2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now
, struct sched_entity
*se
);
5 int __update_load_avg_se(u64 now
, struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
6 int __update_load_avg_cfs_rq(u64 now
, struct cfs_rq
*cfs_rq
);
7 int update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
8 int update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
);
13 static inline u64
thermal_load_avg(struct rq
*rq
)
15 return READ_ONCE(rq
->avg_thermal
.load_avg
);
19 update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
24 static inline u64
thermal_load_avg(struct rq
*rq
)
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq
*rq
, u64 running
);
34 update_irq_load_avg(struct rq
*rq
, u64 running
)
40 static inline u32
get_pelt_divider(struct sched_avg
*avg
)
42 return LOAD_AVG_MAX
- 1024 + avg
->period_contrib
;
46 * When a task is dequeued, its estimated utilization should not be update if
47 * its util_avg has not been updated at least once.
48 * This flag is used to synchronize util_avg updates with util_est updates.
49 * We map this information into the LSB bit of the utilization saved at
50 * dequeue time (i.e. util_est.dequeued).
52 #define UTIL_AVG_UNCHANGED 0x1
54 static inline void cfs_se_util_change(struct sched_avg
*avg
)
56 unsigned int enqueued
;
58 if (!sched_feat(UTIL_EST
))
61 /* Avoid store if the flag has been already set */
62 enqueued
= avg
->util_est
.enqueued
;
63 if (!(enqueued
& UTIL_AVG_UNCHANGED
))
66 /* Reset flag to report util_avg has been updated */
67 enqueued
&= ~UTIL_AVG_UNCHANGED
;
68 WRITE_ONCE(avg
->util_est
.enqueued
, enqueued
);
72 * The clock_pelt scales the time to reflect the effective amount of
73 * computation done during the running delta time but then sync back to
74 * clock_task when rq is idle.
77 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
78 * @ max capacity ------******---------------******---------------
79 * @ half capacity ------************---------************---------
80 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
83 static inline void update_rq_clock_pelt(struct rq
*rq
, s64 delta
)
85 if (unlikely(is_idle_task(rq
->curr
))) {
86 /* The rq is idle, we can sync to clock_task */
87 rq
->clock_pelt
= rq_clock_task(rq
);
92 * When a rq runs at a lower compute capacity, it will need
93 * more time to do the same amount of work than at max
94 * capacity. In order to be invariant, we scale the delta to
95 * reflect how much work has been really done.
96 * Running longer results in stealing idle time that will
97 * disturb the load signal compared to max capacity. This
98 * stolen idle time will be automatically reflected when the
99 * rq will be idle and the clock will be synced with
104 * Scale the elapsed time to reflect the real amount of
107 delta
= cap_scale(delta
, arch_scale_cpu_capacity(cpu_of(rq
)));
108 delta
= cap_scale(delta
, arch_scale_freq_capacity(cpu_of(rq
)));
110 rq
->clock_pelt
+= delta
;
114 * When rq becomes idle, we have to check if it has lost idle time
115 * because it was fully busy. A rq is fully used when the /Sum util_sum
116 * is greater or equal to:
117 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
118 * For optimization and computing rounding purpose, we don't take into account
119 * the position in the current window (period_contrib) and we use the higher
120 * bound of util_sum to decide.
122 static inline void update_idle_rq_clock_pelt(struct rq
*rq
)
124 u32 divider
= ((LOAD_AVG_MAX
- 1024) << SCHED_CAPACITY_SHIFT
) - LOAD_AVG_MAX
;
125 u32 util_sum
= rq
->cfs
.avg
.util_sum
;
126 util_sum
+= rq
->avg_rt
.util_sum
;
127 util_sum
+= rq
->avg_dl
.util_sum
;
130 * Reflecting stolen time makes sense only if the idle
131 * phase would be present at max capacity. As soon as the
132 * utilization of a rq has reached the maximum value, it is
133 * considered as an always runnig rq without idle time to
134 * steal. This potential idle time is considered as lost in
135 * this case. We keep track of this lost idle time compare to
138 if (util_sum
>= divider
)
139 rq
->lost_idle_time
+= rq_clock_task(rq
) - rq
->clock_pelt
;
142 static inline u64
rq_clock_pelt(struct rq
*rq
)
144 lockdep_assert_held(&rq
->lock
);
145 assert_clock_updated(rq
);
147 return rq
->clock_pelt
- rq
->lost_idle_time
;
150 #ifdef CONFIG_CFS_BANDWIDTH
151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
152 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
154 if (unlikely(cfs_rq
->throttle_count
))
155 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
157 return rq_clock_pelt(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
160 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
162 return rq_clock_pelt(rq_of(cfs_rq
));
169 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
175 update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
181 update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
187 update_thermal_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
192 static inline u64
thermal_load_avg(struct rq
*rq
)
198 update_irq_load_avg(struct rq
*rq
, u64 running
)
203 static inline u64
rq_clock_pelt(struct rq
*rq
)
205 return rq_clock_task(rq
);
209 update_rq_clock_pelt(struct rq
*rq
, s64 delta
) { }
212 update_idle_rq_clock_pelt(struct rq
*rq
) { }