1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_error.h"
22 #include "xfs_inode.h"
24 #include "xfs_quota.h"
27 * This structure is used during recovery to record the buf log items which
28 * have been canceled and should not be replayed.
30 struct xfs_buf_cancel
{
34 struct list_head bc_list
;
37 static struct xfs_buf_cancel
*
38 xlog_find_buffer_cancelled(
43 struct list_head
*bucket
;
44 struct xfs_buf_cancel
*bcp
;
46 if (!log
->l_buf_cancel_table
)
49 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
50 list_for_each_entry(bcp
, bucket
, bc_list
) {
51 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
59 xlog_add_buffer_cancelled(
64 struct xfs_buf_cancel
*bcp
;
67 * If we find an existing cancel record, this indicates that the buffer
68 * was cancelled multiple times. To ensure that during pass 2 we keep
69 * the record in the table until we reach its last occurrence in the
70 * log, a reference count is kept to tell how many times we expect to
71 * see this record during the second pass.
73 bcp
= xlog_find_buffer_cancelled(log
, blkno
, len
);
79 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), 0);
80 bcp
->bc_blkno
= blkno
;
83 list_add_tail(&bcp
->bc_list
, XLOG_BUF_CANCEL_BUCKET(log
, blkno
));
88 * Check if there is and entry for blkno, len in the buffer cancel record table.
91 xlog_is_buffer_cancelled(
96 return xlog_find_buffer_cancelled(log
, blkno
, len
) != NULL
;
100 * Check if there is and entry for blkno, len in the buffer cancel record table,
101 * and decremented the reference count on it if there is one.
103 * Remove the cancel record once the refcount hits zero, so that if the same
104 * buffer is re-used again after its last cancellation we actually replay the
105 * changes made at that point.
108 xlog_put_buffer_cancelled(
113 struct xfs_buf_cancel
*bcp
;
115 bcp
= xlog_find_buffer_cancelled(log
, blkno
, len
);
121 if (--bcp
->bc_refcount
== 0) {
122 list_del(&bcp
->bc_list
);
128 /* log buffer item recovery */
131 * Sort buffer items for log recovery. Most buffer items should end up on the
132 * buffer list and are recovered first, with the following exceptions:
134 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
135 * might depend on the incor ecancellation record, and replaying a cancelled
136 * buffer item can remove the incore record.
138 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
139 * we replay di_next_unlinked only after flushing the inode 'free' state
140 * to the inode buffer.
142 * See xlog_recover_reorder_trans for more details.
144 STATIC
enum xlog_recover_reorder
145 xlog_recover_buf_reorder(
146 struct xlog_recover_item
*item
)
148 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
150 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
)
151 return XLOG_REORDER_CANCEL_LIST
;
152 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
153 return XLOG_REORDER_INODE_BUFFER_LIST
;
154 return XLOG_REORDER_BUFFER_LIST
;
158 xlog_recover_buf_ra_pass2(
160 struct xlog_recover_item
*item
)
162 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
164 xlog_buf_readahead(log
, buf_f
->blf_blkno
, buf_f
->blf_len
, NULL
);
168 * Build up the table of buf cancel records so that we don't replay cancelled
169 * data in the second pass.
172 xlog_recover_buf_commit_pass1(
174 struct xlog_recover_item
*item
)
176 struct xfs_buf_log_format
*bf
= item
->ri_buf
[0].i_addr
;
178 if (!xfs_buf_log_check_iovec(&item
->ri_buf
[0])) {
179 xfs_err(log
->l_mp
, "bad buffer log item size (%d)",
180 item
->ri_buf
[0].i_len
);
181 return -EFSCORRUPTED
;
184 if (!(bf
->blf_flags
& XFS_BLF_CANCEL
))
185 trace_xfs_log_recover_buf_not_cancel(log
, bf
);
186 else if (xlog_add_buffer_cancelled(log
, bf
->blf_blkno
, bf
->blf_len
))
187 trace_xfs_log_recover_buf_cancel_add(log
, bf
);
189 trace_xfs_log_recover_buf_cancel_ref_inc(log
, bf
);
194 * Validate the recovered buffer is of the correct type and attach the
195 * appropriate buffer operations to them for writeback. Magic numbers are in a
197 * the first 16 bits of the buffer (inode buffer, dquot buffer),
198 * the first 32 bits of the buffer (most blocks),
199 * inside a struct xfs_da_blkinfo at the start of the buffer.
202 xlog_recover_validate_buf_type(
203 struct xfs_mount
*mp
,
205 struct xfs_buf_log_format
*buf_f
,
206 xfs_lsn_t current_lsn
)
208 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
212 char *warnmsg
= NULL
;
215 * We can only do post recovery validation on items on CRC enabled
216 * fielsystems as we need to know when the buffer was written to be able
217 * to determine if we should have replayed the item. If we replay old
218 * metadata over a newer buffer, then it will enter a temporarily
219 * inconsistent state resulting in verification failures. Hence for now
220 * just avoid the verification stage for non-crc filesystems
222 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
225 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
226 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
227 magicda
= be16_to_cpu(info
->magic
);
228 switch (xfs_blft_from_flags(buf_f
)) {
229 case XFS_BLFT_BTREE_BUF
:
231 case XFS_ABTB_CRC_MAGIC
:
233 bp
->b_ops
= &xfs_bnobt_buf_ops
;
235 case XFS_ABTC_CRC_MAGIC
:
237 bp
->b_ops
= &xfs_cntbt_buf_ops
;
239 case XFS_IBT_CRC_MAGIC
:
241 bp
->b_ops
= &xfs_inobt_buf_ops
;
243 case XFS_FIBT_CRC_MAGIC
:
245 bp
->b_ops
= &xfs_finobt_buf_ops
;
247 case XFS_BMAP_CRC_MAGIC
:
249 bp
->b_ops
= &xfs_bmbt_buf_ops
;
251 case XFS_RMAP_CRC_MAGIC
:
252 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
254 case XFS_REFC_CRC_MAGIC
:
255 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
258 warnmsg
= "Bad btree block magic!";
262 case XFS_BLFT_AGF_BUF
:
263 if (magic32
!= XFS_AGF_MAGIC
) {
264 warnmsg
= "Bad AGF block magic!";
267 bp
->b_ops
= &xfs_agf_buf_ops
;
269 case XFS_BLFT_AGFL_BUF
:
270 if (magic32
!= XFS_AGFL_MAGIC
) {
271 warnmsg
= "Bad AGFL block magic!";
274 bp
->b_ops
= &xfs_agfl_buf_ops
;
276 case XFS_BLFT_AGI_BUF
:
277 if (magic32
!= XFS_AGI_MAGIC
) {
278 warnmsg
= "Bad AGI block magic!";
281 bp
->b_ops
= &xfs_agi_buf_ops
;
283 case XFS_BLFT_UDQUOT_BUF
:
284 case XFS_BLFT_PDQUOT_BUF
:
285 case XFS_BLFT_GDQUOT_BUF
:
286 #ifdef CONFIG_XFS_QUOTA
287 if (magic16
!= XFS_DQUOT_MAGIC
) {
288 warnmsg
= "Bad DQUOT block magic!";
291 bp
->b_ops
= &xfs_dquot_buf_ops
;
294 "Trying to recover dquots without QUOTA support built in!");
298 case XFS_BLFT_DINO_BUF
:
299 if (magic16
!= XFS_DINODE_MAGIC
) {
300 warnmsg
= "Bad INODE block magic!";
303 bp
->b_ops
= &xfs_inode_buf_ops
;
305 case XFS_BLFT_SYMLINK_BUF
:
306 if (magic32
!= XFS_SYMLINK_MAGIC
) {
307 warnmsg
= "Bad symlink block magic!";
310 bp
->b_ops
= &xfs_symlink_buf_ops
;
312 case XFS_BLFT_DIR_BLOCK_BUF
:
313 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
314 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
315 warnmsg
= "Bad dir block magic!";
318 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
320 case XFS_BLFT_DIR_DATA_BUF
:
321 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
322 magic32
!= XFS_DIR3_DATA_MAGIC
) {
323 warnmsg
= "Bad dir data magic!";
326 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
328 case XFS_BLFT_DIR_FREE_BUF
:
329 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
330 magic32
!= XFS_DIR3_FREE_MAGIC
) {
331 warnmsg
= "Bad dir3 free magic!";
334 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
336 case XFS_BLFT_DIR_LEAF1_BUF
:
337 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
338 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
339 warnmsg
= "Bad dir leaf1 magic!";
342 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
344 case XFS_BLFT_DIR_LEAFN_BUF
:
345 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
346 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
347 warnmsg
= "Bad dir leafn magic!";
350 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
352 case XFS_BLFT_DA_NODE_BUF
:
353 if (magicda
!= XFS_DA_NODE_MAGIC
&&
354 magicda
!= XFS_DA3_NODE_MAGIC
) {
355 warnmsg
= "Bad da node magic!";
358 bp
->b_ops
= &xfs_da3_node_buf_ops
;
360 case XFS_BLFT_ATTR_LEAF_BUF
:
361 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
362 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
363 warnmsg
= "Bad attr leaf magic!";
366 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
368 case XFS_BLFT_ATTR_RMT_BUF
:
369 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
370 warnmsg
= "Bad attr remote magic!";
373 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
375 case XFS_BLFT_SB_BUF
:
376 if (magic32
!= XFS_SB_MAGIC
) {
377 warnmsg
= "Bad SB block magic!";
380 bp
->b_ops
= &xfs_sb_buf_ops
;
383 case XFS_BLFT_RTBITMAP_BUF
:
384 case XFS_BLFT_RTSUMMARY_BUF
:
385 /* no magic numbers for verification of RT buffers */
386 bp
->b_ops
= &xfs_rtbuf_ops
;
388 #endif /* CONFIG_XFS_RT */
390 xfs_warn(mp
, "Unknown buffer type %d!",
391 xfs_blft_from_flags(buf_f
));
396 * Nothing else to do in the case of a NULL current LSN as this means
397 * the buffer is more recent than the change in the log and will be
400 if (current_lsn
== NULLCOMMITLSN
)
404 xfs_warn(mp
, warnmsg
);
409 * We must update the metadata LSN of the buffer as it is written out to
410 * ensure that older transactions never replay over this one and corrupt
411 * the buffer. This can occur if log recovery is interrupted at some
412 * point after the current transaction completes, at which point a
413 * subsequent mount starts recovery from the beginning.
415 * Write verifiers update the metadata LSN from log items attached to
416 * the buffer. Therefore, initialize a bli purely to carry the LSN to
420 struct xfs_buf_log_item
*bip
;
422 bp
->b_flags
|= _XBF_LOGRECOVERY
;
423 xfs_buf_item_init(bp
, mp
);
424 bip
= bp
->b_log_item
;
425 bip
->bli_item
.li_lsn
= current_lsn
;
430 * Perform a 'normal' buffer recovery. Each logged region of the
431 * buffer should be copied over the corresponding region in the
432 * given buffer. The bitmap in the buf log format structure indicates
433 * where to place the logged data.
436 xlog_recover_do_reg_buffer(
437 struct xfs_mount
*mp
,
438 struct xlog_recover_item
*item
,
440 struct xfs_buf_log_format
*buf_f
,
441 xfs_lsn_t current_lsn
)
447 const size_t size_disk_dquot
= sizeof(struct xfs_disk_dquot
);
449 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
452 i
= 1; /* 0 is the buf format structure */
454 bit
= xfs_next_bit(buf_f
->blf_data_map
,
455 buf_f
->blf_map_size
, bit
);
458 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
459 buf_f
->blf_map_size
, bit
);
461 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
462 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
463 ASSERT(BBTOB(bp
->b_length
) >=
464 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
467 * The dirty regions logged in the buffer, even though
468 * contiguous, may span multiple chunks. This is because the
469 * dirty region may span a physical page boundary in a buffer
470 * and hence be split into two separate vectors for writing into
471 * the log. Hence we need to trim nbits back to the length of
472 * the current region being copied out of the log.
474 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
475 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
478 * Do a sanity check if this is a dquot buffer. Just checking
479 * the first dquot in the buffer should do. XXXThis is
480 * probably a good thing to do for other buf types also.
483 if (buf_f
->blf_flags
&
484 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
485 if (item
->ri_buf
[i
].i_addr
== NULL
) {
487 "XFS: NULL dquot in %s.", __func__
);
490 if (item
->ri_buf
[i
].i_len
< size_disk_dquot
) {
492 "XFS: dquot too small (%d) in %s.",
493 item
->ri_buf
[i
].i_len
, __func__
);
496 fa
= xfs_dquot_verify(mp
, item
->ri_buf
[i
].i_addr
, -1);
499 "dquot corrupt at %pS trying to replay into block 0x%llx",
505 memcpy(xfs_buf_offset(bp
,
506 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
507 item
->ri_buf
[i
].i_addr
, /* source */
508 nbits
<<XFS_BLF_SHIFT
); /* length */
514 /* Shouldn't be any more regions */
515 ASSERT(i
== item
->ri_total
);
517 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
521 * Perform a dquot buffer recovery.
522 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
523 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
524 * Else, treat it as a regular buffer and do recovery.
526 * Return false if the buffer was tossed and true if we recovered the buffer to
527 * indicate to the caller if the buffer needs writing.
530 xlog_recover_do_dquot_buffer(
531 struct xfs_mount
*mp
,
533 struct xlog_recover_item
*item
,
535 struct xfs_buf_log_format
*buf_f
)
539 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
542 * Filesystems are required to send in quota flags at mount time.
548 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
549 type
|= XFS_DQTYPE_USER
;
550 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
551 type
|= XFS_DQTYPE_PROJ
;
552 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
553 type
|= XFS_DQTYPE_GROUP
;
555 * This type of quotas was turned off, so ignore this buffer
557 if (log
->l_quotaoffs_flag
& type
)
560 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
565 * Perform recovery for a buffer full of inodes. In these buffers, the only
566 * data which should be recovered is that which corresponds to the
567 * di_next_unlinked pointers in the on disk inode structures. The rest of the
568 * data for the inodes is always logged through the inodes themselves rather
569 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
571 * The only time when buffers full of inodes are fully recovered is when the
572 * buffer is full of newly allocated inodes. In this case the buffer will
573 * not be marked as an inode buffer and so will be sent to
574 * xlog_recover_do_reg_buffer() below during recovery.
577 xlog_recover_do_inode_buffer(
578 struct xfs_mount
*mp
,
579 struct xlog_recover_item
*item
,
581 struct xfs_buf_log_format
*buf_f
)
587 int reg_buf_offset
= 0;
588 int reg_buf_bytes
= 0;
589 int next_unlinked_offset
;
591 xfs_agino_t
*logged_nextp
;
592 xfs_agino_t
*buffer_nextp
;
594 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
597 * Post recovery validation only works properly on CRC enabled
600 if (xfs_sb_version_hascrc(&mp
->m_sb
))
601 bp
->b_ops
= &xfs_inode_buf_ops
;
603 inodes_per_buf
= BBTOB(bp
->b_length
) >> mp
->m_sb
.sb_inodelog
;
604 for (i
= 0; i
< inodes_per_buf
; i
++) {
605 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
606 offsetof(xfs_dinode_t
, di_next_unlinked
);
608 while (next_unlinked_offset
>=
609 (reg_buf_offset
+ reg_buf_bytes
)) {
611 * The next di_next_unlinked field is beyond
612 * the current logged region. Find the next
613 * logged region that contains or is beyond
614 * the current di_next_unlinked field.
617 bit
= xfs_next_bit(buf_f
->blf_data_map
,
618 buf_f
->blf_map_size
, bit
);
621 * If there are no more logged regions in the
622 * buffer, then we're done.
627 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
628 buf_f
->blf_map_size
, bit
);
630 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
631 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
636 * If the current logged region starts after the current
637 * di_next_unlinked field, then move on to the next
638 * di_next_unlinked field.
640 if (next_unlinked_offset
< reg_buf_offset
)
643 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
644 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
645 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= BBTOB(bp
->b_length
));
648 * The current logged region contains a copy of the
649 * current di_next_unlinked field. Extract its value
650 * and copy it to the buffer copy.
652 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
653 next_unlinked_offset
- reg_buf_offset
;
654 if (XFS_IS_CORRUPT(mp
, *logged_nextp
== 0)) {
656 "Bad inode buffer log record (ptr = "PTR_FMT
", bp = "PTR_FMT
"). "
657 "Trying to replay bad (0) inode di_next_unlinked field.",
659 return -EFSCORRUPTED
;
662 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
663 *buffer_nextp
= *logged_nextp
;
666 * If necessary, recalculate the CRC in the on-disk inode. We
667 * have to leave the inode in a consistent state for whoever
670 xfs_dinode_calc_crc(mp
,
671 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
679 * V5 filesystems know the age of the buffer on disk being recovered. We can
680 * have newer objects on disk than we are replaying, and so for these cases we
681 * don't want to replay the current change as that will make the buffer contents
682 * temporarily invalid on disk.
684 * The magic number might not match the buffer type we are going to recover
685 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
686 * extract the LSN of the existing object in the buffer based on it's current
687 * magic number. If we don't recognise the magic number in the buffer, then
688 * return a LSN of -1 so that the caller knows it was an unrecognised block and
689 * so can recover the buffer.
691 * Note: we cannot rely solely on magic number matches to determine that the
692 * buffer has a valid LSN - we also need to verify that it belongs to this
693 * filesystem, so we need to extract the object's LSN and compare it to that
694 * which we read from the superblock. If the UUIDs don't match, then we've got a
695 * stale metadata block from an old filesystem instance that we need to recover
699 xlog_recover_get_buf_lsn(
700 struct xfs_mount
*mp
,
706 void *blk
= bp
->b_addr
;
710 /* v4 filesystems always recover immediately */
711 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
712 goto recover_immediately
;
714 magic32
= be32_to_cpu(*(__be32
*)blk
);
716 case XFS_ABTB_CRC_MAGIC
:
717 case XFS_ABTC_CRC_MAGIC
:
720 case XFS_RMAP_CRC_MAGIC
:
721 case XFS_REFC_CRC_MAGIC
:
722 case XFS_FIBT_CRC_MAGIC
:
724 case XFS_IBT_CRC_MAGIC
:
725 case XFS_IBT_MAGIC
: {
726 struct xfs_btree_block
*btb
= blk
;
728 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
729 uuid
= &btb
->bb_u
.s
.bb_uuid
;
732 case XFS_BMAP_CRC_MAGIC
:
733 case XFS_BMAP_MAGIC
: {
734 struct xfs_btree_block
*btb
= blk
;
736 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
737 uuid
= &btb
->bb_u
.l
.bb_uuid
;
741 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
742 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
745 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
746 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
749 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
750 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
752 case XFS_SYMLINK_MAGIC
:
753 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
754 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
756 case XFS_DIR3_BLOCK_MAGIC
:
757 case XFS_DIR3_DATA_MAGIC
:
758 case XFS_DIR3_FREE_MAGIC
:
759 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
760 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
762 case XFS_ATTR3_RMT_MAGIC
:
764 * Remote attr blocks are written synchronously, rather than
765 * being logged. That means they do not contain a valid LSN
766 * (i.e. transactionally ordered) in them, and hence any time we
767 * see a buffer to replay over the top of a remote attribute
768 * block we should simply do so.
770 goto recover_immediately
;
773 * superblock uuids are magic. We may or may not have a
774 * sb_meta_uuid on disk, but it will be set in the in-core
775 * superblock. We set the uuid pointer for verification
776 * according to the superblock feature mask to ensure we check
777 * the relevant UUID in the superblock.
779 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
780 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
781 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
783 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
789 if (lsn
!= (xfs_lsn_t
)-1) {
790 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
791 goto recover_immediately
;
795 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
797 case XFS_DIR3_LEAF1_MAGIC
:
798 case XFS_DIR3_LEAFN_MAGIC
:
799 case XFS_DA3_NODE_MAGIC
:
800 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
801 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
807 if (lsn
!= (xfs_lsn_t
)-1) {
808 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
809 goto recover_immediately
;
814 * We do individual object checks on dquot and inode buffers as they
815 * have their own individual LSN records. Also, we could have a stale
816 * buffer here, so we have to at least recognise these buffer types.
818 * A notd complexity here is inode unlinked list processing - it logs
819 * the inode directly in the buffer, but we don't know which inodes have
820 * been modified, and there is no global buffer LSN. Hence we need to
821 * recover all inode buffer types immediately. This problem will be
822 * fixed by logical logging of the unlinked list modifications.
824 magic16
= be16_to_cpu(*(__be16
*)blk
);
826 case XFS_DQUOT_MAGIC
:
827 case XFS_DINODE_MAGIC
:
828 goto recover_immediately
;
833 /* unknown buffer contents, recover immediately */
836 return (xfs_lsn_t
)-1;
841 * This routine replays a modification made to a buffer at runtime.
842 * There are actually two types of buffer, regular and inode, which
843 * are handled differently. Inode buffers are handled differently
844 * in that we only recover a specific set of data from them, namely
845 * the inode di_next_unlinked fields. This is because all other inode
846 * data is actually logged via inode records and any data we replay
847 * here which overlaps that may be stale.
849 * When meta-data buffers are freed at run time we log a buffer item
850 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
851 * of the buffer in the log should not be replayed at recovery time.
852 * This is so that if the blocks covered by the buffer are reused for
853 * file data before we crash we don't end up replaying old, freed
854 * meta-data into a user's file.
856 * To handle the cancellation of buffer log items, we make two passes
857 * over the log during recovery. During the first we build a table of
858 * those buffers which have been cancelled, and during the second we
859 * only replay those buffers which do not have corresponding cancel
860 * records in the table. See xlog_recover_buf_pass[1,2] above
861 * for more details on the implementation of the table of cancel records.
864 xlog_recover_buf_commit_pass2(
866 struct list_head
*buffer_list
,
867 struct xlog_recover_item
*item
,
868 xfs_lsn_t current_lsn
)
870 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
871 struct xfs_mount
*mp
= log
->l_mp
;
878 * In this pass we only want to recover all the buffers which have
879 * not been cancelled and are not cancellation buffers themselves.
881 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
882 if (xlog_put_buffer_cancelled(log
, buf_f
->blf_blkno
,
887 if (xlog_is_buffer_cancelled(log
, buf_f
->blf_blkno
,
892 trace_xfs_log_recover_buf_recover(log
, buf_f
);
895 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
896 buf_flags
|= XBF_UNMAPPED
;
898 error
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
899 buf_flags
, &bp
, NULL
);
904 * Recover the buffer only if we get an LSN from it and it's less than
905 * the lsn of the transaction we are replaying.
907 * Note that we have to be extremely careful of readahead here.
908 * Readahead does not attach verfiers to the buffers so if we don't
909 * actually do any replay after readahead because of the LSN we found
910 * in the buffer if more recent than that current transaction then we
911 * need to attach the verifier directly. Failure to do so can lead to
912 * future recovery actions (e.g. EFI and unlinked list recovery) can
913 * operate on the buffers and they won't get the verifier attached. This
914 * can lead to blocks on disk having the correct content but a stale
917 * It is safe to assume these clean buffers are currently up to date.
918 * If the buffer is dirtied by a later transaction being replayed, then
919 * the verifier will be reset to match whatever recover turns that
922 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
923 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
924 trace_xfs_log_recover_buf_skip(log
, buf_f
);
925 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
929 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
930 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
933 } else if (buf_f
->blf_flags
&
934 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
937 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
941 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
945 * Perform delayed write on the buffer. Asynchronous writes will be
946 * slower when taking into account all the buffers to be flushed.
948 * Also make sure that only inode buffers with good sizes stay in
949 * the buffer cache. The kernel moves inodes in buffers of 1 block
950 * or inode_cluster_size bytes, whichever is bigger. The inode
951 * buffers in the log can be a different size if the log was generated
952 * by an older kernel using unclustered inode buffers or a newer kernel
953 * running with a different inode cluster size. Regardless, if
954 * the inode buffer size isn't max(blocksize, inode_cluster_size)
955 * for *our* value of inode_cluster_size, then we need to keep
956 * the buffer out of the buffer cache so that the buffer won't
957 * overlap with future reads of those inodes.
959 if (XFS_DINODE_MAGIC
==
960 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
961 (BBTOB(bp
->b_length
) != M_IGEO(log
->l_mp
)->inode_cluster_size
)) {
963 error
= xfs_bwrite(bp
);
965 ASSERT(bp
->b_mount
== mp
);
966 bp
->b_flags
|= _XBF_LOGRECOVERY
;
967 xfs_buf_delwri_queue(bp
, buffer_list
);
974 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
978 const struct xlog_recover_item_ops xlog_buf_item_ops
= {
979 .item_type
= XFS_LI_BUF
,
980 .reorder
= xlog_recover_buf_reorder
,
981 .ra_pass2
= xlog_recover_buf_ra_pass2
,
982 .commit_pass1
= xlog_recover_buf_commit_pass1
,
983 .commit_pass2
= xlog_recover_buf_commit_pass2
,