info);
684 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
687 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
689 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
692 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
694 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
695 int i;
697 spin_lock_init(&discard_ctl->lock);
698 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
700 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
701 INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
703 discard_ctl->prev_discard = 0;
704 discard_ctl->prev_discard_time = 0;
705 atomic_set(&discard_ctl->discardable_extents, 0);
706 atomic64_set(&discard_ctl->discardable_bytes, 0);
707 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
708 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
709 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
710 discard_ctl->kbps_limit = 0;
711 discard_ctl->discard_extent_bytes = 0;
712 discard_ctl->discard_bitmap_bytes = 0;
713 atomic64_set(&discard_ctl->discard_bytes_saved, 0);
716 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
718 btrfs_discard_stop(fs_info);
719 cancel_delayed_work_sync(&fs_info->discard_ctl.work);
720 btrfs_discard_purge_list(&fs_info->discard_ctl);