1 // SPDX-License-Identifier: GPL-2.0-only
3 * kexec: kexec_file_load system call
5 * Copyright (C) 2014 Red Hat Inc.
7 * Vivek Goyal <vgoyal@redhat.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/capability.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
32 static int kexec_calculate_store_digests(struct kimage
*image
);
35 * Currently this is the only default function that is exported as some
36 * architectures need it to do additional handlings.
37 * In the future, other default functions may be exported too if required.
39 int kexec_image_probe_default(struct kimage
*image
, void *buf
,
40 unsigned long buf_len
)
42 const struct kexec_file_ops
* const *fops
;
45 for (fops
= &kexec_file_loaders
[0]; *fops
&& (*fops
)->probe
; ++fops
) {
46 ret
= (*fops
)->probe(buf
, buf_len
);
56 /* Architectures can provide this probe function */
57 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
58 unsigned long buf_len
)
60 return kexec_image_probe_default(image
, buf
, buf_len
);
63 static void *kexec_image_load_default(struct kimage
*image
)
65 if (!image
->fops
|| !image
->fops
->load
)
66 return ERR_PTR(-ENOEXEC
);
68 return image
->fops
->load(image
, image
->kernel_buf
,
69 image
->kernel_buf_len
, image
->initrd_buf
,
70 image
->initrd_buf_len
, image
->cmdline_buf
,
71 image
->cmdline_buf_len
);
74 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
76 return kexec_image_load_default(image
);
79 int kexec_image_post_load_cleanup_default(struct kimage
*image
)
81 if (!image
->fops
|| !image
->fops
->cleanup
)
84 return image
->fops
->cleanup(image
->image_loader_data
);
87 int __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
89 return kexec_image_post_load_cleanup_default(image
);
92 #ifdef CONFIG_KEXEC_SIG
93 static int kexec_image_verify_sig_default(struct kimage
*image
, void *buf
,
94 unsigned long buf_len
)
96 if (!image
->fops
|| !image
->fops
->verify_sig
) {
97 pr_debug("kernel loader does not support signature verification.\n");
101 return image
->fops
->verify_sig(buf
, buf_len
);
104 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
105 unsigned long buf_len
)
107 return kexec_image_verify_sig_default(image
, buf
, buf_len
);
112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
113 * @pi: Purgatory to be relocated.
114 * @section: Section relocations applying to.
115 * @relsec: Section containing RELAs.
116 * @symtab: Corresponding symtab.
118 * Return: 0 on success, negative errno on error.
121 arch_kexec_apply_relocations_add(struct purgatory_info
*pi
, Elf_Shdr
*section
,
122 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
124 pr_err("RELA relocation unsupported.\n");
129 * arch_kexec_apply_relocations - apply relocations of type REL
130 * @pi: Purgatory to be relocated.
131 * @section: Section relocations applying to.
132 * @relsec: Section containing RELs.
133 * @symtab: Corresponding symtab.
135 * Return: 0 on success, negative errno on error.
138 arch_kexec_apply_relocations(struct purgatory_info
*pi
, Elf_Shdr
*section
,
139 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
141 pr_err("REL relocation unsupported.\n");
146 * Free up memory used by kernel, initrd, and command line. This is temporary
147 * memory allocation which is not needed any more after these buffers have
148 * been loaded into separate segments and have been copied elsewhere.
150 void kimage_file_post_load_cleanup(struct kimage
*image
)
152 struct purgatory_info
*pi
= &image
->purgatory_info
;
154 vfree(image
->kernel_buf
);
155 image
->kernel_buf
= NULL
;
157 vfree(image
->initrd_buf
);
158 image
->initrd_buf
= NULL
;
160 kfree(image
->cmdline_buf
);
161 image
->cmdline_buf
= NULL
;
163 vfree(pi
->purgatory_buf
);
164 pi
->purgatory_buf
= NULL
;
169 /* See if architecture has anything to cleanup post load */
170 arch_kimage_file_post_load_cleanup(image
);
173 * Above call should have called into bootloader to free up
174 * any data stored in kimage->image_loader_data. It should
175 * be ok now to free it up.
177 kfree(image
->image_loader_data
);
178 image
->image_loader_data
= NULL
;
181 #ifdef CONFIG_KEXEC_SIG
183 kimage_validate_signature(struct kimage
*image
)
187 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
188 image
->kernel_buf_len
);
191 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE
)) {
192 pr_notice("Enforced kernel signature verification failed (%d).\n", ret
);
197 * If IMA is guaranteed to appraise a signature on the kexec
198 * image, permit it even if the kernel is otherwise locked
201 if (!ima_appraise_signature(READING_KEXEC_IMAGE
) &&
202 security_locked_down(LOCKDOWN_KEXEC
))
205 pr_debug("kernel signature verification failed (%d).\n", ret
);
213 * In file mode list of segments is prepared by kernel. Copy relevant
214 * data from user space, do error checking, prepare segment list
217 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
218 const char __user
*cmdline_ptr
,
219 unsigned long cmdline_len
, unsigned flags
)
224 ret
= kernel_read_file_from_fd(kernel_fd
, 0, &image
->kernel_buf
,
225 INT_MAX
, NULL
, READING_KEXEC_IMAGE
);
228 image
->kernel_buf_len
= ret
;
230 /* Call arch image probe handlers */
231 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
232 image
->kernel_buf_len
);
236 #ifdef CONFIG_KEXEC_SIG
237 ret
= kimage_validate_signature(image
);
242 /* It is possible that there no initramfs is being loaded */
243 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
244 ret
= kernel_read_file_from_fd(initrd_fd
, 0, &image
->initrd_buf
,
246 READING_KEXEC_INITRAMFS
);
249 image
->initrd_buf_len
= ret
;
254 image
->cmdline_buf
= memdup_user(cmdline_ptr
, cmdline_len
);
255 if (IS_ERR(image
->cmdline_buf
)) {
256 ret
= PTR_ERR(image
->cmdline_buf
);
257 image
->cmdline_buf
= NULL
;
261 image
->cmdline_buf_len
= cmdline_len
;
263 /* command line should be a string with last byte null */
264 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
269 ima_kexec_cmdline(kernel_fd
, image
->cmdline_buf
,
270 image
->cmdline_buf_len
- 1);
273 /* IMA needs to pass the measurement list to the next kernel. */
274 ima_add_kexec_buffer(image
);
276 /* Call arch image load handlers */
277 ldata
= arch_kexec_kernel_image_load(image
);
280 ret
= PTR_ERR(ldata
);
284 image
->image_loader_data
= ldata
;
286 /* In case of error, free up all allocated memory in this function */
288 kimage_file_post_load_cleanup(image
);
293 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
294 int initrd_fd
, const char __user
*cmdline_ptr
,
295 unsigned long cmdline_len
, unsigned long flags
)
298 struct kimage
*image
;
299 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
301 image
= do_kimage_alloc_init();
305 image
->file_mode
= 1;
307 if (kexec_on_panic
) {
308 /* Enable special crash kernel control page alloc policy. */
309 image
->control_page
= crashk_res
.start
;
310 image
->type
= KEXEC_TYPE_CRASH
;
313 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
314 cmdline_ptr
, cmdline_len
, flags
);
318 ret
= sanity_check_segment_list(image
);
320 goto out_free_post_load_bufs
;
323 image
->control_code_page
= kimage_alloc_control_pages(image
,
324 get_order(KEXEC_CONTROL_PAGE_SIZE
));
325 if (!image
->control_code_page
) {
326 pr_err("Could not allocate control_code_buffer\n");
327 goto out_free_post_load_bufs
;
330 if (!kexec_on_panic
) {
331 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
332 if (!image
->swap_page
) {
333 pr_err("Could not allocate swap buffer\n");
334 goto out_free_control_pages
;
340 out_free_control_pages
:
341 kimage_free_page_list(&image
->control_pages
);
342 out_free_post_load_bufs
:
343 kimage_file_post_load_cleanup(image
);
349 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
350 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
351 unsigned long, flags
)
354 struct kimage
**dest_image
, *image
;
356 /* We only trust the superuser with rebooting the system. */
357 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
360 /* Make sure we have a legal set of flags */
361 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
366 if (!mutex_trylock(&kexec_mutex
))
369 dest_image
= &kexec_image
;
370 if (flags
& KEXEC_FILE_ON_CRASH
) {
371 dest_image
= &kexec_crash_image
;
372 if (kexec_crash_image
)
373 arch_kexec_unprotect_crashkres();
376 if (flags
& KEXEC_FILE_UNLOAD
)
380 * In case of crash, new kernel gets loaded in reserved region. It is
381 * same memory where old crash kernel might be loaded. Free any
382 * current crash dump kernel before we corrupt it.
384 if (flags
& KEXEC_FILE_ON_CRASH
)
385 kimage_free(xchg(&kexec_crash_image
, NULL
));
387 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
392 ret
= machine_kexec_prepare(image
);
397 * Some architecture(like S390) may touch the crash memory before
398 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
400 ret
= kimage_crash_copy_vmcoreinfo(image
);
404 ret
= kexec_calculate_store_digests(image
);
408 for (i
= 0; i
< image
->nr_segments
; i
++) {
409 struct kexec_segment
*ksegment
;
411 ksegment
= &image
->segment
[i
];
412 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
413 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
416 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
421 kimage_terminate(image
);
423 ret
= machine_kexec_post_load(image
);
428 * Free up any temporary buffers allocated which are not needed
429 * after image has been loaded
431 kimage_file_post_load_cleanup(image
);
433 image
= xchg(dest_image
, image
);
435 if ((flags
& KEXEC_FILE_ON_CRASH
) && kexec_crash_image
)
436 arch_kexec_protect_crashkres();
438 mutex_unlock(&kexec_mutex
);
443 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
444 struct kexec_buf
*kbuf
)
446 struct kimage
*image
= kbuf
->image
;
447 unsigned long temp_start
, temp_end
;
449 temp_end
= min(end
, kbuf
->buf_max
);
450 temp_start
= temp_end
- kbuf
->memsz
;
453 /* align down start */
454 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
456 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
459 temp_end
= temp_start
+ kbuf
->memsz
- 1;
462 * Make sure this does not conflict with any of existing
465 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
466 temp_start
= temp_start
- PAGE_SIZE
;
470 /* We found a suitable memory range */
474 /* If we are here, we found a suitable memory range */
475 kbuf
->mem
= temp_start
;
477 /* Success, stop navigating through remaining System RAM ranges */
481 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
482 struct kexec_buf
*kbuf
)
484 struct kimage
*image
= kbuf
->image
;
485 unsigned long temp_start
, temp_end
;
487 temp_start
= max(start
, kbuf
->buf_min
);
490 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
491 temp_end
= temp_start
+ kbuf
->memsz
- 1;
493 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
496 * Make sure this does not conflict with any of existing
499 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
500 temp_start
= temp_start
+ PAGE_SIZE
;
504 /* We found a suitable memory range */
508 /* If we are here, we found a suitable memory range */
509 kbuf
->mem
= temp_start
;
511 /* Success, stop navigating through remaining System RAM ranges */
515 static int locate_mem_hole_callback(struct resource
*res
, void *arg
)
517 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
518 u64 start
= res
->start
, end
= res
->end
;
519 unsigned long sz
= end
- start
+ 1;
521 /* Returning 0 will take to next memory range */
523 /* Don't use memory that will be detected and handled by a driver. */
524 if (res
->flags
& IORESOURCE_SYSRAM_DRIVER_MANAGED
)
527 if (sz
< kbuf
->memsz
)
530 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
534 * Allocate memory top down with-in ram range. Otherwise bottom up
538 return locate_mem_hole_top_down(start
, end
, kbuf
);
539 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
542 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
543 static int kexec_walk_memblock(struct kexec_buf
*kbuf
,
544 int (*func
)(struct resource
*, void *))
548 phys_addr_t mstart
, mend
;
549 struct resource res
= { };
551 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
552 return func(&crashk_res
, kbuf
);
554 if (kbuf
->top_down
) {
555 for_each_free_mem_range_reverse(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
,
556 &mstart
, &mend
, NULL
) {
558 * In memblock, end points to the first byte after the
559 * range while in kexec, end points to the last byte
564 ret
= func(&res
, kbuf
);
569 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
,
570 &mstart
, &mend
, NULL
) {
572 * In memblock, end points to the first byte after the
573 * range while in kexec, end points to the last byte
578 ret
= func(&res
, kbuf
);
587 static int kexec_walk_memblock(struct kexec_buf
*kbuf
,
588 int (*func
)(struct resource
*, void *))
595 * kexec_walk_resources - call func(data) on free memory regions
596 * @kbuf: Context info for the search. Also passed to @func.
597 * @func: Function to call for each memory region.
599 * Return: The memory walk will stop when func returns a non-zero value
600 * and that value will be returned. If all free regions are visited without
601 * func returning non-zero, then zero will be returned.
603 static int kexec_walk_resources(struct kexec_buf
*kbuf
,
604 int (*func
)(struct resource
*, void *))
606 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
607 return walk_iomem_res_desc(crashk_res
.desc
,
608 IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
,
609 crashk_res
.start
, crashk_res
.end
,
612 return walk_system_ram_res(0, ULONG_MAX
, kbuf
, func
);
616 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
617 * @kbuf: Parameters for the memory search.
619 * On success, kbuf->mem will have the start address of the memory region found.
621 * Return: 0 on success, negative errno on error.
623 int kexec_locate_mem_hole(struct kexec_buf
*kbuf
)
627 /* Arch knows where to place */
628 if (kbuf
->mem
!= KEXEC_BUF_MEM_UNKNOWN
)
631 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK
))
632 ret
= kexec_walk_resources(kbuf
, locate_mem_hole_callback
);
634 ret
= kexec_walk_memblock(kbuf
, locate_mem_hole_callback
);
636 return ret
== 1 ? 0 : -EADDRNOTAVAIL
;
640 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
641 * @kbuf: Parameters for the memory search.
643 * On success, kbuf->mem will have the start address of the memory region found.
645 * Return: 0 on success, negative errno on error.
647 int __weak
arch_kexec_locate_mem_hole(struct kexec_buf
*kbuf
)
649 return kexec_locate_mem_hole(kbuf
);
653 * kexec_add_buffer - place a buffer in a kexec segment
654 * @kbuf: Buffer contents and memory parameters.
656 * This function assumes that kexec_mutex is held.
657 * On successful return, @kbuf->mem will have the physical address of
658 * the buffer in memory.
660 * Return: 0 on success, negative errno on error.
662 int kexec_add_buffer(struct kexec_buf
*kbuf
)
664 struct kexec_segment
*ksegment
;
667 /* Currently adding segment this way is allowed only in file mode */
668 if (!kbuf
->image
->file_mode
)
671 if (kbuf
->image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
675 * Make sure we are not trying to add buffer after allocating
676 * control pages. All segments need to be placed first before
677 * any control pages are allocated. As control page allocation
678 * logic goes through list of segments to make sure there are
679 * no destination overlaps.
681 if (!list_empty(&kbuf
->image
->control_pages
)) {
686 /* Ensure minimum alignment needed for segments. */
687 kbuf
->memsz
= ALIGN(kbuf
->memsz
, PAGE_SIZE
);
688 kbuf
->buf_align
= max(kbuf
->buf_align
, PAGE_SIZE
);
690 /* Walk the RAM ranges and allocate a suitable range for the buffer */
691 ret
= arch_kexec_locate_mem_hole(kbuf
);
695 /* Found a suitable memory range */
696 ksegment
= &kbuf
->image
->segment
[kbuf
->image
->nr_segments
];
697 ksegment
->kbuf
= kbuf
->buffer
;
698 ksegment
->bufsz
= kbuf
->bufsz
;
699 ksegment
->mem
= kbuf
->mem
;
700 ksegment
->memsz
= kbuf
->memsz
;
701 kbuf
->image
->nr_segments
++;
705 /* Calculate and store the digest of segments */
706 static int kexec_calculate_store_digests(struct kimage
*image
)
708 struct crypto_shash
*tfm
;
709 struct shash_desc
*desc
;
710 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
711 size_t desc_size
, nullsz
;
714 struct kexec_sha_region
*sha_regions
;
715 struct purgatory_info
*pi
= &image
->purgatory_info
;
717 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY
))
720 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
721 zero_buf_sz
= PAGE_SIZE
;
723 tfm
= crypto_alloc_shash("sha256", 0, 0);
729 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
730 desc
= kzalloc(desc_size
, GFP_KERNEL
);
736 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
737 sha_regions
= vzalloc(sha_region_sz
);
743 ret
= crypto_shash_init(desc
);
745 goto out_free_sha_regions
;
747 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
750 goto out_free_sha_regions
;
753 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
754 struct kexec_segment
*ksegment
;
756 ksegment
= &image
->segment
[i
];
758 * Skip purgatory as it will be modified once we put digest
761 if (ksegment
->kbuf
== pi
->purgatory_buf
)
764 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
770 * Assume rest of the buffer is filled with zero and
771 * update digest accordingly.
773 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
775 unsigned long bytes
= nullsz
;
777 if (bytes
> zero_buf_sz
)
779 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
788 sha_regions
[j
].start
= ksegment
->mem
;
789 sha_regions
[j
].len
= ksegment
->memsz
;
794 ret
= crypto_shash_final(desc
, digest
);
796 goto out_free_digest
;
797 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha_regions",
798 sha_regions
, sha_region_sz
, 0);
800 goto out_free_digest
;
802 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha256_digest",
803 digest
, SHA256_DIGEST_SIZE
, 0);
805 goto out_free_digest
;
810 out_free_sha_regions
:
820 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
822 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
823 * @pi: Purgatory to be loaded.
824 * @kbuf: Buffer to setup.
826 * Allocates the memory needed for the buffer. Caller is responsible to free
827 * the memory after use.
829 * Return: 0 on success, negative errno on error.
831 static int kexec_purgatory_setup_kbuf(struct purgatory_info
*pi
,
832 struct kexec_buf
*kbuf
)
834 const Elf_Shdr
*sechdrs
;
835 unsigned long bss_align
;
836 unsigned long bss_sz
;
840 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
841 kbuf
->buf_align
= bss_align
= 1;
842 kbuf
->bufsz
= bss_sz
= 0;
844 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
845 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
848 align
= sechdrs
[i
].sh_addralign
;
849 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
850 if (kbuf
->buf_align
< align
)
851 kbuf
->buf_align
= align
;
852 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, align
);
853 kbuf
->bufsz
+= sechdrs
[i
].sh_size
;
855 if (bss_align
< align
)
857 bss_sz
= ALIGN(bss_sz
, align
);
858 bss_sz
+= sechdrs
[i
].sh_size
;
861 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, bss_align
);
862 kbuf
->memsz
= kbuf
->bufsz
+ bss_sz
;
863 if (kbuf
->buf_align
< bss_align
)
864 kbuf
->buf_align
= bss_align
;
866 kbuf
->buffer
= vzalloc(kbuf
->bufsz
);
869 pi
->purgatory_buf
= kbuf
->buffer
;
871 ret
= kexec_add_buffer(kbuf
);
877 vfree(pi
->purgatory_buf
);
878 pi
->purgatory_buf
= NULL
;
883 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
884 * @pi: Purgatory to be loaded.
885 * @kbuf: Buffer prepared to store purgatory.
887 * Allocates the memory needed for the buffer. Caller is responsible to free
888 * the memory after use.
890 * Return: 0 on success, negative errno on error.
892 static int kexec_purgatory_setup_sechdrs(struct purgatory_info
*pi
,
893 struct kexec_buf
*kbuf
)
895 unsigned long bss_addr
;
896 unsigned long offset
;
901 * The section headers in kexec_purgatory are read-only. In order to
902 * have them modifiable make a temporary copy.
904 sechdrs
= vzalloc(array_size(sizeof(Elf_Shdr
), pi
->ehdr
->e_shnum
));
907 memcpy(sechdrs
, (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
,
908 pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
909 pi
->sechdrs
= sechdrs
;
912 bss_addr
= kbuf
->mem
+ kbuf
->bufsz
;
913 kbuf
->image
->start
= pi
->ehdr
->e_entry
;
915 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
919 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
922 align
= sechdrs
[i
].sh_addralign
;
923 if (sechdrs
[i
].sh_type
== SHT_NOBITS
) {
924 bss_addr
= ALIGN(bss_addr
, align
);
925 sechdrs
[i
].sh_addr
= bss_addr
;
926 bss_addr
+= sechdrs
[i
].sh_size
;
930 offset
= ALIGN(offset
, align
);
931 if (sechdrs
[i
].sh_flags
& SHF_EXECINSTR
&&
932 pi
->ehdr
->e_entry
>= sechdrs
[i
].sh_addr
&&
933 pi
->ehdr
->e_entry
< (sechdrs
[i
].sh_addr
934 + sechdrs
[i
].sh_size
)) {
935 kbuf
->image
->start
-= sechdrs
[i
].sh_addr
;
936 kbuf
->image
->start
+= kbuf
->mem
+ offset
;
939 src
= (void *)pi
->ehdr
+ sechdrs
[i
].sh_offset
;
940 dst
= pi
->purgatory_buf
+ offset
;
941 memcpy(dst
, src
, sechdrs
[i
].sh_size
);
943 sechdrs
[i
].sh_addr
= kbuf
->mem
+ offset
;
944 sechdrs
[i
].sh_offset
= offset
;
945 offset
+= sechdrs
[i
].sh_size
;
951 static int kexec_apply_relocations(struct kimage
*image
)
954 struct purgatory_info
*pi
= &image
->purgatory_info
;
955 const Elf_Shdr
*sechdrs
;
957 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
959 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
960 const Elf_Shdr
*relsec
;
961 const Elf_Shdr
*symtab
;
964 relsec
= sechdrs
+ i
;
966 if (relsec
->sh_type
!= SHT_RELA
&&
967 relsec
->sh_type
!= SHT_REL
)
971 * For section of type SHT_RELA/SHT_REL,
972 * ->sh_link contains section header index of associated
973 * symbol table. And ->sh_info contains section header
974 * index of section to which relocations apply.
976 if (relsec
->sh_info
>= pi
->ehdr
->e_shnum
||
977 relsec
->sh_link
>= pi
->ehdr
->e_shnum
)
980 section
= pi
->sechdrs
+ relsec
->sh_info
;
981 symtab
= sechdrs
+ relsec
->sh_link
;
983 if (!(section
->sh_flags
& SHF_ALLOC
))
987 * symtab->sh_link contain section header index of associated
990 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
991 /* Invalid section number? */
995 * Respective architecture needs to provide support for applying
996 * relocations of type SHT_RELA/SHT_REL.
998 if (relsec
->sh_type
== SHT_RELA
)
999 ret
= arch_kexec_apply_relocations_add(pi
, section
,
1001 else if (relsec
->sh_type
== SHT_REL
)
1002 ret
= arch_kexec_apply_relocations(pi
, section
,
1012 * kexec_load_purgatory - Load and relocate the purgatory object.
1013 * @image: Image to add the purgatory to.
1014 * @kbuf: Memory parameters to use.
1016 * Allocates the memory needed for image->purgatory_info.sechdrs and
1017 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018 * to free the memory after use.
1020 * Return: 0 on success, negative errno on error.
1022 int kexec_load_purgatory(struct kimage
*image
, struct kexec_buf
*kbuf
)
1024 struct purgatory_info
*pi
= &image
->purgatory_info
;
1027 if (kexec_purgatory_size
<= 0)
1030 pi
->ehdr
= (const Elf_Ehdr
*)kexec_purgatory
;
1032 ret
= kexec_purgatory_setup_kbuf(pi
, kbuf
);
1036 ret
= kexec_purgatory_setup_sechdrs(pi
, kbuf
);
1040 ret
= kexec_apply_relocations(image
);
1049 vfree(pi
->purgatory_buf
);
1050 pi
->purgatory_buf
= NULL
;
1055 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056 * @pi: Purgatory to search in.
1057 * @name: Name of the symbol.
1059 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1061 static const Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
1064 const Elf_Shdr
*sechdrs
;
1065 const Elf_Ehdr
*ehdr
;
1066 const Elf_Sym
*syms
;
1074 sechdrs
= (void *)ehdr
+ ehdr
->e_shoff
;
1076 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
1077 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
1080 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
1081 /* Invalid strtab section number */
1083 strtab
= (void *)ehdr
+ sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
1084 syms
= (void *)ehdr
+ sechdrs
[i
].sh_offset
;
1086 /* Go through symbols for a match */
1087 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
1088 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
1091 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
1094 if (syms
[k
].st_shndx
== SHN_UNDEF
||
1095 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
1096 pr_debug("Symbol: %s has bad section index %d.\n",
1097 name
, syms
[k
].st_shndx
);
1101 /* Found the symbol we are looking for */
1109 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
1111 struct purgatory_info
*pi
= &image
->purgatory_info
;
1115 sym
= kexec_purgatory_find_symbol(pi
, name
);
1117 return ERR_PTR(-EINVAL
);
1119 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
1122 * Returns the address where symbol will finally be loaded after
1123 * kexec_load_segment()
1125 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
1129 * Get or set value of a symbol. If "get_value" is true, symbol value is
1130 * returned in buf otherwise symbol value is set based on value in buf.
1132 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
1133 void *buf
, unsigned int size
, bool get_value
)
1135 struct purgatory_info
*pi
= &image
->purgatory_info
;
1140 sym
= kexec_purgatory_find_symbol(pi
, name
);
1144 if (sym
->st_size
!= size
) {
1145 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146 name
, (unsigned long)sym
->st_size
, size
);
1150 sec
= pi
->sechdrs
+ sym
->st_shndx
;
1152 if (sec
->sh_type
== SHT_NOBITS
) {
1153 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
1154 get_value
? "get" : "set");
1158 sym_buf
= (char *)pi
->purgatory_buf
+ sec
->sh_offset
+ sym
->st_value
;
1161 memcpy((void *)buf
, sym_buf
, size
);
1163 memcpy((void *)sym_buf
, buf
, size
);
1167 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1169 int crash_exclude_mem_range(struct crash_mem
*mem
,
1170 unsigned long long mstart
, unsigned long long mend
)
1173 unsigned long long start
, end
, p_start
, p_end
;
1174 struct crash_mem_range temp_range
= {0, 0};
1176 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1177 start
= mem
->ranges
[i
].start
;
1178 end
= mem
->ranges
[i
].end
;
1182 if (mstart
> end
|| mend
< start
)
1185 /* Truncate any area outside of range */
1191 /* Found completely overlapping range */
1192 if (p_start
== start
&& p_end
== end
) {
1193 mem
->ranges
[i
].start
= 0;
1194 mem
->ranges
[i
].end
= 0;
1195 if (i
< mem
->nr_ranges
- 1) {
1196 /* Shift rest of the ranges to left */
1197 for (j
= i
; j
< mem
->nr_ranges
- 1; j
++) {
1198 mem
->ranges
[j
].start
=
1199 mem
->ranges
[j
+1].start
;
1200 mem
->ranges
[j
].end
=
1201 mem
->ranges
[j
+1].end
;
1205 * Continue to check if there are another overlapping ranges
1206 * from the current position because of shifting the above
1217 if (p_start
> start
&& p_end
< end
) {
1218 /* Split original range */
1219 mem
->ranges
[i
].end
= p_start
- 1;
1220 temp_range
.start
= p_end
+ 1;
1221 temp_range
.end
= end
;
1222 } else if (p_start
!= start
)
1223 mem
->ranges
[i
].end
= p_start
- 1;
1225 mem
->ranges
[i
].start
= p_end
+ 1;
1229 /* If a split happened, add the split to array */
1230 if (!temp_range
.end
)
1233 /* Split happened */
1234 if (i
== mem
->max_nr_ranges
- 1)
1237 /* Location where new range should go */
1239 if (j
< mem
->nr_ranges
) {
1240 /* Move over all ranges one slot towards the end */
1241 for (i
= mem
->nr_ranges
- 1; i
>= j
; i
--)
1242 mem
->ranges
[i
+ 1] = mem
->ranges
[i
];
1245 mem
->ranges
[j
].start
= temp_range
.start
;
1246 mem
->ranges
[j
].end
= temp_range
.end
;
1251 int crash_prepare_elf64_headers(struct crash_mem
*mem
, int kernel_map
,
1252 void **addr
, unsigned long *sz
)
1256 unsigned long nr_cpus
= num_possible_cpus(), nr_phdr
, elf_sz
;
1258 unsigned int cpu
, i
;
1259 unsigned long long notes_addr
;
1260 unsigned long mstart
, mend
;
1262 /* extra phdr for vmcoreinfo ELF note */
1263 nr_phdr
= nr_cpus
+ 1;
1264 nr_phdr
+= mem
->nr_ranges
;
1267 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1268 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1269 * I think this is required by tools like gdb. So same physical
1270 * memory will be mapped in two ELF headers. One will contain kernel
1271 * text virtual addresses and other will have __va(physical) addresses.
1275 elf_sz
= sizeof(Elf64_Ehdr
) + nr_phdr
* sizeof(Elf64_Phdr
);
1276 elf_sz
= ALIGN(elf_sz
, ELF_CORE_HEADER_ALIGN
);
1278 buf
= vzalloc(elf_sz
);
1282 ehdr
= (Elf64_Ehdr
*)buf
;
1283 phdr
= (Elf64_Phdr
*)(ehdr
+ 1);
1284 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
1285 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS64
;
1286 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
1287 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1288 ehdr
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1289 memset(ehdr
->e_ident
+ EI_PAD
, 0, EI_NIDENT
- EI_PAD
);
1290 ehdr
->e_type
= ET_CORE
;
1291 ehdr
->e_machine
= ELF_ARCH
;
1292 ehdr
->e_version
= EV_CURRENT
;
1293 ehdr
->e_phoff
= sizeof(Elf64_Ehdr
);
1294 ehdr
->e_ehsize
= sizeof(Elf64_Ehdr
);
1295 ehdr
->e_phentsize
= sizeof(Elf64_Phdr
);
1297 /* Prepare one phdr of type PT_NOTE for each present CPU */
1298 for_each_present_cpu(cpu
) {
1299 phdr
->p_type
= PT_NOTE
;
1300 notes_addr
= per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes
, cpu
));
1301 phdr
->p_offset
= phdr
->p_paddr
= notes_addr
;
1302 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(note_buf_t
);
1307 /* Prepare one PT_NOTE header for vmcoreinfo */
1308 phdr
->p_type
= PT_NOTE
;
1309 phdr
->p_offset
= phdr
->p_paddr
= paddr_vmcoreinfo_note();
1310 phdr
->p_filesz
= phdr
->p_memsz
= VMCOREINFO_NOTE_SIZE
;
1314 /* Prepare PT_LOAD type program header for kernel text region */
1316 phdr
->p_type
= PT_LOAD
;
1317 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1318 phdr
->p_vaddr
= (unsigned long) _text
;
1319 phdr
->p_filesz
= phdr
->p_memsz
= _end
- _text
;
1320 phdr
->p_offset
= phdr
->p_paddr
= __pa_symbol(_text
);
1325 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1326 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1327 mstart
= mem
->ranges
[i
].start
;
1328 mend
= mem
->ranges
[i
].end
;
1330 phdr
->p_type
= PT_LOAD
;
1331 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1332 phdr
->p_offset
= mstart
;
1334 phdr
->p_paddr
= mstart
;
1335 phdr
->p_vaddr
= (unsigned long) __va(mstart
);
1336 phdr
->p_filesz
= phdr
->p_memsz
= mend
- mstart
+ 1;
1339 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1340 phdr
, phdr
->p_vaddr
, phdr
->p_paddr
, phdr
->p_filesz
,
1341 ehdr
->e_phnum
, phdr
->p_offset
);