WIP FPC-III support
[linux/fpc-iii.git] / kernel / rcu / rcu_segcblist.c
blob2d2a6b6b9dfb2e18fbd517d0c12bda4edfd232e3
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * RCU segmented callback lists, function definitions
5 * Copyright IBM Corporation, 2017
7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/rcupdate.h>
15 #include "rcu_segcblist.h"
17 /* Initialize simple callback list. */
18 void rcu_cblist_init(struct rcu_cblist *rclp)
20 rclp->head = NULL;
21 rclp->tail = &rclp->head;
22 rclp->len = 0;
26 * Enqueue an rcu_head structure onto the specified callback list.
28 void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp)
30 *rclp->tail = rhp;
31 rclp->tail = &rhp->next;
32 WRITE_ONCE(rclp->len, rclp->len + 1);
36 * Flush the second rcu_cblist structure onto the first one, obliterating
37 * any contents of the first. If rhp is non-NULL, enqueue it as the sole
38 * element of the second rcu_cblist structure, but ensuring that the second
39 * rcu_cblist structure, if initially non-empty, always appears non-empty
40 * throughout the process. If rdp is NULL, the second rcu_cblist structure
41 * is instead initialized to empty.
43 void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp,
44 struct rcu_cblist *srclp,
45 struct rcu_head *rhp)
47 drclp->head = srclp->head;
48 if (drclp->head)
49 drclp->tail = srclp->tail;
50 else
51 drclp->tail = &drclp->head;
52 drclp->len = srclp->len;
53 if (!rhp) {
54 rcu_cblist_init(srclp);
55 } else {
56 rhp->next = NULL;
57 srclp->head = rhp;
58 srclp->tail = &rhp->next;
59 WRITE_ONCE(srclp->len, 1);
64 * Dequeue the oldest rcu_head structure from the specified callback
65 * list.
67 struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
69 struct rcu_head *rhp;
71 rhp = rclp->head;
72 if (!rhp)
73 return NULL;
74 rclp->len--;
75 rclp->head = rhp->next;
76 if (!rclp->head)
77 rclp->tail = &rclp->head;
78 return rhp;
81 /* Set the length of an rcu_segcblist structure. */
82 static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
84 #ifdef CONFIG_RCU_NOCB_CPU
85 atomic_long_set(&rsclp->len, v);
86 #else
87 WRITE_ONCE(rsclp->len, v);
88 #endif
92 * Increase the numeric length of an rcu_segcblist structure by the
93 * specified amount, which can be negative. This can cause the ->len
94 * field to disagree with the actual number of callbacks on the structure.
95 * This increase is fully ordered with respect to the callers accesses
96 * both before and after.
98 static void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
100 #ifdef CONFIG_RCU_NOCB_CPU
101 smp_mb__before_atomic(); /* Up to the caller! */
102 atomic_long_add(v, &rsclp->len);
103 smp_mb__after_atomic(); /* Up to the caller! */
104 #else
105 smp_mb(); /* Up to the caller! */
106 WRITE_ONCE(rsclp->len, rsclp->len + v);
107 smp_mb(); /* Up to the caller! */
108 #endif
112 * Increase the numeric length of an rcu_segcblist structure by one.
113 * This can cause the ->len field to disagree with the actual number of
114 * callbacks on the structure. This increase is fully ordered with respect
115 * to the callers accesses both before and after.
117 void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp)
119 rcu_segcblist_add_len(rsclp, 1);
123 * Exchange the numeric length of the specified rcu_segcblist structure
124 * with the specified value. This can cause the ->len field to disagree
125 * with the actual number of callbacks on the structure. This exchange is
126 * fully ordered with respect to the callers accesses both before and after.
128 static long rcu_segcblist_xchg_len(struct rcu_segcblist *rsclp, long v)
130 #ifdef CONFIG_RCU_NOCB_CPU
131 return atomic_long_xchg(&rsclp->len, v);
132 #else
133 long ret = rsclp->len;
135 smp_mb(); /* Up to the caller! */
136 WRITE_ONCE(rsclp->len, v);
137 smp_mb(); /* Up to the caller! */
138 return ret;
139 #endif
143 * Initialize an rcu_segcblist structure.
145 void rcu_segcblist_init(struct rcu_segcblist *rsclp)
147 int i;
149 BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq));
150 BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq));
151 rsclp->head = NULL;
152 for (i = 0; i < RCU_CBLIST_NSEGS; i++)
153 rsclp->tails[i] = &rsclp->head;
154 rcu_segcblist_set_len(rsclp, 0);
155 rsclp->enabled = 1;
159 * Disable the specified rcu_segcblist structure, so that callbacks can
160 * no longer be posted to it. This structure must be empty.
162 void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
164 WARN_ON_ONCE(!rcu_segcblist_empty(rsclp));
165 WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp));
166 rsclp->enabled = 0;
170 * Mark the specified rcu_segcblist structure as offloaded. This
171 * structure must be empty.
173 void rcu_segcblist_offload(struct rcu_segcblist *rsclp)
175 rsclp->offloaded = 1;
179 * Does the specified rcu_segcblist structure contain callbacks that
180 * are ready to be invoked?
182 bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
184 return rcu_segcblist_is_enabled(rsclp) &&
185 &rsclp->head != READ_ONCE(rsclp->tails[RCU_DONE_TAIL]);
189 * Does the specified rcu_segcblist structure contain callbacks that
190 * are still pending, that is, not yet ready to be invoked?
192 bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
194 return rcu_segcblist_is_enabled(rsclp) &&
195 !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL);
199 * Return a pointer to the first callback in the specified rcu_segcblist
200 * structure. This is useful for diagnostics.
202 struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
204 if (rcu_segcblist_is_enabled(rsclp))
205 return rsclp->head;
206 return NULL;
210 * Return a pointer to the first pending callback in the specified
211 * rcu_segcblist structure. This is useful just after posting a given
212 * callback -- if that callback is the first pending callback, then
213 * you cannot rely on someone else having already started up the required
214 * grace period.
216 struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
218 if (rcu_segcblist_is_enabled(rsclp))
219 return *rsclp->tails[RCU_DONE_TAIL];
220 return NULL;
224 * Return false if there are no CBs awaiting grace periods, otherwise,
225 * return true and store the nearest waited-upon grace period into *lp.
227 bool rcu_segcblist_nextgp(struct rcu_segcblist *rsclp, unsigned long *lp)
229 if (!rcu_segcblist_pend_cbs(rsclp))
230 return false;
231 *lp = rsclp->gp_seq[RCU_WAIT_TAIL];
232 return true;
236 * Enqueue the specified callback onto the specified rcu_segcblist
237 * structure, updating accounting as needed. Note that the ->len
238 * field may be accessed locklessly, hence the WRITE_ONCE().
239 * The ->len field is used by rcu_barrier() and friends to determine
240 * if it must post a callback on this structure, and it is OK
241 * for rcu_barrier() to sometimes post callbacks needlessly, but
242 * absolutely not OK for it to ever miss posting a callback.
244 void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
245 struct rcu_head *rhp)
247 rcu_segcblist_inc_len(rsclp);
248 smp_mb(); /* Ensure counts are updated before callback is enqueued. */
249 rhp->next = NULL;
250 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rhp);
251 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], &rhp->next);
255 * Entrain the specified callback onto the specified rcu_segcblist at
256 * the end of the last non-empty segment. If the entire rcu_segcblist
257 * is empty, make no change, but return false.
259 * This is intended for use by rcu_barrier()-like primitives, -not-
260 * for normal grace-period use. IMPORTANT: The callback you enqueue
261 * will wait for all prior callbacks, NOT necessarily for a grace
262 * period. You have been warned.
264 bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
265 struct rcu_head *rhp)
267 int i;
269 if (rcu_segcblist_n_cbs(rsclp) == 0)
270 return false;
271 rcu_segcblist_inc_len(rsclp);
272 smp_mb(); /* Ensure counts are updated before callback is entrained. */
273 rhp->next = NULL;
274 for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--)
275 if (rsclp->tails[i] != rsclp->tails[i - 1])
276 break;
277 WRITE_ONCE(*rsclp->tails[i], rhp);
278 for (; i <= RCU_NEXT_TAIL; i++)
279 WRITE_ONCE(rsclp->tails[i], &rhp->next);
280 return true;
284 * Extract only the counts from the specified rcu_segcblist structure,
285 * and place them in the specified rcu_cblist structure. This function
286 * supports both callback orphaning and invocation, hence the separation
287 * of counts and callbacks. (Callbacks ready for invocation must be
288 * orphaned and adopted separately from pending callbacks, but counts
289 * apply to all callbacks. Locking must be used to make sure that
290 * both orphaned-callbacks lists are consistent.)
292 void rcu_segcblist_extract_count(struct rcu_segcblist *rsclp,
293 struct rcu_cblist *rclp)
295 rclp->len = rcu_segcblist_xchg_len(rsclp, 0);
299 * Extract only those callbacks ready to be invoked from the specified
300 * rcu_segcblist structure and place them in the specified rcu_cblist
301 * structure.
303 void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
304 struct rcu_cblist *rclp)
306 int i;
308 if (!rcu_segcblist_ready_cbs(rsclp))
309 return; /* Nothing to do. */
310 *rclp->tail = rsclp->head;
311 WRITE_ONCE(rsclp->head, *rsclp->tails[RCU_DONE_TAIL]);
312 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL);
313 rclp->tail = rsclp->tails[RCU_DONE_TAIL];
314 for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--)
315 if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL])
316 WRITE_ONCE(rsclp->tails[i], &rsclp->head);
320 * Extract only those callbacks still pending (not yet ready to be
321 * invoked) from the specified rcu_segcblist structure and place them in
322 * the specified rcu_cblist structure. Note that this loses information
323 * about any callbacks that might have been partway done waiting for
324 * their grace period. Too bad! They will have to start over.
326 void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
327 struct rcu_cblist *rclp)
329 int i;
331 if (!rcu_segcblist_pend_cbs(rsclp))
332 return; /* Nothing to do. */
333 *rclp->tail = *rsclp->tails[RCU_DONE_TAIL];
334 rclp->tail = rsclp->tails[RCU_NEXT_TAIL];
335 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL);
336 for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++)
337 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_DONE_TAIL]);
341 * Insert counts from the specified rcu_cblist structure in the
342 * specified rcu_segcblist structure.
344 void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
345 struct rcu_cblist *rclp)
347 rcu_segcblist_add_len(rsclp, rclp->len);
348 rclp->len = 0;
352 * Move callbacks from the specified rcu_cblist to the beginning of the
353 * done-callbacks segment of the specified rcu_segcblist.
355 void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
356 struct rcu_cblist *rclp)
358 int i;
360 if (!rclp->head)
361 return; /* No callbacks to move. */
362 *rclp->tail = rsclp->head;
363 WRITE_ONCE(rsclp->head, rclp->head);
364 for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
365 if (&rsclp->head == rsclp->tails[i])
366 WRITE_ONCE(rsclp->tails[i], rclp->tail);
367 else
368 break;
369 rclp->head = NULL;
370 rclp->tail = &rclp->head;
374 * Move callbacks from the specified rcu_cblist to the end of the
375 * new-callbacks segment of the specified rcu_segcblist.
377 void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
378 struct rcu_cblist *rclp)
380 if (!rclp->head)
381 return; /* Nothing to do. */
382 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rclp->head);
383 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], rclp->tail);
387 * Advance the callbacks in the specified rcu_segcblist structure based
388 * on the current value passed in for the grace-period counter.
390 void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq)
392 int i, j;
394 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
395 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
396 return;
399 * Find all callbacks whose ->gp_seq numbers indicate that they
400 * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
402 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
403 if (ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
404 break;
405 WRITE_ONCE(rsclp->tails[RCU_DONE_TAIL], rsclp->tails[i]);
408 /* If no callbacks moved, nothing more need be done. */
409 if (i == RCU_WAIT_TAIL)
410 return;
412 /* Clean up tail pointers that might have been misordered above. */
413 for (j = RCU_WAIT_TAIL; j < i; j++)
414 WRITE_ONCE(rsclp->tails[j], rsclp->tails[RCU_DONE_TAIL]);
417 * Callbacks moved, so clean up the misordered ->tails[] pointers
418 * that now point into the middle of the list of ready-to-invoke
419 * callbacks. The overall effect is to copy down the later pointers
420 * into the gap that was created by the now-ready segments.
422 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
423 if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL])
424 break; /* No more callbacks. */
425 WRITE_ONCE(rsclp->tails[j], rsclp->tails[i]);
426 rsclp->gp_seq[j] = rsclp->gp_seq[i];
431 * "Accelerate" callbacks based on more-accurate grace-period information.
432 * The reason for this is that RCU does not synchronize the beginnings and
433 * ends of grace periods, and that callbacks are posted locally. This in
434 * turn means that the callbacks must be labelled conservatively early
435 * on, as getting exact information would degrade both performance and
436 * scalability. When more accurate grace-period information becomes
437 * available, previously posted callbacks can be "accelerated", marking
438 * them to complete at the end of the earlier grace period.
440 * This function operates on an rcu_segcblist structure, and also the
441 * grace-period sequence number seq at which new callbacks would become
442 * ready to invoke. Returns true if there are callbacks that won't be
443 * ready to invoke until seq, false otherwise.
445 bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq)
447 int i;
449 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
450 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
451 return false;
454 * Find the segment preceding the oldest segment of callbacks
455 * whose ->gp_seq[] completion is at or after that passed in via
456 * "seq", skipping any empty segments. This oldest segment, along
457 * with any later segments, can be merged in with any newly arrived
458 * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
459 * as their ->gp_seq[] grace-period completion sequence number.
461 for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--)
462 if (rsclp->tails[i] != rsclp->tails[i - 1] &&
463 ULONG_CMP_LT(rsclp->gp_seq[i], seq))
464 break;
467 * If all the segments contain callbacks that correspond to
468 * earlier grace-period sequence numbers than "seq", leave.
469 * Assuming that the rcu_segcblist structure has enough
470 * segments in its arrays, this can only happen if some of
471 * the non-done segments contain callbacks that really are
472 * ready to invoke. This situation will get straightened
473 * out by the next call to rcu_segcblist_advance().
475 * Also advance to the oldest segment of callbacks whose
476 * ->gp_seq[] completion is at or after that passed in via "seq",
477 * skipping any empty segments.
479 * Note that segment "i" (and any lower-numbered segments
480 * containing older callbacks) will be unaffected, and their
481 * grace-period numbers remain unchanged. For example, if i ==
482 * WAIT_TAIL, then neither WAIT_TAIL nor DONE_TAIL will be touched.
483 * Instead, the CBs in NEXT_TAIL will be merged with those in
484 * NEXT_READY_TAIL and the grace-period number of NEXT_READY_TAIL
485 * would be updated. NEXT_TAIL would then be empty.
487 if (rcu_segcblist_restempty(rsclp, i) || ++i >= RCU_NEXT_TAIL)
488 return false;
491 * Merge all later callbacks, including newly arrived callbacks,
492 * into the segment located by the for-loop above. Assign "seq"
493 * as the ->gp_seq[] value in order to correctly handle the case
494 * where there were no pending callbacks in the rcu_segcblist
495 * structure other than in the RCU_NEXT_TAIL segment.
497 for (; i < RCU_NEXT_TAIL; i++) {
498 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_NEXT_TAIL]);
499 rsclp->gp_seq[i] = seq;
501 return true;
505 * Merge the source rcu_segcblist structure into the destination
506 * rcu_segcblist structure, then initialize the source. Any pending
507 * callbacks from the source get to start over. It is best to
508 * advance and accelerate both the destination and the source
509 * before merging.
511 void rcu_segcblist_merge(struct rcu_segcblist *dst_rsclp,
512 struct rcu_segcblist *src_rsclp)
514 struct rcu_cblist donecbs;
515 struct rcu_cblist pendcbs;
517 rcu_cblist_init(&donecbs);
518 rcu_cblist_init(&pendcbs);
519 rcu_segcblist_extract_count(src_rsclp, &donecbs);
520 rcu_segcblist_extract_done_cbs(src_rsclp, &donecbs);
521 rcu_segcblist_extract_pend_cbs(src_rsclp, &pendcbs);
522 rcu_segcblist_insert_count(dst_rsclp, &donecbs);
523 rcu_segcblist_insert_done_cbs(dst_rsclp, &donecbs);
524 rcu_segcblist_insert_pend_cbs(dst_rsclp, &pendcbs);
525 rcu_segcblist_init(src_rsclp);