WIP FPC-III support
[linux/fpc-iii.git] / kernel / bpf / ringbuf.c
blobf25b719ac786811c8d1f06b849e42422ccfba70e
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <uapi/linux/btf.h>
13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
16 #define RINGBUF_PGOFF \
17 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
18 /* consumer page and producer page */
19 #define RINGBUF_POS_PAGES 2
21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23 /* Maximum size of ring buffer area is limited by 32-bit page offset within
24 * record header, counted in pages. Reserve 8 bits for extensibility, and take
25 * into account few extra pages for consumer/producer pages and
26 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
27 * ring buffer.
29 #define RINGBUF_MAX_DATA_SZ \
30 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32 struct bpf_ringbuf {
33 wait_queue_head_t waitq;
34 struct irq_work work;
35 u64 mask;
36 struct page **pages;
37 int nr_pages;
38 spinlock_t spinlock ____cacheline_aligned_in_smp;
39 /* Consumer and producer counters are put into separate pages to allow
40 * mapping consumer page as r/w, but restrict producer page to r/o.
41 * This protects producer position from being modified by user-space
42 * application and ruining in-kernel position tracking.
44 unsigned long consumer_pos __aligned(PAGE_SIZE);
45 unsigned long producer_pos __aligned(PAGE_SIZE);
46 char data[] __aligned(PAGE_SIZE);
49 struct bpf_ringbuf_map {
50 struct bpf_map map;
51 struct bpf_ringbuf *rb;
54 /* 8-byte ring buffer record header structure */
55 struct bpf_ringbuf_hdr {
56 u32 len;
57 u32 pg_off;
60 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
62 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
63 __GFP_NOWARN | __GFP_ZERO;
64 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
65 int nr_data_pages = data_sz >> PAGE_SHIFT;
66 int nr_pages = nr_meta_pages + nr_data_pages;
67 struct page **pages, *page;
68 struct bpf_ringbuf *rb;
69 size_t array_size;
70 int i;
72 /* Each data page is mapped twice to allow "virtual"
73 * continuous read of samples wrapping around the end of ring
74 * buffer area:
75 * ------------------------------------------------------
76 * | meta pages | real data pages | same data pages |
77 * ------------------------------------------------------
78 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
79 * ------------------------------------------------------
80 * | | TA DA | TA DA |
81 * ------------------------------------------------------
82 * ^^^^^^^
83 * |
84 * Here, no need to worry about special handling of wrapped-around
85 * data due to double-mapped data pages. This works both in kernel and
86 * when mmap()'ed in user-space, simplifying both kernel and
87 * user-space implementations significantly.
89 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
90 pages = bpf_map_area_alloc(array_size, numa_node);
91 if (!pages)
92 return NULL;
94 for (i = 0; i < nr_pages; i++) {
95 page = alloc_pages_node(numa_node, flags, 0);
96 if (!page) {
97 nr_pages = i;
98 goto err_free_pages;
100 pages[i] = page;
101 if (i >= nr_meta_pages)
102 pages[nr_data_pages + i] = page;
105 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
106 VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
107 if (rb) {
108 rb->pages = pages;
109 rb->nr_pages = nr_pages;
110 return rb;
113 err_free_pages:
114 for (i = 0; i < nr_pages; i++)
115 __free_page(pages[i]);
116 kvfree(pages);
117 return NULL;
120 static void bpf_ringbuf_notify(struct irq_work *work)
122 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
124 wake_up_all(&rb->waitq);
127 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
129 struct bpf_ringbuf *rb;
131 rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
132 if (!rb)
133 return NULL;
135 spin_lock_init(&rb->spinlock);
136 init_waitqueue_head(&rb->waitq);
137 init_irq_work(&rb->work, bpf_ringbuf_notify);
139 rb->mask = data_sz - 1;
140 rb->consumer_pos = 0;
141 rb->producer_pos = 0;
143 return rb;
146 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
148 struct bpf_ringbuf_map *rb_map;
150 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
151 return ERR_PTR(-EINVAL);
153 if (attr->key_size || attr->value_size ||
154 !is_power_of_2(attr->max_entries) ||
155 !PAGE_ALIGNED(attr->max_entries))
156 return ERR_PTR(-EINVAL);
158 #ifdef CONFIG_64BIT
159 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
160 if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
161 return ERR_PTR(-E2BIG);
162 #endif
164 rb_map = kzalloc(sizeof(*rb_map), GFP_USER | __GFP_ACCOUNT);
165 if (!rb_map)
166 return ERR_PTR(-ENOMEM);
168 bpf_map_init_from_attr(&rb_map->map, attr);
170 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
171 if (!rb_map->rb) {
172 kfree(rb_map);
173 return ERR_PTR(-ENOMEM);
176 return &rb_map->map;
179 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
181 /* copy pages pointer and nr_pages to local variable, as we are going
182 * to unmap rb itself with vunmap() below
184 struct page **pages = rb->pages;
185 int i, nr_pages = rb->nr_pages;
187 vunmap(rb);
188 for (i = 0; i < nr_pages; i++)
189 __free_page(pages[i]);
190 kvfree(pages);
193 static void ringbuf_map_free(struct bpf_map *map)
195 struct bpf_ringbuf_map *rb_map;
197 rb_map = container_of(map, struct bpf_ringbuf_map, map);
198 bpf_ringbuf_free(rb_map->rb);
199 kfree(rb_map);
202 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
204 return ERR_PTR(-ENOTSUPP);
207 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
208 u64 flags)
210 return -ENOTSUPP;
213 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
215 return -ENOTSUPP;
218 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
219 void *next_key)
221 return -ENOTSUPP;
224 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb)
226 size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT;
228 /* consumer page + producer page + 2 x data pages */
229 return RINGBUF_POS_PAGES + 2 * data_pages;
232 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
234 struct bpf_ringbuf_map *rb_map;
235 size_t mmap_sz;
237 rb_map = container_of(map, struct bpf_ringbuf_map, map);
238 mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT;
240 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz)
241 return -EINVAL;
243 return remap_vmalloc_range(vma, rb_map->rb,
244 vma->vm_pgoff + RINGBUF_PGOFF);
247 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
249 unsigned long cons_pos, prod_pos;
251 cons_pos = smp_load_acquire(&rb->consumer_pos);
252 prod_pos = smp_load_acquire(&rb->producer_pos);
253 return prod_pos - cons_pos;
256 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
257 struct poll_table_struct *pts)
259 struct bpf_ringbuf_map *rb_map;
261 rb_map = container_of(map, struct bpf_ringbuf_map, map);
262 poll_wait(filp, &rb_map->rb->waitq, pts);
264 if (ringbuf_avail_data_sz(rb_map->rb))
265 return EPOLLIN | EPOLLRDNORM;
266 return 0;
269 static int ringbuf_map_btf_id;
270 const struct bpf_map_ops ringbuf_map_ops = {
271 .map_meta_equal = bpf_map_meta_equal,
272 .map_alloc = ringbuf_map_alloc,
273 .map_free = ringbuf_map_free,
274 .map_mmap = ringbuf_map_mmap,
275 .map_poll = ringbuf_map_poll,
276 .map_lookup_elem = ringbuf_map_lookup_elem,
277 .map_update_elem = ringbuf_map_update_elem,
278 .map_delete_elem = ringbuf_map_delete_elem,
279 .map_get_next_key = ringbuf_map_get_next_key,
280 .map_btf_name = "bpf_ringbuf_map",
281 .map_btf_id = &ringbuf_map_btf_id,
284 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
285 * calculate offset from record metadata to ring buffer in pages, rounded
286 * down. This page offset is stored as part of record metadata and allows to
287 * restore struct bpf_ringbuf * from record pointer. This page offset is
288 * stored at offset 4 of record metadata header.
290 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
291 struct bpf_ringbuf_hdr *hdr)
293 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
296 /* Given pointer to ring buffer record header, restore pointer to struct
297 * bpf_ringbuf itself by using page offset stored at offset 4
299 static struct bpf_ringbuf *
300 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
302 unsigned long addr = (unsigned long)(void *)hdr;
303 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
305 return (void*)((addr & PAGE_MASK) - off);
308 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
310 unsigned long cons_pos, prod_pos, new_prod_pos, flags;
311 u32 len, pg_off;
312 struct bpf_ringbuf_hdr *hdr;
314 if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
315 return NULL;
317 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
318 cons_pos = smp_load_acquire(&rb->consumer_pos);
320 if (in_nmi()) {
321 if (!spin_trylock_irqsave(&rb->spinlock, flags))
322 return NULL;
323 } else {
324 spin_lock_irqsave(&rb->spinlock, flags);
327 prod_pos = rb->producer_pos;
328 new_prod_pos = prod_pos + len;
330 /* check for out of ringbuf space by ensuring producer position
331 * doesn't advance more than (ringbuf_size - 1) ahead
333 if (new_prod_pos - cons_pos > rb->mask) {
334 spin_unlock_irqrestore(&rb->spinlock, flags);
335 return NULL;
338 hdr = (void *)rb->data + (prod_pos & rb->mask);
339 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
340 hdr->len = size | BPF_RINGBUF_BUSY_BIT;
341 hdr->pg_off = pg_off;
343 /* pairs with consumer's smp_load_acquire() */
344 smp_store_release(&rb->producer_pos, new_prod_pos);
346 spin_unlock_irqrestore(&rb->spinlock, flags);
348 return (void *)hdr + BPF_RINGBUF_HDR_SZ;
351 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
353 struct bpf_ringbuf_map *rb_map;
355 if (unlikely(flags))
356 return 0;
358 rb_map = container_of(map, struct bpf_ringbuf_map, map);
359 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
362 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
363 .func = bpf_ringbuf_reserve,
364 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
365 .arg1_type = ARG_CONST_MAP_PTR,
366 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
367 .arg3_type = ARG_ANYTHING,
370 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
372 unsigned long rec_pos, cons_pos;
373 struct bpf_ringbuf_hdr *hdr;
374 struct bpf_ringbuf *rb;
375 u32 new_len;
377 hdr = sample - BPF_RINGBUF_HDR_SZ;
378 rb = bpf_ringbuf_restore_from_rec(hdr);
379 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
380 if (discard)
381 new_len |= BPF_RINGBUF_DISCARD_BIT;
383 /* update record header with correct final size prefix */
384 xchg(&hdr->len, new_len);
386 /* if consumer caught up and is waiting for our record, notify about
387 * new data availability
389 rec_pos = (void *)hdr - (void *)rb->data;
390 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
392 if (flags & BPF_RB_FORCE_WAKEUP)
393 irq_work_queue(&rb->work);
394 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
395 irq_work_queue(&rb->work);
398 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
400 bpf_ringbuf_commit(sample, flags, false /* discard */);
401 return 0;
404 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
405 .func = bpf_ringbuf_submit,
406 .ret_type = RET_VOID,
407 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
408 .arg2_type = ARG_ANYTHING,
411 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
413 bpf_ringbuf_commit(sample, flags, true /* discard */);
414 return 0;
417 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
418 .func = bpf_ringbuf_discard,
419 .ret_type = RET_VOID,
420 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
421 .arg2_type = ARG_ANYTHING,
424 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
425 u64, flags)
427 struct bpf_ringbuf_map *rb_map;
428 void *rec;
430 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
431 return -EINVAL;
433 rb_map = container_of(map, struct bpf_ringbuf_map, map);
434 rec = __bpf_ringbuf_reserve(rb_map->rb, size);
435 if (!rec)
436 return -EAGAIN;
438 memcpy(rec, data, size);
439 bpf_ringbuf_commit(rec, flags, false /* discard */);
440 return 0;
443 const struct bpf_func_proto bpf_ringbuf_output_proto = {
444 .func = bpf_ringbuf_output,
445 .ret_type = RET_INTEGER,
446 .arg1_type = ARG_CONST_MAP_PTR,
447 .arg2_type = ARG_PTR_TO_MEM,
448 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
449 .arg4_type = ARG_ANYTHING,
452 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
454 struct bpf_ringbuf *rb;
456 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
458 switch (flags) {
459 case BPF_RB_AVAIL_DATA:
460 return ringbuf_avail_data_sz(rb);
461 case BPF_RB_RING_SIZE:
462 return rb->mask + 1;
463 case BPF_RB_CONS_POS:
464 return smp_load_acquire(&rb->consumer_pos);
465 case BPF_RB_PROD_POS:
466 return smp_load_acquire(&rb->producer_pos);
467 default:
468 return 0;
472 const struct bpf_func_proto bpf_ringbuf_query_proto = {
473 .func = bpf_ringbuf_query,
474 .ret_type = RET_INTEGER,
475 .arg1_type = ARG_CONST_MAP_PTR,
476 .arg2_type = ARG_ANYTHING,