WIP FPC-III support
[linux/fpc-iii.git] / fs / btrfs / space-info.c
blobe8347461c8ddddeee4169dc8df66171b7f0dce7f
1 // SPDX-License-Identifier: GPL-2.0
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
14 * HOW DOES SPACE RESERVATION WORK
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
18 * works generally.
20 * BASIC CONCEPTS
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
40 * MAKING RESERVATIONS, THE NORMAL CASE
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
46 * ->reserve
47 * space_info->bytes_may_reserve += num_bytes
49 * ->extent allocation
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
54 * ->insert reference
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61 * Assume we are unable to simply make the reservation because we do not have
62 * enough space
64 * -> __reserve_bytes
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 * on the ticket.
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
83 * -> ticket wakeup
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 * were interrupted.)
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
95 * THE FLUSHING STATES
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
110 * metadata space.
112 * FLUSH_DELALLOC
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
118 * FLUSH_DELAYED_REFS
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
125 * ALLOC_CHUNK
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
130 * RUN_DELAYED_IPUTS
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
135 * COMMIT_TRANS
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
141 * of metadata.
143 * OVERCOMMIT
145 * Because we hold so many reservations for metadata we will allow you to
146 * reserve more space than is currently free in the currently allocate
147 * metadata space. This only happens with metadata, data does not allow
148 * overcommitting.
150 * You can see the current logic for when we allow overcommit in
151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
152 * is no unallocated space to be had, all reservations are kept within the
153 * free space in the allocated metadata chunks.
155 * Because of overcommitting, you generally want to use the
156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 * thing with or without extra unallocated space.
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 bool may_use_included)
163 ASSERT(s_info);
164 return s_info->bytes_used + s_info->bytes_reserved +
165 s_info->bytes_pinned + s_info->bytes_readonly +
166 (may_use_included ? s_info->bytes_may_use : 0);
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
175 struct list_head *head = &info->space_info;
176 struct btrfs_space_info *found;
178 list_for_each_entry(found, head, list)
179 found->full = 0;
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 struct btrfs_space_info *space_info;
186 int i;
187 int ret;
189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190 if (!space_info)
191 return -ENOMEM;
193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194 GFP_KERNEL);
195 if (ret) {
196 kfree(space_info);
197 return ret;
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 INIT_LIST_HEAD(&space_info->block_groups[i]);
202 init_rwsem(&space_info->groups_sem);
203 spin_lock_init(&space_info->lock);
204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206 INIT_LIST_HEAD(&space_info->ro_bgs);
207 INIT_LIST_HEAD(&space_info->tickets);
208 INIT_LIST_HEAD(&space_info->priority_tickets);
210 ret = btrfs_sysfs_add_space_info_type(info, space_info);
211 if (ret)
212 return ret;
214 list_add(&space_info->list, &info->space_info);
215 if (flags & BTRFS_BLOCK_GROUP_DATA)
216 info->data_sinfo = space_info;
218 return ret;
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
223 struct btrfs_super_block *disk_super;
224 u64 features;
225 u64 flags;
226 int mixed = 0;
227 int ret;
229 disk_super = fs_info->super_copy;
230 if (!btrfs_super_root(disk_super))
231 return -EINVAL;
233 features = btrfs_super_incompat_flags(disk_super);
234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235 mixed = 1;
237 flags = BTRFS_BLOCK_GROUP_SYSTEM;
238 ret = create_space_info(fs_info, flags);
239 if (ret)
240 goto out;
242 if (mixed) {
243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244 ret = create_space_info(fs_info, flags);
245 } else {
246 flags = BTRFS_BLOCK_GROUP_METADATA;
247 ret = create_space_info(fs_info, flags);
248 if (ret)
249 goto out;
251 flags = BTRFS_BLOCK_GROUP_DATA;
252 ret = create_space_info(fs_info, flags);
254 out:
255 return ret;
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259 u64 total_bytes, u64 bytes_used,
260 u64 bytes_readonly,
261 struct btrfs_space_info **space_info)
263 struct btrfs_space_info *found;
264 int factor;
266 factor = btrfs_bg_type_to_factor(flags);
268 found = btrfs_find_space_info(info, flags);
269 ASSERT(found);
270 spin_lock(&found->lock);
271 found->total_bytes += total_bytes;
272 found->disk_total += total_bytes * factor;
273 found->bytes_used += bytes_used;
274 found->disk_used += bytes_used * factor;
275 found->bytes_readonly += bytes_readonly;
276 if (total_bytes > 0)
277 found->full = 0;
278 btrfs_try_granting_tickets(info, found);
279 spin_unlock(&found->lock);
280 *space_info = found;
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284 u64 flags)
286 struct list_head *head = &info->space_info;
287 struct btrfs_space_info *found;
289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
291 list_for_each_entry(found, head, list) {
292 if (found->flags & flags)
293 return found;
295 return NULL;
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299 struct btrfs_space_info *space_info,
300 enum btrfs_reserve_flush_enum flush)
302 u64 profile;
303 u64 avail;
304 int factor;
306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307 profile = btrfs_system_alloc_profile(fs_info);
308 else
309 profile = btrfs_metadata_alloc_profile(fs_info);
311 avail = atomic64_read(&fs_info->free_chunk_space);
314 * If we have dup, raid1 or raid10 then only half of the free
315 * space is actually usable. For raid56, the space info used
316 * doesn't include the parity drive, so we don't have to
317 * change the math
319 factor = btrfs_bg_type_to_factor(profile);
320 avail = div_u64(avail, factor);
323 * If we aren't flushing all things, let us overcommit up to
324 * 1/2th of the space. If we can flush, don't let us overcommit
325 * too much, let it overcommit up to 1/8 of the space.
327 if (flush == BTRFS_RESERVE_FLUSH_ALL)
328 avail >>= 3;
329 else
330 avail >>= 1;
331 return avail;
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335 struct btrfs_space_info *space_info, u64 bytes,
336 enum btrfs_reserve_flush_enum flush)
338 u64 avail;
339 u64 used;
341 /* Don't overcommit when in mixed mode */
342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343 return 0;
345 used = btrfs_space_info_used(space_info, true);
346 avail = calc_available_free_space(fs_info, space_info, flush);
348 if (used + bytes < space_info->total_bytes + avail)
349 return 1;
350 return 0;
353 static void remove_ticket(struct btrfs_space_info *space_info,
354 struct reserve_ticket *ticket)
356 if (!list_empty(&ticket->list)) {
357 list_del_init(&ticket->list);
358 ASSERT(space_info->reclaim_size >= ticket->bytes);
359 space_info->reclaim_size -= ticket->bytes;
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368 struct btrfs_space_info *space_info)
370 struct list_head *head;
371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373 lockdep_assert_held(&space_info->lock);
375 head = &space_info->priority_tickets;
376 again:
377 while (!list_empty(head)) {
378 struct reserve_ticket *ticket;
379 u64 used = btrfs_space_info_used(space_info, true);
381 ticket = list_first_entry(head, struct reserve_ticket, list);
383 /* Check and see if our ticket can be satisified now. */
384 if ((used + ticket->bytes <= space_info->total_bytes) ||
385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386 flush)) {
387 btrfs_space_info_update_bytes_may_use(fs_info,
388 space_info,
389 ticket->bytes);
390 remove_ticket(space_info, ticket);
391 ticket->bytes = 0;
392 space_info->tickets_id++;
393 wake_up(&ticket->wait);
394 } else {
395 break;
399 if (head == &space_info->priority_tickets) {
400 head = &space_info->tickets;
401 flush = BTRFS_RESERVE_FLUSH_ALL;
402 goto again;
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
407 do { \
408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
409 spin_lock(&__rsv->lock); \
410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
411 __rsv->size, __rsv->reserved); \
412 spin_unlock(&__rsv->lock); \
413 } while (0)
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416 struct btrfs_space_info *info)
418 lockdep_assert_held(&info->lock);
420 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
421 info->flags,
422 info->total_bytes - btrfs_space_info_used(info, true),
423 info->full ? "" : "not ");
424 btrfs_info(fs_info,
425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426 info->total_bytes, info->bytes_used, info->bytes_pinned,
427 info->bytes_reserved, info->bytes_may_use,
428 info->bytes_readonly);
430 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
431 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
432 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
433 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
434 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
439 struct btrfs_space_info *info, u64 bytes,
440 int dump_block_groups)
442 struct btrfs_block_group *cache;
443 int index = 0;
445 spin_lock(&info->lock);
446 __btrfs_dump_space_info(fs_info, info);
447 spin_unlock(&info->lock);
449 if (!dump_block_groups)
450 return;
452 down_read(&info->groups_sem);
453 again:
454 list_for_each_entry(cache, &info->block_groups[index], list) {
455 spin_lock(&cache->lock);
456 btrfs_info(fs_info,
457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458 cache->start, cache->length, cache->used, cache->pinned,
459 cache->reserved, cache->ro ? "[readonly]" : "");
460 spin_unlock(&cache->lock);
461 btrfs_dump_free_space(cache, bytes);
463 if (++index < BTRFS_NR_RAID_TYPES)
464 goto again;
465 up_read(&info->groups_sem);
468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
469 u64 to_reclaim)
471 u64 bytes;
472 u64 nr;
474 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
475 nr = div64_u64(to_reclaim, bytes);
476 if (!nr)
477 nr = 1;
478 return nr;
481 #define EXTENT_SIZE_PER_ITEM SZ_256K
484 * shrink metadata reservation for delalloc
486 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
487 struct btrfs_space_info *space_info,
488 u64 to_reclaim, bool wait_ordered)
490 struct btrfs_trans_handle *trans;
491 u64 delalloc_bytes;
492 u64 dio_bytes;
493 u64 items;
494 long time_left;
495 int loops;
497 /* Calc the number of the pages we need flush for space reservation */
498 if (to_reclaim == U64_MAX) {
499 items = U64_MAX;
500 } else {
502 * to_reclaim is set to however much metadata we need to
503 * reclaim, but reclaiming that much data doesn't really track
504 * exactly, so increase the amount to reclaim by 2x in order to
505 * make sure we're flushing enough delalloc to hopefully reclaim
506 * some metadata reservations.
508 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
509 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
512 trans = (struct btrfs_trans_handle *)current->journal_info;
514 delalloc_bytes = percpu_counter_sum_positive(
515 &fs_info->delalloc_bytes);
516 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
517 if (delalloc_bytes == 0 && dio_bytes == 0) {
518 if (trans)
519 return;
520 if (wait_ordered)
521 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
522 return;
526 * If we are doing more ordered than delalloc we need to just wait on
527 * ordered extents, otherwise we'll waste time trying to flush delalloc
528 * that likely won't give us the space back we need.
530 if (dio_bytes > delalloc_bytes)
531 wait_ordered = true;
533 loops = 0;
534 while ((delalloc_bytes || dio_bytes) && loops < 3) {
535 u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539 loops++;
540 if (wait_ordered && !trans) {
541 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
542 } else {
543 time_left = schedule_timeout_killable(1);
544 if (time_left)
545 break;
548 spin_lock(&space_info->lock);
549 if (list_empty(&space_info->tickets) &&
550 list_empty(&space_info->priority_tickets)) {
551 spin_unlock(&space_info->lock);
552 break;
554 spin_unlock(&space_info->lock);
556 delalloc_bytes = percpu_counter_sum_positive(
557 &fs_info->delalloc_bytes);
558 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
563 * maybe_commit_transaction - possibly commit the transaction if its ok to
564 * @root - the root we're allocating for
565 * @bytes - the number of bytes we want to reserve
566 * @force - force the commit
568 * This will check to make sure that committing the transaction will actually
569 * get us somewhere and then commit the transaction if it does. Otherwise it
570 * will return -ENOSPC.
572 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
573 struct btrfs_space_info *space_info)
575 struct reserve_ticket *ticket = NULL;
576 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
578 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
579 struct btrfs_trans_handle *trans;
580 u64 reclaim_bytes = 0;
581 u64 bytes_needed = 0;
582 u64 cur_free_bytes = 0;
584 trans = (struct btrfs_trans_handle *)current->journal_info;
585 if (trans)
586 return -EAGAIN;
588 spin_lock(&space_info->lock);
589 cur_free_bytes = btrfs_space_info_used(space_info, true);
590 if (cur_free_bytes < space_info->total_bytes)
591 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
592 else
593 cur_free_bytes = 0;
595 if (!list_empty(&space_info->priority_tickets))
596 ticket = list_first_entry(&space_info->priority_tickets,
597 struct reserve_ticket, list);
598 else if (!list_empty(&space_info->tickets))
599 ticket = list_first_entry(&space_info->tickets,
600 struct reserve_ticket, list);
601 if (ticket)
602 bytes_needed = ticket->bytes;
604 if (bytes_needed > cur_free_bytes)
605 bytes_needed -= cur_free_bytes;
606 else
607 bytes_needed = 0;
608 spin_unlock(&space_info->lock);
610 if (!bytes_needed)
611 return 0;
613 trans = btrfs_join_transaction(fs_info->extent_root);
614 if (IS_ERR(trans))
615 return PTR_ERR(trans);
618 * See if there is enough pinned space to make this reservation, or if
619 * we have block groups that are going to be freed, allowing us to
620 * possibly do a chunk allocation the next loop through.
622 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
623 __percpu_counter_compare(&space_info->total_bytes_pinned,
624 bytes_needed,
625 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
626 goto commit;
629 * See if there is some space in the delayed insertion reserve for this
630 * reservation. If the space_info's don't match (like for DATA or
631 * SYSTEM) then just go enospc, reclaiming this space won't recover any
632 * space to satisfy those reservations.
634 if (space_info != delayed_rsv->space_info)
635 goto enospc;
637 spin_lock(&delayed_rsv->lock);
638 reclaim_bytes += delayed_rsv->reserved;
639 spin_unlock(&delayed_rsv->lock);
641 spin_lock(&delayed_refs_rsv->lock);
642 reclaim_bytes += delayed_refs_rsv->reserved;
643 spin_unlock(&delayed_refs_rsv->lock);
645 spin_lock(&trans_rsv->lock);
646 reclaim_bytes += trans_rsv->reserved;
647 spin_unlock(&trans_rsv->lock);
649 if (reclaim_bytes >= bytes_needed)
650 goto commit;
651 bytes_needed -= reclaim_bytes;
653 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
654 bytes_needed,
655 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
656 goto enospc;
658 commit:
659 return btrfs_commit_transaction(trans);
660 enospc:
661 btrfs_end_transaction(trans);
662 return -ENOSPC;
666 * Try to flush some data based on policy set by @state. This is only advisory
667 * and may fail for various reasons. The caller is supposed to examine the
668 * state of @space_info to detect the outcome.
670 static void flush_space(struct btrfs_fs_info *fs_info,
671 struct btrfs_space_info *space_info, u64 num_bytes,
672 int state)
674 struct btrfs_root *root = fs_info->extent_root;
675 struct btrfs_trans_handle *trans;
676 int nr;
677 int ret = 0;
679 switch (state) {
680 case FLUSH_DELAYED_ITEMS_NR:
681 case FLUSH_DELAYED_ITEMS:
682 if (state == FLUSH_DELAYED_ITEMS_NR)
683 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
684 else
685 nr = -1;
687 trans = btrfs_join_transaction(root);
688 if (IS_ERR(trans)) {
689 ret = PTR_ERR(trans);
690 break;
692 ret = btrfs_run_delayed_items_nr(trans, nr);
693 btrfs_end_transaction(trans);
694 break;
695 case FLUSH_DELALLOC:
696 case FLUSH_DELALLOC_WAIT:
697 shrink_delalloc(fs_info, space_info, num_bytes,
698 state == FLUSH_DELALLOC_WAIT);
699 break;
700 case FLUSH_DELAYED_REFS_NR:
701 case FLUSH_DELAYED_REFS:
702 trans = btrfs_join_transaction(root);
703 if (IS_ERR(trans)) {
704 ret = PTR_ERR(trans);
705 break;
707 if (state == FLUSH_DELAYED_REFS_NR)
708 nr = calc_reclaim_items_nr(fs_info, num_bytes);
709 else
710 nr = 0;
711 btrfs_run_delayed_refs(trans, nr);
712 btrfs_end_transaction(trans);
713 break;
714 case ALLOC_CHUNK:
715 case ALLOC_CHUNK_FORCE:
716 trans = btrfs_join_transaction(root);
717 if (IS_ERR(trans)) {
718 ret = PTR_ERR(trans);
719 break;
721 ret = btrfs_chunk_alloc(trans,
722 btrfs_get_alloc_profile(fs_info, space_info->flags),
723 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
724 CHUNK_ALLOC_FORCE);
725 btrfs_end_transaction(trans);
726 if (ret > 0 || ret == -ENOSPC)
727 ret = 0;
728 break;
729 case RUN_DELAYED_IPUTS:
731 * If we have pending delayed iputs then we could free up a
732 * bunch of pinned space, so make sure we run the iputs before
733 * we do our pinned bytes check below.
735 btrfs_run_delayed_iputs(fs_info);
736 btrfs_wait_on_delayed_iputs(fs_info);
737 break;
738 case COMMIT_TRANS:
739 ret = may_commit_transaction(fs_info, space_info);
740 break;
741 default:
742 ret = -ENOSPC;
743 break;
746 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
747 ret);
748 return;
751 static inline u64
752 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
753 struct btrfs_space_info *space_info)
755 u64 used;
756 u64 avail;
757 u64 expected;
758 u64 to_reclaim = space_info->reclaim_size;
760 lockdep_assert_held(&space_info->lock);
762 avail = calc_available_free_space(fs_info, space_info,
763 BTRFS_RESERVE_FLUSH_ALL);
764 used = btrfs_space_info_used(space_info, true);
767 * We may be flushing because suddenly we have less space than we had
768 * before, and now we're well over-committed based on our current free
769 * space. If that's the case add in our overage so we make sure to put
770 * appropriate pressure on the flushing state machine.
772 if (space_info->total_bytes + avail < used)
773 to_reclaim += used - (space_info->total_bytes + avail);
775 if (to_reclaim)
776 return to_reclaim;
778 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
779 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
780 BTRFS_RESERVE_FLUSH_ALL))
781 return 0;
783 used = btrfs_space_info_used(space_info, true);
785 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
786 BTRFS_RESERVE_FLUSH_ALL))
787 expected = div_factor_fine(space_info->total_bytes, 95);
788 else
789 expected = div_factor_fine(space_info->total_bytes, 90);
791 if (used > expected)
792 to_reclaim = used - expected;
793 else
794 to_reclaim = 0;
795 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
796 space_info->bytes_reserved);
797 return to_reclaim;
800 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
801 struct btrfs_space_info *space_info,
802 u64 used)
804 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
806 /* If we're just plain full then async reclaim just slows us down. */
807 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
808 return 0;
810 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
811 return 0;
813 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
814 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
817 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
818 struct btrfs_space_info *space_info,
819 struct reserve_ticket *ticket)
821 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
822 u64 min_bytes;
824 if (global_rsv->space_info != space_info)
825 return false;
827 spin_lock(&global_rsv->lock);
828 min_bytes = div_factor(global_rsv->size, 1);
829 if (global_rsv->reserved < min_bytes + ticket->bytes) {
830 spin_unlock(&global_rsv->lock);
831 return false;
833 global_rsv->reserved -= ticket->bytes;
834 remove_ticket(space_info, ticket);
835 ticket->bytes = 0;
836 wake_up(&ticket->wait);
837 space_info->tickets_id++;
838 if (global_rsv->reserved < global_rsv->size)
839 global_rsv->full = 0;
840 spin_unlock(&global_rsv->lock);
842 return true;
846 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
847 * @fs_info - fs_info for this fs
848 * @space_info - the space info we were flushing
850 * We call this when we've exhausted our flushing ability and haven't made
851 * progress in satisfying tickets. The reservation code handles tickets in
852 * order, so if there is a large ticket first and then smaller ones we could
853 * very well satisfy the smaller tickets. This will attempt to wake up any
854 * tickets in the list to catch this case.
856 * This function returns true if it was able to make progress by clearing out
857 * other tickets, or if it stumbles across a ticket that was smaller than the
858 * first ticket.
860 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
861 struct btrfs_space_info *space_info)
863 struct reserve_ticket *ticket;
864 u64 tickets_id = space_info->tickets_id;
865 u64 first_ticket_bytes = 0;
867 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
868 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
869 __btrfs_dump_space_info(fs_info, space_info);
872 while (!list_empty(&space_info->tickets) &&
873 tickets_id == space_info->tickets_id) {
874 ticket = list_first_entry(&space_info->tickets,
875 struct reserve_ticket, list);
877 if (ticket->steal &&
878 steal_from_global_rsv(fs_info, space_info, ticket))
879 return true;
882 * may_commit_transaction will avoid committing the transaction
883 * if it doesn't feel like the space reclaimed by the commit
884 * would result in the ticket succeeding. However if we have a
885 * smaller ticket in the queue it may be small enough to be
886 * satisified by committing the transaction, so if any
887 * subsequent ticket is smaller than the first ticket go ahead
888 * and send us back for another loop through the enospc flushing
889 * code.
891 if (first_ticket_bytes == 0)
892 first_ticket_bytes = ticket->bytes;
893 else if (first_ticket_bytes > ticket->bytes)
894 return true;
896 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
897 btrfs_info(fs_info, "failing ticket with %llu bytes",
898 ticket->bytes);
900 remove_ticket(space_info, ticket);
901 ticket->error = -ENOSPC;
902 wake_up(&ticket->wait);
905 * We're just throwing tickets away, so more flushing may not
906 * trip over btrfs_try_granting_tickets, so we need to call it
907 * here to see if we can make progress with the next ticket in
908 * the list.
910 btrfs_try_granting_tickets(fs_info, space_info);
912 return (tickets_id != space_info->tickets_id);
916 * This is for normal flushers, we can wait all goddamned day if we want to. We
917 * will loop and continuously try to flush as long as we are making progress.
918 * We count progress as clearing off tickets each time we have to loop.
920 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
922 struct btrfs_fs_info *fs_info;
923 struct btrfs_space_info *space_info;
924 u64 to_reclaim;
925 int flush_state;
926 int commit_cycles = 0;
927 u64 last_tickets_id;
929 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
930 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
932 spin_lock(&space_info->lock);
933 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
934 if (!to_reclaim) {
935 space_info->flush = 0;
936 spin_unlock(&space_info->lock);
937 return;
939 last_tickets_id = space_info->tickets_id;
940 spin_unlock(&space_info->lock);
942 flush_state = FLUSH_DELAYED_ITEMS_NR;
943 do {
944 flush_space(fs_info, space_info, to_reclaim, flush_state);
945 spin_lock(&space_info->lock);
946 if (list_empty(&space_info->tickets)) {
947 space_info->flush = 0;
948 spin_unlock(&space_info->lock);
949 return;
951 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
952 space_info);
953 if (last_tickets_id == space_info->tickets_id) {
954 flush_state++;
955 } else {
956 last_tickets_id = space_info->tickets_id;
957 flush_state = FLUSH_DELAYED_ITEMS_NR;
958 if (commit_cycles)
959 commit_cycles--;
963 * We don't want to force a chunk allocation until we've tried
964 * pretty hard to reclaim space. Think of the case where we
965 * freed up a bunch of space and so have a lot of pinned space
966 * to reclaim. We would rather use that than possibly create a
967 * underutilized metadata chunk. So if this is our first run
968 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
969 * commit the transaction. If nothing has changed the next go
970 * around then we can force a chunk allocation.
972 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
973 flush_state++;
975 if (flush_state > COMMIT_TRANS) {
976 commit_cycles++;
977 if (commit_cycles > 2) {
978 if (maybe_fail_all_tickets(fs_info, space_info)) {
979 flush_state = FLUSH_DELAYED_ITEMS_NR;
980 commit_cycles--;
981 } else {
982 space_info->flush = 0;
984 } else {
985 flush_state = FLUSH_DELAYED_ITEMS_NR;
988 spin_unlock(&space_info->lock);
989 } while (flush_state <= COMMIT_TRANS);
993 * FLUSH_DELALLOC_WAIT:
994 * Space is freed from flushing delalloc in one of two ways.
996 * 1) compression is on and we allocate less space than we reserved
997 * 2) we are overwriting existing space
999 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1000 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1001 * length to ->bytes_reserved, and subtracts the reserved space from
1002 * ->bytes_may_use.
1004 * For #2 this is trickier. Once the ordered extent runs we will drop the
1005 * extent in the range we are overwriting, which creates a delayed ref for
1006 * that freed extent. This however is not reclaimed until the transaction
1007 * commits, thus the next stages.
1009 * RUN_DELAYED_IPUTS
1010 * If we are freeing inodes, we want to make sure all delayed iputs have
1011 * completed, because they could have been on an inode with i_nlink == 0, and
1012 * thus have been truncated and freed up space. But again this space is not
1013 * immediately re-usable, it comes in the form of a delayed ref, which must be
1014 * run and then the transaction must be committed.
1016 * FLUSH_DELAYED_REFS
1017 * The above two cases generate delayed refs that will affect
1018 * ->total_bytes_pinned. However this counter can be inconsistent with
1019 * reality if there are outstanding delayed refs. This is because we adjust
1020 * the counter based solely on the current set of delayed refs and disregard
1021 * any on-disk state which might include more refs. So for example, if we
1022 * have an extent with 2 references, but we only drop 1, we'll see that there
1023 * is a negative delayed ref count for the extent and assume that the space
1024 * will be freed, and thus increase ->total_bytes_pinned.
1026 * Running the delayed refs gives us the actual real view of what will be
1027 * freed at the transaction commit time. This stage will not actually free
1028 * space for us, it just makes sure that may_commit_transaction() has all of
1029 * the information it needs to make the right decision.
1031 * COMMIT_TRANS
1032 * This is where we reclaim all of the pinned space generated by the previous
1033 * two stages. We will not commit the transaction if we don't think we're
1034 * likely to satisfy our request, which means if our current free space +
1035 * total_bytes_pinned < reservation we will not commit. This is why the
1036 * previous states are actually important, to make sure we know for sure
1037 * whether committing the transaction will allow us to make progress.
1039 * ALLOC_CHUNK_FORCE
1040 * For data we start with alloc chunk force, however we could have been full
1041 * before, and then the transaction commit could have freed new block groups,
1042 * so if we now have space to allocate do the force chunk allocation.
1044 static const enum btrfs_flush_state data_flush_states[] = {
1045 FLUSH_DELALLOC_WAIT,
1046 RUN_DELAYED_IPUTS,
1047 FLUSH_DELAYED_REFS,
1048 COMMIT_TRANS,
1049 ALLOC_CHUNK_FORCE,
1052 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1054 struct btrfs_fs_info *fs_info;
1055 struct btrfs_space_info *space_info;
1056 u64 last_tickets_id;
1057 int flush_state = 0;
1059 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1060 space_info = fs_info->data_sinfo;
1062 spin_lock(&space_info->lock);
1063 if (list_empty(&space_info->tickets)) {
1064 space_info->flush = 0;
1065 spin_unlock(&space_info->lock);
1066 return;
1068 last_tickets_id = space_info->tickets_id;
1069 spin_unlock(&space_info->lock);
1071 while (!space_info->full) {
1072 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1073 spin_lock(&space_info->lock);
1074 if (list_empty(&space_info->tickets)) {
1075 space_info->flush = 0;
1076 spin_unlock(&space_info->lock);
1077 return;
1079 last_tickets_id = space_info->tickets_id;
1080 spin_unlock(&space_info->lock);
1083 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1084 flush_space(fs_info, space_info, U64_MAX,
1085 data_flush_states[flush_state]);
1086 spin_lock(&space_info->lock);
1087 if (list_empty(&space_info->tickets)) {
1088 space_info->flush = 0;
1089 spin_unlock(&space_info->lock);
1090 return;
1093 if (last_tickets_id == space_info->tickets_id) {
1094 flush_state++;
1095 } else {
1096 last_tickets_id = space_info->tickets_id;
1097 flush_state = 0;
1100 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1101 if (space_info->full) {
1102 if (maybe_fail_all_tickets(fs_info, space_info))
1103 flush_state = 0;
1104 else
1105 space_info->flush = 0;
1106 } else {
1107 flush_state = 0;
1110 spin_unlock(&space_info->lock);
1114 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1116 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1117 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1120 static const enum btrfs_flush_state priority_flush_states[] = {
1121 FLUSH_DELAYED_ITEMS_NR,
1122 FLUSH_DELAYED_ITEMS,
1123 ALLOC_CHUNK,
1126 static const enum btrfs_flush_state evict_flush_states[] = {
1127 FLUSH_DELAYED_ITEMS_NR,
1128 FLUSH_DELAYED_ITEMS,
1129 FLUSH_DELAYED_REFS_NR,
1130 FLUSH_DELAYED_REFS,
1131 FLUSH_DELALLOC,
1132 FLUSH_DELALLOC_WAIT,
1133 ALLOC_CHUNK,
1134 COMMIT_TRANS,
1137 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1138 struct btrfs_space_info *space_info,
1139 struct reserve_ticket *ticket,
1140 const enum btrfs_flush_state *states,
1141 int states_nr)
1143 u64 to_reclaim;
1144 int flush_state;
1146 spin_lock(&space_info->lock);
1147 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1148 if (!to_reclaim) {
1149 spin_unlock(&space_info->lock);
1150 return;
1152 spin_unlock(&space_info->lock);
1154 flush_state = 0;
1155 do {
1156 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1157 flush_state++;
1158 spin_lock(&space_info->lock);
1159 if (ticket->bytes == 0) {
1160 spin_unlock(&space_info->lock);
1161 return;
1163 spin_unlock(&space_info->lock);
1164 } while (flush_state < states_nr);
1167 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1168 struct btrfs_space_info *space_info,
1169 struct reserve_ticket *ticket)
1171 while (!space_info->full) {
1172 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1173 spin_lock(&space_info->lock);
1174 if (ticket->bytes == 0) {
1175 spin_unlock(&space_info->lock);
1176 return;
1178 spin_unlock(&space_info->lock);
1182 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1183 struct btrfs_space_info *space_info,
1184 struct reserve_ticket *ticket)
1187 DEFINE_WAIT(wait);
1188 int ret = 0;
1190 spin_lock(&space_info->lock);
1191 while (ticket->bytes > 0 && ticket->error == 0) {
1192 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1193 if (ret) {
1195 * Delete us from the list. After we unlock the space
1196 * info, we don't want the async reclaim job to reserve
1197 * space for this ticket. If that would happen, then the
1198 * ticket's task would not known that space was reserved
1199 * despite getting an error, resulting in a space leak
1200 * (bytes_may_use counter of our space_info).
1202 remove_ticket(space_info, ticket);
1203 ticket->error = -EINTR;
1204 break;
1206 spin_unlock(&space_info->lock);
1208 schedule();
1210 finish_wait(&ticket->wait, &wait);
1211 spin_lock(&space_info->lock);
1213 spin_unlock(&space_info->lock);
1217 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1218 * @fs_info - the fs
1219 * @space_info - the space_info for the reservation
1220 * @ticket - the ticket for the reservation
1221 * @flush - how much we can flush
1223 * This does the work of figuring out how to flush for the ticket, waiting for
1224 * the reservation, and returning the appropriate error if there is one.
1226 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1227 struct btrfs_space_info *space_info,
1228 struct reserve_ticket *ticket,
1229 enum btrfs_reserve_flush_enum flush)
1231 int ret;
1233 switch (flush) {
1234 case BTRFS_RESERVE_FLUSH_DATA:
1235 case BTRFS_RESERVE_FLUSH_ALL:
1236 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1237 wait_reserve_ticket(fs_info, space_info, ticket);
1238 break;
1239 case BTRFS_RESERVE_FLUSH_LIMIT:
1240 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1241 priority_flush_states,
1242 ARRAY_SIZE(priority_flush_states));
1243 break;
1244 case BTRFS_RESERVE_FLUSH_EVICT:
1245 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1246 evict_flush_states,
1247 ARRAY_SIZE(evict_flush_states));
1248 break;
1249 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1250 priority_reclaim_data_space(fs_info, space_info, ticket);
1251 break;
1252 default:
1253 ASSERT(0);
1254 break;
1257 spin_lock(&space_info->lock);
1258 ret = ticket->error;
1259 if (ticket->bytes || ticket->error) {
1261 * We were a priority ticket, so we need to delete ourselves
1262 * from the list. Because we could have other priority tickets
1263 * behind us that require less space, run
1264 * btrfs_try_granting_tickets() to see if their reservations can
1265 * now be made.
1267 if (!list_empty(&ticket->list)) {
1268 remove_ticket(space_info, ticket);
1269 btrfs_try_granting_tickets(fs_info, space_info);
1272 if (!ret)
1273 ret = -ENOSPC;
1275 spin_unlock(&space_info->lock);
1276 ASSERT(list_empty(&ticket->list));
1278 * Check that we can't have an error set if the reservation succeeded,
1279 * as that would confuse tasks and lead them to error out without
1280 * releasing reserved space (if an error happens the expectation is that
1281 * space wasn't reserved at all).
1283 ASSERT(!(ticket->bytes == 0 && ticket->error));
1284 return ret;
1288 * This returns true if this flush state will go through the ordinary flushing
1289 * code.
1291 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1293 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1294 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1298 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1299 * @root - the root we're allocating for
1300 * @space_info - the space info we want to allocate from
1301 * @orig_bytes - the number of bytes we want
1302 * @flush - whether or not we can flush to make our reservation
1304 * This will reserve orig_bytes number of bytes from the space info associated
1305 * with the block_rsv. If there is not enough space it will make an attempt to
1306 * flush out space to make room. It will do this by flushing delalloc if
1307 * possible or committing the transaction. If flush is 0 then no attempts to
1308 * regain reservations will be made and this will fail if there is not enough
1309 * space already.
1311 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1312 struct btrfs_space_info *space_info, u64 orig_bytes,
1313 enum btrfs_reserve_flush_enum flush)
1315 struct work_struct *async_work;
1316 struct reserve_ticket ticket;
1317 u64 used;
1318 int ret = 0;
1319 bool pending_tickets;
1321 ASSERT(orig_bytes);
1322 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1324 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1325 async_work = &fs_info->async_data_reclaim_work;
1326 else
1327 async_work = &fs_info->async_reclaim_work;
1329 spin_lock(&space_info->lock);
1330 ret = -ENOSPC;
1331 used = btrfs_space_info_used(space_info, true);
1334 * We don't want NO_FLUSH allocations to jump everybody, they can
1335 * generally handle ENOSPC in a different way, so treat them the same as
1336 * normal flushers when it comes to skipping pending tickets.
1338 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1339 pending_tickets = !list_empty(&space_info->tickets) ||
1340 !list_empty(&space_info->priority_tickets);
1341 else
1342 pending_tickets = !list_empty(&space_info->priority_tickets);
1345 * Carry on if we have enough space (short-circuit) OR call
1346 * can_overcommit() to ensure we can overcommit to continue.
1348 if (!pending_tickets &&
1349 ((used + orig_bytes <= space_info->total_bytes) ||
1350 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1351 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1352 orig_bytes);
1353 ret = 0;
1357 * If we couldn't make a reservation then setup our reservation ticket
1358 * and kick the async worker if it's not already running.
1360 * If we are a priority flusher then we just need to add our ticket to
1361 * the list and we will do our own flushing further down.
1363 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1364 ticket.bytes = orig_bytes;
1365 ticket.error = 0;
1366 space_info->reclaim_size += ticket.bytes;
1367 init_waitqueue_head(&ticket.wait);
1368 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1369 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1370 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1371 flush == BTRFS_RESERVE_FLUSH_DATA) {
1372 list_add_tail(&ticket.list, &space_info->tickets);
1373 if (!space_info->flush) {
1374 space_info->flush = 1;
1375 trace_btrfs_trigger_flush(fs_info,
1376 space_info->flags,
1377 orig_bytes, flush,
1378 "enospc");
1379 queue_work(system_unbound_wq, async_work);
1381 } else {
1382 list_add_tail(&ticket.list,
1383 &space_info->priority_tickets);
1385 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1386 used += orig_bytes;
1388 * We will do the space reservation dance during log replay,
1389 * which means we won't have fs_info->fs_root set, so don't do
1390 * the async reclaim as we will panic.
1392 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1393 need_do_async_reclaim(fs_info, space_info, used) &&
1394 !work_busy(&fs_info->async_reclaim_work)) {
1395 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1396 orig_bytes, flush, "preempt");
1397 queue_work(system_unbound_wq,
1398 &fs_info->async_reclaim_work);
1401 spin_unlock(&space_info->lock);
1402 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1403 return ret;
1405 return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1409 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1410 * @root - the root we're allocating for
1411 * @block_rsv - the block_rsv we're allocating for
1412 * @orig_bytes - the number of bytes we want
1413 * @flush - whether or not we can flush to make our reservation
1415 * This will reserve orig_bytes number of bytes from the space info associated
1416 * with the block_rsv. If there is not enough space it will make an attempt to
1417 * flush out space to make room. It will do this by flushing delalloc if
1418 * possible or committing the transaction. If flush is 0 then no attempts to
1419 * regain reservations will be made and this will fail if there is not enough
1420 * space already.
1422 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1423 struct btrfs_block_rsv *block_rsv,
1424 u64 orig_bytes,
1425 enum btrfs_reserve_flush_enum flush)
1427 struct btrfs_fs_info *fs_info = root->fs_info;
1428 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1429 int ret;
1431 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1432 if (ret == -ENOSPC &&
1433 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1434 if (block_rsv != global_rsv &&
1435 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1436 ret = 0;
1438 if (ret == -ENOSPC) {
1439 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1440 block_rsv->space_info->flags,
1441 orig_bytes, 1);
1443 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1444 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1445 orig_bytes, 0);
1447 return ret;
1451 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1452 * @fs_info - the filesystem
1453 * @bytes - the number of bytes we need
1454 * @flush - how we are allowed to flush
1456 * This will reserve bytes from the data space info. If there is not enough
1457 * space then we will attempt to flush space as specified by flush.
1459 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1460 enum btrfs_reserve_flush_enum flush)
1462 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1463 int ret;
1465 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1466 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1467 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1469 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1470 if (ret == -ENOSPC) {
1471 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1472 data_sinfo->flags, bytes, 1);
1473 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1474 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1476 return ret;