1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
23 #include "xfs_btree_staging.h"
26 * Cursor allocation zone.
28 kmem_zone_t
*xfs_btree_cur_zone
;
31 * Btree magic numbers.
33 static const uint32_t xfs_magics
[2][XFS_BTNUM_MAX
] = {
34 { XFS_ABTB_MAGIC
, XFS_ABTC_MAGIC
, 0, XFS_BMAP_MAGIC
, XFS_IBT_MAGIC
,
36 { XFS_ABTB_CRC_MAGIC
, XFS_ABTC_CRC_MAGIC
, XFS_RMAP_CRC_MAGIC
,
37 XFS_BMAP_CRC_MAGIC
, XFS_IBT_CRC_MAGIC
, XFS_FIBT_CRC_MAGIC
,
46 uint32_t magic
= xfs_magics
[crc
][btnum
];
48 /* Ensure we asked for crc for crc-only magics. */
54 * Check a long btree block header. Return the address of the failing check,
55 * or NULL if everything is ok.
58 __xfs_btree_check_lblock(
59 struct xfs_btree_cur
*cur
,
60 struct xfs_btree_block
*block
,
64 struct xfs_mount
*mp
= cur
->bc_mp
;
65 xfs_btnum_t btnum
= cur
->bc_btnum
;
66 int crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
69 if (!uuid_equal(&block
->bb_u
.l
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
))
70 return __this_address
;
71 if (block
->bb_u
.l
.bb_blkno
!=
72 cpu_to_be64(bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
))
73 return __this_address
;
74 if (block
->bb_u
.l
.bb_pad
!= cpu_to_be32(0))
75 return __this_address
;
78 if (be32_to_cpu(block
->bb_magic
) != xfs_btree_magic(crc
, btnum
))
79 return __this_address
;
80 if (be16_to_cpu(block
->bb_level
) != level
)
81 return __this_address
;
82 if (be16_to_cpu(block
->bb_numrecs
) >
83 cur
->bc_ops
->get_maxrecs(cur
, level
))
84 return __this_address
;
85 if (block
->bb_u
.l
.bb_leftsib
!= cpu_to_be64(NULLFSBLOCK
) &&
86 !xfs_btree_check_lptr(cur
, be64_to_cpu(block
->bb_u
.l
.bb_leftsib
),
88 return __this_address
;
89 if (block
->bb_u
.l
.bb_rightsib
!= cpu_to_be64(NULLFSBLOCK
) &&
90 !xfs_btree_check_lptr(cur
, be64_to_cpu(block
->bb_u
.l
.bb_rightsib
),
92 return __this_address
;
97 /* Check a long btree block header. */
99 xfs_btree_check_lblock(
100 struct xfs_btree_cur
*cur
,
101 struct xfs_btree_block
*block
,
105 struct xfs_mount
*mp
= cur
->bc_mp
;
108 fa
= __xfs_btree_check_lblock(cur
, block
, level
, bp
);
109 if (XFS_IS_CORRUPT(mp
, fa
!= NULL
) ||
110 XFS_TEST_ERROR(false, mp
, XFS_ERRTAG_BTREE_CHECK_LBLOCK
)) {
112 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
113 return -EFSCORRUPTED
;
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
123 __xfs_btree_check_sblock(
124 struct xfs_btree_cur
*cur
,
125 struct xfs_btree_block
*block
,
129 struct xfs_mount
*mp
= cur
->bc_mp
;
130 xfs_btnum_t btnum
= cur
->bc_btnum
;
131 int crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
134 if (!uuid_equal(&block
->bb_u
.s
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
))
135 return __this_address
;
136 if (block
->bb_u
.s
.bb_blkno
!=
137 cpu_to_be64(bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
))
138 return __this_address
;
141 if (be32_to_cpu(block
->bb_magic
) != xfs_btree_magic(crc
, btnum
))
142 return __this_address
;
143 if (be16_to_cpu(block
->bb_level
) != level
)
144 return __this_address
;
145 if (be16_to_cpu(block
->bb_numrecs
) >
146 cur
->bc_ops
->get_maxrecs(cur
, level
))
147 return __this_address
;
148 if (block
->bb_u
.s
.bb_leftsib
!= cpu_to_be32(NULLAGBLOCK
) &&
149 !xfs_btree_check_sptr(cur
, be32_to_cpu(block
->bb_u
.s
.bb_leftsib
),
151 return __this_address
;
152 if (block
->bb_u
.s
.bb_rightsib
!= cpu_to_be32(NULLAGBLOCK
) &&
153 !xfs_btree_check_sptr(cur
, be32_to_cpu(block
->bb_u
.s
.bb_rightsib
),
155 return __this_address
;
160 /* Check a short btree block header. */
162 xfs_btree_check_sblock(
163 struct xfs_btree_cur
*cur
,
164 struct xfs_btree_block
*block
,
168 struct xfs_mount
*mp
= cur
->bc_mp
;
171 fa
= __xfs_btree_check_sblock(cur
, block
, level
, bp
);
172 if (XFS_IS_CORRUPT(mp
, fa
!= NULL
) ||
173 XFS_TEST_ERROR(false, mp
, XFS_ERRTAG_BTREE_CHECK_SBLOCK
)) {
175 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
176 return -EFSCORRUPTED
;
182 * Debug routine: check that block header is ok.
185 xfs_btree_check_block(
186 struct xfs_btree_cur
*cur
, /* btree cursor */
187 struct xfs_btree_block
*block
, /* generic btree block pointer */
188 int level
, /* level of the btree block */
189 struct xfs_buf
*bp
) /* buffer containing block, if any */
191 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
192 return xfs_btree_check_lblock(cur
, block
, level
, bp
);
194 return xfs_btree_check_sblock(cur
, block
, level
, bp
);
197 /* Check that this long pointer is valid and points within the fs. */
199 xfs_btree_check_lptr(
200 struct xfs_btree_cur
*cur
,
206 return xfs_verify_fsbno(cur
->bc_mp
, fsbno
);
209 /* Check that this short pointer is valid and points within the AG. */
211 xfs_btree_check_sptr(
212 struct xfs_btree_cur
*cur
,
218 return xfs_verify_agbno(cur
->bc_mp
, cur
->bc_ag
.agno
, agbno
);
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
227 struct xfs_btree_cur
*cur
,
228 union xfs_btree_ptr
*ptr
,
232 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
233 if (xfs_btree_check_lptr(cur
, be64_to_cpu((&ptr
->l
)[index
]),
237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 cur
->bc_ino
.ip
->i_ino
,
239 cur
->bc_ino
.whichfork
, cur
->bc_btnum
,
242 if (xfs_btree_check_sptr(cur
, be32_to_cpu((&ptr
->s
)[index
]),
246 "AG %u: Corrupt btree %d pointer at level %d index %d.",
247 cur
->bc_ag
.agno
, cur
->bc_btnum
,
251 return -EFSCORRUPTED
;
255 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257 # define xfs_btree_debug_check_ptr(...) (0)
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
269 xfs_btree_lblock_calc_crc(
272 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
273 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
275 if (!xfs_sb_version_hascrc(&bp
->b_mount
->m_sb
))
278 block
->bb_u
.l
.bb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
279 xfs_buf_update_cksum(bp
, XFS_BTREE_LBLOCK_CRC_OFF
);
283 xfs_btree_lblock_verify_crc(
286 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
287 struct xfs_mount
*mp
= bp
->b_mount
;
289 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
290 if (!xfs_log_check_lsn(mp
, be64_to_cpu(block
->bb_u
.l
.bb_lsn
)))
292 return xfs_buf_verify_cksum(bp
, XFS_BTREE_LBLOCK_CRC_OFF
);
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
307 xfs_btree_sblock_calc_crc(
310 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
311 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
313 if (!xfs_sb_version_hascrc(&bp
->b_mount
->m_sb
))
316 block
->bb_u
.s
.bb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
317 xfs_buf_update_cksum(bp
, XFS_BTREE_SBLOCK_CRC_OFF
);
321 xfs_btree_sblock_verify_crc(
324 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
325 struct xfs_mount
*mp
= bp
->b_mount
;
327 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
328 if (!xfs_log_check_lsn(mp
, be64_to_cpu(block
->bb_u
.s
.bb_lsn
)))
330 return xfs_buf_verify_cksum(bp
, XFS_BTREE_SBLOCK_CRC_OFF
);
337 xfs_btree_free_block(
338 struct xfs_btree_cur
*cur
,
343 error
= cur
->bc_ops
->free_block(cur
, bp
);
345 xfs_trans_binval(cur
->bc_tp
, bp
);
346 XFS_BTREE_STATS_INC(cur
, free
);
352 * Delete the btree cursor.
355 xfs_btree_del_cursor(
356 xfs_btree_cur_t
*cur
, /* btree cursor */
357 int error
) /* del because of error */
359 int i
; /* btree level */
362 * Clear the buffer pointers, and release the buffers.
363 * If we're doing this in the face of an error, we
364 * need to make sure to inspect all of the entries
365 * in the bc_bufs array for buffers to be unlocked.
366 * This is because some of the btree code works from
367 * level n down to 0, and if we get an error along
368 * the way we won't have initialized all the entries
371 for (i
= 0; i
< cur
->bc_nlevels
; i
++) {
373 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[i
]);
378 * Can't free a bmap cursor without having dealt with the
379 * allocated indirect blocks' accounting.
381 ASSERT(cur
->bc_btnum
!= XFS_BTNUM_BMAP
||
382 cur
->bc_ino
.allocated
== 0);
386 if (unlikely(cur
->bc_flags
& XFS_BTREE_STAGING
))
387 kmem_free((void *)cur
->bc_ops
);
388 kmem_cache_free(xfs_btree_cur_zone
, cur
);
392 * Duplicate the btree cursor.
393 * Allocate a new one, copy the record, re-get the buffers.
396 xfs_btree_dup_cursor(
397 xfs_btree_cur_t
*cur
, /* input cursor */
398 xfs_btree_cur_t
**ncur
) /* output cursor */
400 struct xfs_buf
*bp
; /* btree block's buffer pointer */
401 int error
; /* error return value */
402 int i
; /* level number of btree block */
403 xfs_mount_t
*mp
; /* mount structure for filesystem */
404 xfs_btree_cur_t
*new; /* new cursor value */
405 xfs_trans_t
*tp
; /* transaction pointer, can be NULL */
411 * Allocate a new cursor like the old one.
413 new = cur
->bc_ops
->dup_cursor(cur
);
416 * Copy the record currently in the cursor.
418 new->bc_rec
= cur
->bc_rec
;
421 * For each level current, re-get the buffer and copy the ptr value.
423 for (i
= 0; i
< new->bc_nlevels
; i
++) {
424 new->bc_ptrs
[i
] = cur
->bc_ptrs
[i
];
425 new->bc_ra
[i
] = cur
->bc_ra
[i
];
426 bp
= cur
->bc_bufs
[i
];
428 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
429 XFS_BUF_ADDR(bp
), mp
->m_bsize
,
431 cur
->bc_ops
->buf_ops
);
433 xfs_btree_del_cursor(new, error
);
438 new->bc_bufs
[i
] = bp
;
445 * XFS btree block layout and addressing:
447 * There are two types of blocks in the btree: leaf and non-leaf blocks.
449 * The leaf record start with a header then followed by records containing
450 * the values. A non-leaf block also starts with the same header, and
451 * then first contains lookup keys followed by an equal number of pointers
452 * to the btree blocks at the previous level.
454 * +--------+-------+-------+-------+-------+-------+-------+
455 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
456 * +--------+-------+-------+-------+-------+-------+-------+
458 * +--------+-------+-------+-------+-------+-------+-------+
459 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
460 * +--------+-------+-------+-------+-------+-------+-------+
462 * The header is called struct xfs_btree_block for reasons better left unknown
463 * and comes in different versions for short (32bit) and long (64bit) block
464 * pointers. The record and key structures are defined by the btree instances
465 * and opaque to the btree core. The block pointers are simple disk endian
466 * integers, available in a short (32bit) and long (64bit) variant.
468 * The helpers below calculate the offset of a given record, key or pointer
469 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
470 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
471 * inside the btree block is done using indices starting at one, not zero!
473 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
474 * overlapping intervals. In such a tree, records are still sorted lowest to
475 * highest and indexed by the smallest key value that refers to the record.
476 * However, nodes are different: each pointer has two associated keys -- one
477 * indexing the lowest key available in the block(s) below (the same behavior
478 * as the key in a regular btree) and another indexing the highest key
479 * available in the block(s) below. Because records are /not/ sorted by the
480 * highest key, all leaf block updates require us to compute the highest key
481 * that matches any record in the leaf and to recursively update the high keys
482 * in the nodes going further up in the tree, if necessary. Nodes look like
485 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
486 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
487 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
489 * To perform an interval query on an overlapped tree, perform the usual
490 * depth-first search and use the low and high keys to decide if we can skip
491 * that particular node. If a leaf node is reached, return the records that
492 * intersect the interval. Note that an interval query may return numerous
493 * entries. For a non-overlapped tree, simply search for the record associated
494 * with the lowest key and iterate forward until a non-matching record is
495 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
496 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
499 * Why do we care about overlapping intervals? Let's say you have a bunch of
500 * reverse mapping records on a reflink filesystem:
502 * 1: +- file A startblock B offset C length D -----------+
503 * 2: +- file E startblock F offset G length H --------------+
504 * 3: +- file I startblock F offset J length K --+
505 * 4: +- file L... --+
507 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
508 * we'd simply increment the length of record 1. But how do we find the record
509 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
510 * record 3 because the keys are ordered first by startblock. An interval
511 * query would return records 1 and 2 because they both overlap (B+D-1), and
512 * from that we can pick out record 1 as the appropriate left neighbor.
514 * In the non-overlapped case you can do a LE lookup and decrement the cursor
515 * because a record's interval must end before the next record.
519 * Return size of the btree block header for this btree instance.
521 static inline size_t xfs_btree_block_len(struct xfs_btree_cur
*cur
)
523 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
524 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
)
525 return XFS_BTREE_LBLOCK_CRC_LEN
;
526 return XFS_BTREE_LBLOCK_LEN
;
528 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
)
529 return XFS_BTREE_SBLOCK_CRC_LEN
;
530 return XFS_BTREE_SBLOCK_LEN
;
534 * Return size of btree block pointers for this btree instance.
536 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur
*cur
)
538 return (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) ?
539 sizeof(__be64
) : sizeof(__be32
);
543 * Calculate offset of the n-th record in a btree block.
546 xfs_btree_rec_offset(
547 struct xfs_btree_cur
*cur
,
550 return xfs_btree_block_len(cur
) +
551 (n
- 1) * cur
->bc_ops
->rec_len
;
555 * Calculate offset of the n-th key in a btree block.
558 xfs_btree_key_offset(
559 struct xfs_btree_cur
*cur
,
562 return xfs_btree_block_len(cur
) +
563 (n
- 1) * cur
->bc_ops
->key_len
;
567 * Calculate offset of the n-th high key in a btree block.
570 xfs_btree_high_key_offset(
571 struct xfs_btree_cur
*cur
,
574 return xfs_btree_block_len(cur
) +
575 (n
- 1) * cur
->bc_ops
->key_len
+ (cur
->bc_ops
->key_len
/ 2);
579 * Calculate offset of the n-th block pointer in a btree block.
582 xfs_btree_ptr_offset(
583 struct xfs_btree_cur
*cur
,
587 return xfs_btree_block_len(cur
) +
588 cur
->bc_ops
->get_maxrecs(cur
, level
) * cur
->bc_ops
->key_len
+
589 (n
- 1) * xfs_btree_ptr_len(cur
);
593 * Return a pointer to the n-th record in the btree block.
595 union xfs_btree_rec
*
597 struct xfs_btree_cur
*cur
,
599 struct xfs_btree_block
*block
)
601 return (union xfs_btree_rec
*)
602 ((char *)block
+ xfs_btree_rec_offset(cur
, n
));
606 * Return a pointer to the n-th key in the btree block.
608 union xfs_btree_key
*
610 struct xfs_btree_cur
*cur
,
612 struct xfs_btree_block
*block
)
614 return (union xfs_btree_key
*)
615 ((char *)block
+ xfs_btree_key_offset(cur
, n
));
619 * Return a pointer to the n-th high key in the btree block.
621 union xfs_btree_key
*
622 xfs_btree_high_key_addr(
623 struct xfs_btree_cur
*cur
,
625 struct xfs_btree_block
*block
)
627 return (union xfs_btree_key
*)
628 ((char *)block
+ xfs_btree_high_key_offset(cur
, n
));
632 * Return a pointer to the n-th block pointer in the btree block.
634 union xfs_btree_ptr
*
636 struct xfs_btree_cur
*cur
,
638 struct xfs_btree_block
*block
)
640 int level
= xfs_btree_get_level(block
);
642 ASSERT(block
->bb_level
!= 0);
644 return (union xfs_btree_ptr
*)
645 ((char *)block
+ xfs_btree_ptr_offset(cur
, n
, level
));
650 struct xfs_btree_cur
*cur
)
652 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
654 if (cur
->bc_flags
& XFS_BTREE_STAGING
)
655 return cur
->bc_ino
.ifake
->if_fork
;
656 return XFS_IFORK_PTR(cur
->bc_ino
.ip
, cur
->bc_ino
.whichfork
);
660 * Get the root block which is stored in the inode.
662 * For now this btree implementation assumes the btree root is always
663 * stored in the if_broot field of an inode fork.
665 STATIC
struct xfs_btree_block
*
667 struct xfs_btree_cur
*cur
)
669 struct xfs_ifork
*ifp
= xfs_btree_ifork_ptr(cur
);
671 return (struct xfs_btree_block
*)ifp
->if_broot
;
675 * Retrieve the block pointer from the cursor at the given level.
676 * This may be an inode btree root or from a buffer.
678 struct xfs_btree_block
* /* generic btree block pointer */
680 struct xfs_btree_cur
*cur
, /* btree cursor */
681 int level
, /* level in btree */
682 struct xfs_buf
**bpp
) /* buffer containing the block */
684 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
685 (level
== cur
->bc_nlevels
- 1)) {
687 return xfs_btree_get_iroot(cur
);
690 *bpp
= cur
->bc_bufs
[level
];
691 return XFS_BUF_TO_BLOCK(*bpp
);
695 * Change the cursor to point to the first record at the given level.
696 * Other levels are unaffected.
698 STATIC
int /* success=1, failure=0 */
700 xfs_btree_cur_t
*cur
, /* btree cursor */
701 int level
) /* level to change */
703 struct xfs_btree_block
*block
; /* generic btree block pointer */
704 struct xfs_buf
*bp
; /* buffer containing block */
707 * Get the block pointer for this level.
709 block
= xfs_btree_get_block(cur
, level
, &bp
);
710 if (xfs_btree_check_block(cur
, block
, level
, bp
))
713 * It's empty, there is no such record.
715 if (!block
->bb_numrecs
)
718 * Set the ptr value to 1, that's the first record/key.
720 cur
->bc_ptrs
[level
] = 1;
725 * Change the cursor to point to the last record in the current block
726 * at the given level. Other levels are unaffected.
728 STATIC
int /* success=1, failure=0 */
730 xfs_btree_cur_t
*cur
, /* btree cursor */
731 int level
) /* level to change */
733 struct xfs_btree_block
*block
; /* generic btree block pointer */
734 struct xfs_buf
*bp
; /* buffer containing block */
737 * Get the block pointer for this level.
739 block
= xfs_btree_get_block(cur
, level
, &bp
);
740 if (xfs_btree_check_block(cur
, block
, level
, bp
))
743 * It's empty, there is no such record.
745 if (!block
->bb_numrecs
)
748 * Set the ptr value to numrecs, that's the last record/key.
750 cur
->bc_ptrs
[level
] = be16_to_cpu(block
->bb_numrecs
);
755 * Compute first and last byte offsets for the fields given.
756 * Interprets the offsets table, which contains struct field offsets.
760 int64_t fields
, /* bitmask of fields */
761 const short *offsets
, /* table of field offsets */
762 int nbits
, /* number of bits to inspect */
763 int *first
, /* output: first byte offset */
764 int *last
) /* output: last byte offset */
766 int i
; /* current bit number */
767 int64_t imask
; /* mask for current bit number */
771 * Find the lowest bit, so the first byte offset.
773 for (i
= 0, imask
= 1LL; ; i
++, imask
<<= 1) {
774 if (imask
& fields
) {
780 * Find the highest bit, so the last byte offset.
782 for (i
= nbits
- 1, imask
= 1LL << i
; ; i
--, imask
>>= 1) {
783 if (imask
& fields
) {
784 *last
= offsets
[i
+ 1] - 1;
791 * Get a buffer for the block, return it read in.
792 * Long-form addressing.
796 struct xfs_mount
*mp
, /* file system mount point */
797 struct xfs_trans
*tp
, /* transaction pointer */
798 xfs_fsblock_t fsbno
, /* file system block number */
799 struct xfs_buf
**bpp
, /* buffer for fsbno */
800 int refval
, /* ref count value for buffer */
801 const struct xfs_buf_ops
*ops
)
803 struct xfs_buf
*bp
; /* return value */
804 xfs_daddr_t d
; /* real disk block address */
807 if (!xfs_verify_fsbno(mp
, fsbno
))
808 return -EFSCORRUPTED
;
809 d
= XFS_FSB_TO_DADDR(mp
, fsbno
);
810 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, d
,
811 mp
->m_bsize
, 0, &bp
, ops
);
815 xfs_buf_set_ref(bp
, refval
);
821 * Read-ahead the block, don't wait for it, don't return a buffer.
822 * Long-form addressing.
826 xfs_btree_reada_bufl(
827 struct xfs_mount
*mp
, /* file system mount point */
828 xfs_fsblock_t fsbno
, /* file system block number */
829 xfs_extlen_t count
, /* count of filesystem blocks */
830 const struct xfs_buf_ops
*ops
)
834 ASSERT(fsbno
!= NULLFSBLOCK
);
835 d
= XFS_FSB_TO_DADDR(mp
, fsbno
);
836 xfs_buf_readahead(mp
->m_ddev_targp
, d
, mp
->m_bsize
* count
, ops
);
840 * Read-ahead the block, don't wait for it, don't return a buffer.
841 * Short-form addressing.
845 xfs_btree_reada_bufs(
846 struct xfs_mount
*mp
, /* file system mount point */
847 xfs_agnumber_t agno
, /* allocation group number */
848 xfs_agblock_t agbno
, /* allocation group block number */
849 xfs_extlen_t count
, /* count of filesystem blocks */
850 const struct xfs_buf_ops
*ops
)
854 ASSERT(agno
!= NULLAGNUMBER
);
855 ASSERT(agbno
!= NULLAGBLOCK
);
856 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
857 xfs_buf_readahead(mp
->m_ddev_targp
, d
, mp
->m_bsize
* count
, ops
);
861 xfs_btree_readahead_lblock(
862 struct xfs_btree_cur
*cur
,
864 struct xfs_btree_block
*block
)
867 xfs_fsblock_t left
= be64_to_cpu(block
->bb_u
.l
.bb_leftsib
);
868 xfs_fsblock_t right
= be64_to_cpu(block
->bb_u
.l
.bb_rightsib
);
870 if ((lr
& XFS_BTCUR_LEFTRA
) && left
!= NULLFSBLOCK
) {
871 xfs_btree_reada_bufl(cur
->bc_mp
, left
, 1,
872 cur
->bc_ops
->buf_ops
);
876 if ((lr
& XFS_BTCUR_RIGHTRA
) && right
!= NULLFSBLOCK
) {
877 xfs_btree_reada_bufl(cur
->bc_mp
, right
, 1,
878 cur
->bc_ops
->buf_ops
);
886 xfs_btree_readahead_sblock(
887 struct xfs_btree_cur
*cur
,
889 struct xfs_btree_block
*block
)
892 xfs_agblock_t left
= be32_to_cpu(block
->bb_u
.s
.bb_leftsib
);
893 xfs_agblock_t right
= be32_to_cpu(block
->bb_u
.s
.bb_rightsib
);
896 if ((lr
& XFS_BTCUR_LEFTRA
) && left
!= NULLAGBLOCK
) {
897 xfs_btree_reada_bufs(cur
->bc_mp
, cur
->bc_ag
.agno
,
898 left
, 1, cur
->bc_ops
->buf_ops
);
902 if ((lr
& XFS_BTCUR_RIGHTRA
) && right
!= NULLAGBLOCK
) {
903 xfs_btree_reada_bufs(cur
->bc_mp
, cur
->bc_ag
.agno
,
904 right
, 1, cur
->bc_ops
->buf_ops
);
912 * Read-ahead btree blocks, at the given level.
913 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
917 struct xfs_btree_cur
*cur
, /* btree cursor */
918 int lev
, /* level in btree */
919 int lr
) /* left/right bits */
921 struct xfs_btree_block
*block
;
924 * No readahead needed if we are at the root level and the
925 * btree root is stored in the inode.
927 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
928 (lev
== cur
->bc_nlevels
- 1))
931 if ((cur
->bc_ra
[lev
] | lr
) == cur
->bc_ra
[lev
])
934 cur
->bc_ra
[lev
] |= lr
;
935 block
= XFS_BUF_TO_BLOCK(cur
->bc_bufs
[lev
]);
937 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
938 return xfs_btree_readahead_lblock(cur
, lr
, block
);
939 return xfs_btree_readahead_sblock(cur
, lr
, block
);
943 xfs_btree_ptr_to_daddr(
944 struct xfs_btree_cur
*cur
,
945 union xfs_btree_ptr
*ptr
,
952 error
= xfs_btree_check_ptr(cur
, ptr
, 0, 1);
956 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
957 fsbno
= be64_to_cpu(ptr
->l
);
958 *daddr
= XFS_FSB_TO_DADDR(cur
->bc_mp
, fsbno
);
960 agbno
= be32_to_cpu(ptr
->s
);
961 *daddr
= XFS_AGB_TO_DADDR(cur
->bc_mp
, cur
->bc_ag
.agno
,
969 * Readahead @count btree blocks at the given @ptr location.
971 * We don't need to care about long or short form btrees here as we have a
972 * method of converting the ptr directly to a daddr available to us.
975 xfs_btree_readahead_ptr(
976 struct xfs_btree_cur
*cur
,
977 union xfs_btree_ptr
*ptr
,
982 if (xfs_btree_ptr_to_daddr(cur
, ptr
, &daddr
))
984 xfs_buf_readahead(cur
->bc_mp
->m_ddev_targp
, daddr
,
985 cur
->bc_mp
->m_bsize
* count
, cur
->bc_ops
->buf_ops
);
989 * Set the buffer for level "lev" in the cursor to bp, releasing
990 * any previous buffer.
994 xfs_btree_cur_t
*cur
, /* btree cursor */
995 int lev
, /* level in btree */
996 struct xfs_buf
*bp
) /* new buffer to set */
998 struct xfs_btree_block
*b
; /* btree block */
1000 if (cur
->bc_bufs
[lev
])
1001 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[lev
]);
1002 cur
->bc_bufs
[lev
] = bp
;
1003 cur
->bc_ra
[lev
] = 0;
1005 b
= XFS_BUF_TO_BLOCK(bp
);
1006 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1007 if (b
->bb_u
.l
.bb_leftsib
== cpu_to_be64(NULLFSBLOCK
))
1008 cur
->bc_ra
[lev
] |= XFS_BTCUR_LEFTRA
;
1009 if (b
->bb_u
.l
.bb_rightsib
== cpu_to_be64(NULLFSBLOCK
))
1010 cur
->bc_ra
[lev
] |= XFS_BTCUR_RIGHTRA
;
1012 if (b
->bb_u
.s
.bb_leftsib
== cpu_to_be32(NULLAGBLOCK
))
1013 cur
->bc_ra
[lev
] |= XFS_BTCUR_LEFTRA
;
1014 if (b
->bb_u
.s
.bb_rightsib
== cpu_to_be32(NULLAGBLOCK
))
1015 cur
->bc_ra
[lev
] |= XFS_BTCUR_RIGHTRA
;
1020 xfs_btree_ptr_is_null(
1021 struct xfs_btree_cur
*cur
,
1022 union xfs_btree_ptr
*ptr
)
1024 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1025 return ptr
->l
== cpu_to_be64(NULLFSBLOCK
);
1027 return ptr
->s
== cpu_to_be32(NULLAGBLOCK
);
1031 xfs_btree_set_ptr_null(
1032 struct xfs_btree_cur
*cur
,
1033 union xfs_btree_ptr
*ptr
)
1035 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1036 ptr
->l
= cpu_to_be64(NULLFSBLOCK
);
1038 ptr
->s
= cpu_to_be32(NULLAGBLOCK
);
1042 * Get/set/init sibling pointers
1045 xfs_btree_get_sibling(
1046 struct xfs_btree_cur
*cur
,
1047 struct xfs_btree_block
*block
,
1048 union xfs_btree_ptr
*ptr
,
1051 ASSERT(lr
== XFS_BB_LEFTSIB
|| lr
== XFS_BB_RIGHTSIB
);
1053 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1054 if (lr
== XFS_BB_RIGHTSIB
)
1055 ptr
->l
= block
->bb_u
.l
.bb_rightsib
;
1057 ptr
->l
= block
->bb_u
.l
.bb_leftsib
;
1059 if (lr
== XFS_BB_RIGHTSIB
)
1060 ptr
->s
= block
->bb_u
.s
.bb_rightsib
;
1062 ptr
->s
= block
->bb_u
.s
.bb_leftsib
;
1067 xfs_btree_set_sibling(
1068 struct xfs_btree_cur
*cur
,
1069 struct xfs_btree_block
*block
,
1070 union xfs_btree_ptr
*ptr
,
1073 ASSERT(lr
== XFS_BB_LEFTSIB
|| lr
== XFS_BB_RIGHTSIB
);
1075 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1076 if (lr
== XFS_BB_RIGHTSIB
)
1077 block
->bb_u
.l
.bb_rightsib
= ptr
->l
;
1079 block
->bb_u
.l
.bb_leftsib
= ptr
->l
;
1081 if (lr
== XFS_BB_RIGHTSIB
)
1082 block
->bb_u
.s
.bb_rightsib
= ptr
->s
;
1084 block
->bb_u
.s
.bb_leftsib
= ptr
->s
;
1089 xfs_btree_init_block_int(
1090 struct xfs_mount
*mp
,
1091 struct xfs_btree_block
*buf
,
1099 int crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
1100 __u32 magic
= xfs_btree_magic(crc
, btnum
);
1102 buf
->bb_magic
= cpu_to_be32(magic
);
1103 buf
->bb_level
= cpu_to_be16(level
);
1104 buf
->bb_numrecs
= cpu_to_be16(numrecs
);
1106 if (flags
& XFS_BTREE_LONG_PTRS
) {
1107 buf
->bb_u
.l
.bb_leftsib
= cpu_to_be64(NULLFSBLOCK
);
1108 buf
->bb_u
.l
.bb_rightsib
= cpu_to_be64(NULLFSBLOCK
);
1110 buf
->bb_u
.l
.bb_blkno
= cpu_to_be64(blkno
);
1111 buf
->bb_u
.l
.bb_owner
= cpu_to_be64(owner
);
1112 uuid_copy(&buf
->bb_u
.l
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
);
1113 buf
->bb_u
.l
.bb_pad
= 0;
1114 buf
->bb_u
.l
.bb_lsn
= 0;
1117 /* owner is a 32 bit value on short blocks */
1118 __u32 __owner
= (__u32
)owner
;
1120 buf
->bb_u
.s
.bb_leftsib
= cpu_to_be32(NULLAGBLOCK
);
1121 buf
->bb_u
.s
.bb_rightsib
= cpu_to_be32(NULLAGBLOCK
);
1123 buf
->bb_u
.s
.bb_blkno
= cpu_to_be64(blkno
);
1124 buf
->bb_u
.s
.bb_owner
= cpu_to_be32(__owner
);
1125 uuid_copy(&buf
->bb_u
.s
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
);
1126 buf
->bb_u
.s
.bb_lsn
= 0;
1132 xfs_btree_init_block(
1133 struct xfs_mount
*mp
,
1140 xfs_btree_init_block_int(mp
, XFS_BUF_TO_BLOCK(bp
), bp
->b_bn
,
1141 btnum
, level
, numrecs
, owner
, 0);
1145 xfs_btree_init_block_cur(
1146 struct xfs_btree_cur
*cur
,
1154 * we can pull the owner from the cursor right now as the different
1155 * owners align directly with the pointer size of the btree. This may
1156 * change in future, but is safe for current users of the generic btree
1159 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1160 owner
= cur
->bc_ino
.ip
->i_ino
;
1162 owner
= cur
->bc_ag
.agno
;
1164 xfs_btree_init_block_int(cur
->bc_mp
, XFS_BUF_TO_BLOCK(bp
), bp
->b_bn
,
1165 cur
->bc_btnum
, level
, numrecs
,
1166 owner
, cur
->bc_flags
);
1170 * Return true if ptr is the last record in the btree and
1171 * we need to track updates to this record. The decision
1172 * will be further refined in the update_lastrec method.
1175 xfs_btree_is_lastrec(
1176 struct xfs_btree_cur
*cur
,
1177 struct xfs_btree_block
*block
,
1180 union xfs_btree_ptr ptr
;
1184 if (!(cur
->bc_flags
& XFS_BTREE_LASTREC_UPDATE
))
1187 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1188 if (!xfs_btree_ptr_is_null(cur
, &ptr
))
1194 xfs_btree_buf_to_ptr(
1195 struct xfs_btree_cur
*cur
,
1197 union xfs_btree_ptr
*ptr
)
1199 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1200 ptr
->l
= cpu_to_be64(XFS_DADDR_TO_FSB(cur
->bc_mp
,
1203 ptr
->s
= cpu_to_be32(xfs_daddr_to_agbno(cur
->bc_mp
,
1210 struct xfs_btree_cur
*cur
,
1213 switch (cur
->bc_btnum
) {
1216 xfs_buf_set_ref(bp
, XFS_ALLOC_BTREE_REF
);
1219 case XFS_BTNUM_FINO
:
1220 xfs_buf_set_ref(bp
, XFS_INO_BTREE_REF
);
1222 case XFS_BTNUM_BMAP
:
1223 xfs_buf_set_ref(bp
, XFS_BMAP_BTREE_REF
);
1225 case XFS_BTNUM_RMAP
:
1226 xfs_buf_set_ref(bp
, XFS_RMAP_BTREE_REF
);
1228 case XFS_BTNUM_REFC
:
1229 xfs_buf_set_ref(bp
, XFS_REFC_BTREE_REF
);
1237 xfs_btree_get_buf_block(
1238 struct xfs_btree_cur
*cur
,
1239 union xfs_btree_ptr
*ptr
,
1240 struct xfs_btree_block
**block
,
1241 struct xfs_buf
**bpp
)
1243 struct xfs_mount
*mp
= cur
->bc_mp
;
1247 error
= xfs_btree_ptr_to_daddr(cur
, ptr
, &d
);
1250 error
= xfs_trans_get_buf(cur
->bc_tp
, mp
->m_ddev_targp
, d
, mp
->m_bsize
,
1255 (*bpp
)->b_ops
= cur
->bc_ops
->buf_ops
;
1256 *block
= XFS_BUF_TO_BLOCK(*bpp
);
1261 * Read in the buffer at the given ptr and return the buffer and
1262 * the block pointer within the buffer.
1265 xfs_btree_read_buf_block(
1266 struct xfs_btree_cur
*cur
,
1267 union xfs_btree_ptr
*ptr
,
1269 struct xfs_btree_block
**block
,
1270 struct xfs_buf
**bpp
)
1272 struct xfs_mount
*mp
= cur
->bc_mp
;
1276 /* need to sort out how callers deal with failures first */
1277 ASSERT(!(flags
& XBF_TRYLOCK
));
1279 error
= xfs_btree_ptr_to_daddr(cur
, ptr
, &d
);
1282 error
= xfs_trans_read_buf(mp
, cur
->bc_tp
, mp
->m_ddev_targp
, d
,
1283 mp
->m_bsize
, flags
, bpp
,
1284 cur
->bc_ops
->buf_ops
);
1288 xfs_btree_set_refs(cur
, *bpp
);
1289 *block
= XFS_BUF_TO_BLOCK(*bpp
);
1294 * Copy keys from one btree block to another.
1297 xfs_btree_copy_keys(
1298 struct xfs_btree_cur
*cur
,
1299 union xfs_btree_key
*dst_key
,
1300 union xfs_btree_key
*src_key
,
1303 ASSERT(numkeys
>= 0);
1304 memcpy(dst_key
, src_key
, numkeys
* cur
->bc_ops
->key_len
);
1308 * Copy records from one btree block to another.
1311 xfs_btree_copy_recs(
1312 struct xfs_btree_cur
*cur
,
1313 union xfs_btree_rec
*dst_rec
,
1314 union xfs_btree_rec
*src_rec
,
1317 ASSERT(numrecs
>= 0);
1318 memcpy(dst_rec
, src_rec
, numrecs
* cur
->bc_ops
->rec_len
);
1322 * Copy block pointers from one btree block to another.
1325 xfs_btree_copy_ptrs(
1326 struct xfs_btree_cur
*cur
,
1327 union xfs_btree_ptr
*dst_ptr
,
1328 const union xfs_btree_ptr
*src_ptr
,
1331 ASSERT(numptrs
>= 0);
1332 memcpy(dst_ptr
, src_ptr
, numptrs
* xfs_btree_ptr_len(cur
));
1336 * Shift keys one index left/right inside a single btree block.
1339 xfs_btree_shift_keys(
1340 struct xfs_btree_cur
*cur
,
1341 union xfs_btree_key
*key
,
1347 ASSERT(numkeys
>= 0);
1348 ASSERT(dir
== 1 || dir
== -1);
1350 dst_key
= (char *)key
+ (dir
* cur
->bc_ops
->key_len
);
1351 memmove(dst_key
, key
, numkeys
* cur
->bc_ops
->key_len
);
1355 * Shift records one index left/right inside a single btree block.
1358 xfs_btree_shift_recs(
1359 struct xfs_btree_cur
*cur
,
1360 union xfs_btree_rec
*rec
,
1366 ASSERT(numrecs
>= 0);
1367 ASSERT(dir
== 1 || dir
== -1);
1369 dst_rec
= (char *)rec
+ (dir
* cur
->bc_ops
->rec_len
);
1370 memmove(dst_rec
, rec
, numrecs
* cur
->bc_ops
->rec_len
);
1374 * Shift block pointers one index left/right inside a single btree block.
1377 xfs_btree_shift_ptrs(
1378 struct xfs_btree_cur
*cur
,
1379 union xfs_btree_ptr
*ptr
,
1385 ASSERT(numptrs
>= 0);
1386 ASSERT(dir
== 1 || dir
== -1);
1388 dst_ptr
= (char *)ptr
+ (dir
* xfs_btree_ptr_len(cur
));
1389 memmove(dst_ptr
, ptr
, numptrs
* xfs_btree_ptr_len(cur
));
1393 * Log key values from the btree block.
1397 struct xfs_btree_cur
*cur
,
1404 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1405 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1406 xfs_btree_key_offset(cur
, first
),
1407 xfs_btree_key_offset(cur
, last
+ 1) - 1);
1409 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_ino
.ip
,
1410 xfs_ilog_fbroot(cur
->bc_ino
.whichfork
));
1415 * Log record values from the btree block.
1419 struct xfs_btree_cur
*cur
,
1425 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1426 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1427 xfs_btree_rec_offset(cur
, first
),
1428 xfs_btree_rec_offset(cur
, last
+ 1) - 1);
1433 * Log block pointer fields from a btree block (nonleaf).
1437 struct xfs_btree_cur
*cur
, /* btree cursor */
1438 struct xfs_buf
*bp
, /* buffer containing btree block */
1439 int first
, /* index of first pointer to log */
1440 int last
) /* index of last pointer to log */
1444 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
1445 int level
= xfs_btree_get_level(block
);
1447 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1448 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1449 xfs_btree_ptr_offset(cur
, first
, level
),
1450 xfs_btree_ptr_offset(cur
, last
+ 1, level
) - 1);
1452 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_ino
.ip
,
1453 xfs_ilog_fbroot(cur
->bc_ino
.whichfork
));
1459 * Log fields from a btree block header.
1462 xfs_btree_log_block(
1463 struct xfs_btree_cur
*cur
, /* btree cursor */
1464 struct xfs_buf
*bp
, /* buffer containing btree block */
1465 int fields
) /* mask of fields: XFS_BB_... */
1467 int first
; /* first byte offset logged */
1468 int last
; /* last byte offset logged */
1469 static const short soffsets
[] = { /* table of offsets (short) */
1470 offsetof(struct xfs_btree_block
, bb_magic
),
1471 offsetof(struct xfs_btree_block
, bb_level
),
1472 offsetof(struct xfs_btree_block
, bb_numrecs
),
1473 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_leftsib
),
1474 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_rightsib
),
1475 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_blkno
),
1476 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_lsn
),
1477 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_uuid
),
1478 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_owner
),
1479 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_crc
),
1480 XFS_BTREE_SBLOCK_CRC_LEN
1482 static const short loffsets
[] = { /* table of offsets (long) */
1483 offsetof(struct xfs_btree_block
, bb_magic
),
1484 offsetof(struct xfs_btree_block
, bb_level
),
1485 offsetof(struct xfs_btree_block
, bb_numrecs
),
1486 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_leftsib
),
1487 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_rightsib
),
1488 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_blkno
),
1489 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_lsn
),
1490 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_uuid
),
1491 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_owner
),
1492 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_crc
),
1493 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_pad
),
1494 XFS_BTREE_LBLOCK_CRC_LEN
1500 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
) {
1502 * We don't log the CRC when updating a btree
1503 * block but instead recreate it during log
1504 * recovery. As the log buffers have checksums
1505 * of their own this is safe and avoids logging a crc
1506 * update in a lot of places.
1508 if (fields
== XFS_BB_ALL_BITS
)
1509 fields
= XFS_BB_ALL_BITS_CRC
;
1510 nbits
= XFS_BB_NUM_BITS_CRC
;
1512 nbits
= XFS_BB_NUM_BITS
;
1514 xfs_btree_offsets(fields
,
1515 (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) ?
1516 loffsets
: soffsets
,
1517 nbits
, &first
, &last
);
1518 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1519 xfs_trans_log_buf(cur
->bc_tp
, bp
, first
, last
);
1521 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_ino
.ip
,
1522 xfs_ilog_fbroot(cur
->bc_ino
.whichfork
));
1527 * Increment cursor by one record at the level.
1528 * For nonzero levels the leaf-ward information is untouched.
1531 xfs_btree_increment(
1532 struct xfs_btree_cur
*cur
,
1534 int *stat
) /* success/failure */
1536 struct xfs_btree_block
*block
;
1537 union xfs_btree_ptr ptr
;
1539 int error
; /* error return value */
1542 ASSERT(level
< cur
->bc_nlevels
);
1544 /* Read-ahead to the right at this level. */
1545 xfs_btree_readahead(cur
, level
, XFS_BTCUR_RIGHTRA
);
1547 /* Get a pointer to the btree block. */
1548 block
= xfs_btree_get_block(cur
, level
, &bp
);
1551 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
1556 /* We're done if we remain in the block after the increment. */
1557 if (++cur
->bc_ptrs
[level
] <= xfs_btree_get_numrecs(block
))
1560 /* Fail if we just went off the right edge of the tree. */
1561 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1562 if (xfs_btree_ptr_is_null(cur
, &ptr
))
1565 XFS_BTREE_STATS_INC(cur
, increment
);
1568 * March up the tree incrementing pointers.
1569 * Stop when we don't go off the right edge of a block.
1571 for (lev
= level
+ 1; lev
< cur
->bc_nlevels
; lev
++) {
1572 block
= xfs_btree_get_block(cur
, lev
, &bp
);
1575 error
= xfs_btree_check_block(cur
, block
, lev
, bp
);
1580 if (++cur
->bc_ptrs
[lev
] <= xfs_btree_get_numrecs(block
))
1583 /* Read-ahead the right block for the next loop. */
1584 xfs_btree_readahead(cur
, lev
, XFS_BTCUR_RIGHTRA
);
1588 * If we went off the root then we are either seriously
1589 * confused or have the tree root in an inode.
1591 if (lev
== cur
->bc_nlevels
) {
1592 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
)
1595 error
= -EFSCORRUPTED
;
1598 ASSERT(lev
< cur
->bc_nlevels
);
1601 * Now walk back down the tree, fixing up the cursor's buffer
1602 * pointers and key numbers.
1604 for (block
= xfs_btree_get_block(cur
, lev
, &bp
); lev
> level
; ) {
1605 union xfs_btree_ptr
*ptrp
;
1607 ptrp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[lev
], block
);
1609 error
= xfs_btree_read_buf_block(cur
, ptrp
, 0, &block
, &bp
);
1613 xfs_btree_setbuf(cur
, lev
, bp
);
1614 cur
->bc_ptrs
[lev
] = 1;
1629 * Decrement cursor by one record at the level.
1630 * For nonzero levels the leaf-ward information is untouched.
1633 xfs_btree_decrement(
1634 struct xfs_btree_cur
*cur
,
1636 int *stat
) /* success/failure */
1638 struct xfs_btree_block
*block
;
1640 int error
; /* error return value */
1642 union xfs_btree_ptr ptr
;
1644 ASSERT(level
< cur
->bc_nlevels
);
1646 /* Read-ahead to the left at this level. */
1647 xfs_btree_readahead(cur
, level
, XFS_BTCUR_LEFTRA
);
1649 /* We're done if we remain in the block after the decrement. */
1650 if (--cur
->bc_ptrs
[level
] > 0)
1653 /* Get a pointer to the btree block. */
1654 block
= xfs_btree_get_block(cur
, level
, &bp
);
1657 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
1662 /* Fail if we just went off the left edge of the tree. */
1663 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_LEFTSIB
);
1664 if (xfs_btree_ptr_is_null(cur
, &ptr
))
1667 XFS_BTREE_STATS_INC(cur
, decrement
);
1670 * March up the tree decrementing pointers.
1671 * Stop when we don't go off the left edge of a block.
1673 for (lev
= level
+ 1; lev
< cur
->bc_nlevels
; lev
++) {
1674 if (--cur
->bc_ptrs
[lev
] > 0)
1676 /* Read-ahead the left block for the next loop. */
1677 xfs_btree_readahead(cur
, lev
, XFS_BTCUR_LEFTRA
);
1681 * If we went off the root then we are seriously confused.
1682 * or the root of the tree is in an inode.
1684 if (lev
== cur
->bc_nlevels
) {
1685 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
)
1688 error
= -EFSCORRUPTED
;
1691 ASSERT(lev
< cur
->bc_nlevels
);
1694 * Now walk back down the tree, fixing up the cursor's buffer
1695 * pointers and key numbers.
1697 for (block
= xfs_btree_get_block(cur
, lev
, &bp
); lev
> level
; ) {
1698 union xfs_btree_ptr
*ptrp
;
1700 ptrp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[lev
], block
);
1702 error
= xfs_btree_read_buf_block(cur
, ptrp
, 0, &block
, &bp
);
1705 xfs_btree_setbuf(cur
, lev
, bp
);
1706 cur
->bc_ptrs
[lev
] = xfs_btree_get_numrecs(block
);
1721 xfs_btree_lookup_get_block(
1722 struct xfs_btree_cur
*cur
, /* btree cursor */
1723 int level
, /* level in the btree */
1724 union xfs_btree_ptr
*pp
, /* ptr to btree block */
1725 struct xfs_btree_block
**blkp
) /* return btree block */
1727 struct xfs_buf
*bp
; /* buffer pointer for btree block */
1731 /* special case the root block if in an inode */
1732 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
1733 (level
== cur
->bc_nlevels
- 1)) {
1734 *blkp
= xfs_btree_get_iroot(cur
);
1739 * If the old buffer at this level for the disk address we are
1740 * looking for re-use it.
1742 * Otherwise throw it away and get a new one.
1744 bp
= cur
->bc_bufs
[level
];
1745 error
= xfs_btree_ptr_to_daddr(cur
, pp
, &daddr
);
1748 if (bp
&& XFS_BUF_ADDR(bp
) == daddr
) {
1749 *blkp
= XFS_BUF_TO_BLOCK(bp
);
1753 error
= xfs_btree_read_buf_block(cur
, pp
, 0, blkp
, &bp
);
1757 /* Check the inode owner since the verifiers don't. */
1758 if (xfs_sb_version_hascrc(&cur
->bc_mp
->m_sb
) &&
1759 !(cur
->bc_ino
.flags
& XFS_BTCUR_BMBT_INVALID_OWNER
) &&
1760 (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) &&
1761 be64_to_cpu((*blkp
)->bb_u
.l
.bb_owner
) !=
1762 cur
->bc_ino
.ip
->i_ino
)
1765 /* Did we get the level we were looking for? */
1766 if (be16_to_cpu((*blkp
)->bb_level
) != level
)
1769 /* Check that internal nodes have at least one record. */
1770 if (level
!= 0 && be16_to_cpu((*blkp
)->bb_numrecs
) == 0)
1773 xfs_btree_setbuf(cur
, level
, bp
);
1778 xfs_buf_mark_corrupt(bp
);
1779 xfs_trans_brelse(cur
->bc_tp
, bp
);
1780 return -EFSCORRUPTED
;
1784 * Get current search key. For level 0 we don't actually have a key
1785 * structure so we make one up from the record. For all other levels
1786 * we just return the right key.
1788 STATIC
union xfs_btree_key
*
1789 xfs_lookup_get_search_key(
1790 struct xfs_btree_cur
*cur
,
1793 struct xfs_btree_block
*block
,
1794 union xfs_btree_key
*kp
)
1797 cur
->bc_ops
->init_key_from_rec(kp
,
1798 xfs_btree_rec_addr(cur
, keyno
, block
));
1802 return xfs_btree_key_addr(cur
, keyno
, block
);
1806 * Lookup the record. The cursor is made to point to it, based on dir.
1807 * stat is set to 0 if can't find any such record, 1 for success.
1811 struct xfs_btree_cur
*cur
, /* btree cursor */
1812 xfs_lookup_t dir
, /* <=, ==, or >= */
1813 int *stat
) /* success/failure */
1815 struct xfs_btree_block
*block
; /* current btree block */
1816 int64_t diff
; /* difference for the current key */
1817 int error
; /* error return value */
1818 int keyno
; /* current key number */
1819 int level
; /* level in the btree */
1820 union xfs_btree_ptr
*pp
; /* ptr to btree block */
1821 union xfs_btree_ptr ptr
; /* ptr to btree block */
1823 XFS_BTREE_STATS_INC(cur
, lookup
);
1825 /* No such thing as a zero-level tree. */
1826 if (XFS_IS_CORRUPT(cur
->bc_mp
, cur
->bc_nlevels
== 0))
1827 return -EFSCORRUPTED
;
1832 /* initialise start pointer from cursor */
1833 cur
->bc_ops
->init_ptr_from_cur(cur
, &ptr
);
1837 * Iterate over each level in the btree, starting at the root.
1838 * For each level above the leaves, find the key we need, based
1839 * on the lookup record, then follow the corresponding block
1840 * pointer down to the next level.
1842 for (level
= cur
->bc_nlevels
- 1, diff
= 1; level
>= 0; level
--) {
1843 /* Get the block we need to do the lookup on. */
1844 error
= xfs_btree_lookup_get_block(cur
, level
, pp
, &block
);
1850 * If we already had a key match at a higher level, we
1851 * know we need to use the first entry in this block.
1855 /* Otherwise search this block. Do a binary search. */
1857 int high
; /* high entry number */
1858 int low
; /* low entry number */
1860 /* Set low and high entry numbers, 1-based. */
1862 high
= xfs_btree_get_numrecs(block
);
1864 /* Block is empty, must be an empty leaf. */
1865 if (level
!= 0 || cur
->bc_nlevels
!= 1) {
1866 XFS_CORRUPTION_ERROR(__func__
,
1870 return -EFSCORRUPTED
;
1873 cur
->bc_ptrs
[0] = dir
!= XFS_LOOKUP_LE
;
1878 /* Binary search the block. */
1879 while (low
<= high
) {
1880 union xfs_btree_key key
;
1881 union xfs_btree_key
*kp
;
1883 XFS_BTREE_STATS_INC(cur
, compare
);
1885 /* keyno is average of low and high. */
1886 keyno
= (low
+ high
) >> 1;
1888 /* Get current search key */
1889 kp
= xfs_lookup_get_search_key(cur
, level
,
1890 keyno
, block
, &key
);
1893 * Compute difference to get next direction:
1894 * - less than, move right
1895 * - greater than, move left
1896 * - equal, we're done
1898 diff
= cur
->bc_ops
->key_diff(cur
, kp
);
1909 * If there are more levels, set up for the next level
1910 * by getting the block number and filling in the cursor.
1914 * If we moved left, need the previous key number,
1915 * unless there isn't one.
1917 if (diff
> 0 && --keyno
< 1)
1919 pp
= xfs_btree_ptr_addr(cur
, keyno
, block
);
1921 error
= xfs_btree_debug_check_ptr(cur
, pp
, 0, level
);
1925 cur
->bc_ptrs
[level
] = keyno
;
1929 /* Done with the search. See if we need to adjust the results. */
1930 if (dir
!= XFS_LOOKUP_LE
&& diff
< 0) {
1933 * If ge search and we went off the end of the block, but it's
1934 * not the last block, we're in the wrong block.
1936 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1937 if (dir
== XFS_LOOKUP_GE
&&
1938 keyno
> xfs_btree_get_numrecs(block
) &&
1939 !xfs_btree_ptr_is_null(cur
, &ptr
)) {
1942 cur
->bc_ptrs
[0] = keyno
;
1943 error
= xfs_btree_increment(cur
, 0, &i
);
1946 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1))
1947 return -EFSCORRUPTED
;
1951 } else if (dir
== XFS_LOOKUP_LE
&& diff
> 0)
1953 cur
->bc_ptrs
[0] = keyno
;
1955 /* Return if we succeeded or not. */
1956 if (keyno
== 0 || keyno
> xfs_btree_get_numrecs(block
))
1958 else if (dir
!= XFS_LOOKUP_EQ
|| diff
== 0)
1968 /* Find the high key storage area from a regular key. */
1969 union xfs_btree_key
*
1970 xfs_btree_high_key_from_key(
1971 struct xfs_btree_cur
*cur
,
1972 union xfs_btree_key
*key
)
1974 ASSERT(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
);
1975 return (union xfs_btree_key
*)((char *)key
+
1976 (cur
->bc_ops
->key_len
/ 2));
1979 /* Determine the low (and high if overlapped) keys of a leaf block */
1981 xfs_btree_get_leaf_keys(
1982 struct xfs_btree_cur
*cur
,
1983 struct xfs_btree_block
*block
,
1984 union xfs_btree_key
*key
)
1986 union xfs_btree_key max_hkey
;
1987 union xfs_btree_key hkey
;
1988 union xfs_btree_rec
*rec
;
1989 union xfs_btree_key
*high
;
1992 rec
= xfs_btree_rec_addr(cur
, 1, block
);
1993 cur
->bc_ops
->init_key_from_rec(key
, rec
);
1995 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
1997 cur
->bc_ops
->init_high_key_from_rec(&max_hkey
, rec
);
1998 for (n
= 2; n
<= xfs_btree_get_numrecs(block
); n
++) {
1999 rec
= xfs_btree_rec_addr(cur
, n
, block
);
2000 cur
->bc_ops
->init_high_key_from_rec(&hkey
, rec
);
2001 if (cur
->bc_ops
->diff_two_keys(cur
, &hkey
, &max_hkey
)
2006 high
= xfs_btree_high_key_from_key(cur
, key
);
2007 memcpy(high
, &max_hkey
, cur
->bc_ops
->key_len
/ 2);
2011 /* Determine the low (and high if overlapped) keys of a node block */
2013 xfs_btree_get_node_keys(
2014 struct xfs_btree_cur
*cur
,
2015 struct xfs_btree_block
*block
,
2016 union xfs_btree_key
*key
)
2018 union xfs_btree_key
*hkey
;
2019 union xfs_btree_key
*max_hkey
;
2020 union xfs_btree_key
*high
;
2023 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2024 memcpy(key
, xfs_btree_key_addr(cur
, 1, block
),
2025 cur
->bc_ops
->key_len
/ 2);
2027 max_hkey
= xfs_btree_high_key_addr(cur
, 1, block
);
2028 for (n
= 2; n
<= xfs_btree_get_numrecs(block
); n
++) {
2029 hkey
= xfs_btree_high_key_addr(cur
, n
, block
);
2030 if (cur
->bc_ops
->diff_two_keys(cur
, hkey
, max_hkey
) > 0)
2034 high
= xfs_btree_high_key_from_key(cur
, key
);
2035 memcpy(high
, max_hkey
, cur
->bc_ops
->key_len
/ 2);
2037 memcpy(key
, xfs_btree_key_addr(cur
, 1, block
),
2038 cur
->bc_ops
->key_len
);
2042 /* Derive the keys for any btree block. */
2045 struct xfs_btree_cur
*cur
,
2046 struct xfs_btree_block
*block
,
2047 union xfs_btree_key
*key
)
2049 if (be16_to_cpu(block
->bb_level
) == 0)
2050 xfs_btree_get_leaf_keys(cur
, block
, key
);
2052 xfs_btree_get_node_keys(cur
, block
, key
);
2056 * Decide if we need to update the parent keys of a btree block. For
2057 * a standard btree this is only necessary if we're updating the first
2058 * record/key. For an overlapping btree, we must always update the
2059 * keys because the highest key can be in any of the records or keys
2063 xfs_btree_needs_key_update(
2064 struct xfs_btree_cur
*cur
,
2067 return (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) || ptr
== 1;
2071 * Update the low and high parent keys of the given level, progressing
2072 * towards the root. If force_all is false, stop if the keys for a given
2073 * level do not need updating.
2076 __xfs_btree_updkeys(
2077 struct xfs_btree_cur
*cur
,
2079 struct xfs_btree_block
*block
,
2080 struct xfs_buf
*bp0
,
2083 union xfs_btree_key key
; /* keys from current level */
2084 union xfs_btree_key
*lkey
; /* keys from the next level up */
2085 union xfs_btree_key
*hkey
;
2086 union xfs_btree_key
*nlkey
; /* keys from the next level up */
2087 union xfs_btree_key
*nhkey
;
2091 ASSERT(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
);
2093 /* Exit if there aren't any parent levels to update. */
2094 if (level
+ 1 >= cur
->bc_nlevels
)
2097 trace_xfs_btree_updkeys(cur
, level
, bp0
);
2100 hkey
= xfs_btree_high_key_from_key(cur
, lkey
);
2101 xfs_btree_get_keys(cur
, block
, lkey
);
2102 for (level
++; level
< cur
->bc_nlevels
; level
++) {
2106 block
= xfs_btree_get_block(cur
, level
, &bp
);
2107 trace_xfs_btree_updkeys(cur
, level
, bp
);
2109 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
2113 ptr
= cur
->bc_ptrs
[level
];
2114 nlkey
= xfs_btree_key_addr(cur
, ptr
, block
);
2115 nhkey
= xfs_btree_high_key_addr(cur
, ptr
, block
);
2117 !(cur
->bc_ops
->diff_two_keys(cur
, nlkey
, lkey
) != 0 ||
2118 cur
->bc_ops
->diff_two_keys(cur
, nhkey
, hkey
) != 0))
2120 xfs_btree_copy_keys(cur
, nlkey
, lkey
, 1);
2121 xfs_btree_log_keys(cur
, bp
, ptr
, ptr
);
2122 if (level
+ 1 >= cur
->bc_nlevels
)
2124 xfs_btree_get_node_keys(cur
, block
, lkey
);
2130 /* Update all the keys from some level in cursor back to the root. */
2132 xfs_btree_updkeys_force(
2133 struct xfs_btree_cur
*cur
,
2137 struct xfs_btree_block
*block
;
2139 block
= xfs_btree_get_block(cur
, level
, &bp
);
2140 return __xfs_btree_updkeys(cur
, level
, block
, bp
, true);
2144 * Update the parent keys of the given level, progressing towards the root.
2147 xfs_btree_update_keys(
2148 struct xfs_btree_cur
*cur
,
2151 struct xfs_btree_block
*block
;
2153 union xfs_btree_key
*kp
;
2154 union xfs_btree_key key
;
2159 block
= xfs_btree_get_block(cur
, level
, &bp
);
2160 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
)
2161 return __xfs_btree_updkeys(cur
, level
, block
, bp
, false);
2164 * Go up the tree from this level toward the root.
2165 * At each level, update the key value to the value input.
2166 * Stop when we reach a level where the cursor isn't pointing
2167 * at the first entry in the block.
2169 xfs_btree_get_keys(cur
, block
, &key
);
2170 for (level
++, ptr
= 1; ptr
== 1 && level
< cur
->bc_nlevels
; level
++) {
2174 block
= xfs_btree_get_block(cur
, level
, &bp
);
2176 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
2180 ptr
= cur
->bc_ptrs
[level
];
2181 kp
= xfs_btree_key_addr(cur
, ptr
, block
);
2182 xfs_btree_copy_keys(cur
, kp
, &key
, 1);
2183 xfs_btree_log_keys(cur
, bp
, ptr
, ptr
);
2190 * Update the record referred to by cur to the value in the
2191 * given record. This either works (return 0) or gets an
2192 * EFSCORRUPTED error.
2196 struct xfs_btree_cur
*cur
,
2197 union xfs_btree_rec
*rec
)
2199 struct xfs_btree_block
*block
;
2203 union xfs_btree_rec
*rp
;
2205 /* Pick up the current block. */
2206 block
= xfs_btree_get_block(cur
, 0, &bp
);
2209 error
= xfs_btree_check_block(cur
, block
, 0, bp
);
2213 /* Get the address of the rec to be updated. */
2214 ptr
= cur
->bc_ptrs
[0];
2215 rp
= xfs_btree_rec_addr(cur
, ptr
, block
);
2217 /* Fill in the new contents and log them. */
2218 xfs_btree_copy_recs(cur
, rp
, rec
, 1);
2219 xfs_btree_log_recs(cur
, bp
, ptr
, ptr
);
2222 * If we are tracking the last record in the tree and
2223 * we are at the far right edge of the tree, update it.
2225 if (xfs_btree_is_lastrec(cur
, block
, 0)) {
2226 cur
->bc_ops
->update_lastrec(cur
, block
, rec
,
2227 ptr
, LASTREC_UPDATE
);
2230 /* Pass new key value up to our parent. */
2231 if (xfs_btree_needs_key_update(cur
, ptr
)) {
2232 error
= xfs_btree_update_keys(cur
, 0);
2244 * Move 1 record left from cur/level if possible.
2245 * Update cur to reflect the new path.
2247 STATIC
int /* error */
2249 struct xfs_btree_cur
*cur
,
2251 int *stat
) /* success/failure */
2253 struct xfs_buf
*lbp
; /* left buffer pointer */
2254 struct xfs_btree_block
*left
; /* left btree block */
2255 int lrecs
; /* left record count */
2256 struct xfs_buf
*rbp
; /* right buffer pointer */
2257 struct xfs_btree_block
*right
; /* right btree block */
2258 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
2259 int rrecs
; /* right record count */
2260 union xfs_btree_ptr lptr
; /* left btree pointer */
2261 union xfs_btree_key
*rkp
= NULL
; /* right btree key */
2262 union xfs_btree_ptr
*rpp
= NULL
; /* right address pointer */
2263 union xfs_btree_rec
*rrp
= NULL
; /* right record pointer */
2264 int error
; /* error return value */
2267 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
2268 level
== cur
->bc_nlevels
- 1)
2271 /* Set up variables for this block as "right". */
2272 right
= xfs_btree_get_block(cur
, level
, &rbp
);
2275 error
= xfs_btree_check_block(cur
, right
, level
, rbp
);
2280 /* If we've got no left sibling then we can't shift an entry left. */
2281 xfs_btree_get_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
2282 if (xfs_btree_ptr_is_null(cur
, &lptr
))
2286 * If the cursor entry is the one that would be moved, don't
2287 * do it... it's too complicated.
2289 if (cur
->bc_ptrs
[level
] <= 1)
2292 /* Set up the left neighbor as "left". */
2293 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
2297 /* If it's full, it can't take another entry. */
2298 lrecs
= xfs_btree_get_numrecs(left
);
2299 if (lrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
))
2302 rrecs
= xfs_btree_get_numrecs(right
);
2305 * We add one entry to the left side and remove one for the right side.
2306 * Account for it here, the changes will be updated on disk and logged
2312 XFS_BTREE_STATS_INC(cur
, lshift
);
2313 XFS_BTREE_STATS_ADD(cur
, moves
, 1);
2316 * If non-leaf, copy a key and a ptr to the left block.
2317 * Log the changes to the left block.
2320 /* It's a non-leaf. Move keys and pointers. */
2321 union xfs_btree_key
*lkp
; /* left btree key */
2322 union xfs_btree_ptr
*lpp
; /* left address pointer */
2324 lkp
= xfs_btree_key_addr(cur
, lrecs
, left
);
2325 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2327 lpp
= xfs_btree_ptr_addr(cur
, lrecs
, left
);
2328 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2330 error
= xfs_btree_debug_check_ptr(cur
, rpp
, 0, level
);
2334 xfs_btree_copy_keys(cur
, lkp
, rkp
, 1);
2335 xfs_btree_copy_ptrs(cur
, lpp
, rpp
, 1);
2337 xfs_btree_log_keys(cur
, lbp
, lrecs
, lrecs
);
2338 xfs_btree_log_ptrs(cur
, lbp
, lrecs
, lrecs
);
2340 ASSERT(cur
->bc_ops
->keys_inorder(cur
,
2341 xfs_btree_key_addr(cur
, lrecs
- 1, left
), lkp
));
2343 /* It's a leaf. Move records. */
2344 union xfs_btree_rec
*lrp
; /* left record pointer */
2346 lrp
= xfs_btree_rec_addr(cur
, lrecs
, left
);
2347 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2349 xfs_btree_copy_recs(cur
, lrp
, rrp
, 1);
2350 xfs_btree_log_recs(cur
, lbp
, lrecs
, lrecs
);
2352 ASSERT(cur
->bc_ops
->recs_inorder(cur
,
2353 xfs_btree_rec_addr(cur
, lrecs
- 1, left
), lrp
));
2356 xfs_btree_set_numrecs(left
, lrecs
);
2357 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
);
2359 xfs_btree_set_numrecs(right
, rrecs
);
2360 xfs_btree_log_block(cur
, rbp
, XFS_BB_NUMRECS
);
2363 * Slide the contents of right down one entry.
2365 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
- 1);
2367 /* It's a nonleaf. operate on keys and ptrs */
2368 for (i
= 0; i
< rrecs
; i
++) {
2369 error
= xfs_btree_debug_check_ptr(cur
, rpp
, i
+ 1, level
);
2374 xfs_btree_shift_keys(cur
,
2375 xfs_btree_key_addr(cur
, 2, right
),
2377 xfs_btree_shift_ptrs(cur
,
2378 xfs_btree_ptr_addr(cur
, 2, right
),
2381 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
);
2382 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
);
2384 /* It's a leaf. operate on records */
2385 xfs_btree_shift_recs(cur
,
2386 xfs_btree_rec_addr(cur
, 2, right
),
2388 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
);
2392 * Using a temporary cursor, update the parent key values of the
2393 * block on the left.
2395 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2396 error
= xfs_btree_dup_cursor(cur
, &tcur
);
2399 i
= xfs_btree_firstrec(tcur
, level
);
2400 if (XFS_IS_CORRUPT(tcur
->bc_mp
, i
!= 1)) {
2401 error
= -EFSCORRUPTED
;
2405 error
= xfs_btree_decrement(tcur
, level
, &i
);
2409 /* Update the parent high keys of the left block, if needed. */
2410 error
= xfs_btree_update_keys(tcur
, level
);
2414 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
2417 /* Update the parent keys of the right block. */
2418 error
= xfs_btree_update_keys(cur
, level
);
2422 /* Slide the cursor value left one. */
2423 cur
->bc_ptrs
[level
]--;
2436 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
2441 * Move 1 record right from cur/level if possible.
2442 * Update cur to reflect the new path.
2444 STATIC
int /* error */
2446 struct xfs_btree_cur
*cur
,
2448 int *stat
) /* success/failure */
2450 struct xfs_buf
*lbp
; /* left buffer pointer */
2451 struct xfs_btree_block
*left
; /* left btree block */
2452 struct xfs_buf
*rbp
; /* right buffer pointer */
2453 struct xfs_btree_block
*right
; /* right btree block */
2454 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
2455 union xfs_btree_ptr rptr
; /* right block pointer */
2456 union xfs_btree_key
*rkp
; /* right btree key */
2457 int rrecs
; /* right record count */
2458 int lrecs
; /* left record count */
2459 int error
; /* error return value */
2460 int i
; /* loop counter */
2462 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
2463 (level
== cur
->bc_nlevels
- 1))
2466 /* Set up variables for this block as "left". */
2467 left
= xfs_btree_get_block(cur
, level
, &lbp
);
2470 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
2475 /* If we've got no right sibling then we can't shift an entry right. */
2476 xfs_btree_get_sibling(cur
, left
, &rptr
, XFS_BB_RIGHTSIB
);
2477 if (xfs_btree_ptr_is_null(cur
, &rptr
))
2481 * If the cursor entry is the one that would be moved, don't
2482 * do it... it's too complicated.
2484 lrecs
= xfs_btree_get_numrecs(left
);
2485 if (cur
->bc_ptrs
[level
] >= lrecs
)
2488 /* Set up the right neighbor as "right". */
2489 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
2493 /* If it's full, it can't take another entry. */
2494 rrecs
= xfs_btree_get_numrecs(right
);
2495 if (rrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
))
2498 XFS_BTREE_STATS_INC(cur
, rshift
);
2499 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
2502 * Make a hole at the start of the right neighbor block, then
2503 * copy the last left block entry to the hole.
2506 /* It's a nonleaf. make a hole in the keys and ptrs */
2507 union xfs_btree_key
*lkp
;
2508 union xfs_btree_ptr
*lpp
;
2509 union xfs_btree_ptr
*rpp
;
2511 lkp
= xfs_btree_key_addr(cur
, lrecs
, left
);
2512 lpp
= xfs_btree_ptr_addr(cur
, lrecs
, left
);
2513 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2514 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2516 for (i
= rrecs
- 1; i
>= 0; i
--) {
2517 error
= xfs_btree_debug_check_ptr(cur
, rpp
, i
, level
);
2522 xfs_btree_shift_keys(cur
, rkp
, 1, rrecs
);
2523 xfs_btree_shift_ptrs(cur
, rpp
, 1, rrecs
);
2525 error
= xfs_btree_debug_check_ptr(cur
, lpp
, 0, level
);
2529 /* Now put the new data in, and log it. */
2530 xfs_btree_copy_keys(cur
, rkp
, lkp
, 1);
2531 xfs_btree_copy_ptrs(cur
, rpp
, lpp
, 1);
2533 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
+ 1);
2534 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
+ 1);
2536 ASSERT(cur
->bc_ops
->keys_inorder(cur
, rkp
,
2537 xfs_btree_key_addr(cur
, 2, right
)));
2539 /* It's a leaf. make a hole in the records */
2540 union xfs_btree_rec
*lrp
;
2541 union xfs_btree_rec
*rrp
;
2543 lrp
= xfs_btree_rec_addr(cur
, lrecs
, left
);
2544 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2546 xfs_btree_shift_recs(cur
, rrp
, 1, rrecs
);
2548 /* Now put the new data in, and log it. */
2549 xfs_btree_copy_recs(cur
, rrp
, lrp
, 1);
2550 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
+ 1);
2554 * Decrement and log left's numrecs, bump and log right's numrecs.
2556 xfs_btree_set_numrecs(left
, --lrecs
);
2557 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
);
2559 xfs_btree_set_numrecs(right
, ++rrecs
);
2560 xfs_btree_log_block(cur
, rbp
, XFS_BB_NUMRECS
);
2563 * Using a temporary cursor, update the parent key values of the
2564 * block on the right.
2566 error
= xfs_btree_dup_cursor(cur
, &tcur
);
2569 i
= xfs_btree_lastrec(tcur
, level
);
2570 if (XFS_IS_CORRUPT(tcur
->bc_mp
, i
!= 1)) {
2571 error
= -EFSCORRUPTED
;
2575 error
= xfs_btree_increment(tcur
, level
, &i
);
2579 /* Update the parent high keys of the left block, if needed. */
2580 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2581 error
= xfs_btree_update_keys(cur
, level
);
2586 /* Update the parent keys of the right block. */
2587 error
= xfs_btree_update_keys(tcur
, level
);
2591 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
2604 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
2609 * Split cur/level block in half.
2610 * Return new block number and the key to its first
2611 * record (to be inserted into parent).
2613 STATIC
int /* error */
2615 struct xfs_btree_cur
*cur
,
2617 union xfs_btree_ptr
*ptrp
,
2618 union xfs_btree_key
*key
,
2619 struct xfs_btree_cur
**curp
,
2620 int *stat
) /* success/failure */
2622 union xfs_btree_ptr lptr
; /* left sibling block ptr */
2623 struct xfs_buf
*lbp
; /* left buffer pointer */
2624 struct xfs_btree_block
*left
; /* left btree block */
2625 union xfs_btree_ptr rptr
; /* right sibling block ptr */
2626 struct xfs_buf
*rbp
; /* right buffer pointer */
2627 struct xfs_btree_block
*right
; /* right btree block */
2628 union xfs_btree_ptr rrptr
; /* right-right sibling ptr */
2629 struct xfs_buf
*rrbp
; /* right-right buffer pointer */
2630 struct xfs_btree_block
*rrblock
; /* right-right btree block */
2634 int error
; /* error return value */
2637 XFS_BTREE_STATS_INC(cur
, split
);
2639 /* Set up left block (current one). */
2640 left
= xfs_btree_get_block(cur
, level
, &lbp
);
2643 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
2648 xfs_btree_buf_to_ptr(cur
, lbp
, &lptr
);
2650 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2651 error
= cur
->bc_ops
->alloc_block(cur
, &lptr
, &rptr
, stat
);
2656 XFS_BTREE_STATS_INC(cur
, alloc
);
2658 /* Set up the new block as "right". */
2659 error
= xfs_btree_get_buf_block(cur
, &rptr
, &right
, &rbp
);
2663 /* Fill in the btree header for the new right block. */
2664 xfs_btree_init_block_cur(cur
, rbp
, xfs_btree_get_level(left
), 0);
2667 * Split the entries between the old and the new block evenly.
2668 * Make sure that if there's an odd number of entries now, that
2669 * each new block will have the same number of entries.
2671 lrecs
= xfs_btree_get_numrecs(left
);
2673 if ((lrecs
& 1) && cur
->bc_ptrs
[level
] <= rrecs
+ 1)
2675 src_index
= (lrecs
- rrecs
+ 1);
2677 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
2679 /* Adjust numrecs for the later get_*_keys() calls. */
2681 xfs_btree_set_numrecs(left
, lrecs
);
2682 xfs_btree_set_numrecs(right
, xfs_btree_get_numrecs(right
) + rrecs
);
2685 * Copy btree block entries from the left block over to the
2686 * new block, the right. Update the right block and log the
2690 /* It's a non-leaf. Move keys and pointers. */
2691 union xfs_btree_key
*lkp
; /* left btree key */
2692 union xfs_btree_ptr
*lpp
; /* left address pointer */
2693 union xfs_btree_key
*rkp
; /* right btree key */
2694 union xfs_btree_ptr
*rpp
; /* right address pointer */
2696 lkp
= xfs_btree_key_addr(cur
, src_index
, left
);
2697 lpp
= xfs_btree_ptr_addr(cur
, src_index
, left
);
2698 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2699 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2701 for (i
= src_index
; i
< rrecs
; i
++) {
2702 error
= xfs_btree_debug_check_ptr(cur
, lpp
, i
, level
);
2707 /* Copy the keys & pointers to the new block. */
2708 xfs_btree_copy_keys(cur
, rkp
, lkp
, rrecs
);
2709 xfs_btree_copy_ptrs(cur
, rpp
, lpp
, rrecs
);
2711 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
);
2712 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
);
2714 /* Stash the keys of the new block for later insertion. */
2715 xfs_btree_get_node_keys(cur
, right
, key
);
2717 /* It's a leaf. Move records. */
2718 union xfs_btree_rec
*lrp
; /* left record pointer */
2719 union xfs_btree_rec
*rrp
; /* right record pointer */
2721 lrp
= xfs_btree_rec_addr(cur
, src_index
, left
);
2722 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2724 /* Copy records to the new block. */
2725 xfs_btree_copy_recs(cur
, rrp
, lrp
, rrecs
);
2726 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
);
2728 /* Stash the keys of the new block for later insertion. */
2729 xfs_btree_get_leaf_keys(cur
, right
, key
);
2733 * Find the left block number by looking in the buffer.
2734 * Adjust sibling pointers.
2736 xfs_btree_get_sibling(cur
, left
, &rrptr
, XFS_BB_RIGHTSIB
);
2737 xfs_btree_set_sibling(cur
, right
, &rrptr
, XFS_BB_RIGHTSIB
);
2738 xfs_btree_set_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
2739 xfs_btree_set_sibling(cur
, left
, &rptr
, XFS_BB_RIGHTSIB
);
2741 xfs_btree_log_block(cur
, rbp
, XFS_BB_ALL_BITS
);
2742 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
| XFS_BB_RIGHTSIB
);
2745 * If there's a block to the new block's right, make that block
2746 * point back to right instead of to left.
2748 if (!xfs_btree_ptr_is_null(cur
, &rrptr
)) {
2749 error
= xfs_btree_read_buf_block(cur
, &rrptr
,
2750 0, &rrblock
, &rrbp
);
2753 xfs_btree_set_sibling(cur
, rrblock
, &rptr
, XFS_BB_LEFTSIB
);
2754 xfs_btree_log_block(cur
, rrbp
, XFS_BB_LEFTSIB
);
2757 /* Update the parent high keys of the left block, if needed. */
2758 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2759 error
= xfs_btree_update_keys(cur
, level
);
2765 * If the cursor is really in the right block, move it there.
2766 * If it's just pointing past the last entry in left, then we'll
2767 * insert there, so don't change anything in that case.
2769 if (cur
->bc_ptrs
[level
] > lrecs
+ 1) {
2770 xfs_btree_setbuf(cur
, level
, rbp
);
2771 cur
->bc_ptrs
[level
] -= lrecs
;
2774 * If there are more levels, we'll need another cursor which refers
2775 * the right block, no matter where this cursor was.
2777 if (level
+ 1 < cur
->bc_nlevels
) {
2778 error
= xfs_btree_dup_cursor(cur
, curp
);
2781 (*curp
)->bc_ptrs
[level
+ 1]++;
2794 struct xfs_btree_split_args
{
2795 struct xfs_btree_cur
*cur
;
2797 union xfs_btree_ptr
*ptrp
;
2798 union xfs_btree_key
*key
;
2799 struct xfs_btree_cur
**curp
;
2800 int *stat
; /* success/failure */
2802 bool kswapd
; /* allocation in kswapd context */
2803 struct completion
*done
;
2804 struct work_struct work
;
2808 * Stack switching interfaces for allocation
2811 xfs_btree_split_worker(
2812 struct work_struct
*work
)
2814 struct xfs_btree_split_args
*args
= container_of(work
,
2815 struct xfs_btree_split_args
, work
);
2816 unsigned long pflags
;
2817 unsigned long new_pflags
= PF_MEMALLOC_NOFS
;
2820 * we are in a transaction context here, but may also be doing work
2821 * in kswapd context, and hence we may need to inherit that state
2822 * temporarily to ensure that we don't block waiting for memory reclaim
2826 new_pflags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2828 current_set_flags_nested(&pflags
, new_pflags
);
2830 args
->result
= __xfs_btree_split(args
->cur
, args
->level
, args
->ptrp
,
2831 args
->key
, args
->curp
, args
->stat
);
2832 complete(args
->done
);
2834 current_restore_flags_nested(&pflags
, new_pflags
);
2838 * BMBT split requests often come in with little stack to work on. Push
2839 * them off to a worker thread so there is lots of stack to use. For the other
2840 * btree types, just call directly to avoid the context switch overhead here.
2842 STATIC
int /* error */
2844 struct xfs_btree_cur
*cur
,
2846 union xfs_btree_ptr
*ptrp
,
2847 union xfs_btree_key
*key
,
2848 struct xfs_btree_cur
**curp
,
2849 int *stat
) /* success/failure */
2851 struct xfs_btree_split_args args
;
2852 DECLARE_COMPLETION_ONSTACK(done
);
2854 if (cur
->bc_btnum
!= XFS_BTNUM_BMAP
)
2855 return __xfs_btree_split(cur
, level
, ptrp
, key
, curp
, stat
);
2864 args
.kswapd
= current_is_kswapd();
2865 INIT_WORK_ONSTACK(&args
.work
, xfs_btree_split_worker
);
2866 queue_work(xfs_alloc_wq
, &args
.work
);
2867 wait_for_completion(&done
);
2868 destroy_work_on_stack(&args
.work
);
2874 * Copy the old inode root contents into a real block and make the
2875 * broot point to it.
2878 xfs_btree_new_iroot(
2879 struct xfs_btree_cur
*cur
, /* btree cursor */
2880 int *logflags
, /* logging flags for inode */
2881 int *stat
) /* return status - 0 fail */
2883 struct xfs_buf
*cbp
; /* buffer for cblock */
2884 struct xfs_btree_block
*block
; /* btree block */
2885 struct xfs_btree_block
*cblock
; /* child btree block */
2886 union xfs_btree_key
*ckp
; /* child key pointer */
2887 union xfs_btree_ptr
*cpp
; /* child ptr pointer */
2888 union xfs_btree_key
*kp
; /* pointer to btree key */
2889 union xfs_btree_ptr
*pp
; /* pointer to block addr */
2890 union xfs_btree_ptr nptr
; /* new block addr */
2891 int level
; /* btree level */
2892 int error
; /* error return code */
2893 int i
; /* loop counter */
2895 XFS_BTREE_STATS_INC(cur
, newroot
);
2897 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
2899 level
= cur
->bc_nlevels
- 1;
2901 block
= xfs_btree_get_iroot(cur
);
2902 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
2904 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2905 error
= cur
->bc_ops
->alloc_block(cur
, pp
, &nptr
, stat
);
2911 XFS_BTREE_STATS_INC(cur
, alloc
);
2913 /* Copy the root into a real block. */
2914 error
= xfs_btree_get_buf_block(cur
, &nptr
, &cblock
, &cbp
);
2919 * we can't just memcpy() the root in for CRC enabled btree blocks.
2920 * In that case have to also ensure the blkno remains correct
2922 memcpy(cblock
, block
, xfs_btree_block_len(cur
));
2923 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
) {
2924 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
2925 cblock
->bb_u
.l
.bb_blkno
= cpu_to_be64(cbp
->b_bn
);
2927 cblock
->bb_u
.s
.bb_blkno
= cpu_to_be64(cbp
->b_bn
);
2930 be16_add_cpu(&block
->bb_level
, 1);
2931 xfs_btree_set_numrecs(block
, 1);
2933 cur
->bc_ptrs
[level
+ 1] = 1;
2935 kp
= xfs_btree_key_addr(cur
, 1, block
);
2936 ckp
= xfs_btree_key_addr(cur
, 1, cblock
);
2937 xfs_btree_copy_keys(cur
, ckp
, kp
, xfs_btree_get_numrecs(cblock
));
2939 cpp
= xfs_btree_ptr_addr(cur
, 1, cblock
);
2940 for (i
= 0; i
< be16_to_cpu(cblock
->bb_numrecs
); i
++) {
2941 error
= xfs_btree_debug_check_ptr(cur
, pp
, i
, level
);
2946 xfs_btree_copy_ptrs(cur
, cpp
, pp
, xfs_btree_get_numrecs(cblock
));
2948 error
= xfs_btree_debug_check_ptr(cur
, &nptr
, 0, level
);
2952 xfs_btree_copy_ptrs(cur
, pp
, &nptr
, 1);
2954 xfs_iroot_realloc(cur
->bc_ino
.ip
,
2955 1 - xfs_btree_get_numrecs(cblock
),
2956 cur
->bc_ino
.whichfork
);
2958 xfs_btree_setbuf(cur
, level
, cbp
);
2961 * Do all this logging at the end so that
2962 * the root is at the right level.
2964 xfs_btree_log_block(cur
, cbp
, XFS_BB_ALL_BITS
);
2965 xfs_btree_log_keys(cur
, cbp
, 1, be16_to_cpu(cblock
->bb_numrecs
));
2966 xfs_btree_log_ptrs(cur
, cbp
, 1, be16_to_cpu(cblock
->bb_numrecs
));
2969 XFS_ILOG_CORE
| xfs_ilog_fbroot(cur
->bc_ino
.whichfork
);
2977 * Allocate a new root block, fill it in.
2979 STATIC
int /* error */
2981 struct xfs_btree_cur
*cur
, /* btree cursor */
2982 int *stat
) /* success/failure */
2984 struct xfs_btree_block
*block
; /* one half of the old root block */
2985 struct xfs_buf
*bp
; /* buffer containing block */
2986 int error
; /* error return value */
2987 struct xfs_buf
*lbp
; /* left buffer pointer */
2988 struct xfs_btree_block
*left
; /* left btree block */
2989 struct xfs_buf
*nbp
; /* new (root) buffer */
2990 struct xfs_btree_block
*new; /* new (root) btree block */
2991 int nptr
; /* new value for key index, 1 or 2 */
2992 struct xfs_buf
*rbp
; /* right buffer pointer */
2993 struct xfs_btree_block
*right
; /* right btree block */
2994 union xfs_btree_ptr rptr
;
2995 union xfs_btree_ptr lptr
;
2997 XFS_BTREE_STATS_INC(cur
, newroot
);
2999 /* initialise our start point from the cursor */
3000 cur
->bc_ops
->init_ptr_from_cur(cur
, &rptr
);
3002 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3003 error
= cur
->bc_ops
->alloc_block(cur
, &rptr
, &lptr
, stat
);
3008 XFS_BTREE_STATS_INC(cur
, alloc
);
3010 /* Set up the new block. */
3011 error
= xfs_btree_get_buf_block(cur
, &lptr
, &new, &nbp
);
3015 /* Set the root in the holding structure increasing the level by 1. */
3016 cur
->bc_ops
->set_root(cur
, &lptr
, 1);
3019 * At the previous root level there are now two blocks: the old root,
3020 * and the new block generated when it was split. We don't know which
3021 * one the cursor is pointing at, so we set up variables "left" and
3022 * "right" for each case.
3024 block
= xfs_btree_get_block(cur
, cur
->bc_nlevels
- 1, &bp
);
3027 error
= xfs_btree_check_block(cur
, block
, cur
->bc_nlevels
- 1, bp
);
3032 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
3033 if (!xfs_btree_ptr_is_null(cur
, &rptr
)) {
3034 /* Our block is left, pick up the right block. */
3036 xfs_btree_buf_to_ptr(cur
, lbp
, &lptr
);
3038 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
3044 /* Our block is right, pick up the left block. */
3046 xfs_btree_buf_to_ptr(cur
, rbp
, &rptr
);
3048 xfs_btree_get_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
3049 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
3056 /* Fill in the new block's btree header and log it. */
3057 xfs_btree_init_block_cur(cur
, nbp
, cur
->bc_nlevels
, 2);
3058 xfs_btree_log_block(cur
, nbp
, XFS_BB_ALL_BITS
);
3059 ASSERT(!xfs_btree_ptr_is_null(cur
, &lptr
) &&
3060 !xfs_btree_ptr_is_null(cur
, &rptr
));
3062 /* Fill in the key data in the new root. */
3063 if (xfs_btree_get_level(left
) > 0) {
3065 * Get the keys for the left block's keys and put them directly
3066 * in the parent block. Do the same for the right block.
3068 xfs_btree_get_node_keys(cur
, left
,
3069 xfs_btree_key_addr(cur
, 1, new));
3070 xfs_btree_get_node_keys(cur
, right
,
3071 xfs_btree_key_addr(cur
, 2, new));
3074 * Get the keys for the left block's records and put them
3075 * directly in the parent block. Do the same for the right
3078 xfs_btree_get_leaf_keys(cur
, left
,
3079 xfs_btree_key_addr(cur
, 1, new));
3080 xfs_btree_get_leaf_keys(cur
, right
,
3081 xfs_btree_key_addr(cur
, 2, new));
3083 xfs_btree_log_keys(cur
, nbp
, 1, 2);
3085 /* Fill in the pointer data in the new root. */
3086 xfs_btree_copy_ptrs(cur
,
3087 xfs_btree_ptr_addr(cur
, 1, new), &lptr
, 1);
3088 xfs_btree_copy_ptrs(cur
,
3089 xfs_btree_ptr_addr(cur
, 2, new), &rptr
, 1);
3090 xfs_btree_log_ptrs(cur
, nbp
, 1, 2);
3092 /* Fix up the cursor. */
3093 xfs_btree_setbuf(cur
, cur
->bc_nlevels
, nbp
);
3094 cur
->bc_ptrs
[cur
->bc_nlevels
] = nptr
;
3106 xfs_btree_make_block_unfull(
3107 struct xfs_btree_cur
*cur
, /* btree cursor */
3108 int level
, /* btree level */
3109 int numrecs
,/* # of recs in block */
3110 int *oindex
,/* old tree index */
3111 int *index
, /* new tree index */
3112 union xfs_btree_ptr
*nptr
, /* new btree ptr */
3113 struct xfs_btree_cur
**ncur
, /* new btree cursor */
3114 union xfs_btree_key
*key
, /* key of new block */
3119 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
3120 level
== cur
->bc_nlevels
- 1) {
3121 struct xfs_inode
*ip
= cur
->bc_ino
.ip
;
3123 if (numrecs
< cur
->bc_ops
->get_dmaxrecs(cur
, level
)) {
3124 /* A root block that can be made bigger. */
3125 xfs_iroot_realloc(ip
, 1, cur
->bc_ino
.whichfork
);
3128 /* A root block that needs replacing */
3131 error
= xfs_btree_new_iroot(cur
, &logflags
, stat
);
3132 if (error
|| *stat
== 0)
3135 xfs_trans_log_inode(cur
->bc_tp
, ip
, logflags
);
3141 /* First, try shifting an entry to the right neighbor. */
3142 error
= xfs_btree_rshift(cur
, level
, stat
);
3146 /* Next, try shifting an entry to the left neighbor. */
3147 error
= xfs_btree_lshift(cur
, level
, stat
);
3152 *oindex
= *index
= cur
->bc_ptrs
[level
];
3157 * Next, try splitting the current block in half.
3159 * If this works we have to re-set our variables because we
3160 * could be in a different block now.
3162 error
= xfs_btree_split(cur
, level
, nptr
, key
, ncur
, stat
);
3163 if (error
|| *stat
== 0)
3167 *index
= cur
->bc_ptrs
[level
];
3172 * Insert one record/level. Return information to the caller
3173 * allowing the next level up to proceed if necessary.
3177 struct xfs_btree_cur
*cur
, /* btree cursor */
3178 int level
, /* level to insert record at */
3179 union xfs_btree_ptr
*ptrp
, /* i/o: block number inserted */
3180 union xfs_btree_rec
*rec
, /* record to insert */
3181 union xfs_btree_key
*key
, /* i/o: block key for ptrp */
3182 struct xfs_btree_cur
**curp
, /* output: new cursor replacing cur */
3183 int *stat
) /* success/failure */
3185 struct xfs_btree_block
*block
; /* btree block */
3186 struct xfs_buf
*bp
; /* buffer for block */
3187 union xfs_btree_ptr nptr
; /* new block ptr */
3188 struct xfs_btree_cur
*ncur
; /* new btree cursor */
3189 union xfs_btree_key nkey
; /* new block key */
3190 union xfs_btree_key
*lkey
;
3191 int optr
; /* old key/record index */
3192 int ptr
; /* key/record index */
3193 int numrecs
;/* number of records */
3194 int error
; /* error return value */
3202 * If we have an external root pointer, and we've made it to the
3203 * root level, allocate a new root block and we're done.
3205 if (!(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
3206 (level
>= cur
->bc_nlevels
)) {
3207 error
= xfs_btree_new_root(cur
, stat
);
3208 xfs_btree_set_ptr_null(cur
, ptrp
);
3213 /* If we're off the left edge, return failure. */
3214 ptr
= cur
->bc_ptrs
[level
];
3222 XFS_BTREE_STATS_INC(cur
, insrec
);
3224 /* Get pointers to the btree buffer and block. */
3225 block
= xfs_btree_get_block(cur
, level
, &bp
);
3226 old_bn
= bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
;
3227 numrecs
= xfs_btree_get_numrecs(block
);
3230 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3234 /* Check that the new entry is being inserted in the right place. */
3235 if (ptr
<= numrecs
) {
3237 ASSERT(cur
->bc_ops
->recs_inorder(cur
, rec
,
3238 xfs_btree_rec_addr(cur
, ptr
, block
)));
3240 ASSERT(cur
->bc_ops
->keys_inorder(cur
, key
,
3241 xfs_btree_key_addr(cur
, ptr
, block
)));
3247 * If the block is full, we can't insert the new entry until we
3248 * make the block un-full.
3250 xfs_btree_set_ptr_null(cur
, &nptr
);
3251 if (numrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
)) {
3252 error
= xfs_btree_make_block_unfull(cur
, level
, numrecs
,
3253 &optr
, &ptr
, &nptr
, &ncur
, lkey
, stat
);
3254 if (error
|| *stat
== 0)
3259 * The current block may have changed if the block was
3260 * previously full and we have just made space in it.
3262 block
= xfs_btree_get_block(cur
, level
, &bp
);
3263 numrecs
= xfs_btree_get_numrecs(block
);
3266 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3272 * At this point we know there's room for our new entry in the block
3273 * we're pointing at.
3275 XFS_BTREE_STATS_ADD(cur
, moves
, numrecs
- ptr
+ 1);
3278 /* It's a nonleaf. make a hole in the keys and ptrs */
3279 union xfs_btree_key
*kp
;
3280 union xfs_btree_ptr
*pp
;
3282 kp
= xfs_btree_key_addr(cur
, ptr
, block
);
3283 pp
= xfs_btree_ptr_addr(cur
, ptr
, block
);
3285 for (i
= numrecs
- ptr
; i
>= 0; i
--) {
3286 error
= xfs_btree_debug_check_ptr(cur
, pp
, i
, level
);
3291 xfs_btree_shift_keys(cur
, kp
, 1, numrecs
- ptr
+ 1);
3292 xfs_btree_shift_ptrs(cur
, pp
, 1, numrecs
- ptr
+ 1);
3294 error
= xfs_btree_debug_check_ptr(cur
, ptrp
, 0, level
);
3298 /* Now put the new data in, bump numrecs and log it. */
3299 xfs_btree_copy_keys(cur
, kp
, key
, 1);
3300 xfs_btree_copy_ptrs(cur
, pp
, ptrp
, 1);
3302 xfs_btree_set_numrecs(block
, numrecs
);
3303 xfs_btree_log_ptrs(cur
, bp
, ptr
, numrecs
);
3304 xfs_btree_log_keys(cur
, bp
, ptr
, numrecs
);
3306 if (ptr
< numrecs
) {
3307 ASSERT(cur
->bc_ops
->keys_inorder(cur
, kp
,
3308 xfs_btree_key_addr(cur
, ptr
+ 1, block
)));
3312 /* It's a leaf. make a hole in the records */
3313 union xfs_btree_rec
*rp
;
3315 rp
= xfs_btree_rec_addr(cur
, ptr
, block
);
3317 xfs_btree_shift_recs(cur
, rp
, 1, numrecs
- ptr
+ 1);
3319 /* Now put the new data in, bump numrecs and log it. */
3320 xfs_btree_copy_recs(cur
, rp
, rec
, 1);
3321 xfs_btree_set_numrecs(block
, ++numrecs
);
3322 xfs_btree_log_recs(cur
, bp
, ptr
, numrecs
);
3324 if (ptr
< numrecs
) {
3325 ASSERT(cur
->bc_ops
->recs_inorder(cur
, rp
,
3326 xfs_btree_rec_addr(cur
, ptr
+ 1, block
)));
3331 /* Log the new number of records in the btree header. */
3332 xfs_btree_log_block(cur
, bp
, XFS_BB_NUMRECS
);
3335 * If we just inserted into a new tree block, we have to
3336 * recalculate nkey here because nkey is out of date.
3338 * Otherwise we're just updating an existing block (having shoved
3339 * some records into the new tree block), so use the regular key
3342 if (bp
&& bp
->b_bn
!= old_bn
) {
3343 xfs_btree_get_keys(cur
, block
, lkey
);
3344 } else if (xfs_btree_needs_key_update(cur
, optr
)) {
3345 error
= xfs_btree_update_keys(cur
, level
);
3351 * If we are tracking the last record in the tree and
3352 * we are at the far right edge of the tree, update it.
3354 if (xfs_btree_is_lastrec(cur
, block
, level
)) {
3355 cur
->bc_ops
->update_lastrec(cur
, block
, rec
,
3356 ptr
, LASTREC_INSREC
);
3360 * Return the new block number, if any.
3361 * If there is one, give back a record value and a cursor too.
3364 if (!xfs_btree_ptr_is_null(cur
, &nptr
)) {
3365 xfs_btree_copy_keys(cur
, key
, lkey
, 1);
3377 * Insert the record at the point referenced by cur.
3379 * A multi-level split of the tree on insert will invalidate the original
3380 * cursor. All callers of this function should assume that the cursor is
3381 * no longer valid and revalidate it.
3385 struct xfs_btree_cur
*cur
,
3388 int error
; /* error return value */
3389 int i
; /* result value, 0 for failure */
3390 int level
; /* current level number in btree */
3391 union xfs_btree_ptr nptr
; /* new block number (split result) */
3392 struct xfs_btree_cur
*ncur
; /* new cursor (split result) */
3393 struct xfs_btree_cur
*pcur
; /* previous level's cursor */
3394 union xfs_btree_key bkey
; /* key of block to insert */
3395 union xfs_btree_key
*key
;
3396 union xfs_btree_rec rec
; /* record to insert */
3403 xfs_btree_set_ptr_null(cur
, &nptr
);
3405 /* Make a key out of the record data to be inserted, and save it. */
3406 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
3407 cur
->bc_ops
->init_key_from_rec(key
, &rec
);
3410 * Loop going up the tree, starting at the leaf level.
3411 * Stop when we don't get a split block, that must mean that
3412 * the insert is finished with this level.
3416 * Insert nrec/nptr into this level of the tree.
3417 * Note if we fail, nptr will be null.
3419 error
= xfs_btree_insrec(pcur
, level
, &nptr
, &rec
, key
,
3423 xfs_btree_del_cursor(pcur
, XFS_BTREE_ERROR
);
3427 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3428 error
= -EFSCORRUPTED
;
3434 * See if the cursor we just used is trash.
3435 * Can't trash the caller's cursor, but otherwise we should
3436 * if ncur is a new cursor or we're about to be done.
3439 (ncur
|| xfs_btree_ptr_is_null(cur
, &nptr
))) {
3440 /* Save the state from the cursor before we trash it */
3441 if (cur
->bc_ops
->update_cursor
)
3442 cur
->bc_ops
->update_cursor(pcur
, cur
);
3443 cur
->bc_nlevels
= pcur
->bc_nlevels
;
3444 xfs_btree_del_cursor(pcur
, XFS_BTREE_NOERROR
);
3446 /* If we got a new cursor, switch to it. */
3451 } while (!xfs_btree_ptr_is_null(cur
, &nptr
));
3460 * Try to merge a non-leaf block back into the inode root.
3462 * Note: the killroot names comes from the fact that we're effectively
3463 * killing the old root block. But because we can't just delete the
3464 * inode we have to copy the single block it was pointing to into the
3468 xfs_btree_kill_iroot(
3469 struct xfs_btree_cur
*cur
)
3471 int whichfork
= cur
->bc_ino
.whichfork
;
3472 struct xfs_inode
*ip
= cur
->bc_ino
.ip
;
3473 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, whichfork
);
3474 struct xfs_btree_block
*block
;
3475 struct xfs_btree_block
*cblock
;
3476 union xfs_btree_key
*kp
;
3477 union xfs_btree_key
*ckp
;
3478 union xfs_btree_ptr
*pp
;
3479 union xfs_btree_ptr
*cpp
;
3480 struct xfs_buf
*cbp
;
3486 union xfs_btree_ptr ptr
;
3490 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
3491 ASSERT(cur
->bc_nlevels
> 1);
3494 * Don't deal with the root block needs to be a leaf case.
3495 * We're just going to turn the thing back into extents anyway.
3497 level
= cur
->bc_nlevels
- 1;
3502 * Give up if the root has multiple children.
3504 block
= xfs_btree_get_iroot(cur
);
3505 if (xfs_btree_get_numrecs(block
) != 1)
3508 cblock
= xfs_btree_get_block(cur
, level
- 1, &cbp
);
3509 numrecs
= xfs_btree_get_numrecs(cblock
);
3512 * Only do this if the next level will fit.
3513 * Then the data must be copied up to the inode,
3514 * instead of freeing the root you free the next level.
3516 if (numrecs
> cur
->bc_ops
->get_dmaxrecs(cur
, level
))
3519 XFS_BTREE_STATS_INC(cur
, killroot
);
3522 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_LEFTSIB
);
3523 ASSERT(xfs_btree_ptr_is_null(cur
, &ptr
));
3524 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
3525 ASSERT(xfs_btree_ptr_is_null(cur
, &ptr
));
3528 index
= numrecs
- cur
->bc_ops
->get_maxrecs(cur
, level
);
3530 xfs_iroot_realloc(cur
->bc_ino
.ip
, index
,
3531 cur
->bc_ino
.whichfork
);
3532 block
= ifp
->if_broot
;
3535 be16_add_cpu(&block
->bb_numrecs
, index
);
3536 ASSERT(block
->bb_numrecs
== cblock
->bb_numrecs
);
3538 kp
= xfs_btree_key_addr(cur
, 1, block
);
3539 ckp
= xfs_btree_key_addr(cur
, 1, cblock
);
3540 xfs_btree_copy_keys(cur
, kp
, ckp
, numrecs
);
3542 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
3543 cpp
= xfs_btree_ptr_addr(cur
, 1, cblock
);
3545 for (i
= 0; i
< numrecs
; i
++) {
3546 error
= xfs_btree_debug_check_ptr(cur
, cpp
, i
, level
- 1);
3551 xfs_btree_copy_ptrs(cur
, pp
, cpp
, numrecs
);
3553 error
= xfs_btree_free_block(cur
, cbp
);
3557 cur
->bc_bufs
[level
- 1] = NULL
;
3558 be16_add_cpu(&block
->bb_level
, -1);
3559 xfs_trans_log_inode(cur
->bc_tp
, ip
,
3560 XFS_ILOG_CORE
| xfs_ilog_fbroot(cur
->bc_ino
.whichfork
));
3567 * Kill the current root node, and replace it with it's only child node.
3570 xfs_btree_kill_root(
3571 struct xfs_btree_cur
*cur
,
3574 union xfs_btree_ptr
*newroot
)
3578 XFS_BTREE_STATS_INC(cur
, killroot
);
3581 * Update the root pointer, decreasing the level by 1 and then
3582 * free the old root.
3584 cur
->bc_ops
->set_root(cur
, newroot
, -1);
3586 error
= xfs_btree_free_block(cur
, bp
);
3590 cur
->bc_bufs
[level
] = NULL
;
3591 cur
->bc_ra
[level
] = 0;
3598 xfs_btree_dec_cursor(
3599 struct xfs_btree_cur
*cur
,
3607 error
= xfs_btree_decrement(cur
, level
, &i
);
3617 * Single level of the btree record deletion routine.
3618 * Delete record pointed to by cur/level.
3619 * Remove the record from its block then rebalance the tree.
3620 * Return 0 for error, 1 for done, 2 to go on to the next level.
3622 STATIC
int /* error */
3624 struct xfs_btree_cur
*cur
, /* btree cursor */
3625 int level
, /* level removing record from */
3626 int *stat
) /* fail/done/go-on */
3628 struct xfs_btree_block
*block
; /* btree block */
3629 union xfs_btree_ptr cptr
; /* current block ptr */
3630 struct xfs_buf
*bp
; /* buffer for block */
3631 int error
; /* error return value */
3632 int i
; /* loop counter */
3633 union xfs_btree_ptr lptr
; /* left sibling block ptr */
3634 struct xfs_buf
*lbp
; /* left buffer pointer */
3635 struct xfs_btree_block
*left
; /* left btree block */
3636 int lrecs
= 0; /* left record count */
3637 int ptr
; /* key/record index */
3638 union xfs_btree_ptr rptr
; /* right sibling block ptr */
3639 struct xfs_buf
*rbp
; /* right buffer pointer */
3640 struct xfs_btree_block
*right
; /* right btree block */
3641 struct xfs_btree_block
*rrblock
; /* right-right btree block */
3642 struct xfs_buf
*rrbp
; /* right-right buffer pointer */
3643 int rrecs
= 0; /* right record count */
3644 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
3645 int numrecs
; /* temporary numrec count */
3649 /* Get the index of the entry being deleted, check for nothing there. */
3650 ptr
= cur
->bc_ptrs
[level
];
3656 /* Get the buffer & block containing the record or key/ptr. */
3657 block
= xfs_btree_get_block(cur
, level
, &bp
);
3658 numrecs
= xfs_btree_get_numrecs(block
);
3661 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3666 /* Fail if we're off the end of the block. */
3667 if (ptr
> numrecs
) {
3672 XFS_BTREE_STATS_INC(cur
, delrec
);
3673 XFS_BTREE_STATS_ADD(cur
, moves
, numrecs
- ptr
);
3675 /* Excise the entries being deleted. */
3677 /* It's a nonleaf. operate on keys and ptrs */
3678 union xfs_btree_key
*lkp
;
3679 union xfs_btree_ptr
*lpp
;
3681 lkp
= xfs_btree_key_addr(cur
, ptr
+ 1, block
);
3682 lpp
= xfs_btree_ptr_addr(cur
, ptr
+ 1, block
);
3684 for (i
= 0; i
< numrecs
- ptr
; i
++) {
3685 error
= xfs_btree_debug_check_ptr(cur
, lpp
, i
, level
);
3690 if (ptr
< numrecs
) {
3691 xfs_btree_shift_keys(cur
, lkp
, -1, numrecs
- ptr
);
3692 xfs_btree_shift_ptrs(cur
, lpp
, -1, numrecs
- ptr
);
3693 xfs_btree_log_keys(cur
, bp
, ptr
, numrecs
- 1);
3694 xfs_btree_log_ptrs(cur
, bp
, ptr
, numrecs
- 1);
3697 /* It's a leaf. operate on records */
3698 if (ptr
< numrecs
) {
3699 xfs_btree_shift_recs(cur
,
3700 xfs_btree_rec_addr(cur
, ptr
+ 1, block
),
3702 xfs_btree_log_recs(cur
, bp
, ptr
, numrecs
- 1);
3707 * Decrement and log the number of entries in the block.
3709 xfs_btree_set_numrecs(block
, --numrecs
);
3710 xfs_btree_log_block(cur
, bp
, XFS_BB_NUMRECS
);
3713 * If we are tracking the last record in the tree and
3714 * we are at the far right edge of the tree, update it.
3716 if (xfs_btree_is_lastrec(cur
, block
, level
)) {
3717 cur
->bc_ops
->update_lastrec(cur
, block
, NULL
,
3718 ptr
, LASTREC_DELREC
);
3722 * We're at the root level. First, shrink the root block in-memory.
3723 * Try to get rid of the next level down. If we can't then there's
3724 * nothing left to do.
3726 if (level
== cur
->bc_nlevels
- 1) {
3727 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) {
3728 xfs_iroot_realloc(cur
->bc_ino
.ip
, -1,
3729 cur
->bc_ino
.whichfork
);
3731 error
= xfs_btree_kill_iroot(cur
);
3735 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3743 * If this is the root level, and there's only one entry left,
3744 * and it's NOT the leaf level, then we can get rid of this
3747 if (numrecs
== 1 && level
> 0) {
3748 union xfs_btree_ptr
*pp
;
3750 * pp is still set to the first pointer in the block.
3751 * Make it the new root of the btree.
3753 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
3754 error
= xfs_btree_kill_root(cur
, bp
, level
, pp
);
3757 } else if (level
> 0) {
3758 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3767 * If we deleted the leftmost entry in the block, update the
3768 * key values above us in the tree.
3770 if (xfs_btree_needs_key_update(cur
, ptr
)) {
3771 error
= xfs_btree_update_keys(cur
, level
);
3777 * If the number of records remaining in the block is at least
3778 * the minimum, we're done.
3780 if (numrecs
>= cur
->bc_ops
->get_minrecs(cur
, level
)) {
3781 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3788 * Otherwise, we have to move some records around to keep the
3789 * tree balanced. Look at the left and right sibling blocks to
3790 * see if we can re-balance by moving only one record.
3792 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
3793 xfs_btree_get_sibling(cur
, block
, &lptr
, XFS_BB_LEFTSIB
);
3795 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) {
3797 * One child of root, need to get a chance to copy its contents
3798 * into the root and delete it. Can't go up to next level,
3799 * there's nothing to delete there.
3801 if (xfs_btree_ptr_is_null(cur
, &rptr
) &&
3802 xfs_btree_ptr_is_null(cur
, &lptr
) &&
3803 level
== cur
->bc_nlevels
- 2) {
3804 error
= xfs_btree_kill_iroot(cur
);
3806 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3813 ASSERT(!xfs_btree_ptr_is_null(cur
, &rptr
) ||
3814 !xfs_btree_ptr_is_null(cur
, &lptr
));
3817 * Duplicate the cursor so our btree manipulations here won't
3818 * disrupt the next level up.
3820 error
= xfs_btree_dup_cursor(cur
, &tcur
);
3825 * If there's a right sibling, see if it's ok to shift an entry
3828 if (!xfs_btree_ptr_is_null(cur
, &rptr
)) {
3830 * Move the temp cursor to the last entry in the next block.
3831 * Actually any entry but the first would suffice.
3833 i
= xfs_btree_lastrec(tcur
, level
);
3834 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3835 error
= -EFSCORRUPTED
;
3839 error
= xfs_btree_increment(tcur
, level
, &i
);
3842 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3843 error
= -EFSCORRUPTED
;
3847 i
= xfs_btree_lastrec(tcur
, level
);
3848 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3849 error
= -EFSCORRUPTED
;
3853 /* Grab a pointer to the block. */
3854 right
= xfs_btree_get_block(tcur
, level
, &rbp
);
3856 error
= xfs_btree_check_block(tcur
, right
, level
, rbp
);
3860 /* Grab the current block number, for future use. */
3861 xfs_btree_get_sibling(tcur
, right
, &cptr
, XFS_BB_LEFTSIB
);
3864 * If right block is full enough so that removing one entry
3865 * won't make it too empty, and left-shifting an entry out
3866 * of right to us works, we're done.
3868 if (xfs_btree_get_numrecs(right
) - 1 >=
3869 cur
->bc_ops
->get_minrecs(tcur
, level
)) {
3870 error
= xfs_btree_lshift(tcur
, level
, &i
);
3874 ASSERT(xfs_btree_get_numrecs(block
) >=
3875 cur
->bc_ops
->get_minrecs(tcur
, level
));
3877 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
3880 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3888 * Otherwise, grab the number of records in right for
3889 * future reference, and fix up the temp cursor to point
3890 * to our block again (last record).
3892 rrecs
= xfs_btree_get_numrecs(right
);
3893 if (!xfs_btree_ptr_is_null(cur
, &lptr
)) {
3894 i
= xfs_btree_firstrec(tcur
, level
);
3895 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3896 error
= -EFSCORRUPTED
;
3900 error
= xfs_btree_decrement(tcur
, level
, &i
);
3903 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3904 error
= -EFSCORRUPTED
;
3911 * If there's a left sibling, see if it's ok to shift an entry
3914 if (!xfs_btree_ptr_is_null(cur
, &lptr
)) {
3916 * Move the temp cursor to the first entry in the
3919 i
= xfs_btree_firstrec(tcur
, level
);
3920 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3921 error
= -EFSCORRUPTED
;
3925 error
= xfs_btree_decrement(tcur
, level
, &i
);
3928 i
= xfs_btree_firstrec(tcur
, level
);
3929 if (XFS_IS_CORRUPT(cur
->bc_mp
, i
!= 1)) {
3930 error
= -EFSCORRUPTED
;
3934 /* Grab a pointer to the block. */
3935 left
= xfs_btree_get_block(tcur
, level
, &lbp
);
3937 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
3941 /* Grab the current block number, for future use. */
3942 xfs_btree_get_sibling(tcur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
3945 * If left block is full enough so that removing one entry
3946 * won't make it too empty, and right-shifting an entry out
3947 * of left to us works, we're done.
3949 if (xfs_btree_get_numrecs(left
) - 1 >=
3950 cur
->bc_ops
->get_minrecs(tcur
, level
)) {
3951 error
= xfs_btree_rshift(tcur
, level
, &i
);
3955 ASSERT(xfs_btree_get_numrecs(block
) >=
3956 cur
->bc_ops
->get_minrecs(tcur
, level
));
3957 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
3968 * Otherwise, grab the number of records in right for
3971 lrecs
= xfs_btree_get_numrecs(left
);
3974 /* Delete the temp cursor, we're done with it. */
3975 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
3978 /* If here, we need to do a join to keep the tree balanced. */
3979 ASSERT(!xfs_btree_ptr_is_null(cur
, &cptr
));
3981 if (!xfs_btree_ptr_is_null(cur
, &lptr
) &&
3982 lrecs
+ xfs_btree_get_numrecs(block
) <=
3983 cur
->bc_ops
->get_maxrecs(cur
, level
)) {
3985 * Set "right" to be the starting block,
3986 * "left" to be the left neighbor.
3991 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
3996 * If that won't work, see if we can join with the right neighbor block.
3998 } else if (!xfs_btree_ptr_is_null(cur
, &rptr
) &&
3999 rrecs
+ xfs_btree_get_numrecs(block
) <=
4000 cur
->bc_ops
->get_maxrecs(cur
, level
)) {
4002 * Set "left" to be the starting block,
4003 * "right" to be the right neighbor.
4008 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
4013 * Otherwise, we can't fix the imbalance.
4014 * Just return. This is probably a logic error, but it's not fatal.
4017 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
4023 rrecs
= xfs_btree_get_numrecs(right
);
4024 lrecs
= xfs_btree_get_numrecs(left
);
4027 * We're now going to join "left" and "right" by moving all the stuff
4028 * in "right" to "left" and deleting "right".
4030 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
4032 /* It's a non-leaf. Move keys and pointers. */
4033 union xfs_btree_key
*lkp
; /* left btree key */
4034 union xfs_btree_ptr
*lpp
; /* left address pointer */
4035 union xfs_btree_key
*rkp
; /* right btree key */
4036 union xfs_btree_ptr
*rpp
; /* right address pointer */
4038 lkp
= xfs_btree_key_addr(cur
, lrecs
+ 1, left
);
4039 lpp
= xfs_btree_ptr_addr(cur
, lrecs
+ 1, left
);
4040 rkp
= xfs_btree_key_addr(cur
, 1, right
);
4041 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
4043 for (i
= 1; i
< rrecs
; i
++) {
4044 error
= xfs_btree_debug_check_ptr(cur
, rpp
, i
, level
);
4049 xfs_btree_copy_keys(cur
, lkp
, rkp
, rrecs
);
4050 xfs_btree_copy_ptrs(cur
, lpp
, rpp
, rrecs
);
4052 xfs_btree_log_keys(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4053 xfs_btree_log_ptrs(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4055 /* It's a leaf. Move records. */
4056 union xfs_btree_rec
*lrp
; /* left record pointer */
4057 union xfs_btree_rec
*rrp
; /* right record pointer */
4059 lrp
= xfs_btree_rec_addr(cur
, lrecs
+ 1, left
);
4060 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
4062 xfs_btree_copy_recs(cur
, lrp
, rrp
, rrecs
);
4063 xfs_btree_log_recs(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4066 XFS_BTREE_STATS_INC(cur
, join
);
4069 * Fix up the number of records and right block pointer in the
4070 * surviving block, and log it.
4072 xfs_btree_set_numrecs(left
, lrecs
+ rrecs
);
4073 xfs_btree_get_sibling(cur
, right
, &cptr
, XFS_BB_RIGHTSIB
);
4074 xfs_btree_set_sibling(cur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
4075 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
| XFS_BB_RIGHTSIB
);
4077 /* If there is a right sibling, point it to the remaining block. */
4078 xfs_btree_get_sibling(cur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
4079 if (!xfs_btree_ptr_is_null(cur
, &cptr
)) {
4080 error
= xfs_btree_read_buf_block(cur
, &cptr
, 0, &rrblock
, &rrbp
);
4083 xfs_btree_set_sibling(cur
, rrblock
, &lptr
, XFS_BB_LEFTSIB
);
4084 xfs_btree_log_block(cur
, rrbp
, XFS_BB_LEFTSIB
);
4087 /* Free the deleted block. */
4088 error
= xfs_btree_free_block(cur
, rbp
);
4093 * If we joined with the left neighbor, set the buffer in the
4094 * cursor to the left block, and fix up the index.
4097 cur
->bc_bufs
[level
] = lbp
;
4098 cur
->bc_ptrs
[level
] += lrecs
;
4099 cur
->bc_ra
[level
] = 0;
4102 * If we joined with the right neighbor and there's a level above
4103 * us, increment the cursor at that level.
4105 else if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) ||
4106 (level
+ 1 < cur
->bc_nlevels
)) {
4107 error
= xfs_btree_increment(cur
, level
+ 1, &i
);
4113 * Readjust the ptr at this level if it's not a leaf, since it's
4114 * still pointing at the deletion point, which makes the cursor
4115 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4116 * We can't use decrement because it would change the next level up.
4119 cur
->bc_ptrs
[level
]--;
4122 * We combined blocks, so we have to update the parent keys if the
4123 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4124 * points to the old block so that the caller knows which record to
4125 * delete. Therefore, the caller must be savvy enough to call updkeys
4126 * for us if we return stat == 2. The other exit points from this
4127 * function don't require deletions further up the tree, so they can
4128 * call updkeys directly.
4131 /* Return value means the next level up has something to do. */
4137 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
4142 * Delete the record pointed to by cur.
4143 * The cursor refers to the place where the record was (could be inserted)
4144 * when the operation returns.
4148 struct xfs_btree_cur
*cur
,
4149 int *stat
) /* success/failure */
4151 int error
; /* error return value */
4154 bool joined
= false;
4157 * Go up the tree, starting at leaf level.
4159 * If 2 is returned then a join was done; go to the next level.
4160 * Otherwise we are done.
4162 for (level
= 0, i
= 2; i
== 2; level
++) {
4163 error
= xfs_btree_delrec(cur
, level
, &i
);
4171 * If we combined blocks as part of deleting the record, delrec won't
4172 * have updated the parent high keys so we have to do that here.
4174 if (joined
&& (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
)) {
4175 error
= xfs_btree_updkeys_force(cur
, 0);
4181 for (level
= 1; level
< cur
->bc_nlevels
; level
++) {
4182 if (cur
->bc_ptrs
[level
] == 0) {
4183 error
= xfs_btree_decrement(cur
, level
, &i
);
4198 * Get the data from the pointed-to record.
4202 struct xfs_btree_cur
*cur
, /* btree cursor */
4203 union xfs_btree_rec
**recp
, /* output: btree record */
4204 int *stat
) /* output: success/failure */
4206 struct xfs_btree_block
*block
; /* btree block */
4207 struct xfs_buf
*bp
; /* buffer pointer */
4208 int ptr
; /* record number */
4210 int error
; /* error return value */
4213 ptr
= cur
->bc_ptrs
[0];
4214 block
= xfs_btree_get_block(cur
, 0, &bp
);
4217 error
= xfs_btree_check_block(cur
, block
, 0, bp
);
4223 * Off the right end or left end, return failure.
4225 if (ptr
> xfs_btree_get_numrecs(block
) || ptr
<= 0) {
4231 * Point to the record and extract its data.
4233 *recp
= xfs_btree_rec_addr(cur
, ptr
, block
);
4238 /* Visit a block in a btree. */
4240 xfs_btree_visit_block(
4241 struct xfs_btree_cur
*cur
,
4243 xfs_btree_visit_blocks_fn fn
,
4246 struct xfs_btree_block
*block
;
4248 union xfs_btree_ptr rptr
;
4251 /* do right sibling readahead */
4252 xfs_btree_readahead(cur
, level
, XFS_BTCUR_RIGHTRA
);
4253 block
= xfs_btree_get_block(cur
, level
, &bp
);
4255 /* process the block */
4256 error
= fn(cur
, level
, data
);
4260 /* now read rh sibling block for next iteration */
4261 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
4262 if (xfs_btree_ptr_is_null(cur
, &rptr
))
4265 return xfs_btree_lookup_get_block(cur
, level
, &rptr
, &block
);
4269 /* Visit every block in a btree. */
4271 xfs_btree_visit_blocks(
4272 struct xfs_btree_cur
*cur
,
4273 xfs_btree_visit_blocks_fn fn
,
4277 union xfs_btree_ptr lptr
;
4279 struct xfs_btree_block
*block
= NULL
;
4282 cur
->bc_ops
->init_ptr_from_cur(cur
, &lptr
);
4284 /* for each level */
4285 for (level
= cur
->bc_nlevels
- 1; level
>= 0; level
--) {
4286 /* grab the left hand block */
4287 error
= xfs_btree_lookup_get_block(cur
, level
, &lptr
, &block
);
4291 /* readahead the left most block for the next level down */
4293 union xfs_btree_ptr
*ptr
;
4295 ptr
= xfs_btree_ptr_addr(cur
, 1, block
);
4296 xfs_btree_readahead_ptr(cur
, ptr
, 1);
4298 /* save for the next iteration of the loop */
4299 xfs_btree_copy_ptrs(cur
, &lptr
, ptr
, 1);
4301 if (!(flags
& XFS_BTREE_VISIT_LEAVES
))
4303 } else if (!(flags
& XFS_BTREE_VISIT_RECORDS
)) {
4307 /* for each buffer in the level */
4309 error
= xfs_btree_visit_block(cur
, level
, fn
, data
);
4312 if (error
!= -ENOENT
)
4320 * Change the owner of a btree.
4322 * The mechanism we use here is ordered buffer logging. Because we don't know
4323 * how many buffers were are going to need to modify, we don't really want to
4324 * have to make transaction reservations for the worst case of every buffer in a
4325 * full size btree as that may be more space that we can fit in the log....
4327 * We do the btree walk in the most optimal manner possible - we have sibling
4328 * pointers so we can just walk all the blocks on each level from left to right
4329 * in a single pass, and then move to the next level and do the same. We can
4330 * also do readahead on the sibling pointers to get IO moving more quickly,
4331 * though for slow disks this is unlikely to make much difference to performance
4332 * as the amount of CPU work we have to do before moving to the next block is
4335 * For each btree block that we load, modify the owner appropriately, set the
4336 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4337 * we mark the region we change dirty so that if the buffer is relogged in
4338 * a subsequent transaction the changes we make here as an ordered buffer are
4339 * correctly relogged in that transaction. If we are in recovery context, then
4340 * just queue the modified buffer as delayed write buffer so the transaction
4341 * recovery completion writes the changes to disk.
4343 struct xfs_btree_block_change_owner_info
{
4345 struct list_head
*buffer_list
;
4349 xfs_btree_block_change_owner(
4350 struct xfs_btree_cur
*cur
,
4354 struct xfs_btree_block_change_owner_info
*bbcoi
= data
;
4355 struct xfs_btree_block
*block
;
4358 /* modify the owner */
4359 block
= xfs_btree_get_block(cur
, level
, &bp
);
4360 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
4361 if (block
->bb_u
.l
.bb_owner
== cpu_to_be64(bbcoi
->new_owner
))
4363 block
->bb_u
.l
.bb_owner
= cpu_to_be64(bbcoi
->new_owner
);
4365 if (block
->bb_u
.s
.bb_owner
== cpu_to_be32(bbcoi
->new_owner
))
4367 block
->bb_u
.s
.bb_owner
= cpu_to_be32(bbcoi
->new_owner
);
4371 * If the block is a root block hosted in an inode, we might not have a
4372 * buffer pointer here and we shouldn't attempt to log the change as the
4373 * information is already held in the inode and discarded when the root
4374 * block is formatted into the on-disk inode fork. We still change it,
4375 * though, so everything is consistent in memory.
4378 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
4379 ASSERT(level
== cur
->bc_nlevels
- 1);
4384 if (!xfs_trans_ordered_buf(cur
->bc_tp
, bp
)) {
4385 xfs_btree_log_block(cur
, bp
, XFS_BB_OWNER
);
4389 xfs_buf_delwri_queue(bp
, bbcoi
->buffer_list
);
4396 xfs_btree_change_owner(
4397 struct xfs_btree_cur
*cur
,
4399 struct list_head
*buffer_list
)
4401 struct xfs_btree_block_change_owner_info bbcoi
;
4403 bbcoi
.new_owner
= new_owner
;
4404 bbcoi
.buffer_list
= buffer_list
;
4406 return xfs_btree_visit_blocks(cur
, xfs_btree_block_change_owner
,
4407 XFS_BTREE_VISIT_ALL
, &bbcoi
);
4410 /* Verify the v5 fields of a long-format btree block. */
4412 xfs_btree_lblock_v5hdr_verify(
4416 struct xfs_mount
*mp
= bp
->b_mount
;
4417 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4419 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
4420 return __this_address
;
4421 if (!uuid_equal(&block
->bb_u
.l
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
))
4422 return __this_address
;
4423 if (block
->bb_u
.l
.bb_blkno
!= cpu_to_be64(bp
->b_bn
))
4424 return __this_address
;
4425 if (owner
!= XFS_RMAP_OWN_UNKNOWN
&&
4426 be64_to_cpu(block
->bb_u
.l
.bb_owner
) != owner
)
4427 return __this_address
;
4431 /* Verify a long-format btree block. */
4433 xfs_btree_lblock_verify(
4435 unsigned int max_recs
)
4437 struct xfs_mount
*mp
= bp
->b_mount
;
4438 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4440 /* numrecs verification */
4441 if (be16_to_cpu(block
->bb_numrecs
) > max_recs
)
4442 return __this_address
;
4444 /* sibling pointer verification */
4445 if (block
->bb_u
.l
.bb_leftsib
!= cpu_to_be64(NULLFSBLOCK
) &&
4446 !xfs_verify_fsbno(mp
, be64_to_cpu(block
->bb_u
.l
.bb_leftsib
)))
4447 return __this_address
;
4448 if (block
->bb_u
.l
.bb_rightsib
!= cpu_to_be64(NULLFSBLOCK
) &&
4449 !xfs_verify_fsbno(mp
, be64_to_cpu(block
->bb_u
.l
.bb_rightsib
)))
4450 return __this_address
;
4456 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4459 * @bp: buffer containing the btree block
4462 xfs_btree_sblock_v5hdr_verify(
4465 struct xfs_mount
*mp
= bp
->b_mount
;
4466 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4467 struct xfs_perag
*pag
= bp
->b_pag
;
4469 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
4470 return __this_address
;
4471 if (!uuid_equal(&block
->bb_u
.s
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
))
4472 return __this_address
;
4473 if (block
->bb_u
.s
.bb_blkno
!= cpu_to_be64(bp
->b_bn
))
4474 return __this_address
;
4475 if (pag
&& be32_to_cpu(block
->bb_u
.s
.bb_owner
) != pag
->pag_agno
)
4476 return __this_address
;
4481 * xfs_btree_sblock_verify() -- verify a short-format btree block
4483 * @bp: buffer containing the btree block
4484 * @max_recs: maximum records allowed in this btree node
4487 xfs_btree_sblock_verify(
4489 unsigned int max_recs
)
4491 struct xfs_mount
*mp
= bp
->b_mount
;
4492 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4495 /* numrecs verification */
4496 if (be16_to_cpu(block
->bb_numrecs
) > max_recs
)
4497 return __this_address
;
4499 /* sibling pointer verification */
4500 agno
= xfs_daddr_to_agno(mp
, XFS_BUF_ADDR(bp
));
4501 if (block
->bb_u
.s
.bb_leftsib
!= cpu_to_be32(NULLAGBLOCK
) &&
4502 !xfs_verify_agbno(mp
, agno
, be32_to_cpu(block
->bb_u
.s
.bb_leftsib
)))
4503 return __this_address
;
4504 if (block
->bb_u
.s
.bb_rightsib
!= cpu_to_be32(NULLAGBLOCK
) &&
4505 !xfs_verify_agbno(mp
, agno
, be32_to_cpu(block
->bb_u
.s
.bb_rightsib
)))
4506 return __this_address
;
4512 * Calculate the number of btree levels needed to store a given number of
4513 * records in a short-format btree.
4516 xfs_btree_compute_maxlevels(
4521 unsigned long maxblocks
;
4523 maxblocks
= (len
+ limits
[0] - 1) / limits
[0];
4524 for (level
= 1; maxblocks
> 1; level
++)
4525 maxblocks
= (maxblocks
+ limits
[1] - 1) / limits
[1];
4530 * Query a regular btree for all records overlapping a given interval.
4531 * Start with a LE lookup of the key of low_rec and return all records
4532 * until we find a record with a key greater than the key of high_rec.
4535 xfs_btree_simple_query_range(
4536 struct xfs_btree_cur
*cur
,
4537 union xfs_btree_key
*low_key
,
4538 union xfs_btree_key
*high_key
,
4539 xfs_btree_query_range_fn fn
,
4542 union xfs_btree_rec
*recp
;
4543 union xfs_btree_key rec_key
;
4546 bool firstrec
= true;
4549 ASSERT(cur
->bc_ops
->init_high_key_from_rec
);
4550 ASSERT(cur
->bc_ops
->diff_two_keys
);
4553 * Find the leftmost record. The btree cursor must be set
4554 * to the low record used to generate low_key.
4557 error
= xfs_btree_lookup(cur
, XFS_LOOKUP_LE
, &stat
);
4561 /* Nothing? See if there's anything to the right. */
4563 error
= xfs_btree_increment(cur
, 0, &stat
);
4569 /* Find the record. */
4570 error
= xfs_btree_get_rec(cur
, &recp
, &stat
);
4574 /* Skip if high_key(rec) < low_key. */
4576 cur
->bc_ops
->init_high_key_from_rec(&rec_key
, recp
);
4578 diff
= cur
->bc_ops
->diff_two_keys(cur
, low_key
,
4584 /* Stop if high_key < low_key(rec). */
4585 cur
->bc_ops
->init_key_from_rec(&rec_key
, recp
);
4586 diff
= cur
->bc_ops
->diff_two_keys(cur
, &rec_key
, high_key
);
4591 error
= fn(cur
, recp
, priv
);
4596 /* Move on to the next record. */
4597 error
= xfs_btree_increment(cur
, 0, &stat
);
4607 * Query an overlapped interval btree for all records overlapping a given
4608 * interval. This function roughly follows the algorithm given in
4609 * "Interval Trees" of _Introduction to Algorithms_, which is section
4610 * 14.3 in the 2nd and 3rd editions.
4612 * First, generate keys for the low and high records passed in.
4614 * For any leaf node, generate the high and low keys for the record.
4615 * If the record keys overlap with the query low/high keys, pass the
4616 * record to the function iterator.
4618 * For any internal node, compare the low and high keys of each
4619 * pointer against the query low/high keys. If there's an overlap,
4620 * follow the pointer.
4622 * As an optimization, we stop scanning a block when we find a low key
4623 * that is greater than the query's high key.
4626 xfs_btree_overlapped_query_range(
4627 struct xfs_btree_cur
*cur
,
4628 union xfs_btree_key
*low_key
,
4629 union xfs_btree_key
*high_key
,
4630 xfs_btree_query_range_fn fn
,
4633 union xfs_btree_ptr ptr
;
4634 union xfs_btree_ptr
*pp
;
4635 union xfs_btree_key rec_key
;
4636 union xfs_btree_key rec_hkey
;
4637 union xfs_btree_key
*lkp
;
4638 union xfs_btree_key
*hkp
;
4639 union xfs_btree_rec
*recp
;
4640 struct xfs_btree_block
*block
;
4648 /* Load the root of the btree. */
4649 level
= cur
->bc_nlevels
- 1;
4650 cur
->bc_ops
->init_ptr_from_cur(cur
, &ptr
);
4651 error
= xfs_btree_lookup_get_block(cur
, level
, &ptr
, &block
);
4654 xfs_btree_get_block(cur
, level
, &bp
);
4655 trace_xfs_btree_overlapped_query_range(cur
, level
, bp
);
4657 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
4661 cur
->bc_ptrs
[level
] = 1;
4663 while (level
< cur
->bc_nlevels
) {
4664 block
= xfs_btree_get_block(cur
, level
, &bp
);
4666 /* End of node, pop back towards the root. */
4667 if (cur
->bc_ptrs
[level
] > be16_to_cpu(block
->bb_numrecs
)) {
4669 if (level
< cur
->bc_nlevels
- 1)
4670 cur
->bc_ptrs
[level
+ 1]++;
4676 /* Handle a leaf node. */
4677 recp
= xfs_btree_rec_addr(cur
, cur
->bc_ptrs
[0], block
);
4679 cur
->bc_ops
->init_high_key_from_rec(&rec_hkey
, recp
);
4680 ldiff
= cur
->bc_ops
->diff_two_keys(cur
, &rec_hkey
,
4683 cur
->bc_ops
->init_key_from_rec(&rec_key
, recp
);
4684 hdiff
= cur
->bc_ops
->diff_two_keys(cur
, high_key
,
4688 * If (record's high key >= query's low key) and
4689 * (query's high key >= record's low key), then
4690 * this record overlaps the query range; callback.
4692 if (ldiff
>= 0 && hdiff
>= 0) {
4693 error
= fn(cur
, recp
, priv
);
4696 } else if (hdiff
< 0) {
4697 /* Record is larger than high key; pop. */
4700 cur
->bc_ptrs
[level
]++;
4704 /* Handle an internal node. */
4705 lkp
= xfs_btree_key_addr(cur
, cur
->bc_ptrs
[level
], block
);
4706 hkp
= xfs_btree_high_key_addr(cur
, cur
->bc_ptrs
[level
], block
);
4707 pp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[level
], block
);
4709 ldiff
= cur
->bc_ops
->diff_two_keys(cur
, hkp
, low_key
);
4710 hdiff
= cur
->bc_ops
->diff_two_keys(cur
, high_key
, lkp
);
4713 * If (pointer's high key >= query's low key) and
4714 * (query's high key >= pointer's low key), then
4715 * this record overlaps the query range; follow pointer.
4717 if (ldiff
>= 0 && hdiff
>= 0) {
4719 error
= xfs_btree_lookup_get_block(cur
, level
, pp
,
4723 xfs_btree_get_block(cur
, level
, &bp
);
4724 trace_xfs_btree_overlapped_query_range(cur
, level
, bp
);
4726 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
4730 cur
->bc_ptrs
[level
] = 1;
4732 } else if (hdiff
< 0) {
4733 /* The low key is larger than the upper range; pop. */
4736 cur
->bc_ptrs
[level
]++;
4741 * If we don't end this function with the cursor pointing at a record
4742 * block, a subsequent non-error cursor deletion will not release
4743 * node-level buffers, causing a buffer leak. This is quite possible
4744 * with a zero-results range query, so release the buffers if we
4745 * failed to return any results.
4747 if (cur
->bc_bufs
[0] == NULL
) {
4748 for (i
= 0; i
< cur
->bc_nlevels
; i
++) {
4749 if (cur
->bc_bufs
[i
]) {
4750 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[i
]);
4751 cur
->bc_bufs
[i
] = NULL
;
4752 cur
->bc_ptrs
[i
] = 0;
4762 * Query a btree for all records overlapping a given interval of keys. The
4763 * supplied function will be called with each record found; return one of the
4764 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4765 * code. This function returns -ECANCELED, zero, or a negative error code.
4768 xfs_btree_query_range(
4769 struct xfs_btree_cur
*cur
,
4770 union xfs_btree_irec
*low_rec
,
4771 union xfs_btree_irec
*high_rec
,
4772 xfs_btree_query_range_fn fn
,
4775 union xfs_btree_rec rec
;
4776 union xfs_btree_key low_key
;
4777 union xfs_btree_key high_key
;
4779 /* Find the keys of both ends of the interval. */
4780 cur
->bc_rec
= *high_rec
;
4781 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
4782 cur
->bc_ops
->init_key_from_rec(&high_key
, &rec
);
4784 cur
->bc_rec
= *low_rec
;
4785 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
4786 cur
->bc_ops
->init_key_from_rec(&low_key
, &rec
);
4788 /* Enforce low key < high key. */
4789 if (cur
->bc_ops
->diff_two_keys(cur
, &low_key
, &high_key
) > 0)
4792 if (!(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
))
4793 return xfs_btree_simple_query_range(cur
, &low_key
,
4794 &high_key
, fn
, priv
);
4795 return xfs_btree_overlapped_query_range(cur
, &low_key
, &high_key
,
4799 /* Query a btree for all records. */
4801 xfs_btree_query_all(
4802 struct xfs_btree_cur
*cur
,
4803 xfs_btree_query_range_fn fn
,
4806 union xfs_btree_key low_key
;
4807 union xfs_btree_key high_key
;
4809 memset(&cur
->bc_rec
, 0, sizeof(cur
->bc_rec
));
4810 memset(&low_key
, 0, sizeof(low_key
));
4811 memset(&high_key
, 0xFF, sizeof(high_key
));
4813 return xfs_btree_simple_query_range(cur
, &low_key
, &high_key
, fn
, priv
);
4817 * Calculate the number of blocks needed to store a given number of records
4818 * in a short-format (per-AG metadata) btree.
4821 xfs_btree_calc_size(
4823 unsigned long long len
)
4827 unsigned long long rval
;
4829 maxrecs
= limits
[0];
4830 for (level
= 0, rval
= 0; len
> 1; level
++) {
4832 do_div(len
, maxrecs
);
4833 maxrecs
= limits
[1];
4840 xfs_btree_count_blocks_helper(
4841 struct xfs_btree_cur
*cur
,
4845 xfs_extlen_t
*blocks
= data
;
4851 /* Count the blocks in a btree and return the result in *blocks. */
4853 xfs_btree_count_blocks(
4854 struct xfs_btree_cur
*cur
,
4855 xfs_extlen_t
*blocks
)
4858 return xfs_btree_visit_blocks(cur
, xfs_btree_count_blocks_helper
,
4859 XFS_BTREE_VISIT_ALL
, blocks
);
4862 /* Compare two btree pointers. */
4864 xfs_btree_diff_two_ptrs(
4865 struct xfs_btree_cur
*cur
,
4866 const union xfs_btree_ptr
*a
,
4867 const union xfs_btree_ptr
*b
)
4869 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
4870 return (int64_t)be64_to_cpu(a
->l
) - be64_to_cpu(b
->l
);
4871 return (int64_t)be32_to_cpu(a
->s
) - be32_to_cpu(b
->s
);
4874 /* If there's an extent, we're done. */
4876 xfs_btree_has_record_helper(
4877 struct xfs_btree_cur
*cur
,
4878 union xfs_btree_rec
*rec
,
4884 /* Is there a record covering a given range of keys? */
4886 xfs_btree_has_record(
4887 struct xfs_btree_cur
*cur
,
4888 union xfs_btree_irec
*low
,
4889 union xfs_btree_irec
*high
,
4894 error
= xfs_btree_query_range(cur
, low
, high
,
4895 &xfs_btree_has_record_helper
, NULL
);
4896 if (error
== -ECANCELED
) {
4904 /* Are there more records in this btree? */
4906 xfs_btree_has_more_records(
4907 struct xfs_btree_cur
*cur
)
4909 struct xfs_btree_block
*block
;
4912 block
= xfs_btree_get_block(cur
, 0, &bp
);
4914 /* There are still records in this block. */
4915 if (cur
->bc_ptrs
[0] < xfs_btree_get_numrecs(block
))
4918 /* There are more record blocks. */
4919 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
4920 return block
->bb_u
.l
.bb_rightsib
!= cpu_to_be64(NULLFSBLOCK
);
4922 return block
->bb_u
.s
.bb_rightsib
!= cpu_to_be32(NULLAGBLOCK
);