1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
94 /* number of audit rules */
97 /* determines whether we collect data for signals sent */
100 struct audit_aux_data
{
101 struct audit_aux_data
*next
;
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
108 struct audit_aux_data_pids
{
109 struct audit_aux_data d
;
110 pid_t target_pid
[AUDIT_AUX_PIDS
];
111 kuid_t target_auid
[AUDIT_AUX_PIDS
];
112 kuid_t target_uid
[AUDIT_AUX_PIDS
];
113 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
114 u32 target_sid
[AUDIT_AUX_PIDS
];
115 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
119 struct audit_aux_data_bprm_fcaps
{
120 struct audit_aux_data d
;
121 struct audit_cap_data fcap
;
122 unsigned int fcap_ver
;
123 struct audit_cap_data old_pcap
;
124 struct audit_cap_data new_pcap
;
127 struct audit_tree_refs
{
128 struct audit_tree_refs
*next
;
129 struct audit_chunk
*c
[31];
132 struct audit_nfcfgop_tab
{
133 enum audit_nfcfgop op
;
137 static const struct audit_nfcfgop_tab audit_nfcfgs
[] = {
138 { AUDIT_XT_OP_REGISTER
, "xt_register" },
139 { AUDIT_XT_OP_REPLACE
, "xt_replace" },
140 { AUDIT_XT_OP_UNREGISTER
, "xt_unregister" },
141 { AUDIT_NFT_OP_TABLE_REGISTER
, "nft_register_table" },
142 { AUDIT_NFT_OP_TABLE_UNREGISTER
, "nft_unregister_table" },
143 { AUDIT_NFT_OP_CHAIN_REGISTER
, "nft_register_chain" },
144 { AUDIT_NFT_OP_CHAIN_UNREGISTER
, "nft_unregister_chain" },
145 { AUDIT_NFT_OP_RULE_REGISTER
, "nft_register_rule" },
146 { AUDIT_NFT_OP_RULE_UNREGISTER
, "nft_unregister_rule" },
147 { AUDIT_NFT_OP_SET_REGISTER
, "nft_register_set" },
148 { AUDIT_NFT_OP_SET_UNREGISTER
, "nft_unregister_set" },
149 { AUDIT_NFT_OP_SETELEM_REGISTER
, "nft_register_setelem" },
150 { AUDIT_NFT_OP_SETELEM_UNREGISTER
, "nft_unregister_setelem" },
151 { AUDIT_NFT_OP_GEN_REGISTER
, "nft_register_gen" },
152 { AUDIT_NFT_OP_OBJ_REGISTER
, "nft_register_obj" },
153 { AUDIT_NFT_OP_OBJ_UNREGISTER
, "nft_unregister_obj" },
154 { AUDIT_NFT_OP_OBJ_RESET
, "nft_reset_obj" },
155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER
, "nft_register_flowtable" },
156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER
, "nft_unregister_flowtable" },
157 { AUDIT_NFT_OP_INVALID
, "nft_invalid" },
160 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
167 switch (audit_classify_syscall(ctx
->arch
, n
)) {
169 if ((mask
& AUDIT_PERM_WRITE
) &&
170 audit_match_class(AUDIT_CLASS_WRITE
, n
))
172 if ((mask
& AUDIT_PERM_READ
) &&
173 audit_match_class(AUDIT_CLASS_READ
, n
))
175 if ((mask
& AUDIT_PERM_ATTR
) &&
176 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
179 case 1: /* 32bit on biarch */
180 if ((mask
& AUDIT_PERM_WRITE
) &&
181 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
183 if ((mask
& AUDIT_PERM_READ
) &&
184 audit_match_class(AUDIT_CLASS_READ_32
, n
))
186 if ((mask
& AUDIT_PERM_ATTR
) &&
187 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
191 return mask
& ACC_MODE(ctx
->argv
[1]);
193 return mask
& ACC_MODE(ctx
->argv
[2]);
194 case 4: /* socketcall */
195 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
197 return mask
& AUDIT_PERM_EXEC
;
203 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
205 struct audit_names
*n
;
206 umode_t mode
= (umode_t
)val
;
211 list_for_each_entry(n
, &ctx
->names_list
, list
) {
212 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
213 ((n
->mode
& S_IFMT
) == mode
))
221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222 * ->first_trees points to its beginning, ->trees - to the current end of data.
223 * ->tree_count is the number of free entries in array pointed to by ->trees.
224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
226 * it's going to remain 1-element for almost any setup) until we free context itself.
227 * References in it _are_ dropped - at the same time we free/drop aux stuff.
230 static void audit_set_auditable(struct audit_context
*ctx
)
234 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
238 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
240 struct audit_tree_refs
*p
= ctx
->trees
;
241 int left
= ctx
->tree_count
;
243 p
->c
[--left
] = chunk
;
244 ctx
->tree_count
= left
;
253 ctx
->tree_count
= 30;
259 static int grow_tree_refs(struct audit_context
*ctx
)
261 struct audit_tree_refs
*p
= ctx
->trees
;
262 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
268 p
->next
= ctx
->trees
;
270 ctx
->first_trees
= ctx
->trees
;
271 ctx
->tree_count
= 31;
275 static void unroll_tree_refs(struct audit_context
*ctx
,
276 struct audit_tree_refs
*p
, int count
)
278 struct audit_tree_refs
*q
;
281 /* we started with empty chain */
282 p
= ctx
->first_trees
;
284 /* if the very first allocation has failed, nothing to do */
289 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
291 audit_put_chunk(q
->c
[n
]);
295 while (n
-- > ctx
->tree_count
) {
296 audit_put_chunk(q
->c
[n
]);
300 ctx
->tree_count
= count
;
303 static void free_tree_refs(struct audit_context
*ctx
)
305 struct audit_tree_refs
*p
, *q
;
306 for (p
= ctx
->first_trees
; p
; p
= q
) {
312 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
314 struct audit_tree_refs
*p
;
319 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
320 for (n
= 0; n
< 31; n
++)
321 if (audit_tree_match(p
->c
[n
], tree
))
326 for (n
= ctx
->tree_count
; n
< 31; n
++)
327 if (audit_tree_match(p
->c
[n
], tree
))
333 static int audit_compare_uid(kuid_t uid
,
334 struct audit_names
*name
,
335 struct audit_field
*f
,
336 struct audit_context
*ctx
)
338 struct audit_names
*n
;
342 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
348 list_for_each_entry(n
, &ctx
->names_list
, list
) {
349 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
357 static int audit_compare_gid(kgid_t gid
,
358 struct audit_names
*name
,
359 struct audit_field
*f
,
360 struct audit_context
*ctx
)
362 struct audit_names
*n
;
366 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
372 list_for_each_entry(n
, &ctx
->names_list
, list
) {
373 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
381 static int audit_field_compare(struct task_struct
*tsk
,
382 const struct cred
*cred
,
383 struct audit_field
*f
,
384 struct audit_context
*ctx
,
385 struct audit_names
*name
)
388 /* process to file object comparisons */
389 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
390 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
391 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
392 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
393 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
394 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
395 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
396 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
397 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
398 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
399 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
400 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
401 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
402 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
404 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
406 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
407 /* uid comparisons */
408 case AUDIT_COMPARE_UID_TO_AUID
:
409 return audit_uid_comparator(cred
->uid
, f
->op
,
410 audit_get_loginuid(tsk
));
411 case AUDIT_COMPARE_UID_TO_EUID
:
412 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
413 case AUDIT_COMPARE_UID_TO_SUID
:
414 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
415 case AUDIT_COMPARE_UID_TO_FSUID
:
416 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
417 /* auid comparisons */
418 case AUDIT_COMPARE_AUID_TO_EUID
:
419 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
421 case AUDIT_COMPARE_AUID_TO_SUID
:
422 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
424 case AUDIT_COMPARE_AUID_TO_FSUID
:
425 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
427 /* euid comparisons */
428 case AUDIT_COMPARE_EUID_TO_SUID
:
429 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
430 case AUDIT_COMPARE_EUID_TO_FSUID
:
431 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
432 /* suid comparisons */
433 case AUDIT_COMPARE_SUID_TO_FSUID
:
434 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
435 /* gid comparisons */
436 case AUDIT_COMPARE_GID_TO_EGID
:
437 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
438 case AUDIT_COMPARE_GID_TO_SGID
:
439 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
440 case AUDIT_COMPARE_GID_TO_FSGID
:
441 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
442 /* egid comparisons */
443 case AUDIT_COMPARE_EGID_TO_SGID
:
444 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
445 case AUDIT_COMPARE_EGID_TO_FSGID
:
446 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
447 /* sgid comparison */
448 case AUDIT_COMPARE_SGID_TO_FSGID
:
449 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
461 * If task_creation is true, this is an explicit indication that we are
462 * filtering a task rule at task creation time. This and tsk == current are
463 * the only situations where tsk->cred may be accessed without an rcu read lock.
465 static int audit_filter_rules(struct task_struct
*tsk
,
466 struct audit_krule
*rule
,
467 struct audit_context
*ctx
,
468 struct audit_names
*name
,
469 enum audit_state
*state
,
472 const struct cred
*cred
;
475 unsigned int sessionid
;
477 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
479 for (i
= 0; i
< rule
->field_count
; i
++) {
480 struct audit_field
*f
= &rule
->fields
[i
];
481 struct audit_names
*n
;
487 pid
= task_tgid_nr(tsk
);
488 result
= audit_comparator(pid
, f
->op
, f
->val
);
493 ctx
->ppid
= task_ppid_nr(tsk
);
494 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
498 result
= audit_exe_compare(tsk
, rule
->exe
);
499 if (f
->op
== Audit_not_equal
)
503 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
506 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
509 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
512 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
515 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
516 if (f
->op
== Audit_equal
) {
518 result
= groups_search(cred
->group_info
, f
->gid
);
519 } else if (f
->op
== Audit_not_equal
) {
521 result
= !groups_search(cred
->group_info
, f
->gid
);
525 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
526 if (f
->op
== Audit_equal
) {
528 result
= groups_search(cred
->group_info
, f
->gid
);
529 } else if (f
->op
== Audit_not_equal
) {
531 result
= !groups_search(cred
->group_info
, f
->gid
);
535 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
538 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
540 case AUDIT_SESSIONID
:
541 sessionid
= audit_get_sessionid(tsk
);
542 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
545 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
549 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
553 if (ctx
&& ctx
->return_valid
!= AUDITSC_INVALID
)
554 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
557 if (ctx
&& ctx
->return_valid
!= AUDITSC_INVALID
) {
559 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
561 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
566 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
567 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
570 list_for_each_entry(n
, &ctx
->names_list
, list
) {
571 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
572 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
581 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
582 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
585 list_for_each_entry(n
, &ctx
->names_list
, list
) {
586 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
587 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
596 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
598 list_for_each_entry(n
, &ctx
->names_list
, list
) {
599 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
608 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
610 list_for_each_entry(n
, &ctx
->names_list
, list
) {
611 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
620 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
622 list_for_each_entry(n
, &ctx
->names_list
, list
) {
623 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
632 result
= audit_watch_compare(rule
->watch
,
635 if (f
->op
== Audit_not_equal
)
641 result
= match_tree_refs(ctx
, rule
->tree
);
642 if (f
->op
== Audit_not_equal
)
647 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
650 case AUDIT_LOGINUID_SET
:
651 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
653 case AUDIT_SADDR_FAM
:
655 result
= audit_comparator(ctx
->sockaddr
->ss_family
,
658 case AUDIT_SUBJ_USER
:
659 case AUDIT_SUBJ_ROLE
:
660 case AUDIT_SUBJ_TYPE
:
663 /* NOTE: this may return negative values indicating
664 a temporary error. We simply treat this as a
665 match for now to avoid losing information that
666 may be wanted. An error message will also be
670 security_task_getsecid(tsk
, &sid
);
673 result
= security_audit_rule_match(sid
, f
->type
,
681 case AUDIT_OBJ_LEV_LOW
:
682 case AUDIT_OBJ_LEV_HIGH
:
683 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
686 /* Find files that match */
688 result
= security_audit_rule_match(
694 list_for_each_entry(n
, &ctx
->names_list
, list
) {
695 if (security_audit_rule_match(
705 /* Find ipc objects that match */
706 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
708 if (security_audit_rule_match(ctx
->ipc
.osid
,
719 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
721 case AUDIT_FILTERKEY
:
722 /* ignore this field for filtering */
726 result
= audit_match_perm(ctx
, f
->val
);
727 if (f
->op
== Audit_not_equal
)
731 result
= audit_match_filetype(ctx
, f
->val
);
732 if (f
->op
== Audit_not_equal
)
735 case AUDIT_FIELD_COMPARE
:
736 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
744 if (rule
->prio
<= ctx
->prio
)
746 if (rule
->filterkey
) {
747 kfree(ctx
->filterkey
);
748 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
750 ctx
->prio
= rule
->prio
;
752 switch (rule
->action
) {
754 *state
= AUDIT_DISABLED
;
757 *state
= AUDIT_RECORD_CONTEXT
;
763 /* At process creation time, we can determine if system-call auditing is
764 * completely disabled for this task. Since we only have the task
765 * structure at this point, we can only check uid and gid.
767 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
769 struct audit_entry
*e
;
770 enum audit_state state
;
773 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
774 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
776 if (state
== AUDIT_RECORD_CONTEXT
)
777 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
783 return AUDIT_BUILD_CONTEXT
;
786 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
790 if (val
> 0xffffffff)
793 word
= AUDIT_WORD(val
);
794 if (word
>= AUDIT_BITMASK_SIZE
)
797 bit
= AUDIT_BIT(val
);
799 return rule
->mask
[word
] & bit
;
802 /* At syscall entry and exit time, this filter is called if the
803 * audit_state is not low enough that auditing cannot take place, but is
804 * also not high enough that we already know we have to write an audit
805 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
807 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
808 struct audit_context
*ctx
,
809 struct list_head
*list
)
811 struct audit_entry
*e
;
812 enum audit_state state
;
814 if (auditd_test_task(tsk
))
815 return AUDIT_DISABLED
;
818 list_for_each_entry_rcu(e
, list
, list
) {
819 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
820 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
823 ctx
->current_state
= state
;
828 return AUDIT_BUILD_CONTEXT
;
832 * Given an audit_name check the inode hash table to see if they match.
833 * Called holding the rcu read lock to protect the use of audit_inode_hash
835 static int audit_filter_inode_name(struct task_struct
*tsk
,
836 struct audit_names
*n
,
837 struct audit_context
*ctx
) {
838 int h
= audit_hash_ino((u32
)n
->ino
);
839 struct list_head
*list
= &audit_inode_hash
[h
];
840 struct audit_entry
*e
;
841 enum audit_state state
;
843 list_for_each_entry_rcu(e
, list
, list
) {
844 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
845 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
846 ctx
->current_state
= state
;
853 /* At syscall exit time, this filter is called if any audit_names have been
854 * collected during syscall processing. We only check rules in sublists at hash
855 * buckets applicable to the inode numbers in audit_names.
856 * Regarding audit_state, same rules apply as for audit_filter_syscall().
858 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
860 struct audit_names
*n
;
862 if (auditd_test_task(tsk
))
867 list_for_each_entry(n
, &ctx
->names_list
, list
) {
868 if (audit_filter_inode_name(tsk
, n
, ctx
))
874 static inline void audit_proctitle_free(struct audit_context
*context
)
876 kfree(context
->proctitle
.value
);
877 context
->proctitle
.value
= NULL
;
878 context
->proctitle
.len
= 0;
881 static inline void audit_free_module(struct audit_context
*context
)
883 if (context
->type
== AUDIT_KERN_MODULE
) {
884 kfree(context
->module
.name
);
885 context
->module
.name
= NULL
;
888 static inline void audit_free_names(struct audit_context
*context
)
890 struct audit_names
*n
, *next
;
892 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
899 context
->name_count
= 0;
900 path_put(&context
->pwd
);
901 context
->pwd
.dentry
= NULL
;
902 context
->pwd
.mnt
= NULL
;
905 static inline void audit_free_aux(struct audit_context
*context
)
907 struct audit_aux_data
*aux
;
909 while ((aux
= context
->aux
)) {
910 context
->aux
= aux
->next
;
913 while ((aux
= context
->aux_pids
)) {
914 context
->aux_pids
= aux
->next
;
919 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
921 struct audit_context
*context
;
923 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
926 context
->state
= state
;
927 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
928 INIT_LIST_HEAD(&context
->killed_trees
);
929 INIT_LIST_HEAD(&context
->names_list
);
930 context
->fds
[0] = -1;
931 context
->return_valid
= AUDITSC_INVALID
;
936 * audit_alloc - allocate an audit context block for a task
939 * Filter on the task information and allocate a per-task audit context
940 * if necessary. Doing so turns on system call auditing for the
941 * specified task. This is called from copy_process, so no lock is
944 int audit_alloc(struct task_struct
*tsk
)
946 struct audit_context
*context
;
947 enum audit_state state
;
950 if (likely(!audit_ever_enabled
))
951 return 0; /* Return if not auditing. */
953 state
= audit_filter_task(tsk
, &key
);
954 if (state
== AUDIT_DISABLED
) {
955 clear_task_syscall_work(tsk
, SYSCALL_AUDIT
);
959 if (!(context
= audit_alloc_context(state
))) {
961 audit_log_lost("out of memory in audit_alloc");
964 context
->filterkey
= key
;
966 audit_set_context(tsk
, context
);
967 set_task_syscall_work(tsk
, SYSCALL_AUDIT
);
971 static inline void audit_free_context(struct audit_context
*context
)
973 audit_free_module(context
);
974 audit_free_names(context
);
975 unroll_tree_refs(context
, NULL
, 0);
976 free_tree_refs(context
);
977 audit_free_aux(context
);
978 kfree(context
->filterkey
);
979 kfree(context
->sockaddr
);
980 audit_proctitle_free(context
);
984 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
985 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
988 struct audit_buffer
*ab
;
993 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
997 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
998 from_kuid(&init_user_ns
, auid
),
999 from_kuid(&init_user_ns
, uid
), sessionid
);
1001 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1002 audit_log_format(ab
, " obj=(none)");
1005 audit_log_format(ab
, " obj=%s", ctx
);
1006 security_release_secctx(ctx
, len
);
1009 audit_log_format(ab
, " ocomm=");
1010 audit_log_untrustedstring(ab
, comm
);
1016 static void audit_log_execve_info(struct audit_context
*context
,
1017 struct audit_buffer
**ab
)
1031 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1033 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 * data we put in the audit record for this argument (see the
1035 * code below) ... at this point in time 96 is plenty */
1038 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 * current value of 7500 is not as important as the fact that it
1040 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 * room if we go over a little bit in the logging below */
1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1043 len_max
= MAX_EXECVE_AUDIT_LEN
;
1045 /* scratch buffer to hold the userspace args */
1046 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1048 audit_panic("out of memory for argv string");
1053 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1058 require_data
= true;
1063 /* NOTE: we don't ever want to trust this value for anything
1064 * serious, but the audit record format insists we
1065 * provide an argument length for really long arguments,
1066 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 * to use strncpy_from_user() to obtain this value for
1068 * recording in the log, although we don't use it
1069 * anywhere here to avoid a double-fetch problem */
1071 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1073 /* read more data from userspace */
1075 /* can we make more room in the buffer? */
1076 if (buf
!= buf_head
) {
1077 memmove(buf_head
, buf
, len_buf
);
1081 /* fetch as much as we can of the argument */
1082 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1084 if (len_tmp
== -EFAULT
) {
1085 /* unable to copy from userspace */
1086 send_sig(SIGKILL
, current
, 0);
1088 } else if (len_tmp
== (len_max
- len_buf
)) {
1089 /* buffer is not large enough */
1090 require_data
= true;
1091 /* NOTE: if we are going to span multiple
1092 * buffers force the encoding so we stand
1093 * a chance at a sane len_full value and
1094 * consistent record encoding */
1096 len_full
= len_full
* 2;
1099 require_data
= false;
1101 encode
= audit_string_contains_control(
1103 /* try to use a trusted value for len_full */
1104 if (len_full
< len_max
)
1105 len_full
= (encode
?
1106 len_tmp
* 2 : len_tmp
);
1110 buf_head
[len_buf
] = '\0';
1112 /* length of the buffer in the audit record? */
1113 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1116 /* write as much as we can to the audit log */
1118 /* NOTE: some magic numbers here - basically if we
1119 * can't fit a reasonable amount of data into the
1120 * existing audit buffer, flush it and start with
1122 if ((sizeof(abuf
) + 8) > len_rem
) {
1125 *ab
= audit_log_start(context
,
1126 GFP_KERNEL
, AUDIT_EXECVE
);
1131 /* create the non-arg portion of the arg record */
1133 if (require_data
|| (iter
> 0) ||
1134 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1136 len_tmp
+= snprintf(&abuf
[len_tmp
],
1137 sizeof(abuf
) - len_tmp
,
1141 len_tmp
+= snprintf(&abuf
[len_tmp
],
1142 sizeof(abuf
) - len_tmp
,
1143 " a%d[%d]=", arg
, iter
++);
1145 len_tmp
+= snprintf(&abuf
[len_tmp
],
1146 sizeof(abuf
) - len_tmp
,
1148 WARN_ON(len_tmp
>= sizeof(abuf
));
1149 abuf
[sizeof(abuf
) - 1] = '\0';
1151 /* log the arg in the audit record */
1152 audit_log_format(*ab
, "%s", abuf
);
1156 if (len_abuf
> len_rem
)
1157 len_tmp
= len_rem
/ 2; /* encoding */
1158 audit_log_n_hex(*ab
, buf
, len_tmp
);
1159 len_rem
-= len_tmp
* 2;
1160 len_abuf
-= len_tmp
* 2;
1162 if (len_abuf
> len_rem
)
1163 len_tmp
= len_rem
- 2; /* quotes */
1164 audit_log_n_string(*ab
, buf
, len_tmp
);
1165 len_rem
-= len_tmp
+ 2;
1166 /* don't subtract the "2" because we still need
1167 * to add quotes to the remaining string */
1168 len_abuf
-= len_tmp
;
1174 /* ready to move to the next argument? */
1175 if ((len_buf
== 0) && !require_data
) {
1179 require_data
= true;
1182 } while (arg
< context
->execve
.argc
);
1184 /* NOTE: the caller handles the final audit_log_end() call */
1190 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
,
1195 if (cap_isclear(*cap
)) {
1196 audit_log_format(ab
, " %s=0", prefix
);
1199 audit_log_format(ab
, " %s=", prefix
);
1201 audit_log_format(ab
, "%08x", cap
->cap
[CAP_LAST_U32
- i
]);
1204 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1206 if (name
->fcap_ver
== -1) {
1207 audit_log_format(ab
, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1210 audit_log_cap(ab
, "cap_fp", &name
->fcap
.permitted
);
1211 audit_log_cap(ab
, "cap_fi", &name
->fcap
.inheritable
);
1212 audit_log_format(ab
, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 name
->fcap
.fE
, name
->fcap_ver
,
1214 from_kuid(&init_user_ns
, name
->fcap
.rootid
));
1217 static void show_special(struct audit_context
*context
, int *call_panic
)
1219 struct audit_buffer
*ab
;
1222 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1226 switch (context
->type
) {
1227 case AUDIT_SOCKETCALL
: {
1228 int nargs
= context
->socketcall
.nargs
;
1229 audit_log_format(ab
, "nargs=%d", nargs
);
1230 for (i
= 0; i
< nargs
; i
++)
1231 audit_log_format(ab
, " a%d=%lx", i
,
1232 context
->socketcall
.args
[i
]);
1235 u32 osid
= context
->ipc
.osid
;
1237 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1238 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1239 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1244 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1245 audit_log_format(ab
, " osid=%u", osid
);
1248 audit_log_format(ab
, " obj=%s", ctx
);
1249 security_release_secctx(ctx
, len
);
1252 if (context
->ipc
.has_perm
) {
1254 ab
= audit_log_start(context
, GFP_KERNEL
,
1255 AUDIT_IPC_SET_PERM
);
1258 audit_log_format(ab
,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 context
->ipc
.qbytes
,
1261 context
->ipc
.perm_uid
,
1262 context
->ipc
.perm_gid
,
1263 context
->ipc
.perm_mode
);
1267 audit_log_format(ab
,
1268 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 "mq_msgsize=%ld mq_curmsgs=%ld",
1270 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1271 context
->mq_open
.attr
.mq_flags
,
1272 context
->mq_open
.attr
.mq_maxmsg
,
1273 context
->mq_open
.attr
.mq_msgsize
,
1274 context
->mq_open
.attr
.mq_curmsgs
);
1276 case AUDIT_MQ_SENDRECV
:
1277 audit_log_format(ab
,
1278 "mqdes=%d msg_len=%zd msg_prio=%u "
1279 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 context
->mq_sendrecv
.mqdes
,
1281 context
->mq_sendrecv
.msg_len
,
1282 context
->mq_sendrecv
.msg_prio
,
1283 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1284 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1286 case AUDIT_MQ_NOTIFY
:
1287 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1288 context
->mq_notify
.mqdes
,
1289 context
->mq_notify
.sigev_signo
);
1291 case AUDIT_MQ_GETSETATTR
: {
1292 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1293 audit_log_format(ab
,
1294 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1296 context
->mq_getsetattr
.mqdes
,
1297 attr
->mq_flags
, attr
->mq_maxmsg
,
1298 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1301 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1302 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1303 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1304 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1305 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1308 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1309 context
->mmap
.flags
);
1312 audit_log_execve_info(context
, &ab
);
1314 case AUDIT_KERN_MODULE
:
1315 audit_log_format(ab
, "name=");
1316 if (context
->module
.name
) {
1317 audit_log_untrustedstring(ab
, context
->module
.name
);
1319 audit_log_format(ab
, "(null)");
1326 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1328 char *end
= proctitle
+ len
- 1;
1329 while (end
> proctitle
&& !isprint(*end
))
1332 /* catch the case where proctitle is only 1 non-print character */
1333 len
= end
- proctitle
+ 1;
1334 len
-= isprint(proctitle
[len
-1]) == 0;
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1346 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1347 const struct path
*path
, int record_num
, int *call_panic
)
1349 struct audit_buffer
*ab
;
1351 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1355 audit_log_format(ab
, "item=%d", record_num
);
1358 audit_log_d_path(ab
, " name=", path
);
1360 switch (n
->name_len
) {
1361 case AUDIT_NAME_FULL
:
1362 /* log the full path */
1363 audit_log_format(ab
, " name=");
1364 audit_log_untrustedstring(ab
, n
->name
->name
);
1367 /* name was specified as a relative path and the
1368 * directory component is the cwd
1370 if (context
->pwd
.dentry
&& context
->pwd
.mnt
)
1371 audit_log_d_path(ab
, " name=", &context
->pwd
);
1373 audit_log_format(ab
, " name=(null)");
1376 /* log the name's directory component */
1377 audit_log_format(ab
, " name=");
1378 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1382 audit_log_format(ab
, " name=(null)");
1384 if (n
->ino
!= AUDIT_INO_UNSET
)
1385 audit_log_format(ab
, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1390 from_kuid(&init_user_ns
, n
->uid
),
1391 from_kgid(&init_user_ns
, n
->gid
),
1398 if (security_secid_to_secctx(
1399 n
->osid
, &ctx
, &len
)) {
1400 audit_log_format(ab
, " osid=%u", n
->osid
);
1404 audit_log_format(ab
, " obj=%s", ctx
);
1405 security_release_secctx(ctx
, len
);
1409 /* log the audit_names record type */
1411 case AUDIT_TYPE_NORMAL
:
1412 audit_log_format(ab
, " nametype=NORMAL");
1414 case AUDIT_TYPE_PARENT
:
1415 audit_log_format(ab
, " nametype=PARENT");
1417 case AUDIT_TYPE_CHILD_DELETE
:
1418 audit_log_format(ab
, " nametype=DELETE");
1420 case AUDIT_TYPE_CHILD_CREATE
:
1421 audit_log_format(ab
, " nametype=CREATE");
1424 audit_log_format(ab
, " nametype=UNKNOWN");
1428 audit_log_fcaps(ab
, n
);
1432 static void audit_log_proctitle(void)
1436 char *msg
= "(null)";
1437 int len
= strlen(msg
);
1438 struct audit_context
*context
= audit_context();
1439 struct audit_buffer
*ab
;
1441 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1443 return; /* audit_panic or being filtered */
1445 audit_log_format(ab
, "proctitle=");
1448 if (!context
->proctitle
.value
) {
1449 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1452 /* Historically called this from procfs naming */
1453 res
= get_cmdline(current
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1458 res
= audit_proctitle_rtrim(buf
, res
);
1463 context
->proctitle
.value
= buf
;
1464 context
->proctitle
.len
= res
;
1466 msg
= context
->proctitle
.value
;
1467 len
= context
->proctitle
.len
;
1469 audit_log_n_untrustedstring(ab
, msg
, len
);
1473 static void audit_log_exit(void)
1475 int i
, call_panic
= 0;
1476 struct audit_context
*context
= audit_context();
1477 struct audit_buffer
*ab
;
1478 struct audit_aux_data
*aux
;
1479 struct audit_names
*n
;
1481 context
->personality
= current
->personality
;
1483 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1485 return; /* audit_panic has been called */
1486 audit_log_format(ab
, "arch=%x syscall=%d",
1487 context
->arch
, context
->major
);
1488 if (context
->personality
!= PER_LINUX
)
1489 audit_log_format(ab
, " per=%lx", context
->personality
);
1490 if (context
->return_valid
!= AUDITSC_INVALID
)
1491 audit_log_format(ab
, " success=%s exit=%ld",
1492 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1493 context
->return_code
);
1495 audit_log_format(ab
,
1496 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1501 context
->name_count
);
1503 audit_log_task_info(ab
);
1504 audit_log_key(ab
, context
->filterkey
);
1507 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1509 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1511 continue; /* audit_panic has been called */
1513 switch (aux
->type
) {
1515 case AUDIT_BPRM_FCAPS
: {
1516 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1517 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1518 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1519 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1520 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1521 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1522 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1523 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1524 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1525 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1526 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1527 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1528 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1529 audit_log_format(ab
, " frootid=%d",
1530 from_kuid(&init_user_ns
,
1539 show_special(context
, &call_panic
);
1541 if (context
->fds
[0] >= 0) {
1542 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1544 audit_log_format(ab
, "fd0=%d fd1=%d",
1545 context
->fds
[0], context
->fds
[1]);
1550 if (context
->sockaddr_len
) {
1551 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1553 audit_log_format(ab
, "saddr=");
1554 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1555 context
->sockaddr_len
);
1560 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1561 struct audit_aux_data_pids
*axs
= (void *)aux
;
1563 for (i
= 0; i
< axs
->pid_count
; i
++)
1564 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1565 axs
->target_auid
[i
],
1567 axs
->target_sessionid
[i
],
1569 axs
->target_comm
[i
]))
1573 if (context
->target_pid
&&
1574 audit_log_pid_context(context
, context
->target_pid
,
1575 context
->target_auid
, context
->target_uid
,
1576 context
->target_sessionid
,
1577 context
->target_sid
, context
->target_comm
))
1580 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1581 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1583 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1589 list_for_each_entry(n
, &context
->names_list
, list
) {
1592 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1595 audit_log_proctitle();
1597 /* Send end of event record to help user space know we are finished */
1598 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1602 audit_panic("error converting sid to string");
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1609 * Called from copy_process and do_exit
1611 void __audit_free(struct task_struct
*tsk
)
1613 struct audit_context
*context
= tsk
->audit_context
;
1618 if (!list_empty(&context
->killed_trees
))
1619 audit_kill_trees(context
);
1621 /* We are called either by do_exit() or the fork() error handling code;
1622 * in the former case tsk == current and in the latter tsk is a
1623 * random task_struct that doesn't doesn't have any meaningful data we
1624 * need to log via audit_log_exit().
1626 if (tsk
== current
&& !context
->dummy
&& context
->in_syscall
) {
1627 context
->return_valid
= AUDITSC_INVALID
;
1628 context
->return_code
= 0;
1630 audit_filter_syscall(tsk
, context
,
1631 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1632 audit_filter_inodes(tsk
, context
);
1633 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1637 audit_set_context(tsk
, NULL
);
1638 audit_free_context(context
);
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1649 * Fill in audit context at syscall entry. This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built. If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1657 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1658 unsigned long a3
, unsigned long a4
)
1660 struct audit_context
*context
= audit_context();
1661 enum audit_state state
;
1663 if (!audit_enabled
|| !context
)
1666 BUG_ON(context
->in_syscall
|| context
->name_count
);
1668 state
= context
->state
;
1669 if (state
== AUDIT_DISABLED
)
1672 context
->dummy
= !audit_n_rules
;
1673 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1675 if (auditd_test_task(current
))
1679 context
->arch
= syscall_get_arch(current
);
1680 context
->major
= major
;
1681 context
->argv
[0] = a1
;
1682 context
->argv
[1] = a2
;
1683 context
->argv
[2] = a3
;
1684 context
->argv
[3] = a4
;
1685 context
->serial
= 0;
1686 context
->in_syscall
= 1;
1687 context
->current_state
= state
;
1689 ktime_get_coarse_real_ts64(&context
->ctime
);
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1697 * Tear down after system call. If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information. In call cases,
1701 * free the names stored from getname().
1703 void __audit_syscall_exit(int success
, long return_code
)
1705 struct audit_context
*context
;
1707 context
= audit_context();
1711 if (!list_empty(&context
->killed_trees
))
1712 audit_kill_trees(context
);
1714 if (!context
->dummy
&& context
->in_syscall
) {
1716 context
->return_valid
= AUDITSC_SUCCESS
;
1718 context
->return_valid
= AUDITSC_FAILURE
;
1721 * we need to fix up the return code in the audit logs if the
1722 * actual return codes are later going to be fixed up by the
1723 * arch specific signal handlers
1725 * This is actually a test for:
1726 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1729 * but is faster than a bunch of ||
1731 if (unlikely(return_code
<= -ERESTARTSYS
) &&
1732 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
1733 (return_code
!= -ENOIOCTLCMD
))
1734 context
->return_code
= -EINTR
;
1736 context
->return_code
= return_code
;
1738 audit_filter_syscall(current
, context
,
1739 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1740 audit_filter_inodes(current
, context
);
1741 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1745 context
->in_syscall
= 0;
1746 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1748 audit_free_module(context
);
1749 audit_free_names(context
);
1750 unroll_tree_refs(context
, NULL
, 0);
1751 audit_free_aux(context
);
1752 context
->aux
= NULL
;
1753 context
->aux_pids
= NULL
;
1754 context
->target_pid
= 0;
1755 context
->target_sid
= 0;
1756 context
->sockaddr_len
= 0;
1758 context
->fds
[0] = -1;
1759 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1760 kfree(context
->filterkey
);
1761 context
->filterkey
= NULL
;
1765 static inline void handle_one(const struct inode
*inode
)
1767 struct audit_context
*context
;
1768 struct audit_tree_refs
*p
;
1769 struct audit_chunk
*chunk
;
1771 if (likely(!inode
->i_fsnotify_marks
))
1773 context
= audit_context();
1775 count
= context
->tree_count
;
1777 chunk
= audit_tree_lookup(inode
);
1781 if (likely(put_tree_ref(context
, chunk
)))
1783 if (unlikely(!grow_tree_refs(context
))) {
1784 pr_warn("out of memory, audit has lost a tree reference\n");
1785 audit_set_auditable(context
);
1786 audit_put_chunk(chunk
);
1787 unroll_tree_refs(context
, p
, count
);
1790 put_tree_ref(context
, chunk
);
1793 static void handle_path(const struct dentry
*dentry
)
1795 struct audit_context
*context
;
1796 struct audit_tree_refs
*p
;
1797 const struct dentry
*d
, *parent
;
1798 struct audit_chunk
*drop
;
1802 context
= audit_context();
1804 count
= context
->tree_count
;
1809 seq
= read_seqbegin(&rename_lock
);
1811 struct inode
*inode
= d_backing_inode(d
);
1812 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
1813 struct audit_chunk
*chunk
;
1814 chunk
= audit_tree_lookup(inode
);
1816 if (unlikely(!put_tree_ref(context
, chunk
))) {
1822 parent
= d
->d_parent
;
1827 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1830 /* just a race with rename */
1831 unroll_tree_refs(context
, p
, count
);
1834 audit_put_chunk(drop
);
1835 if (grow_tree_refs(context
)) {
1836 /* OK, got more space */
1837 unroll_tree_refs(context
, p
, count
);
1841 pr_warn("out of memory, audit has lost a tree reference\n");
1842 unroll_tree_refs(context
, p
, count
);
1843 audit_set_auditable(context
);
1849 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1852 struct audit_names
*aname
;
1854 if (context
->name_count
< AUDIT_NAMES
) {
1855 aname
= &context
->preallocated_names
[context
->name_count
];
1856 memset(aname
, 0, sizeof(*aname
));
1858 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1861 aname
->should_free
= true;
1864 aname
->ino
= AUDIT_INO_UNSET
;
1866 list_add_tail(&aname
->list
, &context
->names_list
);
1868 context
->name_count
++;
1869 if (!context
->pwd
.dentry
)
1870 get_fs_pwd(current
->fs
, &context
->pwd
);
1875 * __audit_reusename - fill out filename with info from existing entry
1876 * @uptr: userland ptr to pathname
1878 * Search the audit_names list for the current audit context. If there is an
1879 * existing entry with a matching "uptr" then return the filename
1880 * associated with that audit_name. If not, return NULL.
1883 __audit_reusename(const __user
char *uptr
)
1885 struct audit_context
*context
= audit_context();
1886 struct audit_names
*n
;
1888 list_for_each_entry(n
, &context
->names_list
, list
) {
1891 if (n
->name
->uptr
== uptr
) {
1900 * __audit_getname - add a name to the list
1901 * @name: name to add
1903 * Add a name to the list of audit names for this context.
1904 * Called from fs/namei.c:getname().
1906 void __audit_getname(struct filename
*name
)
1908 struct audit_context
*context
= audit_context();
1909 struct audit_names
*n
;
1911 if (!context
->in_syscall
)
1914 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1919 n
->name_len
= AUDIT_NAME_FULL
;
1924 static inline int audit_copy_fcaps(struct audit_names
*name
,
1925 const struct dentry
*dentry
)
1927 struct cpu_vfs_cap_data caps
;
1933 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1937 name
->fcap
.permitted
= caps
.permitted
;
1938 name
->fcap
.inheritable
= caps
.inheritable
;
1939 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1940 name
->fcap
.rootid
= caps
.rootid
;
1941 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >>
1942 VFS_CAP_REVISION_SHIFT
;
1947 /* Copy inode data into an audit_names. */
1948 static void audit_copy_inode(struct audit_names
*name
,
1949 const struct dentry
*dentry
,
1950 struct inode
*inode
, unsigned int flags
)
1952 name
->ino
= inode
->i_ino
;
1953 name
->dev
= inode
->i_sb
->s_dev
;
1954 name
->mode
= inode
->i_mode
;
1955 name
->uid
= inode
->i_uid
;
1956 name
->gid
= inode
->i_gid
;
1957 name
->rdev
= inode
->i_rdev
;
1958 security_inode_getsecid(inode
, &name
->osid
);
1959 if (flags
& AUDIT_INODE_NOEVAL
) {
1960 name
->fcap_ver
= -1;
1963 audit_copy_fcaps(name
, dentry
);
1967 * __audit_inode - store the inode and device from a lookup
1968 * @name: name being audited
1969 * @dentry: dentry being audited
1970 * @flags: attributes for this particular entry
1972 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1975 struct audit_context
*context
= audit_context();
1976 struct inode
*inode
= d_backing_inode(dentry
);
1977 struct audit_names
*n
;
1978 bool parent
= flags
& AUDIT_INODE_PARENT
;
1979 struct audit_entry
*e
;
1980 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
1983 if (!context
->in_syscall
)
1987 list_for_each_entry_rcu(e
, list
, list
) {
1988 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
1989 struct audit_field
*f
= &e
->rule
.fields
[i
];
1991 if (f
->type
== AUDIT_FSTYPE
1992 && audit_comparator(inode
->i_sb
->s_magic
,
1994 && e
->rule
.action
== AUDIT_NEVER
) {
2006 * If we have a pointer to an audit_names entry already, then we can
2007 * just use it directly if the type is correct.
2012 if (n
->type
== AUDIT_TYPE_PARENT
||
2013 n
->type
== AUDIT_TYPE_UNKNOWN
)
2016 if (n
->type
!= AUDIT_TYPE_PARENT
)
2021 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2023 /* valid inode number, use that for the comparison */
2024 if (n
->ino
!= inode
->i_ino
||
2025 n
->dev
!= inode
->i_sb
->s_dev
)
2027 } else if (n
->name
) {
2028 /* inode number has not been set, check the name */
2029 if (strcmp(n
->name
->name
, name
->name
))
2032 /* no inode and no name (?!) ... this is odd ... */
2035 /* match the correct record type */
2037 if (n
->type
== AUDIT_TYPE_PARENT
||
2038 n
->type
== AUDIT_TYPE_UNKNOWN
)
2041 if (n
->type
!= AUDIT_TYPE_PARENT
)
2047 /* unable to find an entry with both a matching name and type */
2048 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2058 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2059 n
->type
= AUDIT_TYPE_PARENT
;
2060 if (flags
& AUDIT_INODE_HIDDEN
)
2063 n
->name_len
= AUDIT_NAME_FULL
;
2064 n
->type
= AUDIT_TYPE_NORMAL
;
2066 handle_path(dentry
);
2067 audit_copy_inode(n
, dentry
, inode
, flags
& AUDIT_INODE_NOEVAL
);
2070 void __audit_file(const struct file
*file
)
2072 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
2076 * __audit_inode_child - collect inode info for created/removed objects
2077 * @parent: inode of dentry parent
2078 * @dentry: dentry being audited
2079 * @type: AUDIT_TYPE_* value that we're looking for
2081 * For syscalls that create or remove filesystem objects, audit_inode
2082 * can only collect information for the filesystem object's parent.
2083 * This call updates the audit context with the child's information.
2084 * Syscalls that create a new filesystem object must be hooked after
2085 * the object is created. Syscalls that remove a filesystem object
2086 * must be hooked prior, in order to capture the target inode during
2087 * unsuccessful attempts.
2089 void __audit_inode_child(struct inode
*parent
,
2090 const struct dentry
*dentry
,
2091 const unsigned char type
)
2093 struct audit_context
*context
= audit_context();
2094 struct inode
*inode
= d_backing_inode(dentry
);
2095 const struct qstr
*dname
= &dentry
->d_name
;
2096 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2097 struct audit_entry
*e
;
2098 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
2101 if (!context
->in_syscall
)
2105 list_for_each_entry_rcu(e
, list
, list
) {
2106 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
2107 struct audit_field
*f
= &e
->rule
.fields
[i
];
2109 if (f
->type
== AUDIT_FSTYPE
2110 && audit_comparator(parent
->i_sb
->s_magic
,
2112 && e
->rule
.action
== AUDIT_NEVER
) {
2123 /* look for a parent entry first */
2124 list_for_each_entry(n
, &context
->names_list
, list
) {
2126 (n
->type
!= AUDIT_TYPE_PARENT
&&
2127 n
->type
!= AUDIT_TYPE_UNKNOWN
))
2130 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
2131 !audit_compare_dname_path(dname
,
2132 n
->name
->name
, n
->name_len
)) {
2133 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2134 n
->type
= AUDIT_TYPE_PARENT
;
2140 /* is there a matching child entry? */
2141 list_for_each_entry(n
, &context
->names_list
, list
) {
2142 /* can only match entries that have a name */
2144 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
2147 if (!strcmp(dname
->name
, n
->name
->name
) ||
2148 !audit_compare_dname_path(dname
, n
->name
->name
,
2150 found_parent
->name_len
:
2152 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2159 if (!found_parent
) {
2160 /* create a new, "anonymous" parent record */
2161 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2164 audit_copy_inode(n
, NULL
, parent
, 0);
2168 found_child
= audit_alloc_name(context
, type
);
2172 /* Re-use the name belonging to the slot for a matching parent
2173 * directory. All names for this context are relinquished in
2174 * audit_free_names() */
2176 found_child
->name
= found_parent
->name
;
2177 found_child
->name_len
= AUDIT_NAME_FULL
;
2178 found_child
->name
->refcnt
++;
2183 audit_copy_inode(found_child
, dentry
, inode
, 0);
2185 found_child
->ino
= AUDIT_INO_UNSET
;
2187 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2190 * auditsc_get_stamp - get local copies of audit_context values
2191 * @ctx: audit_context for the task
2192 * @t: timespec64 to store time recorded in the audit_context
2193 * @serial: serial value that is recorded in the audit_context
2195 * Also sets the context as auditable.
2197 int auditsc_get_stamp(struct audit_context
*ctx
,
2198 struct timespec64
*t
, unsigned int *serial
)
2200 if (!ctx
->in_syscall
)
2203 ctx
->serial
= audit_serial();
2204 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2205 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2206 *serial
= ctx
->serial
;
2209 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2215 * __audit_mq_open - record audit data for a POSIX MQ open
2218 * @attr: queue attributes
2221 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2223 struct audit_context
*context
= audit_context();
2226 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2228 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2230 context
->mq_open
.oflag
= oflag
;
2231 context
->mq_open
.mode
= mode
;
2233 context
->type
= AUDIT_MQ_OPEN
;
2237 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2238 * @mqdes: MQ descriptor
2239 * @msg_len: Message length
2240 * @msg_prio: Message priority
2241 * @abs_timeout: Message timeout in absolute time
2244 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2245 const struct timespec64
*abs_timeout
)
2247 struct audit_context
*context
= audit_context();
2248 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2251 memcpy(p
, abs_timeout
, sizeof(*p
));
2253 memset(p
, 0, sizeof(*p
));
2255 context
->mq_sendrecv
.mqdes
= mqdes
;
2256 context
->mq_sendrecv
.msg_len
= msg_len
;
2257 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2259 context
->type
= AUDIT_MQ_SENDRECV
;
2263 * __audit_mq_notify - record audit data for a POSIX MQ notify
2264 * @mqdes: MQ descriptor
2265 * @notification: Notification event
2269 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2271 struct audit_context
*context
= audit_context();
2274 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2276 context
->mq_notify
.sigev_signo
= 0;
2278 context
->mq_notify
.mqdes
= mqdes
;
2279 context
->type
= AUDIT_MQ_NOTIFY
;
2283 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2284 * @mqdes: MQ descriptor
2288 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2290 struct audit_context
*context
= audit_context();
2291 context
->mq_getsetattr
.mqdes
= mqdes
;
2292 context
->mq_getsetattr
.mqstat
= *mqstat
;
2293 context
->type
= AUDIT_MQ_GETSETATTR
;
2297 * __audit_ipc_obj - record audit data for ipc object
2298 * @ipcp: ipc permissions
2301 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2303 struct audit_context
*context
= audit_context();
2304 context
->ipc
.uid
= ipcp
->uid
;
2305 context
->ipc
.gid
= ipcp
->gid
;
2306 context
->ipc
.mode
= ipcp
->mode
;
2307 context
->ipc
.has_perm
= 0;
2308 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2309 context
->type
= AUDIT_IPC
;
2313 * __audit_ipc_set_perm - record audit data for new ipc permissions
2314 * @qbytes: msgq bytes
2315 * @uid: msgq user id
2316 * @gid: msgq group id
2317 * @mode: msgq mode (permissions)
2319 * Called only after audit_ipc_obj().
2321 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2323 struct audit_context
*context
= audit_context();
2325 context
->ipc
.qbytes
= qbytes
;
2326 context
->ipc
.perm_uid
= uid
;
2327 context
->ipc
.perm_gid
= gid
;
2328 context
->ipc
.perm_mode
= mode
;
2329 context
->ipc
.has_perm
= 1;
2332 void __audit_bprm(struct linux_binprm
*bprm
)
2334 struct audit_context
*context
= audit_context();
2336 context
->type
= AUDIT_EXECVE
;
2337 context
->execve
.argc
= bprm
->argc
;
2342 * __audit_socketcall - record audit data for sys_socketcall
2343 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2347 int __audit_socketcall(int nargs
, unsigned long *args
)
2349 struct audit_context
*context
= audit_context();
2351 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2353 context
->type
= AUDIT_SOCKETCALL
;
2354 context
->socketcall
.nargs
= nargs
;
2355 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2360 * __audit_fd_pair - record audit data for pipe and socketpair
2361 * @fd1: the first file descriptor
2362 * @fd2: the second file descriptor
2365 void __audit_fd_pair(int fd1
, int fd2
)
2367 struct audit_context
*context
= audit_context();
2368 context
->fds
[0] = fd1
;
2369 context
->fds
[1] = fd2
;
2373 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2374 * @len: data length in user space
2375 * @a: data address in kernel space
2377 * Returns 0 for success or NULL context or < 0 on error.
2379 int __audit_sockaddr(int len
, void *a
)
2381 struct audit_context
*context
= audit_context();
2383 if (!context
->sockaddr
) {
2384 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2387 context
->sockaddr
= p
;
2390 context
->sockaddr_len
= len
;
2391 memcpy(context
->sockaddr
, a
, len
);
2395 void __audit_ptrace(struct task_struct
*t
)
2397 struct audit_context
*context
= audit_context();
2399 context
->target_pid
= task_tgid_nr(t
);
2400 context
->target_auid
= audit_get_loginuid(t
);
2401 context
->target_uid
= task_uid(t
);
2402 context
->target_sessionid
= audit_get_sessionid(t
);
2403 security_task_getsecid(t
, &context
->target_sid
);
2404 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2408 * audit_signal_info_syscall - record signal info for syscalls
2409 * @t: task being signaled
2411 * If the audit subsystem is being terminated, record the task (pid)
2412 * and uid that is doing that.
2414 int audit_signal_info_syscall(struct task_struct
*t
)
2416 struct audit_aux_data_pids
*axp
;
2417 struct audit_context
*ctx
= audit_context();
2418 kuid_t t_uid
= task_uid(t
);
2420 if (!audit_signals
|| audit_dummy_context())
2423 /* optimize the common case by putting first signal recipient directly
2424 * in audit_context */
2425 if (!ctx
->target_pid
) {
2426 ctx
->target_pid
= task_tgid_nr(t
);
2427 ctx
->target_auid
= audit_get_loginuid(t
);
2428 ctx
->target_uid
= t_uid
;
2429 ctx
->target_sessionid
= audit_get_sessionid(t
);
2430 security_task_getsecid(t
, &ctx
->target_sid
);
2431 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2435 axp
= (void *)ctx
->aux_pids
;
2436 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2437 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2441 axp
->d
.type
= AUDIT_OBJ_PID
;
2442 axp
->d
.next
= ctx
->aux_pids
;
2443 ctx
->aux_pids
= (void *)axp
;
2445 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2447 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2448 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2449 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2450 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2451 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2452 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2459 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2460 * @bprm: pointer to the bprm being processed
2461 * @new: the proposed new credentials
2462 * @old: the old credentials
2464 * Simply check if the proc already has the caps given by the file and if not
2465 * store the priv escalation info for later auditing at the end of the syscall
2469 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2470 const struct cred
*new, const struct cred
*old
)
2472 struct audit_aux_data_bprm_fcaps
*ax
;
2473 struct audit_context
*context
= audit_context();
2474 struct cpu_vfs_cap_data vcaps
;
2476 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2480 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2481 ax
->d
.next
= context
->aux
;
2482 context
->aux
= (void *)ax
;
2484 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2486 ax
->fcap
.permitted
= vcaps
.permitted
;
2487 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2488 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2489 ax
->fcap
.rootid
= vcaps
.rootid
;
2490 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2492 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2493 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2494 ax
->old_pcap
.effective
= old
->cap_effective
;
2495 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2497 ax
->new_pcap
.permitted
= new->cap_permitted
;
2498 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2499 ax
->new_pcap
.effective
= new->cap_effective
;
2500 ax
->new_pcap
.ambient
= new->cap_ambient
;
2505 * __audit_log_capset - store information about the arguments to the capset syscall
2506 * @new: the new credentials
2507 * @old: the old (current) credentials
2509 * Record the arguments userspace sent to sys_capset for later printing by the
2510 * audit system if applicable
2512 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2514 struct audit_context
*context
= audit_context();
2515 context
->capset
.pid
= task_tgid_nr(current
);
2516 context
->capset
.cap
.effective
= new->cap_effective
;
2517 context
->capset
.cap
.inheritable
= new->cap_effective
;
2518 context
->capset
.cap
.permitted
= new->cap_permitted
;
2519 context
->capset
.cap
.ambient
= new->cap_ambient
;
2520 context
->type
= AUDIT_CAPSET
;
2523 void __audit_mmap_fd(int fd
, int flags
)
2525 struct audit_context
*context
= audit_context();
2526 context
->mmap
.fd
= fd
;
2527 context
->mmap
.flags
= flags
;
2528 context
->type
= AUDIT_MMAP
;
2531 void __audit_log_kern_module(char *name
)
2533 struct audit_context
*context
= audit_context();
2535 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2536 if (!context
->module
.name
)
2537 audit_log_lost("out of memory in __audit_log_kern_module");
2538 context
->type
= AUDIT_KERN_MODULE
;
2541 void __audit_fanotify(unsigned int response
)
2543 audit_log(audit_context(), GFP_KERNEL
,
2544 AUDIT_FANOTIFY
, "resp=%u", response
);
2547 void __audit_tk_injoffset(struct timespec64 offset
)
2549 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_INJOFFSET
,
2550 "sec=%lli nsec=%li",
2551 (long long)offset
.tv_sec
, offset
.tv_nsec
);
2554 static void audit_log_ntp_val(const struct audit_ntp_data
*ad
,
2555 const char *op
, enum audit_ntp_type type
)
2557 const struct audit_ntp_val
*val
= &ad
->vals
[type
];
2559 if (val
->newval
== val
->oldval
)
2562 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_ADJNTPVAL
,
2563 "op=%s old=%lli new=%lli", op
, val
->oldval
, val
->newval
);
2566 void __audit_ntp_log(const struct audit_ntp_data
*ad
)
2568 audit_log_ntp_val(ad
, "offset", AUDIT_NTP_OFFSET
);
2569 audit_log_ntp_val(ad
, "freq", AUDIT_NTP_FREQ
);
2570 audit_log_ntp_val(ad
, "status", AUDIT_NTP_STATUS
);
2571 audit_log_ntp_val(ad
, "tai", AUDIT_NTP_TAI
);
2572 audit_log_ntp_val(ad
, "tick", AUDIT_NTP_TICK
);
2573 audit_log_ntp_val(ad
, "adjust", AUDIT_NTP_ADJUST
);
2576 void __audit_log_nfcfg(const char *name
, u8 af
, unsigned int nentries
,
2577 enum audit_nfcfgop op
, gfp_t gfp
)
2579 struct audit_buffer
*ab
;
2580 char comm
[sizeof(current
->comm
)];
2582 ab
= audit_log_start(audit_context(), gfp
, AUDIT_NETFILTER_CFG
);
2585 audit_log_format(ab
, "table=%s family=%u entries=%u op=%s",
2586 name
, af
, nentries
, audit_nfcfgs
[op
].s
);
2588 audit_log_format(ab
, " pid=%u", task_pid_nr(current
));
2589 audit_log_task_context(ab
); /* subj= */
2590 audit_log_format(ab
, " comm=");
2591 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2594 EXPORT_SYMBOL_GPL(__audit_log_nfcfg
);
2596 static void audit_log_task(struct audit_buffer
*ab
)
2600 unsigned int sessionid
;
2601 char comm
[sizeof(current
->comm
)];
2603 auid
= audit_get_loginuid(current
);
2604 sessionid
= audit_get_sessionid(current
);
2605 current_uid_gid(&uid
, &gid
);
2607 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2608 from_kuid(&init_user_ns
, auid
),
2609 from_kuid(&init_user_ns
, uid
),
2610 from_kgid(&init_user_ns
, gid
),
2612 audit_log_task_context(ab
);
2613 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2614 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2615 audit_log_d_path_exe(ab
, current
->mm
);
2619 * audit_core_dumps - record information about processes that end abnormally
2620 * @signr: signal value
2622 * If a process ends with a core dump, something fishy is going on and we
2623 * should record the event for investigation.
2625 void audit_core_dumps(long signr
)
2627 struct audit_buffer
*ab
;
2632 if (signr
== SIGQUIT
) /* don't care for those */
2635 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2639 audit_log_format(ab
, " sig=%ld res=1", signr
);
2644 * audit_seccomp - record information about a seccomp action
2645 * @syscall: syscall number
2646 * @signr: signal value
2647 * @code: the seccomp action
2649 * Record the information associated with a seccomp action. Event filtering for
2650 * seccomp actions that are not to be logged is done in seccomp_log().
2651 * Therefore, this function forces auditing independent of the audit_enabled
2652 * and dummy context state because seccomp actions should be logged even when
2653 * audit is not in use.
2655 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
2657 struct audit_buffer
*ab
;
2659 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
2663 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2664 signr
, syscall_get_arch(current
), syscall
,
2665 in_compat_syscall(), KSTK_EIP(current
), code
);
2669 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
2672 struct audit_buffer
*ab
;
2677 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
2678 AUDIT_CONFIG_CHANGE
);
2682 audit_log_format(ab
,
2683 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2684 names
, old_names
, res
);
2688 struct list_head
*audit_killed_trees(void)
2690 struct audit_context
*ctx
= audit_context();
2691 if (likely(!ctx
|| !ctx
->in_syscall
))
2693 return &ctx
->killed_trees
;