1 // SPDX-License-Identifier: GPL-2.0+
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
10 * These are all the functions necessary to implement POSIX clocks & timers
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
35 #include "timekeeping.h"
36 #include "posix-timers.h"
39 * Management arrays for POSIX timers. Timers are now kept in static hash table
41 * Timer ids are allocated by local routine, which selects proper hash head by
42 * key, constructed from current->signal address and per signal struct counter.
43 * This keeps timer ids unique per process, but now they can intersect between
48 * Lets keep our timers in a slab cache :-)
50 static struct kmem_cache
*posix_timers_cache
;
52 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
53 static DEFINE_SPINLOCK(hash_lock
);
55 static const struct k_clock
* const posix_clocks
[];
56 static const struct k_clock
*clockid_to_kclock(const clockid_t id
);
57 static const struct k_clock clock_realtime
, clock_monotonic
;
60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
61 * SIGEV values. Here we put out an error if this assumption fails.
63 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
64 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
65 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
69 * The timer ID is turned into a timer address by idr_find().
70 * Verifying a valid ID consists of:
72 * a) checking that idr_find() returns other than -1.
73 * b) checking that the timer id matches the one in the timer itself.
74 * c) that the timer owner is in the callers thread group.
78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
79 * to implement others. This structure defines the various
82 * RESOLUTION: Clock resolution is used to round up timer and interval
83 * times, NOT to report clock times, which are reported with as
84 * much resolution as the system can muster. In some cases this
85 * resolution may depend on the underlying clock hardware and
86 * may not be quantifiable until run time, and only then is the
87 * necessary code is written. The standard says we should say
88 * something about this issue in the documentation...
90 * FUNCTIONS: The CLOCKs structure defines possible functions to
91 * handle various clock functions.
93 * The standard POSIX timer management code assumes the
94 * following: 1.) The k_itimer struct (sched.h) is used for
95 * the timer. 2.) The list, it_lock, it_clock, it_id and
96 * it_pid fields are not modified by timer code.
98 * Permissions: It is assumed that the clock_settime() function defined
99 * for each clock will take care of permission checks. Some
100 * clocks may be set able by any user (i.e. local process
101 * clocks) others not. Currently the only set able clock we
102 * have is CLOCK_REALTIME and its high res counter part, both of
103 * which we beg off on and pass to do_sys_settimeofday().
105 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
107 #define lock_timer(tid, flags) \
108 ({ struct k_itimer *__timr; \
109 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
113 static int hash(struct signal_struct
*sig
, unsigned int nr
)
115 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
118 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
119 struct signal_struct
*sig
,
122 struct k_itimer
*timer
;
124 hlist_for_each_entry_rcu(timer
, head
, t_hash
,
125 lockdep_is_held(&hash_lock
)) {
126 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
132 static struct k_itimer
*posix_timer_by_id(timer_t id
)
134 struct signal_struct
*sig
= current
->signal
;
135 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
137 return __posix_timers_find(head
, sig
, id
);
140 static int posix_timer_add(struct k_itimer
*timer
)
142 struct signal_struct
*sig
= current
->signal
;
143 int first_free_id
= sig
->posix_timer_id
;
144 struct hlist_head
*head
;
148 spin_lock(&hash_lock
);
149 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
150 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
151 hlist_add_head_rcu(&timer
->t_hash
, head
);
152 ret
= sig
->posix_timer_id
;
154 if (++sig
->posix_timer_id
< 0)
155 sig
->posix_timer_id
= 0;
156 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
157 /* Loop over all possible ids completed */
159 spin_unlock(&hash_lock
);
160 } while (ret
== -ENOENT
);
164 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
166 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
169 /* Get clock_realtime */
170 static int posix_get_realtime_timespec(clockid_t which_clock
, struct timespec64
*tp
)
172 ktime_get_real_ts64(tp
);
176 static ktime_t
posix_get_realtime_ktime(clockid_t which_clock
)
178 return ktime_get_real();
181 /* Set clock_realtime */
182 static int posix_clock_realtime_set(const clockid_t which_clock
,
183 const struct timespec64
*tp
)
185 return do_sys_settimeofday64(tp
, NULL
);
188 static int posix_clock_realtime_adj(const clockid_t which_clock
,
189 struct __kernel_timex
*t
)
191 return do_adjtimex(t
);
195 * Get monotonic time for posix timers
197 static int posix_get_monotonic_timespec(clockid_t which_clock
, struct timespec64
*tp
)
200 timens_add_monotonic(tp
);
204 static ktime_t
posix_get_monotonic_ktime(clockid_t which_clock
)
210 * Get monotonic-raw time for posix timers
212 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec64
*tp
)
214 ktime_get_raw_ts64(tp
);
215 timens_add_monotonic(tp
);
220 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec64
*tp
)
222 ktime_get_coarse_real_ts64(tp
);
226 static int posix_get_monotonic_coarse(clockid_t which_clock
,
227 struct timespec64
*tp
)
229 ktime_get_coarse_ts64(tp
);
230 timens_add_monotonic(tp
);
234 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec64
*tp
)
236 *tp
= ktime_to_timespec64(KTIME_LOW_RES
);
240 static int posix_get_boottime_timespec(const clockid_t which_clock
, struct timespec64
*tp
)
242 ktime_get_boottime_ts64(tp
);
243 timens_add_boottime(tp
);
247 static ktime_t
posix_get_boottime_ktime(const clockid_t which_clock
)
249 return ktime_get_boottime();
252 static int posix_get_tai_timespec(clockid_t which_clock
, struct timespec64
*tp
)
254 ktime_get_clocktai_ts64(tp
);
258 static ktime_t
posix_get_tai_ktime(clockid_t which_clock
)
260 return ktime_get_clocktai();
263 static int posix_get_hrtimer_res(clockid_t which_clock
, struct timespec64
*tp
)
266 tp
->tv_nsec
= hrtimer_resolution
;
271 * Initialize everything, well, just everything in Posix clocks/timers ;)
273 static __init
int init_posix_timers(void)
275 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
276 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
280 __initcall(init_posix_timers
);
283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
284 * are of type int. Clamp the overrun value to INT_MAX
286 static inline int timer_overrun_to_int(struct k_itimer
*timr
, int baseval
)
288 s64 sum
= timr
->it_overrun_last
+ (s64
)baseval
;
290 return sum
> (s64
)INT_MAX
? INT_MAX
: (int)sum
;
293 static void common_hrtimer_rearm(struct k_itimer
*timr
)
295 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
297 timr
->it_overrun
+= hrtimer_forward(timer
, timer
->base
->get_time(),
299 hrtimer_restart(timer
);
303 * This function is exported for use by the signal deliver code. It is
304 * called just prior to the info block being released and passes that
305 * block to us. It's function is to update the overrun entry AND to
306 * restart the timer. It should only be called if the timer is to be
307 * restarted (i.e. we have flagged this in the sys_private entry of the
310 * To protect against the timer going away while the interrupt is queued,
311 * we require that the it_requeue_pending flag be set.
313 void posixtimer_rearm(struct kernel_siginfo
*info
)
315 struct k_itimer
*timr
;
318 timr
= lock_timer(info
->si_tid
, &flags
);
322 if (timr
->it_interval
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
323 timr
->kclock
->timer_rearm(timr
);
326 timr
->it_overrun_last
= timr
->it_overrun
;
327 timr
->it_overrun
= -1LL;
328 ++timr
->it_requeue_pending
;
330 info
->si_overrun
= timer_overrun_to_int(timr
, info
->si_overrun
);
333 unlock_timer(timr
, flags
);
336 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
341 * FIXME: if ->sigq is queued we can race with
342 * dequeue_signal()->posixtimer_rearm().
344 * If dequeue_signal() sees the "right" value of
345 * si_sys_private it calls posixtimer_rearm().
346 * We re-queue ->sigq and drop ->it_lock().
347 * posixtimer_rearm() locks the timer
348 * and re-schedules it while ->sigq is pending.
349 * Not really bad, but not that we want.
351 timr
->sigq
->info
.si_sys_private
= si_private
;
353 type
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
) ? PIDTYPE_TGID
: PIDTYPE_PID
;
354 ret
= send_sigqueue(timr
->sigq
, timr
->it_pid
, type
);
355 /* If we failed to send the signal the timer stops. */
360 * This function gets called when a POSIX.1b interval timer expires. It
361 * is used as a callback from the kernel internal timer. The
362 * run_timer_list code ALWAYS calls with interrupts on.
364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
368 struct k_itimer
*timr
;
371 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
373 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
374 spin_lock_irqsave(&timr
->it_lock
, flags
);
377 if (timr
->it_interval
!= 0)
378 si_private
= ++timr
->it_requeue_pending
;
380 if (posix_timer_event(timr
, si_private
)) {
382 * signal was not sent because of sig_ignor
383 * we will not get a call back to restart it AND
384 * it should be restarted.
386 if (timr
->it_interval
!= 0) {
387 ktime_t now
= hrtimer_cb_get_time(timer
);
390 * FIXME: What we really want, is to stop this
391 * timer completely and restart it in case the
392 * SIG_IGN is removed. This is a non trivial
393 * change which involves sighand locking
394 * (sigh !), which we don't want to do late in
397 * For now we just let timers with an interval
398 * less than a jiffie expire every jiffie to
399 * avoid softirq starvation in case of SIG_IGN
400 * and a very small interval, which would put
401 * the timer right back on the softirq pending
402 * list. By moving now ahead of time we trick
403 * hrtimer_forward() to expire the timer
404 * later, while we still maintain the overrun
405 * accuracy, but have some inconsistency in
406 * the timer_gettime() case. This is at least
407 * better than a starved softirq. A more
408 * complex fix which solves also another related
409 * inconsistency is already in the pipeline.
411 #ifdef CONFIG_HIGH_RES_TIMERS
413 ktime_t kj
= NSEC_PER_SEC
/ HZ
;
415 if (timr
->it_interval
< kj
)
416 now
= ktime_add(now
, kj
);
419 timr
->it_overrun
+= hrtimer_forward(timer
, now
,
421 ret
= HRTIMER_RESTART
;
422 ++timr
->it_requeue_pending
;
427 unlock_timer(timr
, flags
);
431 static struct pid
*good_sigevent(sigevent_t
* event
)
433 struct pid
*pid
= task_tgid(current
);
434 struct task_struct
*rtn
;
436 switch (event
->sigev_notify
) {
437 case SIGEV_SIGNAL
| SIGEV_THREAD_ID
:
438 pid
= find_vpid(event
->sigev_notify_thread_id
);
439 rtn
= pid_task(pid
, PIDTYPE_PID
);
440 if (!rtn
|| !same_thread_group(rtn
, current
))
445 if (event
->sigev_signo
<= 0 || event
->sigev_signo
> SIGRTMAX
)
455 static struct k_itimer
* alloc_posix_timer(void)
457 struct k_itimer
*tmr
;
458 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
461 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
462 kmem_cache_free(posix_timers_cache
, tmr
);
465 clear_siginfo(&tmr
->sigq
->info
);
469 static void k_itimer_rcu_free(struct rcu_head
*head
)
471 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, rcu
);
473 kmem_cache_free(posix_timers_cache
, tmr
);
477 #define IT_ID_NOT_SET 0
478 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
482 spin_lock_irqsave(&hash_lock
, flags
);
483 hlist_del_rcu(&tmr
->t_hash
);
484 spin_unlock_irqrestore(&hash_lock
, flags
);
486 put_pid(tmr
->it_pid
);
487 sigqueue_free(tmr
->sigq
);
488 call_rcu(&tmr
->rcu
, k_itimer_rcu_free
);
491 static int common_timer_create(struct k_itimer
*new_timer
)
493 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
497 /* Create a POSIX.1b interval timer. */
498 static int do_timer_create(clockid_t which_clock
, struct sigevent
*event
,
499 timer_t __user
*created_timer_id
)
501 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
502 struct k_itimer
*new_timer
;
503 int error
, new_timer_id
;
504 int it_id_set
= IT_ID_NOT_SET
;
508 if (!kc
->timer_create
)
511 new_timer
= alloc_posix_timer();
512 if (unlikely(!new_timer
))
515 spin_lock_init(&new_timer
->it_lock
);
516 new_timer_id
= posix_timer_add(new_timer
);
517 if (new_timer_id
< 0) {
518 error
= new_timer_id
;
522 it_id_set
= IT_ID_SET
;
523 new_timer
->it_id
= (timer_t
) new_timer_id
;
524 new_timer
->it_clock
= which_clock
;
525 new_timer
->kclock
= kc
;
526 new_timer
->it_overrun
= -1LL;
530 new_timer
->it_pid
= get_pid(good_sigevent(event
));
532 if (!new_timer
->it_pid
) {
536 new_timer
->it_sigev_notify
= event
->sigev_notify
;
537 new_timer
->sigq
->info
.si_signo
= event
->sigev_signo
;
538 new_timer
->sigq
->info
.si_value
= event
->sigev_value
;
540 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
541 new_timer
->sigq
->info
.si_signo
= SIGALRM
;
542 memset(&new_timer
->sigq
->info
.si_value
, 0, sizeof(sigval_t
));
543 new_timer
->sigq
->info
.si_value
.sival_int
= new_timer
->it_id
;
544 new_timer
->it_pid
= get_pid(task_tgid(current
));
547 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
548 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
550 if (copy_to_user(created_timer_id
,
551 &new_timer_id
, sizeof (new_timer_id
))) {
556 error
= kc
->timer_create(new_timer
);
560 spin_lock_irq(¤t
->sighand
->siglock
);
561 new_timer
->it_signal
= current
->signal
;
562 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
563 spin_unlock_irq(¤t
->sighand
->siglock
);
567 * In the case of the timer belonging to another task, after
568 * the task is unlocked, the timer is owned by the other task
569 * and may cease to exist at any time. Don't use or modify
570 * new_timer after the unlock call.
573 release_posix_timer(new_timer
, it_id_set
);
577 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
578 struct sigevent __user
*, timer_event_spec
,
579 timer_t __user
*, created_timer_id
)
581 if (timer_event_spec
) {
584 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
)))
586 return do_timer_create(which_clock
, &event
, created_timer_id
);
588 return do_timer_create(which_clock
, NULL
, created_timer_id
);
592 COMPAT_SYSCALL_DEFINE3(timer_create
, clockid_t
, which_clock
,
593 struct compat_sigevent __user
*, timer_event_spec
,
594 timer_t __user
*, created_timer_id
)
596 if (timer_event_spec
) {
599 if (get_compat_sigevent(&event
, timer_event_spec
))
601 return do_timer_create(which_clock
, &event
, created_timer_id
);
603 return do_timer_create(which_clock
, NULL
, created_timer_id
);
608 * Locking issues: We need to protect the result of the id look up until
609 * we get the timer locked down so it is not deleted under us. The
610 * removal is done under the idr spinlock so we use that here to bridge
611 * the find to the timer lock. To avoid a dead lock, the timer id MUST
612 * be release with out holding the timer lock.
614 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
616 struct k_itimer
*timr
;
619 * timer_t could be any type >= int and we want to make sure any
620 * @timer_id outside positive int range fails lookup.
622 if ((unsigned long long)timer_id
> INT_MAX
)
626 timr
= posix_timer_by_id(timer_id
);
628 spin_lock_irqsave(&timr
->it_lock
, *flags
);
629 if (timr
->it_signal
== current
->signal
) {
633 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
640 static ktime_t
common_hrtimer_remaining(struct k_itimer
*timr
, ktime_t now
)
642 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
644 return __hrtimer_expires_remaining_adjusted(timer
, now
);
647 static s64
common_hrtimer_forward(struct k_itimer
*timr
, ktime_t now
)
649 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
651 return hrtimer_forward(timer
, now
, timr
->it_interval
);
655 * Get the time remaining on a POSIX.1b interval timer. This function
656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
659 * We have a couple of messes to clean up here. First there is the case
660 * of a timer that has a requeue pending. These timers should appear to
661 * be in the timer list with an expiry as if we were to requeue them
664 * The second issue is the SIGEV_NONE timer which may be active but is
665 * not really ever put in the timer list (to save system resources).
666 * This timer may be expired, and if so, we will do it here. Otherwise
667 * it is the same as a requeue pending timer WRT to what we should
670 void common_timer_get(struct k_itimer
*timr
, struct itimerspec64
*cur_setting
)
672 const struct k_clock
*kc
= timr
->kclock
;
673 ktime_t now
, remaining
, iv
;
676 sig_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
677 iv
= timr
->it_interval
;
679 /* interval timer ? */
681 cur_setting
->it_interval
= ktime_to_timespec64(iv
);
682 } else if (!timr
->it_active
) {
684 * SIGEV_NONE oneshot timers are never queued. Check them
691 now
= kc
->clock_get_ktime(timr
->it_clock
);
694 * When a requeue is pending or this is a SIGEV_NONE timer move the
695 * expiry time forward by intervals, so expiry is > now.
697 if (iv
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
|| sig_none
))
698 timr
->it_overrun
+= kc
->timer_forward(timr
, now
);
700 remaining
= kc
->timer_remaining(timr
, now
);
701 /* Return 0 only, when the timer is expired and not pending */
702 if (remaining
<= 0) {
704 * A single shot SIGEV_NONE timer must return 0, when
708 cur_setting
->it_value
.tv_nsec
= 1;
710 cur_setting
->it_value
= ktime_to_timespec64(remaining
);
714 /* Get the time remaining on a POSIX.1b interval timer. */
715 static int do_timer_gettime(timer_t timer_id
, struct itimerspec64
*setting
)
717 struct k_itimer
*timr
;
718 const struct k_clock
*kc
;
722 timr
= lock_timer(timer_id
, &flags
);
726 memset(setting
, 0, sizeof(*setting
));
728 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
731 kc
->timer_get(timr
, setting
);
733 unlock_timer(timr
, flags
);
737 /* Get the time remaining on a POSIX.1b interval timer. */
738 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
739 struct __kernel_itimerspec __user
*, setting
)
741 struct itimerspec64 cur_setting
;
743 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
745 if (put_itimerspec64(&cur_setting
, setting
))
751 #ifdef CONFIG_COMPAT_32BIT_TIME
753 SYSCALL_DEFINE2(timer_gettime32
, timer_t
, timer_id
,
754 struct old_itimerspec32 __user
*, setting
)
756 struct itimerspec64 cur_setting
;
758 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
760 if (put_old_itimerspec32(&cur_setting
, setting
))
769 * Get the number of overruns of a POSIX.1b interval timer. This is to
770 * be the overrun of the timer last delivered. At the same time we are
771 * accumulating overruns on the next timer. The overrun is frozen when
772 * the signal is delivered, either at the notify time (if the info block
773 * is not queued) or at the actual delivery time (as we are informed by
774 * the call back to posixtimer_rearm(). So all we need to do is
775 * to pick up the frozen overrun.
777 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
779 struct k_itimer
*timr
;
783 timr
= lock_timer(timer_id
, &flags
);
787 overrun
= timer_overrun_to_int(timr
, 0);
788 unlock_timer(timr
, flags
);
793 static void common_hrtimer_arm(struct k_itimer
*timr
, ktime_t expires
,
794 bool absolute
, bool sigev_none
)
796 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
797 enum hrtimer_mode mode
;
799 mode
= absolute
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
801 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
802 * clock modifications, so they become CLOCK_MONOTONIC based under the
803 * hood. See hrtimer_init(). Update timr->kclock, so the generic
804 * functions which use timr->kclock->clock_get_*() work.
806 * Note: it_clock stays unmodified, because the next timer_set() might
807 * use ABSTIME, so it needs to switch back.
809 if (timr
->it_clock
== CLOCK_REALTIME
)
810 timr
->kclock
= absolute
? &clock_realtime
: &clock_monotonic
;
812 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
813 timr
->it
.real
.timer
.function
= posix_timer_fn
;
816 expires
= ktime_add_safe(expires
, timer
->base
->get_time());
817 hrtimer_set_expires(timer
, expires
);
820 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
823 static int common_hrtimer_try_to_cancel(struct k_itimer
*timr
)
825 return hrtimer_try_to_cancel(&timr
->it
.real
.timer
);
828 static void common_timer_wait_running(struct k_itimer
*timer
)
830 hrtimer_cancel_wait_running(&timer
->it
.real
.timer
);
834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
835 * case it gets preempted while executing a timer callback. See comments in
836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
839 static struct k_itimer
*timer_wait_running(struct k_itimer
*timer
,
840 unsigned long *flags
)
842 const struct k_clock
*kc
= READ_ONCE(timer
->kclock
);
843 timer_t timer_id
= READ_ONCE(timer
->it_id
);
845 /* Prevent kfree(timer) after dropping the lock */
847 unlock_timer(timer
, *flags
);
849 if (!WARN_ON_ONCE(!kc
->timer_wait_running
))
850 kc
->timer_wait_running(timer
);
853 /* Relock the timer. It might be not longer hashed. */
854 return lock_timer(timer_id
, flags
);
857 /* Set a POSIX.1b interval timer. */
858 int common_timer_set(struct k_itimer
*timr
, int flags
,
859 struct itimerspec64
*new_setting
,
860 struct itimerspec64
*old_setting
)
862 const struct k_clock
*kc
= timr
->kclock
;
867 common_timer_get(timr
, old_setting
);
869 /* Prevent rearming by clearing the interval */
870 timr
->it_interval
= 0;
872 * Careful here. On SMP systems the timer expiry function could be
873 * active and spinning on timr->it_lock.
875 if (kc
->timer_try_to_cancel(timr
) < 0)
879 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
881 timr
->it_overrun_last
= 0;
883 /* Switch off the timer when it_value is zero */
884 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
887 timr
->it_interval
= timespec64_to_ktime(new_setting
->it_interval
);
888 expires
= timespec64_to_ktime(new_setting
->it_value
);
889 if (flags
& TIMER_ABSTIME
)
890 expires
= timens_ktime_to_host(timr
->it_clock
, expires
);
891 sigev_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
893 kc
->timer_arm(timr
, expires
, flags
& TIMER_ABSTIME
, sigev_none
);
894 timr
->it_active
= !sigev_none
;
898 static int do_timer_settime(timer_t timer_id
, int tmr_flags
,
899 struct itimerspec64
*new_spec64
,
900 struct itimerspec64
*old_spec64
)
902 const struct k_clock
*kc
;
903 struct k_itimer
*timr
;
907 if (!timespec64_valid(&new_spec64
->it_interval
) ||
908 !timespec64_valid(&new_spec64
->it_value
))
912 memset(old_spec64
, 0, sizeof(*old_spec64
));
914 timr
= lock_timer(timer_id
, &flags
);
920 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
923 error
= kc
->timer_set(timr
, tmr_flags
, new_spec64
, old_spec64
);
925 if (error
== TIMER_RETRY
) {
926 // We already got the old time...
928 /* Unlocks and relocks the timer if it still exists */
929 timr
= timer_wait_running(timr
, &flags
);
932 unlock_timer(timr
, flags
);
937 /* Set a POSIX.1b interval timer */
938 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
939 const struct __kernel_itimerspec __user
*, new_setting
,
940 struct __kernel_itimerspec __user
*, old_setting
)
942 struct itimerspec64 new_spec
, old_spec
;
943 struct itimerspec64
*rtn
= old_setting
? &old_spec
: NULL
;
949 if (get_itimerspec64(&new_spec
, new_setting
))
952 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
953 if (!error
&& old_setting
) {
954 if (put_itimerspec64(&old_spec
, old_setting
))
960 #ifdef CONFIG_COMPAT_32BIT_TIME
961 SYSCALL_DEFINE4(timer_settime32
, timer_t
, timer_id
, int, flags
,
962 struct old_itimerspec32 __user
*, new,
963 struct old_itimerspec32 __user
*, old
)
965 struct itimerspec64 new_spec
, old_spec
;
966 struct itimerspec64
*rtn
= old
? &old_spec
: NULL
;
971 if (get_old_itimerspec32(&new_spec
, new))
974 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
976 if (put_old_itimerspec32(&old_spec
, old
))
983 int common_timer_del(struct k_itimer
*timer
)
985 const struct k_clock
*kc
= timer
->kclock
;
987 timer
->it_interval
= 0;
988 if (kc
->timer_try_to_cancel(timer
) < 0)
990 timer
->it_active
= 0;
994 static inline int timer_delete_hook(struct k_itimer
*timer
)
996 const struct k_clock
*kc
= timer
->kclock
;
998 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
1000 return kc
->timer_del(timer
);
1003 /* Delete a POSIX.1b interval timer. */
1004 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
1006 struct k_itimer
*timer
;
1007 unsigned long flags
;
1009 timer
= lock_timer(timer_id
, &flags
);
1015 if (unlikely(timer_delete_hook(timer
) == TIMER_RETRY
)) {
1016 /* Unlocks and relocks the timer if it still exists */
1017 timer
= timer_wait_running(timer
, &flags
);
1021 spin_lock(¤t
->sighand
->siglock
);
1022 list_del(&timer
->list
);
1023 spin_unlock(¤t
->sighand
->siglock
);
1025 * This keeps any tasks waiting on the spin lock from thinking
1026 * they got something (see the lock code above).
1028 timer
->it_signal
= NULL
;
1030 unlock_timer(timer
, flags
);
1031 release_posix_timer(timer
, IT_ID_SET
);
1036 * return timer owned by the process, used by exit_itimers
1038 static void itimer_delete(struct k_itimer
*timer
)
1041 spin_lock_irq(&timer
->it_lock
);
1043 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
1044 spin_unlock_irq(&timer
->it_lock
);
1047 list_del(&timer
->list
);
1049 spin_unlock_irq(&timer
->it_lock
);
1050 release_posix_timer(timer
, IT_ID_SET
);
1054 * This is called by do_exit or de_thread, only when there are no more
1055 * references to the shared signal_struct.
1057 void exit_itimers(struct signal_struct
*sig
)
1059 struct k_itimer
*tmr
;
1061 while (!list_empty(&sig
->posix_timers
)) {
1062 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1067 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1068 const struct __kernel_timespec __user
*, tp
)
1070 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1071 struct timespec64 new_tp
;
1073 if (!kc
|| !kc
->clock_set
)
1076 if (get_timespec64(&new_tp
, tp
))
1079 return kc
->clock_set(which_clock
, &new_tp
);
1082 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1083 struct __kernel_timespec __user
*, tp
)
1085 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1086 struct timespec64 kernel_tp
;
1092 error
= kc
->clock_get_timespec(which_clock
, &kernel_tp
);
1094 if (!error
&& put_timespec64(&kernel_tp
, tp
))
1100 int do_clock_adjtime(const clockid_t which_clock
, struct __kernel_timex
* ktx
)
1102 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1109 return kc
->clock_adj(which_clock
, ktx
);
1112 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1113 struct __kernel_timex __user
*, utx
)
1115 struct __kernel_timex ktx
;
1118 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1121 err
= do_clock_adjtime(which_clock
, &ktx
);
1123 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1129 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1130 struct __kernel_timespec __user
*, tp
)
1132 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1133 struct timespec64 rtn_tp
;
1139 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1141 if (!error
&& tp
&& put_timespec64(&rtn_tp
, tp
))
1147 #ifdef CONFIG_COMPAT_32BIT_TIME
1149 SYSCALL_DEFINE2(clock_settime32
, clockid_t
, which_clock
,
1150 struct old_timespec32 __user
*, tp
)
1152 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1153 struct timespec64 ts
;
1155 if (!kc
|| !kc
->clock_set
)
1158 if (get_old_timespec32(&ts
, tp
))
1161 return kc
->clock_set(which_clock
, &ts
);
1164 SYSCALL_DEFINE2(clock_gettime32
, clockid_t
, which_clock
,
1165 struct old_timespec32 __user
*, tp
)
1167 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1168 struct timespec64 ts
;
1174 err
= kc
->clock_get_timespec(which_clock
, &ts
);
1176 if (!err
&& put_old_timespec32(&ts
, tp
))
1182 SYSCALL_DEFINE2(clock_adjtime32
, clockid_t
, which_clock
,
1183 struct old_timex32 __user
*, utp
)
1185 struct __kernel_timex ktx
;
1188 err
= get_old_timex32(&ktx
, utp
);
1192 err
= do_clock_adjtime(which_clock
, &ktx
);
1195 err
= put_old_timex32(utp
, &ktx
);
1200 SYSCALL_DEFINE2(clock_getres_time32
, clockid_t
, which_clock
,
1201 struct old_timespec32 __user
*, tp
)
1203 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1204 struct timespec64 ts
;
1210 err
= kc
->clock_getres(which_clock
, &ts
);
1211 if (!err
&& tp
&& put_old_timespec32(&ts
, tp
))
1220 * nanosleep for monotonic and realtime clocks
1222 static int common_nsleep(const clockid_t which_clock
, int flags
,
1223 const struct timespec64
*rqtp
)
1225 ktime_t texp
= timespec64_to_ktime(*rqtp
);
1227 return hrtimer_nanosleep(texp
, flags
& TIMER_ABSTIME
?
1228 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1232 static int common_nsleep_timens(const clockid_t which_clock
, int flags
,
1233 const struct timespec64
*rqtp
)
1235 ktime_t texp
= timespec64_to_ktime(*rqtp
);
1237 if (flags
& TIMER_ABSTIME
)
1238 texp
= timens_ktime_to_host(which_clock
, texp
);
1240 return hrtimer_nanosleep(texp
, flags
& TIMER_ABSTIME
?
1241 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1245 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1246 const struct __kernel_timespec __user
*, rqtp
,
1247 struct __kernel_timespec __user
*, rmtp
)
1249 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1250 struct timespec64 t
;
1257 if (get_timespec64(&t
, rqtp
))
1260 if (!timespec64_valid(&t
))
1262 if (flags
& TIMER_ABSTIME
)
1264 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1265 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1267 return kc
->nsleep(which_clock
, flags
, &t
);
1270 #ifdef CONFIG_COMPAT_32BIT_TIME
1272 SYSCALL_DEFINE4(clock_nanosleep_time32
, clockid_t
, which_clock
, int, flags
,
1273 struct old_timespec32 __user
*, rqtp
,
1274 struct old_timespec32 __user
*, rmtp
)
1276 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1277 struct timespec64 t
;
1284 if (get_old_timespec32(&t
, rqtp
))
1287 if (!timespec64_valid(&t
))
1289 if (flags
& TIMER_ABSTIME
)
1291 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1292 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1294 return kc
->nsleep(which_clock
, flags
, &t
);
1299 static const struct k_clock clock_realtime
= {
1300 .clock_getres
= posix_get_hrtimer_res
,
1301 .clock_get_timespec
= posix_get_realtime_timespec
,
1302 .clock_get_ktime
= posix_get_realtime_ktime
,
1303 .clock_set
= posix_clock_realtime_set
,
1304 .clock_adj
= posix_clock_realtime_adj
,
1305 .nsleep
= common_nsleep
,
1306 .timer_create
= common_timer_create
,
1307 .timer_set
= common_timer_set
,
1308 .timer_get
= common_timer_get
,
1309 .timer_del
= common_timer_del
,
1310 .timer_rearm
= common_hrtimer_rearm
,
1311 .timer_forward
= common_hrtimer_forward
,
1312 .timer_remaining
= common_hrtimer_remaining
,
1313 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1314 .timer_wait_running
= common_timer_wait_running
,
1315 .timer_arm
= common_hrtimer_arm
,
1318 static const struct k_clock clock_monotonic
= {
1319 .clock_getres
= posix_get_hrtimer_res
,
1320 .clock_get_timespec
= posix_get_monotonic_timespec
,
1321 .clock_get_ktime
= posix_get_monotonic_ktime
,
1322 .nsleep
= common_nsleep_timens
,
1323 .timer_create
= common_timer_create
,
1324 .timer_set
= common_timer_set
,
1325 .timer_get
= common_timer_get
,
1326 .timer_del
= common_timer_del
,
1327 .timer_rearm
= common_hrtimer_rearm
,
1328 .timer_forward
= common_hrtimer_forward
,
1329 .timer_remaining
= common_hrtimer_remaining
,
1330 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1331 .timer_wait_running
= common_timer_wait_running
,
1332 .timer_arm
= common_hrtimer_arm
,
1335 static const struct k_clock clock_monotonic_raw
= {
1336 .clock_getres
= posix_get_hrtimer_res
,
1337 .clock_get_timespec
= posix_get_monotonic_raw
,
1340 static const struct k_clock clock_realtime_coarse
= {
1341 .clock_getres
= posix_get_coarse_res
,
1342 .clock_get_timespec
= posix_get_realtime_coarse
,
1345 static const struct k_clock clock_monotonic_coarse
= {
1346 .clock_getres
= posix_get_coarse_res
,
1347 .clock_get_timespec
= posix_get_monotonic_coarse
,
1350 static const struct k_clock clock_tai
= {
1351 .clock_getres
= posix_get_hrtimer_res
,
1352 .clock_get_ktime
= posix_get_tai_ktime
,
1353 .clock_get_timespec
= posix_get_tai_timespec
,
1354 .nsleep
= common_nsleep
,
1355 .timer_create
= common_timer_create
,
1356 .timer_set
= common_timer_set
,
1357 .timer_get
= common_timer_get
,
1358 .timer_del
= common_timer_del
,
1359 .timer_rearm
= common_hrtimer_rearm
,
1360 .timer_forward
= common_hrtimer_forward
,
1361 .timer_remaining
= common_hrtimer_remaining
,
1362 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1363 .timer_wait_running
= common_timer_wait_running
,
1364 .timer_arm
= common_hrtimer_arm
,
1367 static const struct k_clock clock_boottime
= {
1368 .clock_getres
= posix_get_hrtimer_res
,
1369 .clock_get_ktime
= posix_get_boottime_ktime
,
1370 .clock_get_timespec
= posix_get_boottime_timespec
,
1371 .nsleep
= common_nsleep_timens
,
1372 .timer_create
= common_timer_create
,
1373 .timer_set
= common_timer_set
,
1374 .timer_get
= common_timer_get
,
1375 .timer_del
= common_timer_del
,
1376 .timer_rearm
= common_hrtimer_rearm
,
1377 .timer_forward
= common_hrtimer_forward
,
1378 .timer_remaining
= common_hrtimer_remaining
,
1379 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1380 .timer_wait_running
= common_timer_wait_running
,
1381 .timer_arm
= common_hrtimer_arm
,
1384 static const struct k_clock
* const posix_clocks
[] = {
1385 [CLOCK_REALTIME
] = &clock_realtime
,
1386 [CLOCK_MONOTONIC
] = &clock_monotonic
,
1387 [CLOCK_PROCESS_CPUTIME_ID
] = &clock_process
,
1388 [CLOCK_THREAD_CPUTIME_ID
] = &clock_thread
,
1389 [CLOCK_MONOTONIC_RAW
] = &clock_monotonic_raw
,
1390 [CLOCK_REALTIME_COARSE
] = &clock_realtime_coarse
,
1391 [CLOCK_MONOTONIC_COARSE
] = &clock_monotonic_coarse
,
1392 [CLOCK_BOOTTIME
] = &clock_boottime
,
1393 [CLOCK_REALTIME_ALARM
] = &alarm_clock
,
1394 [CLOCK_BOOTTIME_ALARM
] = &alarm_clock
,
1395 [CLOCK_TAI
] = &clock_tai
,
1398 static const struct k_clock
*clockid_to_kclock(const clockid_t id
)
1403 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
1404 &clock_posix_dynamic
: &clock_posix_cpu
;
1407 if (id
>= ARRAY_SIZE(posix_clocks
))
1410 return posix_clocks
[array_index_nospec(idx
, ARRAY_SIZE(posix_clocks
))];