2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
56 struct cpuhp_cpu_state
{
57 enum cpuhp_state state
;
58 enum cpuhp_state target
;
59 enum cpuhp_state fail
;
61 struct task_struct
*thread
;
66 struct hlist_node
*node
;
67 struct hlist_node
*last
;
68 enum cpuhp_state cb_state
;
70 struct completion done_up
;
71 struct completion done_down
;
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
76 .fail
= CPUHP_INVALID
,
80 cpumask_t cpus_booted_once_mask
;
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map
=
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
86 static struct lockdep_map cpuhp_state_down_map
=
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
90 static inline void cpuhp_lock_acquire(bool bringup
)
92 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
95 static inline void cpuhp_lock_release(bool bringup
)
97 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
101 static inline void cpuhp_lock_acquire(bool bringup
) { }
102 static inline void cpuhp_lock_release(bool bringup
) { }
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
116 int (*single
)(unsigned int cpu
);
117 int (*multi
)(unsigned int cpu
,
118 struct hlist_node
*node
);
121 int (*single
)(unsigned int cpu
);
122 int (*multi
)(unsigned int cpu
,
123 struct hlist_node
*node
);
125 struct hlist_head list
;
130 static DEFINE_MUTEX(cpuhp_state_mutex
);
131 static struct cpuhp_step cpuhp_hp_states
[];
133 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
135 return cpuhp_hp_states
+ state
;
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
146 * Called from cpu hotplug and from the state register machinery.
148 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
149 bool bringup
, struct hlist_node
*node
,
150 struct hlist_node
**lastp
)
152 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
153 struct cpuhp_step
*step
= cpuhp_get_step(state
);
154 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
155 int (*cb
)(unsigned int cpu
);
158 if (st
->fail
== state
) {
159 st
->fail
= CPUHP_INVALID
;
161 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
167 if (!step
->multi_instance
) {
168 WARN_ON_ONCE(lastp
&& *lastp
);
169 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
172 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
174 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
177 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
181 /* Single invocation for instance add/remove */
183 WARN_ON_ONCE(lastp
&& *lastp
);
184 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
185 ret
= cbm(cpu
, node
);
186 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
190 /* State transition. Invoke on all instances */
192 hlist_for_each(node
, &step
->list
) {
193 if (lastp
&& node
== *lastp
)
196 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
197 ret
= cbm(cpu
, node
);
198 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
212 /* Rollback the instances if one failed */
213 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
217 hlist_for_each(node
, &step
->list
) {
221 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
222 ret
= cbm(cpu
, node
);
223 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
225 * Rollback must not fail,
233 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
239 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
244 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
245 wait_for_completion(done
);
248 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
250 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
259 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock
);
264 bool cpuhp_tasks_frozen
;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
271 void cpu_maps_update_begin(void)
273 mutex_lock(&cpu_add_remove_lock
);
276 void cpu_maps_update_done(void)
278 mutex_unlock(&cpu_add_remove_lock
);
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
285 static int cpu_hotplug_disabled
;
287 #ifdef CONFIG_HOTPLUG_CPU
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
291 void cpus_read_lock(void)
293 percpu_down_read(&cpu_hotplug_lock
);
295 EXPORT_SYMBOL_GPL(cpus_read_lock
);
297 int cpus_read_trylock(void)
299 return percpu_down_read_trylock(&cpu_hotplug_lock
);
301 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
303 void cpus_read_unlock(void)
305 percpu_up_read(&cpu_hotplug_lock
);
307 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
309 void cpus_write_lock(void)
311 percpu_down_write(&cpu_hotplug_lock
);
314 void cpus_write_unlock(void)
316 percpu_up_write(&cpu_hotplug_lock
);
319 void lockdep_assert_cpus_held(void)
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
327 if (system_state
< SYSTEM_RUNNING
)
330 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
333 static void lockdep_acquire_cpus_lock(void)
335 rwsem_acquire(&cpu_hotplug_lock
.dep_map
, 0, 0, _THIS_IP_
);
338 static void lockdep_release_cpus_lock(void)
340 rwsem_release(&cpu_hotplug_lock
.dep_map
, _THIS_IP_
);
344 * Wait for currently running CPU hotplug operations to complete (if any) and
345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347 * hotplug path before performing hotplug operations. So acquiring that lock
348 * guarantees mutual exclusion from any currently running hotplug operations.
350 void cpu_hotplug_disable(void)
352 cpu_maps_update_begin();
353 cpu_hotplug_disabled
++;
354 cpu_maps_update_done();
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
358 static void __cpu_hotplug_enable(void)
360 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
362 cpu_hotplug_disabled
--;
365 void cpu_hotplug_enable(void)
367 cpu_maps_update_begin();
368 __cpu_hotplug_enable();
369 cpu_maps_update_done();
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
375 static void lockdep_acquire_cpus_lock(void)
379 static void lockdep_release_cpus_lock(void)
383 #endif /* CONFIG_HOTPLUG_CPU */
386 * Architectures that need SMT-specific errata handling during SMT hotplug
387 * should override this.
389 void __weak
arch_smt_update(void) { }
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
394 void __init
cpu_smt_disable(bool force
)
396 if (!cpu_smt_possible())
400 pr_info("SMT: Force disabled\n");
401 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
403 pr_info("SMT: disabled\n");
404 cpu_smt_control
= CPU_SMT_DISABLED
;
409 * The decision whether SMT is supported can only be done after the full
410 * CPU identification. Called from architecture code.
412 void __init
cpu_smt_check_topology(void)
414 if (!topology_smt_supported())
415 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
418 static int __init
smt_cmdline_disable(char *str
)
420 cpu_smt_disable(str
&& !strcmp(str
, "force"));
423 early_param("nosmt", smt_cmdline_disable
);
425 static inline bool cpu_smt_allowed(unsigned int cpu
)
427 if (cpu_smt_control
== CPU_SMT_ENABLED
)
430 if (topology_is_primary_thread(cpu
))
434 * On x86 it's required to boot all logical CPUs at least once so
435 * that the init code can get a chance to set CR4.MCE on each
436 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
437 * core will shutdown the machine.
439 return !cpumask_test_cpu(cpu
, &cpus_booted_once_mask
);
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443 bool cpu_smt_possible(void)
445 return cpu_smt_control
!= CPU_SMT_FORCE_DISABLED
&&
446 cpu_smt_control
!= CPU_SMT_NOT_SUPPORTED
;
448 EXPORT_SYMBOL_GPL(cpu_smt_possible
);
450 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
453 static inline enum cpuhp_state
454 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
456 enum cpuhp_state prev_state
= st
->state
;
458 st
->rollback
= false;
463 st
->bringup
= st
->state
< target
;
469 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
474 * If we have st->last we need to undo partial multi_instance of this
475 * state first. Otherwise start undo at the previous state.
484 st
->target
= prev_state
;
485 st
->bringup
= !st
->bringup
;
488 /* Regular hotplug invocation of the AP hotplug thread */
489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
491 if (!st
->single
&& st
->state
== st
->target
)
496 * Make sure the above stores are visible before should_run becomes
497 * true. Paired with the mb() above in cpuhp_thread_fun()
500 st
->should_run
= true;
501 wake_up_process(st
->thread
);
502 wait_for_ap_thread(st
, st
->bringup
);
505 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
507 enum cpuhp_state prev_state
;
510 prev_state
= cpuhp_set_state(st
, target
);
512 if ((ret
= st
->result
)) {
513 cpuhp_reset_state(st
, prev_state
);
520 static int bringup_wait_for_ap(unsigned int cpu
)
522 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 wait_for_ap_thread(st
, true);
526 if (WARN_ON_ONCE((!cpu_online(cpu
))))
529 /* Unpark the hotplug thread of the target cpu */
530 kthread_unpark(st
->thread
);
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
539 if (!cpu_smt_allowed(cpu
))
542 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
545 return cpuhp_kick_ap(st
, st
->target
);
548 static int bringup_cpu(unsigned int cpu
)
550 struct task_struct
*idle
= idle_thread_get(cpu
);
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
560 /* Arch-specific enabling code. */
561 ret
= __cpu_up(cpu
, idle
);
565 return bringup_wait_for_ap(cpu
);
568 static int finish_cpu(unsigned int cpu
)
570 struct task_struct
*idle
= idle_thread_get(cpu
);
571 struct mm_struct
*mm
= idle
->active_mm
;
574 * idle_task_exit() will have switched to &init_mm, now
575 * clean up any remaining active_mm state.
578 idle
->active_mm
= &init_mm
;
584 * Hotplug state machine related functions
587 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
589 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
590 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state
*st
)
595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
))
598 * When CPU hotplug is disabled, then taking the CPU down is not
599 * possible because takedown_cpu() and the architecture and
600 * subsystem specific mechanisms are not available. So the CPU
601 * which would be completely unplugged again needs to stay around
602 * in the current state.
604 return st
->state
<= CPUHP_BRINGUP_CPU
;
607 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
608 enum cpuhp_state target
)
610 enum cpuhp_state prev_state
= st
->state
;
613 while (st
->state
< target
) {
615 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
617 if (can_rollback_cpu(st
)) {
618 st
->target
= prev_state
;
619 undo_cpu_up(cpu
, st
);
628 * The cpu hotplug threads manage the bringup and teardown of the cpus
630 static void cpuhp_create(unsigned int cpu
)
632 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
634 init_completion(&st
->done_up
);
635 init_completion(&st
->done_down
);
638 static int cpuhp_should_run(unsigned int cpu
)
640 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
642 return st
->should_run
;
646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647 * callbacks when a state gets [un]installed at runtime.
649 * Each invocation of this function by the smpboot thread does a single AP
652 * It has 3 modes of operation:
653 * - single: runs st->cb_state
654 * - up: runs ++st->state, while st->state < st->target
655 * - down: runs st->state--, while st->state > st->target
657 * When complete or on error, should_run is cleared and the completion is fired.
659 static void cpuhp_thread_fun(unsigned int cpu
)
661 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
662 bool bringup
= st
->bringup
;
663 enum cpuhp_state state
;
665 if (WARN_ON_ONCE(!st
->should_run
))
669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 * that if we see ->should_run we also see the rest of the state.
675 * The BP holds the hotplug lock, but we're now running on the AP,
676 * ensure that anybody asserting the lock is held, will actually find
679 lockdep_acquire_cpus_lock();
680 cpuhp_lock_acquire(bringup
);
683 state
= st
->cb_state
;
684 st
->should_run
= false;
689 st
->should_run
= (st
->state
< st
->target
);
690 WARN_ON_ONCE(st
->state
> st
->target
);
694 st
->should_run
= (st
->state
> st
->target
);
695 WARN_ON_ONCE(st
->state
< st
->target
);
699 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
701 if (cpuhp_is_atomic_state(state
)) {
703 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
707 * STARTING/DYING must not fail!
709 WARN_ON_ONCE(st
->result
);
711 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
716 * If we fail on a rollback, we're up a creek without no
717 * paddle, no way forward, no way back. We loose, thanks for
720 WARN_ON_ONCE(st
->rollback
);
721 st
->should_run
= false;
724 cpuhp_lock_release(bringup
);
725 lockdep_release_cpus_lock();
728 complete_ap_thread(st
, bringup
);
731 /* Invoke a single callback on a remote cpu */
733 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
734 struct hlist_node
*node
)
736 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
739 if (!cpu_online(cpu
))
742 cpuhp_lock_acquire(false);
743 cpuhp_lock_release(false);
745 cpuhp_lock_acquire(true);
746 cpuhp_lock_release(true);
749 * If we are up and running, use the hotplug thread. For early calls
750 * we invoke the thread function directly.
753 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
755 st
->rollback
= false;
759 st
->bringup
= bringup
;
760 st
->cb_state
= state
;
766 * If we failed and did a partial, do a rollback.
768 if ((ret
= st
->result
) && st
->last
) {
770 st
->bringup
= !bringup
;
776 * Clean up the leftovers so the next hotplug operation wont use stale
779 st
->node
= st
->last
= NULL
;
783 static int cpuhp_kick_ap_work(unsigned int cpu
)
785 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
786 enum cpuhp_state prev_state
= st
->state
;
789 cpuhp_lock_acquire(false);
790 cpuhp_lock_release(false);
792 cpuhp_lock_acquire(true);
793 cpuhp_lock_release(true);
795 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
796 ret
= cpuhp_kick_ap(st
, st
->target
);
797 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
802 static struct smp_hotplug_thread cpuhp_threads
= {
803 .store
= &cpuhp_state
.thread
,
804 .create
= &cpuhp_create
,
805 .thread_should_run
= cpuhp_should_run
,
806 .thread_fn
= cpuhp_thread_fun
,
807 .thread_comm
= "cpuhp/%u",
811 void __init
cpuhp_threads_init(void)
813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
814 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
817 #ifdef CONFIG_HOTPLUG_CPU
818 #ifndef arch_clear_mm_cpumask_cpu
819 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
823 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
826 * This function walks all processes, finds a valid mm struct for each one and
827 * then clears a corresponding bit in mm's cpumask. While this all sounds
828 * trivial, there are various non-obvious corner cases, which this function
829 * tries to solve in a safe manner.
831 * Also note that the function uses a somewhat relaxed locking scheme, so it may
832 * be called only for an already offlined CPU.
834 void clear_tasks_mm_cpumask(int cpu
)
836 struct task_struct
*p
;
839 * This function is called after the cpu is taken down and marked
840 * offline, so its not like new tasks will ever get this cpu set in
841 * their mm mask. -- Peter Zijlstra
842 * Thus, we may use rcu_read_lock() here, instead of grabbing
843 * full-fledged tasklist_lock.
845 WARN_ON(cpu_online(cpu
));
847 for_each_process(p
) {
848 struct task_struct
*t
;
851 * Main thread might exit, but other threads may still have
852 * a valid mm. Find one.
854 t
= find_lock_task_mm(p
);
857 arch_clear_mm_cpumask_cpu(cpu
, t
->mm
);
863 /* Take this CPU down. */
864 static int take_cpu_down(void *_param
)
866 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
867 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
868 int err
, cpu
= smp_processor_id();
871 /* Ensure this CPU doesn't handle any more interrupts. */
872 err
= __cpu_disable();
877 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
878 * do this step again.
880 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
882 /* Invoke the former CPU_DYING callbacks */
883 for (; st
->state
> target
; st
->state
--) {
884 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
886 * DYING must not fail!
891 /* Give up timekeeping duties */
892 tick_handover_do_timer();
893 /* Remove CPU from timer broadcasting */
894 tick_offline_cpu(cpu
);
895 /* Park the stopper thread */
896 stop_machine_park(cpu
);
900 static int takedown_cpu(unsigned int cpu
)
902 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
905 /* Park the smpboot threads */
906 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
909 * Prevent irq alloc/free while the dying cpu reorganizes the
910 * interrupt affinities.
915 * So now all preempt/rcu users must observe !cpu_active().
917 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
919 /* CPU refused to die */
921 /* Unpark the hotplug thread so we can rollback there */
922 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
925 BUG_ON(cpu_online(cpu
));
928 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
929 * all runnable tasks from the CPU, there's only the idle task left now
930 * that the migration thread is done doing the stop_machine thing.
932 * Wait for the stop thread to go away.
934 wait_for_ap_thread(st
, false);
935 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
937 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
940 hotplug_cpu__broadcast_tick_pull(cpu
);
941 /* This actually kills the CPU. */
944 tick_cleanup_dead_cpu(cpu
);
945 rcutree_migrate_callbacks(cpu
);
949 static void cpuhp_complete_idle_dead(void *arg
)
951 struct cpuhp_cpu_state
*st
= arg
;
953 complete_ap_thread(st
, false);
956 void cpuhp_report_idle_dead(void)
958 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
960 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
961 rcu_report_dead(smp_processor_id());
962 st
->state
= CPUHP_AP_IDLE_DEAD
;
964 * We cannot call complete after rcu_report_dead() so we delegate it
967 smp_call_function_single(cpumask_first(cpu_online_mask
),
968 cpuhp_complete_idle_dead
, st
, 0);
971 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
973 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
974 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
977 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
978 enum cpuhp_state target
)
980 enum cpuhp_state prev_state
= st
->state
;
983 for (; st
->state
> target
; st
->state
--) {
984 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
986 st
->target
= prev_state
;
987 if (st
->state
< prev_state
)
988 undo_cpu_down(cpu
, st
);
995 /* Requires cpu_add_remove_lock to be held */
996 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
997 enum cpuhp_state target
)
999 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1000 int prev_state
, ret
= 0;
1002 if (num_online_cpus() == 1)
1005 if (!cpu_present(cpu
))
1010 cpuhp_tasks_frozen
= tasks_frozen
;
1012 prev_state
= cpuhp_set_state(st
, target
);
1014 * If the current CPU state is in the range of the AP hotplug thread,
1015 * then we need to kick the thread.
1017 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
1018 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
1019 ret
= cpuhp_kick_ap_work(cpu
);
1021 * The AP side has done the error rollback already. Just
1022 * return the error code..
1028 * We might have stopped still in the range of the AP hotplug
1029 * thread. Nothing to do anymore.
1031 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1034 st
->target
= target
;
1037 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1038 * to do the further cleanups.
1040 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1041 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1042 cpuhp_reset_state(st
, prev_state
);
1043 __cpuhp_kick_ap(st
);
1047 cpus_write_unlock();
1049 * Do post unplug cleanup. This is still protected against
1050 * concurrent CPU hotplug via cpu_add_remove_lock.
1052 lockup_detector_cleanup();
1057 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1059 if (cpu_hotplug_disabled
)
1061 return _cpu_down(cpu
, 0, target
);
1064 static int cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1068 cpu_maps_update_begin();
1069 err
= cpu_down_maps_locked(cpu
, target
);
1070 cpu_maps_update_done();
1075 * cpu_device_down - Bring down a cpu device
1076 * @dev: Pointer to the cpu device to offline
1078 * This function is meant to be used by device core cpu subsystem only.
1080 * Other subsystems should use remove_cpu() instead.
1082 int cpu_device_down(struct device
*dev
)
1084 return cpu_down(dev
->id
, CPUHP_OFFLINE
);
1087 int remove_cpu(unsigned int cpu
)
1091 lock_device_hotplug();
1092 ret
= device_offline(get_cpu_device(cpu
));
1093 unlock_device_hotplug();
1097 EXPORT_SYMBOL_GPL(remove_cpu
);
1099 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu
)
1104 cpu_maps_update_begin();
1107 * Make certain the cpu I'm about to reboot on is online.
1109 * This is inline to what migrate_to_reboot_cpu() already do.
1111 if (!cpu_online(primary_cpu
))
1112 primary_cpu
= cpumask_first(cpu_online_mask
);
1114 for_each_online_cpu(cpu
) {
1115 if (cpu
== primary_cpu
)
1118 error
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
1120 pr_err("Failed to offline CPU%d - error=%d",
1127 * Ensure all but the reboot CPU are offline.
1129 BUG_ON(num_online_cpus() > 1);
1132 * Make sure the CPUs won't be enabled by someone else after this
1133 * point. Kexec will reboot to a new kernel shortly resetting
1134 * everything along the way.
1136 cpu_hotplug_disabled
++;
1138 cpu_maps_update_done();
1142 #define takedown_cpu NULL
1143 #endif /*CONFIG_HOTPLUG_CPU*/
1146 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1147 * @cpu: cpu that just started
1149 * It must be called by the arch code on the new cpu, before the new cpu
1150 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1152 void notify_cpu_starting(unsigned int cpu
)
1154 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1155 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1158 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1159 cpumask_set_cpu(cpu
, &cpus_booted_once_mask
);
1160 while (st
->state
< target
) {
1162 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1164 * STARTING must not fail!
1171 * Called from the idle task. Wake up the controlling task which brings the
1172 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1173 * online bringup to the hotplug thread.
1175 void cpuhp_online_idle(enum cpuhp_state state
)
1177 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1179 /* Happens for the boot cpu */
1180 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1184 * Unpart the stopper thread before we start the idle loop (and start
1185 * scheduling); this ensures the stopper task is always available.
1187 stop_machine_unpark(smp_processor_id());
1189 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1190 complete_ap_thread(st
, true);
1193 /* Requires cpu_add_remove_lock to be held */
1194 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1196 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1197 struct task_struct
*idle
;
1202 if (!cpu_present(cpu
)) {
1208 * The caller of cpu_up() might have raced with another
1209 * caller. Nothing to do.
1211 if (st
->state
>= target
)
1214 if (st
->state
== CPUHP_OFFLINE
) {
1215 /* Let it fail before we try to bring the cpu up */
1216 idle
= idle_thread_get(cpu
);
1218 ret
= PTR_ERR(idle
);
1223 cpuhp_tasks_frozen
= tasks_frozen
;
1225 cpuhp_set_state(st
, target
);
1227 * If the current CPU state is in the range of the AP hotplug thread,
1228 * then we need to kick the thread once more.
1230 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1231 ret
= cpuhp_kick_ap_work(cpu
);
1233 * The AP side has done the error rollback already. Just
1234 * return the error code..
1241 * Try to reach the target state. We max out on the BP at
1242 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1243 * responsible for bringing it up to the target state.
1245 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1246 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1248 cpus_write_unlock();
1253 static int cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1257 if (!cpu_possible(cpu
)) {
1258 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1260 #if defined(CONFIG_IA64)
1261 pr_err("please check additional_cpus= boot parameter\n");
1266 err
= try_online_node(cpu_to_node(cpu
));
1270 cpu_maps_update_begin();
1272 if (cpu_hotplug_disabled
) {
1276 if (!cpu_smt_allowed(cpu
)) {
1281 err
= _cpu_up(cpu
, 0, target
);
1283 cpu_maps_update_done();
1288 * cpu_device_up - Bring up a cpu device
1289 * @dev: Pointer to the cpu device to online
1291 * This function is meant to be used by device core cpu subsystem only.
1293 * Other subsystems should use add_cpu() instead.
1295 int cpu_device_up(struct device
*dev
)
1297 return cpu_up(dev
->id
, CPUHP_ONLINE
);
1300 int add_cpu(unsigned int cpu
)
1304 lock_device_hotplug();
1305 ret
= device_online(get_cpu_device(cpu
));
1306 unlock_device_hotplug();
1310 EXPORT_SYMBOL_GPL(add_cpu
);
1313 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1314 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1316 * On some architectures like arm64, we can hibernate on any CPU, but on
1317 * wake up the CPU we hibernated on might be offline as a side effect of
1318 * using maxcpus= for example.
1320 int bringup_hibernate_cpu(unsigned int sleep_cpu
)
1324 if (!cpu_online(sleep_cpu
)) {
1325 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1326 ret
= cpu_up(sleep_cpu
, CPUHP_ONLINE
);
1328 pr_err("Failed to bring hibernate-CPU up!\n");
1335 void bringup_nonboot_cpus(unsigned int setup_max_cpus
)
1339 for_each_present_cpu(cpu
) {
1340 if (num_online_cpus() >= setup_max_cpus
)
1342 if (!cpu_online(cpu
))
1343 cpu_up(cpu
, CPUHP_ONLINE
);
1347 #ifdef CONFIG_PM_SLEEP_SMP
1348 static cpumask_var_t frozen_cpus
;
1350 int freeze_secondary_cpus(int primary
)
1354 cpu_maps_update_begin();
1355 if (primary
== -1) {
1356 primary
= cpumask_first(cpu_online_mask
);
1357 if (!housekeeping_cpu(primary
, HK_FLAG_TIMER
))
1358 primary
= housekeeping_any_cpu(HK_FLAG_TIMER
);
1360 if (!cpu_online(primary
))
1361 primary
= cpumask_first(cpu_online_mask
);
1365 * We take down all of the non-boot CPUs in one shot to avoid races
1366 * with the userspace trying to use the CPU hotplug at the same time
1368 cpumask_clear(frozen_cpus
);
1370 pr_info("Disabling non-boot CPUs ...\n");
1371 for_each_online_cpu(cpu
) {
1375 if (pm_wakeup_pending()) {
1376 pr_info("Wakeup pending. Abort CPU freeze\n");
1381 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1382 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1383 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1385 cpumask_set_cpu(cpu
, frozen_cpus
);
1387 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1393 BUG_ON(num_online_cpus() > 1);
1395 pr_err("Non-boot CPUs are not disabled\n");
1398 * Make sure the CPUs won't be enabled by someone else. We need to do
1399 * this even in case of failure as all freeze_secondary_cpus() users are
1400 * supposed to do thaw_secondary_cpus() on the failure path.
1402 cpu_hotplug_disabled
++;
1404 cpu_maps_update_done();
1408 void __weak
arch_thaw_secondary_cpus_begin(void)
1412 void __weak
arch_thaw_secondary_cpus_end(void)
1416 void thaw_secondary_cpus(void)
1420 /* Allow everyone to use the CPU hotplug again */
1421 cpu_maps_update_begin();
1422 __cpu_hotplug_enable();
1423 if (cpumask_empty(frozen_cpus
))
1426 pr_info("Enabling non-boot CPUs ...\n");
1428 arch_thaw_secondary_cpus_begin();
1430 for_each_cpu(cpu
, frozen_cpus
) {
1431 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1432 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1433 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1435 pr_info("CPU%d is up\n", cpu
);
1438 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1441 arch_thaw_secondary_cpus_end();
1443 cpumask_clear(frozen_cpus
);
1445 cpu_maps_update_done();
1448 static int __init
alloc_frozen_cpus(void)
1450 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1454 core_initcall(alloc_frozen_cpus
);
1457 * When callbacks for CPU hotplug notifications are being executed, we must
1458 * ensure that the state of the system with respect to the tasks being frozen
1459 * or not, as reported by the notification, remains unchanged *throughout the
1460 * duration* of the execution of the callbacks.
1461 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1463 * This synchronization is implemented by mutually excluding regular CPU
1464 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1465 * Hibernate notifications.
1468 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1469 unsigned long action
, void *ptr
)
1473 case PM_SUSPEND_PREPARE
:
1474 case PM_HIBERNATION_PREPARE
:
1475 cpu_hotplug_disable();
1478 case PM_POST_SUSPEND
:
1479 case PM_POST_HIBERNATION
:
1480 cpu_hotplug_enable();
1491 static int __init
cpu_hotplug_pm_sync_init(void)
1494 * cpu_hotplug_pm_callback has higher priority than x86
1495 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1496 * to disable cpu hotplug to avoid cpu hotplug race.
1498 pm_notifier(cpu_hotplug_pm_callback
, 0);
1501 core_initcall(cpu_hotplug_pm_sync_init
);
1503 #endif /* CONFIG_PM_SLEEP_SMP */
1507 #endif /* CONFIG_SMP */
1509 /* Boot processor state steps */
1510 static struct cpuhp_step cpuhp_hp_states
[] = {
1513 .startup
.single
= NULL
,
1514 .teardown
.single
= NULL
,
1517 [CPUHP_CREATE_THREADS
]= {
1518 .name
= "threads:prepare",
1519 .startup
.single
= smpboot_create_threads
,
1520 .teardown
.single
= NULL
,
1523 [CPUHP_PERF_PREPARE
] = {
1524 .name
= "perf:prepare",
1525 .startup
.single
= perf_event_init_cpu
,
1526 .teardown
.single
= perf_event_exit_cpu
,
1528 [CPUHP_WORKQUEUE_PREP
] = {
1529 .name
= "workqueue:prepare",
1530 .startup
.single
= workqueue_prepare_cpu
,
1531 .teardown
.single
= NULL
,
1533 [CPUHP_HRTIMERS_PREPARE
] = {
1534 .name
= "hrtimers:prepare",
1535 .startup
.single
= hrtimers_prepare_cpu
,
1536 .teardown
.single
= hrtimers_dead_cpu
,
1538 [CPUHP_SMPCFD_PREPARE
] = {
1539 .name
= "smpcfd:prepare",
1540 .startup
.single
= smpcfd_prepare_cpu
,
1541 .teardown
.single
= smpcfd_dead_cpu
,
1543 [CPUHP_RELAY_PREPARE
] = {
1544 .name
= "relay:prepare",
1545 .startup
.single
= relay_prepare_cpu
,
1546 .teardown
.single
= NULL
,
1548 [CPUHP_SLAB_PREPARE
] = {
1549 .name
= "slab:prepare",
1550 .startup
.single
= slab_prepare_cpu
,
1551 .teardown
.single
= slab_dead_cpu
,
1553 [CPUHP_RCUTREE_PREP
] = {
1554 .name
= "RCU/tree:prepare",
1555 .startup
.single
= rcutree_prepare_cpu
,
1556 .teardown
.single
= rcutree_dead_cpu
,
1559 * On the tear-down path, timers_dead_cpu() must be invoked
1560 * before blk_mq_queue_reinit_notify() from notify_dead(),
1561 * otherwise a RCU stall occurs.
1563 [CPUHP_TIMERS_PREPARE
] = {
1564 .name
= "timers:prepare",
1565 .startup
.single
= timers_prepare_cpu
,
1566 .teardown
.single
= timers_dead_cpu
,
1568 /* Kicks the plugged cpu into life */
1569 [CPUHP_BRINGUP_CPU
] = {
1570 .name
= "cpu:bringup",
1571 .startup
.single
= bringup_cpu
,
1572 .teardown
.single
= finish_cpu
,
1575 /* Final state before CPU kills itself */
1576 [CPUHP_AP_IDLE_DEAD
] = {
1577 .name
= "idle:dead",
1580 * Last state before CPU enters the idle loop to die. Transient state
1581 * for synchronization.
1583 [CPUHP_AP_OFFLINE
] = {
1584 .name
= "ap:offline",
1587 /* First state is scheduler control. Interrupts are disabled */
1588 [CPUHP_AP_SCHED_STARTING
] = {
1589 .name
= "sched:starting",
1590 .startup
.single
= sched_cpu_starting
,
1591 .teardown
.single
= sched_cpu_dying
,
1593 [CPUHP_AP_RCUTREE_DYING
] = {
1594 .name
= "RCU/tree:dying",
1595 .startup
.single
= NULL
,
1596 .teardown
.single
= rcutree_dying_cpu
,
1598 [CPUHP_AP_SMPCFD_DYING
] = {
1599 .name
= "smpcfd:dying",
1600 .startup
.single
= NULL
,
1601 .teardown
.single
= smpcfd_dying_cpu
,
1603 /* Entry state on starting. Interrupts enabled from here on. Transient
1604 * state for synchronsization */
1605 [CPUHP_AP_ONLINE
] = {
1606 .name
= "ap:online",
1609 * Handled on control processor until the plugged processor manages
1612 [CPUHP_TEARDOWN_CPU
] = {
1613 .name
= "cpu:teardown",
1614 .startup
.single
= NULL
,
1615 .teardown
.single
= takedown_cpu
,
1619 [CPUHP_AP_SCHED_WAIT_EMPTY
] = {
1620 .name
= "sched:waitempty",
1621 .startup
.single
= NULL
,
1622 .teardown
.single
= sched_cpu_wait_empty
,
1625 /* Handle smpboot threads park/unpark */
1626 [CPUHP_AP_SMPBOOT_THREADS
] = {
1627 .name
= "smpboot/threads:online",
1628 .startup
.single
= smpboot_unpark_threads
,
1629 .teardown
.single
= smpboot_park_threads
,
1631 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1632 .name
= "irq/affinity:online",
1633 .startup
.single
= irq_affinity_online_cpu
,
1634 .teardown
.single
= NULL
,
1636 [CPUHP_AP_PERF_ONLINE
] = {
1637 .name
= "perf:online",
1638 .startup
.single
= perf_event_init_cpu
,
1639 .teardown
.single
= perf_event_exit_cpu
,
1641 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1642 .name
= "lockup_detector:online",
1643 .startup
.single
= lockup_detector_online_cpu
,
1644 .teardown
.single
= lockup_detector_offline_cpu
,
1646 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1647 .name
= "workqueue:online",
1648 .startup
.single
= workqueue_online_cpu
,
1649 .teardown
.single
= workqueue_offline_cpu
,
1651 [CPUHP_AP_RCUTREE_ONLINE
] = {
1652 .name
= "RCU/tree:online",
1653 .startup
.single
= rcutree_online_cpu
,
1654 .teardown
.single
= rcutree_offline_cpu
,
1658 * The dynamically registered state space is here
1662 /* Last state is scheduler control setting the cpu active */
1663 [CPUHP_AP_ACTIVE
] = {
1664 .name
= "sched:active",
1665 .startup
.single
= sched_cpu_activate
,
1666 .teardown
.single
= sched_cpu_deactivate
,
1670 /* CPU is fully up and running. */
1673 .startup
.single
= NULL
,
1674 .teardown
.single
= NULL
,
1678 /* Sanity check for callbacks */
1679 static int cpuhp_cb_check(enum cpuhp_state state
)
1681 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1687 * Returns a free for dynamic slot assignment of the Online state. The states
1688 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1689 * by having no name assigned.
1691 static int cpuhp_reserve_state(enum cpuhp_state state
)
1693 enum cpuhp_state i
, end
;
1694 struct cpuhp_step
*step
;
1697 case CPUHP_AP_ONLINE_DYN
:
1698 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1699 end
= CPUHP_AP_ONLINE_DYN_END
;
1701 case CPUHP_BP_PREPARE_DYN
:
1702 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1703 end
= CPUHP_BP_PREPARE_DYN_END
;
1709 for (i
= state
; i
<= end
; i
++, step
++) {
1713 WARN(1, "No more dynamic states available for CPU hotplug\n");
1717 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1718 int (*startup
)(unsigned int cpu
),
1719 int (*teardown
)(unsigned int cpu
),
1720 bool multi_instance
)
1722 /* (Un)Install the callbacks for further cpu hotplug operations */
1723 struct cpuhp_step
*sp
;
1727 * If name is NULL, then the state gets removed.
1729 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1730 * the first allocation from these dynamic ranges, so the removal
1731 * would trigger a new allocation and clear the wrong (already
1732 * empty) state, leaving the callbacks of the to be cleared state
1733 * dangling, which causes wreckage on the next hotplug operation.
1735 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1736 state
== CPUHP_BP_PREPARE_DYN
)) {
1737 ret
= cpuhp_reserve_state(state
);
1742 sp
= cpuhp_get_step(state
);
1743 if (name
&& sp
->name
)
1746 sp
->startup
.single
= startup
;
1747 sp
->teardown
.single
= teardown
;
1749 sp
->multi_instance
= multi_instance
;
1750 INIT_HLIST_HEAD(&sp
->list
);
1754 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1756 return cpuhp_get_step(state
)->teardown
.single
;
1760 * Call the startup/teardown function for a step either on the AP or
1761 * on the current CPU.
1763 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1764 struct hlist_node
*node
)
1766 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1770 * If there's nothing to do, we done.
1771 * Relies on the union for multi_instance.
1773 if ((bringup
&& !sp
->startup
.single
) ||
1774 (!bringup
&& !sp
->teardown
.single
))
1777 * The non AP bound callbacks can fail on bringup. On teardown
1778 * e.g. module removal we crash for now.
1781 if (cpuhp_is_ap_state(state
))
1782 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1784 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1786 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1788 BUG_ON(ret
&& !bringup
);
1793 * Called from __cpuhp_setup_state on a recoverable failure.
1795 * Note: The teardown callbacks for rollback are not allowed to fail!
1797 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1798 struct hlist_node
*node
)
1802 /* Roll back the already executed steps on the other cpus */
1803 for_each_present_cpu(cpu
) {
1804 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1805 int cpustate
= st
->state
;
1807 if (cpu
>= failedcpu
)
1810 /* Did we invoke the startup call on that cpu ? */
1811 if (cpustate
>= state
)
1812 cpuhp_issue_call(cpu
, state
, false, node
);
1816 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1817 struct hlist_node
*node
,
1820 struct cpuhp_step
*sp
;
1824 lockdep_assert_cpus_held();
1826 sp
= cpuhp_get_step(state
);
1827 if (sp
->multi_instance
== false)
1830 mutex_lock(&cpuhp_state_mutex
);
1832 if (!invoke
|| !sp
->startup
.multi
)
1836 * Try to call the startup callback for each present cpu
1837 * depending on the hotplug state of the cpu.
1839 for_each_present_cpu(cpu
) {
1840 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1841 int cpustate
= st
->state
;
1843 if (cpustate
< state
)
1846 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1848 if (sp
->teardown
.multi
)
1849 cpuhp_rollback_install(cpu
, state
, node
);
1855 hlist_add_head(node
, &sp
->list
);
1857 mutex_unlock(&cpuhp_state_mutex
);
1861 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1867 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1871 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1874 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1875 * @state: The state to setup
1876 * @invoke: If true, the startup function is invoked for cpus where
1877 * cpu state >= @state
1878 * @startup: startup callback function
1879 * @teardown: teardown callback function
1880 * @multi_instance: State is set up for multiple instances which get
1883 * The caller needs to hold cpus read locked while calling this function.
1886 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1887 * 0 for all other states
1888 * On failure: proper (negative) error code
1890 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1891 const char *name
, bool invoke
,
1892 int (*startup
)(unsigned int cpu
),
1893 int (*teardown
)(unsigned int cpu
),
1894 bool multi_instance
)
1899 lockdep_assert_cpus_held();
1901 if (cpuhp_cb_check(state
) || !name
)
1904 mutex_lock(&cpuhp_state_mutex
);
1906 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1909 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1910 if (ret
> 0 && dynstate
) {
1915 if (ret
|| !invoke
|| !startup
)
1919 * Try to call the startup callback for each present cpu
1920 * depending on the hotplug state of the cpu.
1922 for_each_present_cpu(cpu
) {
1923 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1924 int cpustate
= st
->state
;
1926 if (cpustate
< state
)
1929 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1932 cpuhp_rollback_install(cpu
, state
, NULL
);
1933 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1938 mutex_unlock(&cpuhp_state_mutex
);
1940 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1941 * dynamically allocated state in case of success.
1943 if (!ret
&& dynstate
)
1947 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1949 int __cpuhp_setup_state(enum cpuhp_state state
,
1950 const char *name
, bool invoke
,
1951 int (*startup
)(unsigned int cpu
),
1952 int (*teardown
)(unsigned int cpu
),
1953 bool multi_instance
)
1958 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1959 teardown
, multi_instance
);
1963 EXPORT_SYMBOL(__cpuhp_setup_state
);
1965 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1966 struct hlist_node
*node
, bool invoke
)
1968 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1971 BUG_ON(cpuhp_cb_check(state
));
1973 if (!sp
->multi_instance
)
1977 mutex_lock(&cpuhp_state_mutex
);
1979 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1982 * Call the teardown callback for each present cpu depending
1983 * on the hotplug state of the cpu. This function is not
1984 * allowed to fail currently!
1986 for_each_present_cpu(cpu
) {
1987 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1988 int cpustate
= st
->state
;
1990 if (cpustate
>= state
)
1991 cpuhp_issue_call(cpu
, state
, false, node
);
1996 mutex_unlock(&cpuhp_state_mutex
);
2001 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
2004 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2005 * @state: The state to remove
2006 * @invoke: If true, the teardown function is invoked for cpus where
2007 * cpu state >= @state
2009 * The caller needs to hold cpus read locked while calling this function.
2010 * The teardown callback is currently not allowed to fail. Think
2011 * about module removal!
2013 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
2015 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
2018 BUG_ON(cpuhp_cb_check(state
));
2020 lockdep_assert_cpus_held();
2022 mutex_lock(&cpuhp_state_mutex
);
2023 if (sp
->multi_instance
) {
2024 WARN(!hlist_empty(&sp
->list
),
2025 "Error: Removing state %d which has instances left.\n",
2030 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
2034 * Call the teardown callback for each present cpu depending
2035 * on the hotplug state of the cpu. This function is not
2036 * allowed to fail currently!
2038 for_each_present_cpu(cpu
) {
2039 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2040 int cpustate
= st
->state
;
2042 if (cpustate
>= state
)
2043 cpuhp_issue_call(cpu
, state
, false, NULL
);
2046 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
2047 mutex_unlock(&cpuhp_state_mutex
);
2049 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
2051 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
2054 __cpuhp_remove_state_cpuslocked(state
, invoke
);
2057 EXPORT_SYMBOL(__cpuhp_remove_state
);
2059 #ifdef CONFIG_HOTPLUG_SMT
2060 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2062 struct device
*dev
= get_cpu_device(cpu
);
2064 dev
->offline
= true;
2065 /* Tell user space about the state change */
2066 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2069 static void cpuhp_online_cpu_device(unsigned int cpu
)
2071 struct device
*dev
= get_cpu_device(cpu
);
2073 dev
->offline
= false;
2074 /* Tell user space about the state change */
2075 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2078 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2082 cpu_maps_update_begin();
2083 for_each_online_cpu(cpu
) {
2084 if (topology_is_primary_thread(cpu
))
2086 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2090 * As this needs to hold the cpu maps lock it's impossible
2091 * to call device_offline() because that ends up calling
2092 * cpu_down() which takes cpu maps lock. cpu maps lock
2093 * needs to be held as this might race against in kernel
2094 * abusers of the hotplug machinery (thermal management).
2096 * So nothing would update device:offline state. That would
2097 * leave the sysfs entry stale and prevent onlining after
2098 * smt control has been changed to 'off' again. This is
2099 * called under the sysfs hotplug lock, so it is properly
2100 * serialized against the regular offline usage.
2102 cpuhp_offline_cpu_device(cpu
);
2105 cpu_smt_control
= ctrlval
;
2106 cpu_maps_update_done();
2110 int cpuhp_smt_enable(void)
2114 cpu_maps_update_begin();
2115 cpu_smt_control
= CPU_SMT_ENABLED
;
2116 for_each_present_cpu(cpu
) {
2117 /* Skip online CPUs and CPUs on offline nodes */
2118 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2120 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2123 /* See comment in cpuhp_smt_disable() */
2124 cpuhp_online_cpu_device(cpu
);
2126 cpu_maps_update_done();
2131 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2132 static ssize_t
show_cpuhp_state(struct device
*dev
,
2133 struct device_attribute
*attr
, char *buf
)
2135 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2137 return sprintf(buf
, "%d\n", st
->state
);
2139 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
2141 static ssize_t
write_cpuhp_target(struct device
*dev
,
2142 struct device_attribute
*attr
,
2143 const char *buf
, size_t count
)
2145 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2146 struct cpuhp_step
*sp
;
2149 ret
= kstrtoint(buf
, 10, &target
);
2153 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2154 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
2157 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
2161 ret
= lock_device_hotplug_sysfs();
2165 mutex_lock(&cpuhp_state_mutex
);
2166 sp
= cpuhp_get_step(target
);
2167 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
2168 mutex_unlock(&cpuhp_state_mutex
);
2172 if (st
->state
< target
)
2173 ret
= cpu_up(dev
->id
, target
);
2175 ret
= cpu_down(dev
->id
, target
);
2177 unlock_device_hotplug();
2178 return ret
? ret
: count
;
2181 static ssize_t
show_cpuhp_target(struct device
*dev
,
2182 struct device_attribute
*attr
, char *buf
)
2184 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2186 return sprintf(buf
, "%d\n", st
->target
);
2188 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
2191 static ssize_t
write_cpuhp_fail(struct device
*dev
,
2192 struct device_attribute
*attr
,
2193 const char *buf
, size_t count
)
2195 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2196 struct cpuhp_step
*sp
;
2199 ret
= kstrtoint(buf
, 10, &fail
);
2203 if (fail
< CPUHP_OFFLINE
|| fail
> CPUHP_ONLINE
)
2207 * Cannot fail STARTING/DYING callbacks.
2209 if (cpuhp_is_atomic_state(fail
))
2213 * Cannot fail anything that doesn't have callbacks.
2215 mutex_lock(&cpuhp_state_mutex
);
2216 sp
= cpuhp_get_step(fail
);
2217 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
2219 mutex_unlock(&cpuhp_state_mutex
);
2228 static ssize_t
show_cpuhp_fail(struct device
*dev
,
2229 struct device_attribute
*attr
, char *buf
)
2231 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2233 return sprintf(buf
, "%d\n", st
->fail
);
2236 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
2238 static struct attribute
*cpuhp_cpu_attrs
[] = {
2239 &dev_attr_state
.attr
,
2240 &dev_attr_target
.attr
,
2241 &dev_attr_fail
.attr
,
2245 static const struct attribute_group cpuhp_cpu_attr_group
= {
2246 .attrs
= cpuhp_cpu_attrs
,
2251 static ssize_t
show_cpuhp_states(struct device
*dev
,
2252 struct device_attribute
*attr
, char *buf
)
2254 ssize_t cur
, res
= 0;
2257 mutex_lock(&cpuhp_state_mutex
);
2258 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2259 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2262 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2267 mutex_unlock(&cpuhp_state_mutex
);
2270 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
2272 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2273 &dev_attr_states
.attr
,
2277 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2278 .attrs
= cpuhp_cpu_root_attrs
,
2283 #ifdef CONFIG_HOTPLUG_SMT
2286 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2287 const char *buf
, size_t count
)
2291 if (sysfs_streq(buf
, "on"))
2292 ctrlval
= CPU_SMT_ENABLED
;
2293 else if (sysfs_streq(buf
, "off"))
2294 ctrlval
= CPU_SMT_DISABLED
;
2295 else if (sysfs_streq(buf
, "forceoff"))
2296 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2300 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2303 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2306 ret
= lock_device_hotplug_sysfs();
2310 if (ctrlval
!= cpu_smt_control
) {
2312 case CPU_SMT_ENABLED
:
2313 ret
= cpuhp_smt_enable();
2315 case CPU_SMT_DISABLED
:
2316 case CPU_SMT_FORCE_DISABLED
:
2317 ret
= cpuhp_smt_disable(ctrlval
);
2322 unlock_device_hotplug();
2323 return ret
? ret
: count
;
2326 #else /* !CONFIG_HOTPLUG_SMT */
2328 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2329 const char *buf
, size_t count
)
2333 #endif /* CONFIG_HOTPLUG_SMT */
2335 static const char *smt_states
[] = {
2336 [CPU_SMT_ENABLED
] = "on",
2337 [CPU_SMT_DISABLED
] = "off",
2338 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2339 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2340 [CPU_SMT_NOT_IMPLEMENTED
] = "notimplemented",
2344 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2346 const char *state
= smt_states
[cpu_smt_control
];
2348 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", state
);
2352 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2353 const char *buf
, size_t count
)
2355 return __store_smt_control(dev
, attr
, buf
, count
);
2357 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2360 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2362 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", sched_smt_active());
2364 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2366 static struct attribute
*cpuhp_smt_attrs
[] = {
2367 &dev_attr_control
.attr
,
2368 &dev_attr_active
.attr
,
2372 static const struct attribute_group cpuhp_smt_attr_group
= {
2373 .attrs
= cpuhp_smt_attrs
,
2378 static int __init
cpu_smt_sysfs_init(void)
2380 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2381 &cpuhp_smt_attr_group
);
2384 static int __init
cpuhp_sysfs_init(void)
2388 ret
= cpu_smt_sysfs_init();
2392 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2393 &cpuhp_cpu_root_attr_group
);
2397 for_each_possible_cpu(cpu
) {
2398 struct device
*dev
= get_cpu_device(cpu
);
2402 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2408 device_initcall(cpuhp_sysfs_init
);
2409 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2412 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2413 * represents all NR_CPUS bits binary values of 1<<nr.
2415 * It is used by cpumask_of() to get a constant address to a CPU
2416 * mask value that has a single bit set only.
2419 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2420 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2421 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2422 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2423 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2425 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2427 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2428 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2429 #if BITS_PER_LONG > 32
2430 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2431 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2434 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2436 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2437 EXPORT_SYMBOL(cpu_all_bits
);
2439 #ifdef CONFIG_INIT_ALL_POSSIBLE
2440 struct cpumask __cpu_possible_mask __read_mostly
2443 struct cpumask __cpu_possible_mask __read_mostly
;
2445 EXPORT_SYMBOL(__cpu_possible_mask
);
2447 struct cpumask __cpu_online_mask __read_mostly
;
2448 EXPORT_SYMBOL(__cpu_online_mask
);
2450 struct cpumask __cpu_present_mask __read_mostly
;
2451 EXPORT_SYMBOL(__cpu_present_mask
);
2453 struct cpumask __cpu_active_mask __read_mostly
;
2454 EXPORT_SYMBOL(__cpu_active_mask
);
2456 atomic_t __num_online_cpus __read_mostly
;
2457 EXPORT_SYMBOL(__num_online_cpus
);
2459 void init_cpu_present(const struct cpumask
*src
)
2461 cpumask_copy(&__cpu_present_mask
, src
);
2464 void init_cpu_possible(const struct cpumask
*src
)
2466 cpumask_copy(&__cpu_possible_mask
, src
);
2469 void init_cpu_online(const struct cpumask
*src
)
2471 cpumask_copy(&__cpu_online_mask
, src
);
2474 void set_cpu_online(unsigned int cpu
, bool online
)
2477 * atomic_inc/dec() is required to handle the horrid abuse of this
2478 * function by the reboot and kexec code which invoke it from
2479 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2480 * regular CPU hotplug is properly serialized.
2482 * Note, that the fact that __num_online_cpus is of type atomic_t
2483 * does not protect readers which are not serialized against
2484 * concurrent hotplug operations.
2487 if (!cpumask_test_and_set_cpu(cpu
, &__cpu_online_mask
))
2488 atomic_inc(&__num_online_cpus
);
2490 if (cpumask_test_and_clear_cpu(cpu
, &__cpu_online_mask
))
2491 atomic_dec(&__num_online_cpus
);
2496 * Activate the first processor.
2498 void __init
boot_cpu_init(void)
2500 int cpu
= smp_processor_id();
2502 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2503 set_cpu_online(cpu
, true);
2504 set_cpu_active(cpu
, true);
2505 set_cpu_present(cpu
, true);
2506 set_cpu_possible(cpu
, true);
2509 __boot_cpu_id
= cpu
;
2514 * Must be called _AFTER_ setting up the per_cpu areas
2516 void __init
boot_cpu_hotplug_init(void)
2519 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask
);
2521 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);
2525 * These are used for a global "mitigations=" cmdline option for toggling
2526 * optional CPU mitigations.
2528 enum cpu_mitigations
{
2529 CPU_MITIGATIONS_OFF
,
2530 CPU_MITIGATIONS_AUTO
,
2531 CPU_MITIGATIONS_AUTO_NOSMT
,
2534 static enum cpu_mitigations cpu_mitigations __ro_after_init
=
2535 CPU_MITIGATIONS_AUTO
;
2537 static int __init
mitigations_parse_cmdline(char *arg
)
2539 if (!strcmp(arg
, "off"))
2540 cpu_mitigations
= CPU_MITIGATIONS_OFF
;
2541 else if (!strcmp(arg
, "auto"))
2542 cpu_mitigations
= CPU_MITIGATIONS_AUTO
;
2543 else if (!strcmp(arg
, "auto,nosmt"))
2544 cpu_mitigations
= CPU_MITIGATIONS_AUTO_NOSMT
;
2546 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2551 early_param("mitigations", mitigations_parse_cmdline
);
2553 /* mitigations=off */
2554 bool cpu_mitigations_off(void)
2556 return cpu_mitigations
== CPU_MITIGATIONS_OFF
;
2558 EXPORT_SYMBOL_GPL(cpu_mitigations_off
);
2560 /* mitigations=auto,nosmt */
2561 bool cpu_mitigations_auto_nosmt(void)
2563 return cpu_mitigations
== CPU_MITIGATIONS_AUTO_NOSMT
;
2565 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt
);