1 // SPDX-License-Identifier: GPL-2.0
5 #include "space-info.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
14 * HOW DOES SPACE RESERVATION WORK
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
40 * MAKING RESERVATIONS, THE NORMAL CASE
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
47 * space_info->bytes_may_reserve += num_bytes
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61 * Assume we are unable to simply make the reservation because we do not have
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
145 * Because we hold so many reservations for metadata we will allow you to
146 * reserve more space than is currently free in the currently allocate
147 * metadata space. This only happens with metadata, data does not allow
150 * You can see the current logic for when we allow overcommit in
151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
152 * is no unallocated space to be had, all reservations are kept within the
153 * free space in the allocated metadata chunks.
155 * Because of overcommitting, you generally want to use the
156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 * thing with or without extra unallocated space.
160 u64 __pure
btrfs_space_info_used(struct btrfs_space_info
*s_info
,
161 bool may_use_included
)
164 return s_info
->bytes_used
+ s_info
->bytes_reserved
+
165 s_info
->bytes_pinned
+ s_info
->bytes_readonly
+
166 (may_use_included
? s_info
->bytes_may_use
: 0);
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
173 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
175 struct list_head
*head
= &info
->space_info
;
176 struct btrfs_space_info
*found
;
178 list_for_each_entry(found
, head
, list
)
182 static int create_space_info(struct btrfs_fs_info
*info
, u64 flags
)
185 struct btrfs_space_info
*space_info
;
189 space_info
= kzalloc(sizeof(*space_info
), GFP_NOFS
);
193 ret
= percpu_counter_init(&space_info
->total_bytes_pinned
, 0,
200 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
201 INIT_LIST_HEAD(&space_info
->block_groups
[i
]);
202 init_rwsem(&space_info
->groups_sem
);
203 spin_lock_init(&space_info
->lock
);
204 space_info
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
205 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
206 INIT_LIST_HEAD(&space_info
->ro_bgs
);
207 INIT_LIST_HEAD(&space_info
->tickets
);
208 INIT_LIST_HEAD(&space_info
->priority_tickets
);
210 ret
= btrfs_sysfs_add_space_info_type(info
, space_info
);
214 list_add(&space_info
->list
, &info
->space_info
);
215 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
216 info
->data_sinfo
= space_info
;
221 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
223 struct btrfs_super_block
*disk_super
;
229 disk_super
= fs_info
->super_copy
;
230 if (!btrfs_super_root(disk_super
))
233 features
= btrfs_super_incompat_flags(disk_super
);
234 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
237 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
238 ret
= create_space_info(fs_info
, flags
);
243 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
244 ret
= create_space_info(fs_info
, flags
);
246 flags
= BTRFS_BLOCK_GROUP_METADATA
;
247 ret
= create_space_info(fs_info
, flags
);
251 flags
= BTRFS_BLOCK_GROUP_DATA
;
252 ret
= create_space_info(fs_info
, flags
);
258 void btrfs_update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
259 u64 total_bytes
, u64 bytes_used
,
261 struct btrfs_space_info
**space_info
)
263 struct btrfs_space_info
*found
;
266 factor
= btrfs_bg_type_to_factor(flags
);
268 found
= btrfs_find_space_info(info
, flags
);
270 spin_lock(&found
->lock
);
271 found
->total_bytes
+= total_bytes
;
272 found
->disk_total
+= total_bytes
* factor
;
273 found
->bytes_used
+= bytes_used
;
274 found
->disk_used
+= bytes_used
* factor
;
275 found
->bytes_readonly
+= bytes_readonly
;
278 btrfs_try_granting_tickets(info
, found
);
279 spin_unlock(&found
->lock
);
283 struct btrfs_space_info
*btrfs_find_space_info(struct btrfs_fs_info
*info
,
286 struct list_head
*head
= &info
->space_info
;
287 struct btrfs_space_info
*found
;
289 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
291 list_for_each_entry(found
, head
, list
) {
292 if (found
->flags
& flags
)
298 static u64
calc_available_free_space(struct btrfs_fs_info
*fs_info
,
299 struct btrfs_space_info
*space_info
,
300 enum btrfs_reserve_flush_enum flush
)
306 if (space_info
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
307 profile
= btrfs_system_alloc_profile(fs_info
);
309 profile
= btrfs_metadata_alloc_profile(fs_info
);
311 avail
= atomic64_read(&fs_info
->free_chunk_space
);
314 * If we have dup, raid1 or raid10 then only half of the free
315 * space is actually usable. For raid56, the space info used
316 * doesn't include the parity drive, so we don't have to
319 factor
= btrfs_bg_type_to_factor(profile
);
320 avail
= div_u64(avail
, factor
);
323 * If we aren't flushing all things, let us overcommit up to
324 * 1/2th of the space. If we can flush, don't let us overcommit
325 * too much, let it overcommit up to 1/8 of the space.
327 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
334 int btrfs_can_overcommit(struct btrfs_fs_info
*fs_info
,
335 struct btrfs_space_info
*space_info
, u64 bytes
,
336 enum btrfs_reserve_flush_enum flush
)
341 /* Don't overcommit when in mixed mode */
342 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
345 used
= btrfs_space_info_used(space_info
, true);
346 avail
= calc_available_free_space(fs_info
, space_info
, flush
);
348 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
353 static void remove_ticket(struct btrfs_space_info
*space_info
,
354 struct reserve_ticket
*ticket
)
356 if (!list_empty(&ticket
->list
)) {
357 list_del_init(&ticket
->list
);
358 ASSERT(space_info
->reclaim_size
>= ticket
->bytes
);
359 space_info
->reclaim_size
-= ticket
->bytes
;
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
367 void btrfs_try_granting_tickets(struct btrfs_fs_info
*fs_info
,
368 struct btrfs_space_info
*space_info
)
370 struct list_head
*head
;
371 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
373 lockdep_assert_held(&space_info
->lock
);
375 head
= &space_info
->priority_tickets
;
377 while (!list_empty(head
)) {
378 struct reserve_ticket
*ticket
;
379 u64 used
= btrfs_space_info_used(space_info
, true);
381 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
383 /* Check and see if our ticket can be satisified now. */
384 if ((used
+ ticket
->bytes
<= space_info
->total_bytes
) ||
385 btrfs_can_overcommit(fs_info
, space_info
, ticket
->bytes
,
387 btrfs_space_info_update_bytes_may_use(fs_info
,
390 remove_ticket(space_info
, ticket
);
392 space_info
->tickets_id
++;
393 wake_up(&ticket
->wait
);
399 if (head
== &space_info
->priority_tickets
) {
400 head
= &space_info
->tickets
;
401 flush
= BTRFS_RESERVE_FLUSH_ALL
;
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
409 spin_lock(&__rsv->lock); \
410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
411 __rsv->size, __rsv->reserved); \
412 spin_unlock(&__rsv->lock); \
415 static void __btrfs_dump_space_info(struct btrfs_fs_info
*fs_info
,
416 struct btrfs_space_info
*info
)
418 lockdep_assert_held(&info
->lock
);
420 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
422 info
->total_bytes
- btrfs_space_info_used(info
, true),
423 info
->full
? "" : "not ");
425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
427 info
->bytes_reserved
, info
->bytes_may_use
,
428 info
->bytes_readonly
);
430 DUMP_BLOCK_RSV(fs_info
, global_block_rsv
);
431 DUMP_BLOCK_RSV(fs_info
, trans_block_rsv
);
432 DUMP_BLOCK_RSV(fs_info
, chunk_block_rsv
);
433 DUMP_BLOCK_RSV(fs_info
, delayed_block_rsv
);
434 DUMP_BLOCK_RSV(fs_info
, delayed_refs_rsv
);
438 void btrfs_dump_space_info(struct btrfs_fs_info
*fs_info
,
439 struct btrfs_space_info
*info
, u64 bytes
,
440 int dump_block_groups
)
442 struct btrfs_block_group
*cache
;
445 spin_lock(&info
->lock
);
446 __btrfs_dump_space_info(fs_info
, info
);
447 spin_unlock(&info
->lock
);
449 if (!dump_block_groups
)
452 down_read(&info
->groups_sem
);
454 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
455 spin_lock(&cache
->lock
);
457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458 cache
->start
, cache
->length
, cache
->used
, cache
->pinned
,
459 cache
->reserved
, cache
->ro
? "[readonly]" : "");
460 spin_unlock(&cache
->lock
);
461 btrfs_dump_free_space(cache
, bytes
);
463 if (++index
< BTRFS_NR_RAID_TYPES
)
465 up_read(&info
->groups_sem
);
468 static inline u64
calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
474 bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1);
475 nr
= div64_u64(to_reclaim
, bytes
);
481 #define EXTENT_SIZE_PER_ITEM SZ_256K
484 * shrink metadata reservation for delalloc
486 static void shrink_delalloc(struct btrfs_fs_info
*fs_info
,
487 struct btrfs_space_info
*space_info
,
488 u64 to_reclaim
, bool wait_ordered
)
490 struct btrfs_trans_handle
*trans
;
497 /* Calc the number of the pages we need flush for space reservation */
498 if (to_reclaim
== U64_MAX
) {
502 * to_reclaim is set to however much metadata we need to
503 * reclaim, but reclaiming that much data doesn't really track
504 * exactly, so increase the amount to reclaim by 2x in order to
505 * make sure we're flushing enough delalloc to hopefully reclaim
506 * some metadata reservations.
508 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
) * 2;
509 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
512 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
514 delalloc_bytes
= percpu_counter_sum_positive(
515 &fs_info
->delalloc_bytes
);
516 dio_bytes
= percpu_counter_sum_positive(&fs_info
->dio_bytes
);
517 if (delalloc_bytes
== 0 && dio_bytes
== 0) {
521 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
526 * If we are doing more ordered than delalloc we need to just wait on
527 * ordered extents, otherwise we'll waste time trying to flush delalloc
528 * that likely won't give us the space back we need.
530 if (dio_bytes
> delalloc_bytes
)
534 while ((delalloc_bytes
|| dio_bytes
) && loops
< 3) {
535 u64 nr_pages
= min(delalloc_bytes
, to_reclaim
) >> PAGE_SHIFT
;
537 btrfs_start_delalloc_roots(fs_info
, nr_pages
, true);
540 if (wait_ordered
&& !trans
) {
541 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
543 time_left
= schedule_timeout_killable(1);
548 spin_lock(&space_info
->lock
);
549 if (list_empty(&space_info
->tickets
) &&
550 list_empty(&space_info
->priority_tickets
)) {
551 spin_unlock(&space_info
->lock
);
554 spin_unlock(&space_info
->lock
);
556 delalloc_bytes
= percpu_counter_sum_positive(
557 &fs_info
->delalloc_bytes
);
558 dio_bytes
= percpu_counter_sum_positive(&fs_info
->dio_bytes
);
563 * maybe_commit_transaction - possibly commit the transaction if its ok to
564 * @root - the root we're allocating for
565 * @bytes - the number of bytes we want to reserve
566 * @force - force the commit
568 * This will check to make sure that committing the transaction will actually
569 * get us somewhere and then commit the transaction if it does. Otherwise it
570 * will return -ENOSPC.
572 static int may_commit_transaction(struct btrfs_fs_info
*fs_info
,
573 struct btrfs_space_info
*space_info
)
575 struct reserve_ticket
*ticket
= NULL
;
576 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
577 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
578 struct btrfs_block_rsv
*trans_rsv
= &fs_info
->trans_block_rsv
;
579 struct btrfs_trans_handle
*trans
;
580 u64 reclaim_bytes
= 0;
581 u64 bytes_needed
= 0;
582 u64 cur_free_bytes
= 0;
584 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
588 spin_lock(&space_info
->lock
);
589 cur_free_bytes
= btrfs_space_info_used(space_info
, true);
590 if (cur_free_bytes
< space_info
->total_bytes
)
591 cur_free_bytes
= space_info
->total_bytes
- cur_free_bytes
;
595 if (!list_empty(&space_info
->priority_tickets
))
596 ticket
= list_first_entry(&space_info
->priority_tickets
,
597 struct reserve_ticket
, list
);
598 else if (!list_empty(&space_info
->tickets
))
599 ticket
= list_first_entry(&space_info
->tickets
,
600 struct reserve_ticket
, list
);
602 bytes_needed
= ticket
->bytes
;
604 if (bytes_needed
> cur_free_bytes
)
605 bytes_needed
-= cur_free_bytes
;
608 spin_unlock(&space_info
->lock
);
613 trans
= btrfs_join_transaction(fs_info
->extent_root
);
615 return PTR_ERR(trans
);
618 * See if there is enough pinned space to make this reservation, or if
619 * we have block groups that are going to be freed, allowing us to
620 * possibly do a chunk allocation the next loop through.
622 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
) ||
623 __percpu_counter_compare(&space_info
->total_bytes_pinned
,
625 BTRFS_TOTAL_BYTES_PINNED_BATCH
) >= 0)
629 * See if there is some space in the delayed insertion reserve for this
630 * reservation. If the space_info's don't match (like for DATA or
631 * SYSTEM) then just go enospc, reclaiming this space won't recover any
632 * space to satisfy those reservations.
634 if (space_info
!= delayed_rsv
->space_info
)
637 spin_lock(&delayed_rsv
->lock
);
638 reclaim_bytes
+= delayed_rsv
->reserved
;
639 spin_unlock(&delayed_rsv
->lock
);
641 spin_lock(&delayed_refs_rsv
->lock
);
642 reclaim_bytes
+= delayed_refs_rsv
->reserved
;
643 spin_unlock(&delayed_refs_rsv
->lock
);
645 spin_lock(&trans_rsv
->lock
);
646 reclaim_bytes
+= trans_rsv
->reserved
;
647 spin_unlock(&trans_rsv
->lock
);
649 if (reclaim_bytes
>= bytes_needed
)
651 bytes_needed
-= reclaim_bytes
;
653 if (__percpu_counter_compare(&space_info
->total_bytes_pinned
,
655 BTRFS_TOTAL_BYTES_PINNED_BATCH
) < 0)
659 return btrfs_commit_transaction(trans
);
661 btrfs_end_transaction(trans
);
666 * Try to flush some data based on policy set by @state. This is only advisory
667 * and may fail for various reasons. The caller is supposed to examine the
668 * state of @space_info to detect the outcome.
670 static void flush_space(struct btrfs_fs_info
*fs_info
,
671 struct btrfs_space_info
*space_info
, u64 num_bytes
,
674 struct btrfs_root
*root
= fs_info
->extent_root
;
675 struct btrfs_trans_handle
*trans
;
680 case FLUSH_DELAYED_ITEMS_NR
:
681 case FLUSH_DELAYED_ITEMS
:
682 if (state
== FLUSH_DELAYED_ITEMS_NR
)
683 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
687 trans
= btrfs_join_transaction(root
);
689 ret
= PTR_ERR(trans
);
692 ret
= btrfs_run_delayed_items_nr(trans
, nr
);
693 btrfs_end_transaction(trans
);
696 case FLUSH_DELALLOC_WAIT
:
697 shrink_delalloc(fs_info
, space_info
, num_bytes
,
698 state
== FLUSH_DELALLOC_WAIT
);
700 case FLUSH_DELAYED_REFS_NR
:
701 case FLUSH_DELAYED_REFS
:
702 trans
= btrfs_join_transaction(root
);
704 ret
= PTR_ERR(trans
);
707 if (state
== FLUSH_DELAYED_REFS_NR
)
708 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
);
711 btrfs_run_delayed_refs(trans
, nr
);
712 btrfs_end_transaction(trans
);
715 case ALLOC_CHUNK_FORCE
:
716 trans
= btrfs_join_transaction(root
);
718 ret
= PTR_ERR(trans
);
721 ret
= btrfs_chunk_alloc(trans
,
722 btrfs_get_alloc_profile(fs_info
, space_info
->flags
),
723 (state
== ALLOC_CHUNK
) ? CHUNK_ALLOC_NO_FORCE
:
725 btrfs_end_transaction(trans
);
726 if (ret
> 0 || ret
== -ENOSPC
)
729 case RUN_DELAYED_IPUTS
:
731 * If we have pending delayed iputs then we could free up a
732 * bunch of pinned space, so make sure we run the iputs before
733 * we do our pinned bytes check below.
735 btrfs_run_delayed_iputs(fs_info
);
736 btrfs_wait_on_delayed_iputs(fs_info
);
739 ret
= may_commit_transaction(fs_info
, space_info
);
746 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
, state
,
752 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info
*fs_info
,
753 struct btrfs_space_info
*space_info
)
758 u64 to_reclaim
= space_info
->reclaim_size
;
760 lockdep_assert_held(&space_info
->lock
);
762 avail
= calc_available_free_space(fs_info
, space_info
,
763 BTRFS_RESERVE_FLUSH_ALL
);
764 used
= btrfs_space_info_used(space_info
, true);
767 * We may be flushing because suddenly we have less space than we had
768 * before, and now we're well over-committed based on our current free
769 * space. If that's the case add in our overage so we make sure to put
770 * appropriate pressure on the flushing state machine.
772 if (space_info
->total_bytes
+ avail
< used
)
773 to_reclaim
+= used
- (space_info
->total_bytes
+ avail
);
778 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
779 if (btrfs_can_overcommit(fs_info
, space_info
, to_reclaim
,
780 BTRFS_RESERVE_FLUSH_ALL
))
783 used
= btrfs_space_info_used(space_info
, true);
785 if (btrfs_can_overcommit(fs_info
, space_info
, SZ_1M
,
786 BTRFS_RESERVE_FLUSH_ALL
))
787 expected
= div_factor_fine(space_info
->total_bytes
, 95);
789 expected
= div_factor_fine(space_info
->total_bytes
, 90);
792 to_reclaim
= used
- expected
;
795 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
796 space_info
->bytes_reserved
);
800 static inline int need_do_async_reclaim(struct btrfs_fs_info
*fs_info
,
801 struct btrfs_space_info
*space_info
,
804 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
806 /* If we're just plain full then async reclaim just slows us down. */
807 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
810 if (!btrfs_calc_reclaim_metadata_size(fs_info
, space_info
))
813 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
814 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
817 static bool steal_from_global_rsv(struct btrfs_fs_info
*fs_info
,
818 struct btrfs_space_info
*space_info
,
819 struct reserve_ticket
*ticket
)
821 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
824 if (global_rsv
->space_info
!= space_info
)
827 spin_lock(&global_rsv
->lock
);
828 min_bytes
= div_factor(global_rsv
->size
, 1);
829 if (global_rsv
->reserved
< min_bytes
+ ticket
->bytes
) {
830 spin_unlock(&global_rsv
->lock
);
833 global_rsv
->reserved
-= ticket
->bytes
;
834 remove_ticket(space_info
, ticket
);
836 wake_up(&ticket
->wait
);
837 space_info
->tickets_id
++;
838 if (global_rsv
->reserved
< global_rsv
->size
)
839 global_rsv
->full
= 0;
840 spin_unlock(&global_rsv
->lock
);
846 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
847 * @fs_info - fs_info for this fs
848 * @space_info - the space info we were flushing
850 * We call this when we've exhausted our flushing ability and haven't made
851 * progress in satisfying tickets. The reservation code handles tickets in
852 * order, so if there is a large ticket first and then smaller ones we could
853 * very well satisfy the smaller tickets. This will attempt to wake up any
854 * tickets in the list to catch this case.
856 * This function returns true if it was able to make progress by clearing out
857 * other tickets, or if it stumbles across a ticket that was smaller than the
860 static bool maybe_fail_all_tickets(struct btrfs_fs_info
*fs_info
,
861 struct btrfs_space_info
*space_info
)
863 struct reserve_ticket
*ticket
;
864 u64 tickets_id
= space_info
->tickets_id
;
865 u64 first_ticket_bytes
= 0;
867 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
868 btrfs_info(fs_info
, "cannot satisfy tickets, dumping space info");
869 __btrfs_dump_space_info(fs_info
, space_info
);
872 while (!list_empty(&space_info
->tickets
) &&
873 tickets_id
== space_info
->tickets_id
) {
874 ticket
= list_first_entry(&space_info
->tickets
,
875 struct reserve_ticket
, list
);
878 steal_from_global_rsv(fs_info
, space_info
, ticket
))
882 * may_commit_transaction will avoid committing the transaction
883 * if it doesn't feel like the space reclaimed by the commit
884 * would result in the ticket succeeding. However if we have a
885 * smaller ticket in the queue it may be small enough to be
886 * satisified by committing the transaction, so if any
887 * subsequent ticket is smaller than the first ticket go ahead
888 * and send us back for another loop through the enospc flushing
891 if (first_ticket_bytes
== 0)
892 first_ticket_bytes
= ticket
->bytes
;
893 else if (first_ticket_bytes
> ticket
->bytes
)
896 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
))
897 btrfs_info(fs_info
, "failing ticket with %llu bytes",
900 remove_ticket(space_info
, ticket
);
901 ticket
->error
= -ENOSPC
;
902 wake_up(&ticket
->wait
);
905 * We're just throwing tickets away, so more flushing may not
906 * trip over btrfs_try_granting_tickets, so we need to call it
907 * here to see if we can make progress with the next ticket in
910 btrfs_try_granting_tickets(fs_info
, space_info
);
912 return (tickets_id
!= space_info
->tickets_id
);
916 * This is for normal flushers, we can wait all goddamned day if we want to. We
917 * will loop and continuously try to flush as long as we are making progress.
918 * We count progress as clearing off tickets each time we have to loop.
920 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
922 struct btrfs_fs_info
*fs_info
;
923 struct btrfs_space_info
*space_info
;
926 int commit_cycles
= 0;
929 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
930 space_info
= btrfs_find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
932 spin_lock(&space_info
->lock
);
933 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
);
935 space_info
->flush
= 0;
936 spin_unlock(&space_info
->lock
);
939 last_tickets_id
= space_info
->tickets_id
;
940 spin_unlock(&space_info
->lock
);
942 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
944 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
945 spin_lock(&space_info
->lock
);
946 if (list_empty(&space_info
->tickets
)) {
947 space_info
->flush
= 0;
948 spin_unlock(&space_info
->lock
);
951 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
,
953 if (last_tickets_id
== space_info
->tickets_id
) {
956 last_tickets_id
= space_info
->tickets_id
;
957 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
963 * We don't want to force a chunk allocation until we've tried
964 * pretty hard to reclaim space. Think of the case where we
965 * freed up a bunch of space and so have a lot of pinned space
966 * to reclaim. We would rather use that than possibly create a
967 * underutilized metadata chunk. So if this is our first run
968 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
969 * commit the transaction. If nothing has changed the next go
970 * around then we can force a chunk allocation.
972 if (flush_state
== ALLOC_CHUNK_FORCE
&& !commit_cycles
)
975 if (flush_state
> COMMIT_TRANS
) {
977 if (commit_cycles
> 2) {
978 if (maybe_fail_all_tickets(fs_info
, space_info
)) {
979 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
982 space_info
->flush
= 0;
985 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
988 spin_unlock(&space_info
->lock
);
989 } while (flush_state
<= COMMIT_TRANS
);
993 * FLUSH_DELALLOC_WAIT:
994 * Space is freed from flushing delalloc in one of two ways.
996 * 1) compression is on and we allocate less space than we reserved
997 * 2) we are overwriting existing space
999 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1000 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1001 * length to ->bytes_reserved, and subtracts the reserved space from
1004 * For #2 this is trickier. Once the ordered extent runs we will drop the
1005 * extent in the range we are overwriting, which creates a delayed ref for
1006 * that freed extent. This however is not reclaimed until the transaction
1007 * commits, thus the next stages.
1010 * If we are freeing inodes, we want to make sure all delayed iputs have
1011 * completed, because they could have been on an inode with i_nlink == 0, and
1012 * thus have been truncated and freed up space. But again this space is not
1013 * immediately re-usable, it comes in the form of a delayed ref, which must be
1014 * run and then the transaction must be committed.
1016 * FLUSH_DELAYED_REFS
1017 * The above two cases generate delayed refs that will affect
1018 * ->total_bytes_pinned. However this counter can be inconsistent with
1019 * reality if there are outstanding delayed refs. This is because we adjust
1020 * the counter based solely on the current set of delayed refs and disregard
1021 * any on-disk state which might include more refs. So for example, if we
1022 * have an extent with 2 references, but we only drop 1, we'll see that there
1023 * is a negative delayed ref count for the extent and assume that the space
1024 * will be freed, and thus increase ->total_bytes_pinned.
1026 * Running the delayed refs gives us the actual real view of what will be
1027 * freed at the transaction commit time. This stage will not actually free
1028 * space for us, it just makes sure that may_commit_transaction() has all of
1029 * the information it needs to make the right decision.
1032 * This is where we reclaim all of the pinned space generated by the previous
1033 * two stages. We will not commit the transaction if we don't think we're
1034 * likely to satisfy our request, which means if our current free space +
1035 * total_bytes_pinned < reservation we will not commit. This is why the
1036 * previous states are actually important, to make sure we know for sure
1037 * whether committing the transaction will allow us to make progress.
1040 * For data we start with alloc chunk force, however we could have been full
1041 * before, and then the transaction commit could have freed new block groups,
1042 * so if we now have space to allocate do the force chunk allocation.
1044 static const enum btrfs_flush_state data_flush_states
[] = {
1045 FLUSH_DELALLOC_WAIT
,
1052 static void btrfs_async_reclaim_data_space(struct work_struct
*work
)
1054 struct btrfs_fs_info
*fs_info
;
1055 struct btrfs_space_info
*space_info
;
1056 u64 last_tickets_id
;
1057 int flush_state
= 0;
1059 fs_info
= container_of(work
, struct btrfs_fs_info
, async_data_reclaim_work
);
1060 space_info
= fs_info
->data_sinfo
;
1062 spin_lock(&space_info
->lock
);
1063 if (list_empty(&space_info
->tickets
)) {
1064 space_info
->flush
= 0;
1065 spin_unlock(&space_info
->lock
);
1068 last_tickets_id
= space_info
->tickets_id
;
1069 spin_unlock(&space_info
->lock
);
1071 while (!space_info
->full
) {
1072 flush_space(fs_info
, space_info
, U64_MAX
, ALLOC_CHUNK_FORCE
);
1073 spin_lock(&space_info
->lock
);
1074 if (list_empty(&space_info
->tickets
)) {
1075 space_info
->flush
= 0;
1076 spin_unlock(&space_info
->lock
);
1079 last_tickets_id
= space_info
->tickets_id
;
1080 spin_unlock(&space_info
->lock
);
1083 while (flush_state
< ARRAY_SIZE(data_flush_states
)) {
1084 flush_space(fs_info
, space_info
, U64_MAX
,
1085 data_flush_states
[flush_state
]);
1086 spin_lock(&space_info
->lock
);
1087 if (list_empty(&space_info
->tickets
)) {
1088 space_info
->flush
= 0;
1089 spin_unlock(&space_info
->lock
);
1093 if (last_tickets_id
== space_info
->tickets_id
) {
1096 last_tickets_id
= space_info
->tickets_id
;
1100 if (flush_state
>= ARRAY_SIZE(data_flush_states
)) {
1101 if (space_info
->full
) {
1102 if (maybe_fail_all_tickets(fs_info
, space_info
))
1105 space_info
->flush
= 0;
1110 spin_unlock(&space_info
->lock
);
1114 void btrfs_init_async_reclaim_work(struct btrfs_fs_info
*fs_info
)
1116 INIT_WORK(&fs_info
->async_reclaim_work
, btrfs_async_reclaim_metadata_space
);
1117 INIT_WORK(&fs_info
->async_data_reclaim_work
, btrfs_async_reclaim_data_space
);
1120 static const enum btrfs_flush_state priority_flush_states
[] = {
1121 FLUSH_DELAYED_ITEMS_NR
,
1122 FLUSH_DELAYED_ITEMS
,
1126 static const enum btrfs_flush_state evict_flush_states
[] = {
1127 FLUSH_DELAYED_ITEMS_NR
,
1128 FLUSH_DELAYED_ITEMS
,
1129 FLUSH_DELAYED_REFS_NR
,
1132 FLUSH_DELALLOC_WAIT
,
1137 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
1138 struct btrfs_space_info
*space_info
,
1139 struct reserve_ticket
*ticket
,
1140 const enum btrfs_flush_state
*states
,
1146 spin_lock(&space_info
->lock
);
1147 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
);
1149 spin_unlock(&space_info
->lock
);
1152 spin_unlock(&space_info
->lock
);
1156 flush_space(fs_info
, space_info
, to_reclaim
, states
[flush_state
]);
1158 spin_lock(&space_info
->lock
);
1159 if (ticket
->bytes
== 0) {
1160 spin_unlock(&space_info
->lock
);
1163 spin_unlock(&space_info
->lock
);
1164 } while (flush_state
< states_nr
);
1167 static void priority_reclaim_data_space(struct btrfs_fs_info
*fs_info
,
1168 struct btrfs_space_info
*space_info
,
1169 struct reserve_ticket
*ticket
)
1171 while (!space_info
->full
) {
1172 flush_space(fs_info
, space_info
, U64_MAX
, ALLOC_CHUNK_FORCE
);
1173 spin_lock(&space_info
->lock
);
1174 if (ticket
->bytes
== 0) {
1175 spin_unlock(&space_info
->lock
);
1178 spin_unlock(&space_info
->lock
);
1182 static void wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
1183 struct btrfs_space_info
*space_info
,
1184 struct reserve_ticket
*ticket
)
1190 spin_lock(&space_info
->lock
);
1191 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
1192 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
1195 * Delete us from the list. After we unlock the space
1196 * info, we don't want the async reclaim job to reserve
1197 * space for this ticket. If that would happen, then the
1198 * ticket's task would not known that space was reserved
1199 * despite getting an error, resulting in a space leak
1200 * (bytes_may_use counter of our space_info).
1202 remove_ticket(space_info
, ticket
);
1203 ticket
->error
= -EINTR
;
1206 spin_unlock(&space_info
->lock
);
1210 finish_wait(&ticket
->wait
, &wait
);
1211 spin_lock(&space_info
->lock
);
1213 spin_unlock(&space_info
->lock
);
1217 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1219 * @space_info - the space_info for the reservation
1220 * @ticket - the ticket for the reservation
1221 * @flush - how much we can flush
1223 * This does the work of figuring out how to flush for the ticket, waiting for
1224 * the reservation, and returning the appropriate error if there is one.
1226 static int handle_reserve_ticket(struct btrfs_fs_info
*fs_info
,
1227 struct btrfs_space_info
*space_info
,
1228 struct reserve_ticket
*ticket
,
1229 enum btrfs_reserve_flush_enum flush
)
1234 case BTRFS_RESERVE_FLUSH_DATA
:
1235 case BTRFS_RESERVE_FLUSH_ALL
:
1236 case BTRFS_RESERVE_FLUSH_ALL_STEAL
:
1237 wait_reserve_ticket(fs_info
, space_info
, ticket
);
1239 case BTRFS_RESERVE_FLUSH_LIMIT
:
1240 priority_reclaim_metadata_space(fs_info
, space_info
, ticket
,
1241 priority_flush_states
,
1242 ARRAY_SIZE(priority_flush_states
));
1244 case BTRFS_RESERVE_FLUSH_EVICT
:
1245 priority_reclaim_metadata_space(fs_info
, space_info
, ticket
,
1247 ARRAY_SIZE(evict_flush_states
));
1249 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE
:
1250 priority_reclaim_data_space(fs_info
, space_info
, ticket
);
1257 spin_lock(&space_info
->lock
);
1258 ret
= ticket
->error
;
1259 if (ticket
->bytes
|| ticket
->error
) {
1261 * We were a priority ticket, so we need to delete ourselves
1262 * from the list. Because we could have other priority tickets
1263 * behind us that require less space, run
1264 * btrfs_try_granting_tickets() to see if their reservations can
1267 if (!list_empty(&ticket
->list
)) {
1268 remove_ticket(space_info
, ticket
);
1269 btrfs_try_granting_tickets(fs_info
, space_info
);
1275 spin_unlock(&space_info
->lock
);
1276 ASSERT(list_empty(&ticket
->list
));
1278 * Check that we can't have an error set if the reservation succeeded,
1279 * as that would confuse tasks and lead them to error out without
1280 * releasing reserved space (if an error happens the expectation is that
1281 * space wasn't reserved at all).
1283 ASSERT(!(ticket
->bytes
== 0 && ticket
->error
));
1288 * This returns true if this flush state will go through the ordinary flushing
1291 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush
)
1293 return (flush
== BTRFS_RESERVE_FLUSH_ALL
) ||
1294 (flush
== BTRFS_RESERVE_FLUSH_ALL_STEAL
);
1298 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1299 * @root - the root we're allocating for
1300 * @space_info - the space info we want to allocate from
1301 * @orig_bytes - the number of bytes we want
1302 * @flush - whether or not we can flush to make our reservation
1304 * This will reserve orig_bytes number of bytes from the space info associated
1305 * with the block_rsv. If there is not enough space it will make an attempt to
1306 * flush out space to make room. It will do this by flushing delalloc if
1307 * possible or committing the transaction. If flush is 0 then no attempts to
1308 * regain reservations will be made and this will fail if there is not enough
1311 static int __reserve_bytes(struct btrfs_fs_info
*fs_info
,
1312 struct btrfs_space_info
*space_info
, u64 orig_bytes
,
1313 enum btrfs_reserve_flush_enum flush
)
1315 struct work_struct
*async_work
;
1316 struct reserve_ticket ticket
;
1319 bool pending_tickets
;
1322 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
1324 if (flush
== BTRFS_RESERVE_FLUSH_DATA
)
1325 async_work
= &fs_info
->async_data_reclaim_work
;
1327 async_work
= &fs_info
->async_reclaim_work
;
1329 spin_lock(&space_info
->lock
);
1331 used
= btrfs_space_info_used(space_info
, true);
1334 * We don't want NO_FLUSH allocations to jump everybody, they can
1335 * generally handle ENOSPC in a different way, so treat them the same as
1336 * normal flushers when it comes to skipping pending tickets.
1338 if (is_normal_flushing(flush
) || (flush
== BTRFS_RESERVE_NO_FLUSH
))
1339 pending_tickets
= !list_empty(&space_info
->tickets
) ||
1340 !list_empty(&space_info
->priority_tickets
);
1342 pending_tickets
= !list_empty(&space_info
->priority_tickets
);
1345 * Carry on if we have enough space (short-circuit) OR call
1346 * can_overcommit() to ensure we can overcommit to continue.
1348 if (!pending_tickets
&&
1349 ((used
+ orig_bytes
<= space_info
->total_bytes
) ||
1350 btrfs_can_overcommit(fs_info
, space_info
, orig_bytes
, flush
))) {
1351 btrfs_space_info_update_bytes_may_use(fs_info
, space_info
,
1357 * If we couldn't make a reservation then setup our reservation ticket
1358 * and kick the async worker if it's not already running.
1360 * If we are a priority flusher then we just need to add our ticket to
1361 * the list and we will do our own flushing further down.
1363 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
1364 ticket
.bytes
= orig_bytes
;
1366 space_info
->reclaim_size
+= ticket
.bytes
;
1367 init_waitqueue_head(&ticket
.wait
);
1368 ticket
.steal
= (flush
== BTRFS_RESERVE_FLUSH_ALL_STEAL
);
1369 if (flush
== BTRFS_RESERVE_FLUSH_ALL
||
1370 flush
== BTRFS_RESERVE_FLUSH_ALL_STEAL
||
1371 flush
== BTRFS_RESERVE_FLUSH_DATA
) {
1372 list_add_tail(&ticket
.list
, &space_info
->tickets
);
1373 if (!space_info
->flush
) {
1374 space_info
->flush
= 1;
1375 trace_btrfs_trigger_flush(fs_info
,
1379 queue_work(system_unbound_wq
, async_work
);
1382 list_add_tail(&ticket
.list
,
1383 &space_info
->priority_tickets
);
1385 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
1388 * We will do the space reservation dance during log replay,
1389 * which means we won't have fs_info->fs_root set, so don't do
1390 * the async reclaim as we will panic.
1392 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
1393 need_do_async_reclaim(fs_info
, space_info
, used
) &&
1394 !work_busy(&fs_info
->async_reclaim_work
)) {
1395 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
1396 orig_bytes
, flush
, "preempt");
1397 queue_work(system_unbound_wq
,
1398 &fs_info
->async_reclaim_work
);
1401 spin_unlock(&space_info
->lock
);
1402 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
1405 return handle_reserve_ticket(fs_info
, space_info
, &ticket
, flush
);
1409 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1410 * @root - the root we're allocating for
1411 * @block_rsv - the block_rsv we're allocating for
1412 * @orig_bytes - the number of bytes we want
1413 * @flush - whether or not we can flush to make our reservation
1415 * This will reserve orig_bytes number of bytes from the space info associated
1416 * with the block_rsv. If there is not enough space it will make an attempt to
1417 * flush out space to make room. It will do this by flushing delalloc if
1418 * possible or committing the transaction. If flush is 0 then no attempts to
1419 * regain reservations will be made and this will fail if there is not enough
1422 int btrfs_reserve_metadata_bytes(struct btrfs_root
*root
,
1423 struct btrfs_block_rsv
*block_rsv
,
1425 enum btrfs_reserve_flush_enum flush
)
1427 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1428 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
1431 ret
= __reserve_bytes(fs_info
, block_rsv
->space_info
, orig_bytes
, flush
);
1432 if (ret
== -ENOSPC
&&
1433 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
1434 if (block_rsv
!= global_rsv
&&
1435 !btrfs_block_rsv_use_bytes(global_rsv
, orig_bytes
))
1438 if (ret
== -ENOSPC
) {
1439 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
1440 block_rsv
->space_info
->flags
,
1443 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
))
1444 btrfs_dump_space_info(fs_info
, block_rsv
->space_info
,
1451 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1452 * @fs_info - the filesystem
1453 * @bytes - the number of bytes we need
1454 * @flush - how we are allowed to flush
1456 * This will reserve bytes from the data space info. If there is not enough
1457 * space then we will attempt to flush space as specified by flush.
1459 int btrfs_reserve_data_bytes(struct btrfs_fs_info
*fs_info
, u64 bytes
,
1460 enum btrfs_reserve_flush_enum flush
)
1462 struct btrfs_space_info
*data_sinfo
= fs_info
->data_sinfo
;
1465 ASSERT(flush
== BTRFS_RESERVE_FLUSH_DATA
||
1466 flush
== BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE
);
1467 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_DATA
);
1469 ret
= __reserve_bytes(fs_info
, data_sinfo
, bytes
, flush
);
1470 if (ret
== -ENOSPC
) {
1471 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
1472 data_sinfo
->flags
, bytes
, 1);
1473 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
))
1474 btrfs_dump_space_info(fs_info
, data_sinfo
, bytes
, 0);