WIP FPC-III support
[linux/fpc-iii.git] / kernel / sched / pelt.h
blob795e43e02afc6f353a2cff6d298fd15711bcf732
1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
13 static inline u64 thermal_load_avg(struct rq *rq)
15 return READ_ONCE(rq->avg_thermal.load_avg);
17 #else
18 static inline int
19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
21 return 0;
24 static inline u64 thermal_load_avg(struct rq *rq)
26 return 0;
28 #endif
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
32 #else
33 static inline int
34 update_irq_load_avg(struct rq *rq, u64 running)
36 return 0;
38 #endif
40 static inline u32 get_pelt_divider(struct sched_avg *avg)
42 return LOAD_AVG_MAX - 1024 + avg->period_contrib;
46 * When a task is dequeued, its estimated utilization should not be update if
47 * its util_avg has not been updated at least once.
48 * This flag is used to synchronize util_avg updates with util_est updates.
49 * We map this information into the LSB bit of the utilization saved at
50 * dequeue time (i.e. util_est.dequeued).
52 #define UTIL_AVG_UNCHANGED 0x1
54 static inline void cfs_se_util_change(struct sched_avg *avg)
56 unsigned int enqueued;
58 if (!sched_feat(UTIL_EST))
59 return;
61 /* Avoid store if the flag has been already set */
62 enqueued = avg->util_est.enqueued;
63 if (!(enqueued & UTIL_AVG_UNCHANGED))
64 return;
66 /* Reset flag to report util_avg has been updated */
67 enqueued &= ~UTIL_AVG_UNCHANGED;
68 WRITE_ONCE(avg->util_est.enqueued, enqueued);
72 * The clock_pelt scales the time to reflect the effective amount of
73 * computation done during the running delta time but then sync back to
74 * clock_task when rq is idle.
77 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
78 * @ max capacity ------******---------------******---------------
79 * @ half capacity ------************---------************---------
80 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
83 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
85 if (unlikely(is_idle_task(rq->curr))) {
86 /* The rq is idle, we can sync to clock_task */
87 rq->clock_pelt = rq_clock_task(rq);
88 return;
92 * When a rq runs at a lower compute capacity, it will need
93 * more time to do the same amount of work than at max
94 * capacity. In order to be invariant, we scale the delta to
95 * reflect how much work has been really done.
96 * Running longer results in stealing idle time that will
97 * disturb the load signal compared to max capacity. This
98 * stolen idle time will be automatically reflected when the
99 * rq will be idle and the clock will be synced with
100 * rq_clock_task.
104 * Scale the elapsed time to reflect the real amount of
105 * computation
107 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
108 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
110 rq->clock_pelt += delta;
114 * When rq becomes idle, we have to check if it has lost idle time
115 * because it was fully busy. A rq is fully used when the /Sum util_sum
116 * is greater or equal to:
117 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
118 * For optimization and computing rounding purpose, we don't take into account
119 * the position in the current window (period_contrib) and we use the higher
120 * bound of util_sum to decide.
122 static inline void update_idle_rq_clock_pelt(struct rq *rq)
124 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
125 u32 util_sum = rq->cfs.avg.util_sum;
126 util_sum += rq->avg_rt.util_sum;
127 util_sum += rq->avg_dl.util_sum;
130 * Reflecting stolen time makes sense only if the idle
131 * phase would be present at max capacity. As soon as the
132 * utilization of a rq has reached the maximum value, it is
133 * considered as an always runnig rq without idle time to
134 * steal. This potential idle time is considered as lost in
135 * this case. We keep track of this lost idle time compare to
136 * rq's clock_task.
138 if (util_sum >= divider)
139 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
142 static inline u64 rq_clock_pelt(struct rq *rq)
144 lockdep_assert_held(&rq->lock);
145 assert_clock_updated(rq);
147 return rq->clock_pelt - rq->lost_idle_time;
150 #ifdef CONFIG_CFS_BANDWIDTH
151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
152 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
154 if (unlikely(cfs_rq->throttle_count))
155 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
157 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
159 #else
160 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
162 return rq_clock_pelt(rq_of(cfs_rq));
164 #endif
166 #else
168 static inline int
169 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
171 return 0;
174 static inline int
175 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
177 return 0;
180 static inline int
181 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
183 return 0;
186 static inline int
187 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
189 return 0;
192 static inline u64 thermal_load_avg(struct rq *rq)
194 return 0;
197 static inline int
198 update_irq_load_avg(struct rq *rq, u64 running)
200 return 0;
203 static inline u64 rq_clock_pelt(struct rq *rq)
205 return rq_clock_task(rq);
208 static inline void
209 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
211 static inline void
212 update_idle_rq_clock_pelt(struct rq *rq) { }
214 #endif