1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2017 Christoph Hellwig.
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_inode.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
17 * In-core extent record layout:
19 * +-------+----------------------------+
20 * | 00:53 | all 54 bits of startoff |
21 * | 54:63 | low 10 bits of startblock |
22 * +-------+----------------------------+
23 * | 00:20 | all 21 bits of length |
24 * | 21 | unwritten extent bit |
25 * | 22:63 | high 42 bits of startblock |
26 * +-------+----------------------------+
28 #define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
29 #define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
30 #define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
38 * Given that the length can't be a zero, only an empty hi value indicates an
41 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec
*rec
)
46 static inline void xfs_iext_rec_clear(struct xfs_iext_rec
*rec
)
54 struct xfs_iext_rec
*rec
,
55 struct xfs_bmbt_irec
*irec
)
57 ASSERT((irec
->br_startoff
& ~XFS_IEXT_STARTOFF_MASK
) == 0);
58 ASSERT((irec
->br_blockcount
& ~XFS_IEXT_LENGTH_MASK
) == 0);
59 ASSERT((irec
->br_startblock
& ~XFS_IEXT_STARTBLOCK_MASK
) == 0);
61 rec
->lo
= irec
->br_startoff
& XFS_IEXT_STARTOFF_MASK
;
62 rec
->hi
= irec
->br_blockcount
& XFS_IEXT_LENGTH_MASK
;
64 rec
->lo
|= (irec
->br_startblock
<< 54);
65 rec
->hi
|= ((irec
->br_startblock
& ~xfs_mask64lo(10)) << (22 - 10));
67 if (irec
->br_state
== XFS_EXT_UNWRITTEN
)
73 struct xfs_bmbt_irec
*irec
,
74 struct xfs_iext_rec
*rec
)
76 irec
->br_startoff
= rec
->lo
& XFS_IEXT_STARTOFF_MASK
;
77 irec
->br_blockcount
= rec
->hi
& XFS_IEXT_LENGTH_MASK
;
79 irec
->br_startblock
= rec
->lo
>> 54;
80 irec
->br_startblock
|= (rec
->hi
& xfs_mask64hi(42)) >> (22 - 10);
82 if (rec
->hi
& (1 << 21))
83 irec
->br_state
= XFS_EXT_UNWRITTEN
;
85 irec
->br_state
= XFS_EXT_NORM
;
90 KEYS_PER_NODE
= NODE_SIZE
/ (sizeof(uint64_t) + sizeof(void *)),
91 RECS_PER_LEAF
= (NODE_SIZE
- (2 * sizeof(struct xfs_iext_leaf
*))) /
92 sizeof(struct xfs_iext_rec
),
96 * In-core extent btree block layout:
98 * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
100 * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
101 * contain the startoffset, blockcount, startblock and unwritten extent flag.
102 * See above for the exact format, followed by pointers to the previous and next
103 * leaf blocks (if there are any).
105 * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
106 * by an equal number of pointers to the btree blocks at the next lower level.
108 * +-------+-------+-------+-------+-------+----------+----------+
109 * Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
110 * +-------+-------+-------+-------+-------+----------+----------+
112 * +-------+-------+-------+-------+-------+-------+------+-------+
113 * Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
114 * +-------+-------+-------+-------+-------+-------+------+-------+
116 struct xfs_iext_node
{
117 uint64_t keys
[KEYS_PER_NODE
];
118 #define XFS_IEXT_KEY_INVALID (1ULL << 63)
119 void *ptrs
[KEYS_PER_NODE
];
122 struct xfs_iext_leaf
{
123 struct xfs_iext_rec recs
[RECS_PER_LEAF
];
124 struct xfs_iext_leaf
*prev
;
125 struct xfs_iext_leaf
*next
;
128 inline xfs_extnum_t
xfs_iext_count(struct xfs_ifork
*ifp
)
130 return ifp
->if_bytes
/ sizeof(struct xfs_iext_rec
);
133 static inline int xfs_iext_max_recs(struct xfs_ifork
*ifp
)
135 if (ifp
->if_height
== 1)
136 return xfs_iext_count(ifp
);
137 return RECS_PER_LEAF
;
140 static inline struct xfs_iext_rec
*cur_rec(struct xfs_iext_cursor
*cur
)
142 return &cur
->leaf
->recs
[cur
->pos
];
145 static inline bool xfs_iext_valid(struct xfs_ifork
*ifp
,
146 struct xfs_iext_cursor
*cur
)
150 if (cur
->pos
< 0 || cur
->pos
>= xfs_iext_max_recs(ifp
))
152 if (xfs_iext_rec_is_empty(cur_rec(cur
)))
158 xfs_iext_find_first_leaf(
159 struct xfs_ifork
*ifp
)
161 struct xfs_iext_node
*node
= ifp
->if_u1
.if_root
;
167 for (height
= ifp
->if_height
; height
> 1; height
--) {
168 node
= node
->ptrs
[0];
176 xfs_iext_find_last_leaf(
177 struct xfs_ifork
*ifp
)
179 struct xfs_iext_node
*node
= ifp
->if_u1
.if_root
;
185 for (height
= ifp
->if_height
; height
> 1; height
--) {
186 for (i
= 1; i
< KEYS_PER_NODE
; i
++)
189 node
= node
->ptrs
[i
- 1];
198 struct xfs_ifork
*ifp
,
199 struct xfs_iext_cursor
*cur
)
202 cur
->leaf
= xfs_iext_find_first_leaf(ifp
);
207 struct xfs_ifork
*ifp
,
208 struct xfs_iext_cursor
*cur
)
212 cur
->leaf
= xfs_iext_find_last_leaf(ifp
);
218 for (i
= 1; i
< xfs_iext_max_recs(ifp
); i
++) {
219 if (xfs_iext_rec_is_empty(&cur
->leaf
->recs
[i
]))
227 struct xfs_ifork
*ifp
,
228 struct xfs_iext_cursor
*cur
)
231 ASSERT(cur
->pos
<= 0 || cur
->pos
>= RECS_PER_LEAF
);
232 xfs_iext_first(ifp
, cur
);
236 ASSERT(cur
->pos
>= 0);
237 ASSERT(cur
->pos
< xfs_iext_max_recs(ifp
));
240 if (ifp
->if_height
> 1 && !xfs_iext_valid(ifp
, cur
) &&
242 cur
->leaf
= cur
->leaf
->next
;
249 struct xfs_ifork
*ifp
,
250 struct xfs_iext_cursor
*cur
)
253 ASSERT(cur
->pos
<= 0 || cur
->pos
>= RECS_PER_LEAF
);
254 xfs_iext_last(ifp
, cur
);
258 ASSERT(cur
->pos
>= 0);
259 ASSERT(cur
->pos
<= RECS_PER_LEAF
);
264 if (xfs_iext_valid(ifp
, cur
))
266 } while (cur
->pos
> 0);
268 if (ifp
->if_height
> 1 && cur
->leaf
->prev
) {
269 cur
->leaf
= cur
->leaf
->prev
;
270 cur
->pos
= RECS_PER_LEAF
;
277 struct xfs_iext_node
*node
,
279 xfs_fileoff_t offset
)
281 if (node
->keys
[n
] > offset
)
283 if (node
->keys
[n
] < offset
)
290 struct xfs_iext_rec
*rec
,
291 xfs_fileoff_t offset
)
293 uint64_t rec_offset
= rec
->lo
& XFS_IEXT_STARTOFF_MASK
;
294 uint32_t rec_len
= rec
->hi
& XFS_IEXT_LENGTH_MASK
;
296 if (rec_offset
> offset
)
298 if (rec_offset
+ rec_len
<= offset
)
305 struct xfs_ifork
*ifp
,
306 xfs_fileoff_t offset
,
309 struct xfs_iext_node
*node
= ifp
->if_u1
.if_root
;
315 for (height
= ifp
->if_height
; height
> level
; height
--) {
316 for (i
= 1; i
< KEYS_PER_NODE
; i
++)
317 if (xfs_iext_key_cmp(node
, i
, offset
) > 0)
320 node
= node
->ptrs
[i
- 1];
330 struct xfs_iext_node
*node
,
331 xfs_fileoff_t offset
)
335 for (i
= 1; i
< KEYS_PER_NODE
; i
++) {
336 if (xfs_iext_key_cmp(node
, i
, offset
) > 0)
344 xfs_iext_node_insert_pos(
345 struct xfs_iext_node
*node
,
346 xfs_fileoff_t offset
)
350 for (i
= 0; i
< KEYS_PER_NODE
; i
++) {
351 if (xfs_iext_key_cmp(node
, i
, offset
) > 0)
355 return KEYS_PER_NODE
;
359 xfs_iext_node_nr_entries(
360 struct xfs_iext_node
*node
,
365 for (i
= start
; i
< KEYS_PER_NODE
; i
++) {
366 if (node
->keys
[i
] == XFS_IEXT_KEY_INVALID
)
374 xfs_iext_leaf_nr_entries(
375 struct xfs_ifork
*ifp
,
376 struct xfs_iext_leaf
*leaf
,
381 for (i
= start
; i
< xfs_iext_max_recs(ifp
); i
++) {
382 if (xfs_iext_rec_is_empty(&leaf
->recs
[i
]))
389 static inline uint64_t
391 struct xfs_iext_leaf
*leaf
,
394 return leaf
->recs
[n
].lo
& XFS_IEXT_STARTOFF_MASK
;
399 struct xfs_ifork
*ifp
)
401 struct xfs_iext_node
*node
= kmem_zalloc(NODE_SIZE
, KM_NOFS
);
404 if (ifp
->if_height
== 1) {
405 struct xfs_iext_leaf
*prev
= ifp
->if_u1
.if_root
;
407 node
->keys
[0] = xfs_iext_leaf_key(prev
, 0);
408 node
->ptrs
[0] = prev
;
410 struct xfs_iext_node
*prev
= ifp
->if_u1
.if_root
;
412 ASSERT(ifp
->if_height
> 1);
414 node
->keys
[0] = prev
->keys
[0];
415 node
->ptrs
[0] = prev
;
418 for (i
= 1; i
< KEYS_PER_NODE
; i
++)
419 node
->keys
[i
] = XFS_IEXT_KEY_INVALID
;
421 ifp
->if_u1
.if_root
= node
;
426 xfs_iext_update_node(
427 struct xfs_ifork
*ifp
,
428 xfs_fileoff_t old_offset
,
429 xfs_fileoff_t new_offset
,
433 struct xfs_iext_node
*node
= ifp
->if_u1
.if_root
;
436 for (height
= ifp
->if_height
; height
> level
; height
--) {
437 for (i
= 0; i
< KEYS_PER_NODE
; i
++) {
438 if (i
> 0 && xfs_iext_key_cmp(node
, i
, old_offset
) > 0)
440 if (node
->keys
[i
] == old_offset
)
441 node
->keys
[i
] = new_offset
;
443 node
= node
->ptrs
[i
- 1];
450 static struct xfs_iext_node
*
452 struct xfs_iext_node
**nodep
,
456 struct xfs_iext_node
*node
= *nodep
;
457 struct xfs_iext_node
*new = kmem_zalloc(NODE_SIZE
, KM_NOFS
);
458 const int nr_move
= KEYS_PER_NODE
/ 2;
459 int nr_keep
= nr_move
+ (KEYS_PER_NODE
& 1);
462 /* for sequential append operations just spill over into the new node */
463 if (*pos
== KEYS_PER_NODE
) {
471 for (i
= 0; i
< nr_move
; i
++) {
472 new->keys
[i
] = node
->keys
[nr_keep
+ i
];
473 new->ptrs
[i
] = node
->ptrs
[nr_keep
+ i
];
475 node
->keys
[nr_keep
+ i
] = XFS_IEXT_KEY_INVALID
;
476 node
->ptrs
[nr_keep
+ i
] = NULL
;
479 if (*pos
>= nr_keep
) {
482 *nr_entries
= nr_move
;
484 *nr_entries
= nr_keep
;
487 for (; i
< KEYS_PER_NODE
; i
++)
488 new->keys
[i
] = XFS_IEXT_KEY_INVALID
;
493 xfs_iext_insert_node(
494 struct xfs_ifork
*ifp
,
499 struct xfs_iext_node
*node
, *new;
500 int i
, pos
, nr_entries
;
503 if (ifp
->if_height
< level
)
507 node
= xfs_iext_find_level(ifp
, offset
, level
);
508 pos
= xfs_iext_node_insert_pos(node
, offset
);
509 nr_entries
= xfs_iext_node_nr_entries(node
, pos
);
511 ASSERT(pos
>= nr_entries
|| xfs_iext_key_cmp(node
, pos
, offset
) != 0);
512 ASSERT(nr_entries
<= KEYS_PER_NODE
);
514 if (nr_entries
== KEYS_PER_NODE
)
515 new = xfs_iext_split_node(&node
, &pos
, &nr_entries
);
518 * Update the pointers in higher levels if the first entry changes
519 * in an existing node.
521 if (node
!= new && pos
== 0 && nr_entries
> 0)
522 xfs_iext_update_node(ifp
, node
->keys
[0], offset
, level
, node
);
524 for (i
= nr_entries
; i
> pos
; i
--) {
525 node
->keys
[i
] = node
->keys
[i
- 1];
526 node
->ptrs
[i
] = node
->ptrs
[i
- 1];
528 node
->keys
[pos
] = offset
;
529 node
->ptrs
[pos
] = ptr
;
532 offset
= new->keys
[0];
539 static struct xfs_iext_leaf
*
541 struct xfs_iext_cursor
*cur
,
544 struct xfs_iext_leaf
*leaf
= cur
->leaf
;
545 struct xfs_iext_leaf
*new = kmem_zalloc(NODE_SIZE
, KM_NOFS
);
546 const int nr_move
= RECS_PER_LEAF
/ 2;
547 int nr_keep
= nr_move
+ (RECS_PER_LEAF
& 1);
550 /* for sequential append operations just spill over into the new node */
551 if (cur
->pos
== RECS_PER_LEAF
) {
558 for (i
= 0; i
< nr_move
; i
++) {
559 new->recs
[i
] = leaf
->recs
[nr_keep
+ i
];
560 xfs_iext_rec_clear(&leaf
->recs
[nr_keep
+ i
]);
563 if (cur
->pos
>= nr_keep
) {
566 *nr_entries
= nr_move
;
568 *nr_entries
= nr_keep
;
572 leaf
->next
->prev
= new;
573 new->next
= leaf
->next
;
581 struct xfs_ifork
*ifp
,
582 struct xfs_iext_cursor
*cur
)
584 ASSERT(ifp
->if_bytes
== 0);
586 ifp
->if_u1
.if_root
= kmem_zalloc(sizeof(struct xfs_iext_rec
), KM_NOFS
);
589 /* now that we have a node step into it */
590 cur
->leaf
= ifp
->if_u1
.if_root
;
595 xfs_iext_realloc_root(
596 struct xfs_ifork
*ifp
,
597 struct xfs_iext_cursor
*cur
)
599 int64_t new_size
= ifp
->if_bytes
+ sizeof(struct xfs_iext_rec
);
602 /* account for the prev/next pointers */
603 if (new_size
/ sizeof(struct xfs_iext_rec
) == RECS_PER_LEAF
)
604 new_size
= NODE_SIZE
;
606 new = krealloc(ifp
->if_u1
.if_root
, new_size
, GFP_NOFS
| __GFP_NOFAIL
);
607 memset(new + ifp
->if_bytes
, 0, new_size
- ifp
->if_bytes
);
608 ifp
->if_u1
.if_root
= new;
613 * Increment the sequence counter on extent tree changes. If we are on a COW
614 * fork, this allows the writeback code to skip looking for a COW extent if the
615 * COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
616 * sequence counter is seen before the modifications to the extent tree itself
619 static inline void xfs_iext_inc_seq(struct xfs_ifork
*ifp
)
621 WRITE_ONCE(ifp
->if_seq
, READ_ONCE(ifp
->if_seq
) + 1);
626 struct xfs_inode
*ip
,
627 struct xfs_iext_cursor
*cur
,
628 struct xfs_bmbt_irec
*irec
,
631 struct xfs_ifork
*ifp
= xfs_iext_state_to_fork(ip
, state
);
632 xfs_fileoff_t offset
= irec
->br_startoff
;
633 struct xfs_iext_leaf
*new = NULL
;
636 xfs_iext_inc_seq(ifp
);
638 if (ifp
->if_height
== 0)
639 xfs_iext_alloc_root(ifp
, cur
);
640 else if (ifp
->if_height
== 1)
641 xfs_iext_realloc_root(ifp
, cur
);
643 nr_entries
= xfs_iext_leaf_nr_entries(ifp
, cur
->leaf
, cur
->pos
);
644 ASSERT(nr_entries
<= RECS_PER_LEAF
);
645 ASSERT(cur
->pos
>= nr_entries
||
646 xfs_iext_rec_cmp(cur_rec(cur
), irec
->br_startoff
) != 0);
648 if (nr_entries
== RECS_PER_LEAF
)
649 new = xfs_iext_split_leaf(cur
, &nr_entries
);
652 * Update the pointers in higher levels if the first entry changes
653 * in an existing node.
655 if (cur
->leaf
!= new && cur
->pos
== 0 && nr_entries
> 0) {
656 xfs_iext_update_node(ifp
, xfs_iext_leaf_key(cur
->leaf
, 0),
657 offset
, 1, cur
->leaf
);
660 for (i
= nr_entries
; i
> cur
->pos
; i
--)
661 cur
->leaf
->recs
[i
] = cur
->leaf
->recs
[i
- 1];
662 xfs_iext_set(cur_rec(cur
), irec
);
663 ifp
->if_bytes
+= sizeof(struct xfs_iext_rec
);
665 trace_xfs_iext_insert(ip
, cur
, state
, _RET_IP_
);
668 xfs_iext_insert_node(ifp
, xfs_iext_leaf_key(new, 0), new, 2);
671 static struct xfs_iext_node
*
672 xfs_iext_rebalance_node(
673 struct xfs_iext_node
*parent
,
675 struct xfs_iext_node
*node
,
679 * If the neighbouring nodes are completely full, or have different
680 * parents, we might never be able to merge our node, and will only
681 * delete it once the number of entries hits zero.
687 struct xfs_iext_node
*prev
= parent
->ptrs
[*pos
- 1];
688 int nr_prev
= xfs_iext_node_nr_entries(prev
, 0), i
;
690 if (nr_prev
+ nr_entries
<= KEYS_PER_NODE
) {
691 for (i
= 0; i
< nr_entries
; i
++) {
692 prev
->keys
[nr_prev
+ i
] = node
->keys
[i
];
693 prev
->ptrs
[nr_prev
+ i
] = node
->ptrs
[i
];
699 if (*pos
+ 1 < xfs_iext_node_nr_entries(parent
, *pos
)) {
700 struct xfs_iext_node
*next
= parent
->ptrs
[*pos
+ 1];
701 int nr_next
= xfs_iext_node_nr_entries(next
, 0), i
;
703 if (nr_entries
+ nr_next
<= KEYS_PER_NODE
) {
705 * Merge the next node into this node so that we don't
706 * have to do an additional update of the keys in the
709 for (i
= 0; i
< nr_next
; i
++) {
710 node
->keys
[nr_entries
+ i
] = next
->keys
[i
];
711 node
->ptrs
[nr_entries
+ i
] = next
->ptrs
[i
];
723 xfs_iext_remove_node(
724 struct xfs_ifork
*ifp
,
725 xfs_fileoff_t offset
,
728 struct xfs_iext_node
*node
, *parent
;
729 int level
= 2, pos
, nr_entries
, i
;
731 ASSERT(level
<= ifp
->if_height
);
732 node
= xfs_iext_find_level(ifp
, offset
, level
);
733 pos
= xfs_iext_node_pos(node
, offset
);
735 ASSERT(node
->ptrs
[pos
]);
736 ASSERT(node
->ptrs
[pos
] == victim
);
739 nr_entries
= xfs_iext_node_nr_entries(node
, pos
) - 1;
740 offset
= node
->keys
[0];
741 for (i
= pos
; i
< nr_entries
; i
++) {
742 node
->keys
[i
] = node
->keys
[i
+ 1];
743 node
->ptrs
[i
] = node
->ptrs
[i
+ 1];
745 node
->keys
[nr_entries
] = XFS_IEXT_KEY_INVALID
;
746 node
->ptrs
[nr_entries
] = NULL
;
748 if (pos
== 0 && nr_entries
> 0) {
749 xfs_iext_update_node(ifp
, offset
, node
->keys
[0], level
, node
);
750 offset
= node
->keys
[0];
753 if (nr_entries
>= KEYS_PER_NODE
/ 2)
756 if (level
< ifp
->if_height
) {
758 * If we aren't at the root yet try to find a neighbour node to
759 * merge with (or delete the node if it is empty), and then
760 * recurse up to the next level.
763 parent
= xfs_iext_find_level(ifp
, offset
, level
);
764 pos
= xfs_iext_node_pos(parent
, offset
);
766 ASSERT(pos
!= KEYS_PER_NODE
);
767 ASSERT(parent
->ptrs
[pos
] == node
);
769 node
= xfs_iext_rebalance_node(parent
, &pos
, node
, nr_entries
);
775 } else if (nr_entries
== 1) {
777 * If we are at the root and only one entry is left we can just
778 * free this node and update the root pointer.
780 ASSERT(node
== ifp
->if_u1
.if_root
);
781 ifp
->if_u1
.if_root
= node
->ptrs
[0];
788 xfs_iext_rebalance_leaf(
789 struct xfs_ifork
*ifp
,
790 struct xfs_iext_cursor
*cur
,
791 struct xfs_iext_leaf
*leaf
,
792 xfs_fileoff_t offset
,
796 * If the neighbouring nodes are completely full we might never be able
797 * to merge our node, and will only delete it once the number of
804 int nr_prev
= xfs_iext_leaf_nr_entries(ifp
, leaf
->prev
, 0), i
;
806 if (nr_prev
+ nr_entries
<= RECS_PER_LEAF
) {
807 for (i
= 0; i
< nr_entries
; i
++)
808 leaf
->prev
->recs
[nr_prev
+ i
] = leaf
->recs
[i
];
810 if (cur
->leaf
== leaf
) {
811 cur
->leaf
= leaf
->prev
;
819 int nr_next
= xfs_iext_leaf_nr_entries(ifp
, leaf
->next
, 0), i
;
821 if (nr_entries
+ nr_next
<= RECS_PER_LEAF
) {
823 * Merge the next node into this node so that we don't
824 * have to do an additional update of the keys in the
827 for (i
= 0; i
< nr_next
; i
++) {
828 leaf
->recs
[nr_entries
+ i
] =
832 if (cur
->leaf
== leaf
->next
) {
834 cur
->pos
+= nr_entries
;
837 offset
= xfs_iext_leaf_key(leaf
->next
, 0);
846 leaf
->prev
->next
= leaf
->next
;
848 leaf
->next
->prev
= leaf
->prev
;
849 xfs_iext_remove_node(ifp
, offset
, leaf
);
853 xfs_iext_free_last_leaf(
854 struct xfs_ifork
*ifp
)
857 kmem_free(ifp
->if_u1
.if_root
);
858 ifp
->if_u1
.if_root
= NULL
;
863 struct xfs_inode
*ip
,
864 struct xfs_iext_cursor
*cur
,
867 struct xfs_ifork
*ifp
= xfs_iext_state_to_fork(ip
, state
);
868 struct xfs_iext_leaf
*leaf
= cur
->leaf
;
869 xfs_fileoff_t offset
= xfs_iext_leaf_key(leaf
, 0);
872 trace_xfs_iext_remove(ip
, cur
, state
, _RET_IP_
);
874 ASSERT(ifp
->if_height
> 0);
875 ASSERT(ifp
->if_u1
.if_root
!= NULL
);
876 ASSERT(xfs_iext_valid(ifp
, cur
));
878 xfs_iext_inc_seq(ifp
);
880 nr_entries
= xfs_iext_leaf_nr_entries(ifp
, leaf
, cur
->pos
) - 1;
881 for (i
= cur
->pos
; i
< nr_entries
; i
++)
882 leaf
->recs
[i
] = leaf
->recs
[i
+ 1];
883 xfs_iext_rec_clear(&leaf
->recs
[nr_entries
]);
884 ifp
->if_bytes
-= sizeof(struct xfs_iext_rec
);
886 if (cur
->pos
== 0 && nr_entries
> 0) {
887 xfs_iext_update_node(ifp
, offset
, xfs_iext_leaf_key(leaf
, 0), 1,
889 offset
= xfs_iext_leaf_key(leaf
, 0);
890 } else if (cur
->pos
== nr_entries
) {
891 if (ifp
->if_height
> 1 && leaf
->next
)
892 cur
->leaf
= leaf
->next
;
898 if (nr_entries
>= RECS_PER_LEAF
/ 2)
901 if (ifp
->if_height
> 1)
902 xfs_iext_rebalance_leaf(ifp
, cur
, leaf
, offset
, nr_entries
);
903 else if (nr_entries
== 0)
904 xfs_iext_free_last_leaf(ifp
);
908 * Lookup the extent covering bno.
910 * If there is an extent covering bno return the extent index, and store the
911 * expanded extent structure in *gotp, and the extent cursor in *cur.
912 * If there is no extent covering bno, but there is an extent after it (e.g.
913 * it lies in a hole) return that extent in *gotp and its cursor in *cur
915 * If bno is beyond the last extent return false, and return an invalid
919 xfs_iext_lookup_extent(
920 struct xfs_inode
*ip
,
921 struct xfs_ifork
*ifp
,
922 xfs_fileoff_t offset
,
923 struct xfs_iext_cursor
*cur
,
924 struct xfs_bmbt_irec
*gotp
)
926 XFS_STATS_INC(ip
->i_mount
, xs_look_exlist
);
928 cur
->leaf
= xfs_iext_find_level(ifp
, offset
, 1);
934 for (cur
->pos
= 0; cur
->pos
< xfs_iext_max_recs(ifp
); cur
->pos
++) {
935 struct xfs_iext_rec
*rec
= cur_rec(cur
);
937 if (xfs_iext_rec_is_empty(rec
))
939 if (xfs_iext_rec_cmp(rec
, offset
) >= 0)
943 /* Try looking in the next node for an entry > offset */
944 if (ifp
->if_height
== 1 || !cur
->leaf
->next
)
946 cur
->leaf
= cur
->leaf
->next
;
948 if (!xfs_iext_valid(ifp
, cur
))
951 xfs_iext_get(gotp
, cur_rec(cur
));
956 * Returns the last extent before end, and if this extent doesn't cover
957 * end, update end to the end of the extent.
960 xfs_iext_lookup_extent_before(
961 struct xfs_inode
*ip
,
962 struct xfs_ifork
*ifp
,
964 struct xfs_iext_cursor
*cur
,
965 struct xfs_bmbt_irec
*gotp
)
967 /* could be optimized to not even look up the next on a match.. */
968 if (xfs_iext_lookup_extent(ip
, ifp
, *end
- 1, cur
, gotp
) &&
969 gotp
->br_startoff
<= *end
- 1)
971 if (!xfs_iext_prev_extent(ifp
, cur
, gotp
))
973 *end
= gotp
->br_startoff
+ gotp
->br_blockcount
;
978 xfs_iext_update_extent(
979 struct xfs_inode
*ip
,
981 struct xfs_iext_cursor
*cur
,
982 struct xfs_bmbt_irec
*new)
984 struct xfs_ifork
*ifp
= xfs_iext_state_to_fork(ip
, state
);
986 xfs_iext_inc_seq(ifp
);
989 struct xfs_bmbt_irec old
;
991 xfs_iext_get(&old
, cur_rec(cur
));
992 if (new->br_startoff
!= old
.br_startoff
) {
993 xfs_iext_update_node(ifp
, old
.br_startoff
,
994 new->br_startoff
, 1, cur
->leaf
);
998 trace_xfs_bmap_pre_update(ip
, cur
, state
, _RET_IP_
);
999 xfs_iext_set(cur_rec(cur
), new);
1000 trace_xfs_bmap_post_update(ip
, cur
, state
, _RET_IP_
);
1004 * Return true if the cursor points at an extent and return the extent structure
1005 * in gotp. Else return false.
1008 xfs_iext_get_extent(
1009 struct xfs_ifork
*ifp
,
1010 struct xfs_iext_cursor
*cur
,
1011 struct xfs_bmbt_irec
*gotp
)
1013 if (!xfs_iext_valid(ifp
, cur
))
1015 xfs_iext_get(gotp
, cur_rec(cur
));
1020 * This is a recursive function, because of that we need to be extremely
1021 * careful with stack usage.
1024 xfs_iext_destroy_node(
1025 struct xfs_iext_node
*node
,
1031 for (i
= 0; i
< KEYS_PER_NODE
; i
++) {
1032 if (node
->keys
[i
] == XFS_IEXT_KEY_INVALID
)
1034 xfs_iext_destroy_node(node
->ptrs
[i
], level
- 1);
1043 struct xfs_ifork
*ifp
)
1045 xfs_iext_destroy_node(ifp
->if_u1
.if_root
, ifp
->if_height
);
1049 ifp
->if_u1
.if_root
= NULL
;