1 // SPDX-License-Identifier: GPL-2.0
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
20 #include "timekeeping.h"
23 * struct clock_data - all data needed for sched_clock() (including
24 * registration of a new clock source)
26 * @seq: Sequence counter for protecting updates. The lowest
27 * bit is the index for @read_data.
28 * @read_data: Data required to read from sched_clock.
29 * @wrap_kt: Duration for which clock can run before wrapping.
30 * @rate: Tick rate of the registered clock.
31 * @actual_read_sched_clock: Registered hardware level clock read function.
33 * The ordering of this structure has been chosen to optimize cache
34 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
35 * into a single 64-byte cache line.
39 struct clock_read_data read_data
[2];
43 u64 (*actual_read_sched_clock
)(void);
46 static struct hrtimer sched_clock_timer
;
47 static int irqtime
= -1;
49 core_param(irqtime
, irqtime
, int, 0400);
51 static u64 notrace
jiffy_sched_clock_read(void)
54 * We don't need to use get_jiffies_64 on 32-bit arches here
55 * because we register with BITS_PER_LONG
57 return (u64
)(jiffies
- INITIAL_JIFFIES
);
60 static struct clock_data cd ____cacheline_aligned
= {
61 .read_data
[0] = { .mult
= NSEC_PER_SEC
/ HZ
,
62 .read_sched_clock
= jiffy_sched_clock_read
, },
63 .actual_read_sched_clock
= jiffy_sched_clock_read
,
66 static inline u64 notrace
cyc_to_ns(u64 cyc
, u32 mult
, u32 shift
)
68 return (cyc
* mult
) >> shift
;
71 notrace
struct clock_read_data
*sched_clock_read_begin(unsigned int *seq
)
73 *seq
= raw_read_seqcount_latch(&cd
.seq
);
74 return cd
.read_data
+ (*seq
& 1);
77 notrace
int sched_clock_read_retry(unsigned int seq
)
79 return read_seqcount_latch_retry(&cd
.seq
, seq
);
82 unsigned long long notrace
sched_clock(void)
86 struct clock_read_data
*rd
;
89 rd
= sched_clock_read_begin(&seq
);
91 cyc
= (rd
->read_sched_clock() - rd
->epoch_cyc
) &
93 res
= rd
->epoch_ns
+ cyc_to_ns(cyc
, rd
->mult
, rd
->shift
);
94 } while (sched_clock_read_retry(seq
));
100 * Updating the data required to read the clock.
102 * sched_clock() will never observe mis-matched data even if called from
103 * an NMI. We do this by maintaining an odd/even copy of the data and
104 * steering sched_clock() to one or the other using a sequence counter.
105 * In order to preserve the data cache profile of sched_clock() as much
106 * as possible the system reverts back to the even copy when the update
107 * completes; the odd copy is used *only* during an update.
109 static void update_clock_read_data(struct clock_read_data
*rd
)
111 /* update the backup (odd) copy with the new data */
112 cd
.read_data
[1] = *rd
;
114 /* steer readers towards the odd copy */
115 raw_write_seqcount_latch(&cd
.seq
);
117 /* now its safe for us to update the normal (even) copy */
118 cd
.read_data
[0] = *rd
;
120 /* switch readers back to the even copy */
121 raw_write_seqcount_latch(&cd
.seq
);
125 * Atomically update the sched_clock() epoch.
127 static void update_sched_clock(void)
131 struct clock_read_data rd
;
133 rd
= cd
.read_data
[0];
135 cyc
= cd
.actual_read_sched_clock();
136 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
141 update_clock_read_data(&rd
);
144 static enum hrtimer_restart
sched_clock_poll(struct hrtimer
*hrt
)
146 update_sched_clock();
147 hrtimer_forward_now(hrt
, cd
.wrap_kt
);
149 return HRTIMER_RESTART
;
153 sched_clock_register(u64 (*read
)(void), int bits
, unsigned long rate
)
155 u64 res
, wrap
, new_mask
, new_epoch
, cyc
, ns
;
156 u32 new_mult
, new_shift
;
157 unsigned long r
, flags
;
159 struct clock_read_data rd
;
164 /* Cannot register a sched_clock with interrupts on */
165 local_irq_save(flags
);
167 /* Calculate the mult/shift to convert counter ticks to ns. */
168 clocks_calc_mult_shift(&new_mult
, &new_shift
, rate
, NSEC_PER_SEC
, 3600);
170 new_mask
= CLOCKSOURCE_MASK(bits
);
173 /* Calculate how many nanosecs until we risk wrapping */
174 wrap
= clocks_calc_max_nsecs(new_mult
, new_shift
, 0, new_mask
, NULL
);
175 cd
.wrap_kt
= ns_to_ktime(wrap
);
177 rd
= cd
.read_data
[0];
179 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
181 cyc
= cd
.actual_read_sched_clock();
182 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
183 cd
.actual_read_sched_clock
= read
;
185 rd
.read_sched_clock
= read
;
186 rd
.sched_clock_mask
= new_mask
;
188 rd
.shift
= new_shift
;
189 rd
.epoch_cyc
= new_epoch
;
192 update_clock_read_data(&rd
);
194 if (sched_clock_timer
.function
!= NULL
) {
195 /* update timeout for clock wrap */
196 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
,
197 HRTIMER_MODE_REL_HARD
);
213 /* Calculate the ns resolution of this counter */
214 res
= cyc_to_ns(1ULL, new_mult
, new_shift
);
216 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
217 bits
, r
, r_unit
, res
, wrap
);
219 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
220 if (irqtime
> 0 || (irqtime
== -1 && rate
>= 1000000))
221 enable_sched_clock_irqtime();
223 local_irq_restore(flags
);
225 pr_debug("Registered %pS as sched_clock source\n", read
);
228 void __init
generic_sched_clock_init(void)
231 * If no sched_clock() function has been provided at that point,
232 * make it the final one.
234 if (cd
.actual_read_sched_clock
== jiffy_sched_clock_read
)
235 sched_clock_register(jiffy_sched_clock_read
, BITS_PER_LONG
, HZ
);
237 update_sched_clock();
240 * Start the timer to keep sched_clock() properly updated and
241 * sets the initial epoch.
243 hrtimer_init(&sched_clock_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
244 sched_clock_timer
.function
= sched_clock_poll
;
245 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL_HARD
);
249 * Clock read function for use when the clock is suspended.
251 * This function makes it appear to sched_clock() as if the clock
252 * stopped counting at its last update.
254 * This function must only be called from the critical
255 * section in sched_clock(). It relies on the read_seqcount_retry()
256 * at the end of the critical section to be sure we observe the
257 * correct copy of 'epoch_cyc'.
259 static u64 notrace
suspended_sched_clock_read(void)
261 unsigned int seq
= raw_read_seqcount_latch(&cd
.seq
);
263 return cd
.read_data
[seq
& 1].epoch_cyc
;
266 int sched_clock_suspend(void)
268 struct clock_read_data
*rd
= &cd
.read_data
[0];
270 update_sched_clock();
271 hrtimer_cancel(&sched_clock_timer
);
272 rd
->read_sched_clock
= suspended_sched_clock_read
;
277 void sched_clock_resume(void)
279 struct clock_read_data
*rd
= &cd
.read_data
[0];
281 rd
->epoch_cyc
= cd
.actual_read_sched_clock();
282 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL_HARD
);
283 rd
->read_sched_clock
= cd
.actual_read_sched_clock
;
286 static struct syscore_ops sched_clock_ops
= {
287 .suspend
= sched_clock_suspend
,
288 .resume
= sched_clock_resume
,
291 static int __init
sched_clock_syscore_init(void)
293 register_syscore_ops(&sched_clock_ops
);
297 device_initcall(sched_clock_syscore_init
);