WIP FPC-III support
[linux/fpc-iii.git] / mm / migrate.c
blobee5e612b4cd87bcab7b72948bee803d4fb346615
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
58 #include "internal.h"
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 void migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
73 lru_add_drain_all();
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
79 lru_add_drain();
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 struct address_space *mapping;
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
95 if (unlikely(!get_page_unless_zero(page)))
96 goto out;
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
103 if (unlikely(!__PageMovable(page)))
104 goto out_putpage;
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
116 if (unlikely(!trylock_page(page)))
117 goto out_putpage;
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
131 unlock_page(page);
133 return 0;
135 out_no_isolated:
136 unlock_page(page);
137 out_putpage:
138 put_page(page);
139 out:
140 return -EBUSY;
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
146 struct address_space *mapping;
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
165 void putback_movable_pages(struct list_head *l)
167 struct page *page;
168 struct page *page2;
170 list_for_each_entry_safe(page, page2, l, lru) {
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
173 continue;
175 list_del(&page->lru);
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
181 if (unlikely(__PageMovable(page))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 lock_page(page);
184 if (PageMovable(page))
185 putback_movable_page(page);
186 else
187 __ClearPageIsolated(page);
188 unlock_page(page);
189 put_page(page);
190 } else {
191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 page_is_file_lru(page), -thp_nr_pages(page));
193 putback_lru_page(page);
199 * Restore a potential migration pte to a working pte entry
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 unsigned long addr, void *old)
204 struct page_vma_mapped_walk pvmw = {
205 .page = old,
206 .vma = vma,
207 .address = addr,
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
210 struct page *new;
211 pte_t pte;
212 swp_entry_t entry;
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
216 if (PageKsm(page))
217 new = page;
218 else
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
224 if (!pvmw.pte) {
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
227 continue;
229 #endif
231 get_page(new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
237 * Recheck VMA as permissions can change since migration started
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 return true;
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
324 page = migration_entry_to_page(entry);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
358 spinlock_t *ptl;
359 struct page *page;
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page);
369 return;
370 unlock:
371 spin_unlock(ptl);
373 #endif
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
377 int expected_count = 1;
380 * Device private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += thp_nr_pages(page) + page_has_private(page);
387 return expected_count;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
403 int dirty;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
406 if (!mapping) {
407 /* Anonymous page without mapping */
408 if (page_count(page) != expected_count)
409 return -EAGAIN;
411 /* No turning back from here */
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 if (PageSwapBacked(page))
415 __SetPageSwapBacked(newpage);
417 return MIGRATEPAGE_SUCCESS;
420 oldzone = page_zone(page);
421 newzone = page_zone(newpage);
423 xas_lock_irq(&xas);
424 if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 xas_unlock_irq(&xas);
426 return -EAGAIN;
429 if (!page_ref_freeze(page, expected_count)) {
430 xas_unlock_irq(&xas);
431 return -EAGAIN;
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
438 newpage->index = page->index;
439 newpage->mapping = page->mapping;
440 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
441 if (PageSwapBacked(page)) {
442 __SetPageSwapBacked(newpage);
443 if (PageSwapCache(page)) {
444 SetPageSwapCache(newpage);
445 set_page_private(newpage, page_private(page));
447 } else {
448 VM_BUG_ON_PAGE(PageSwapCache(page), page);
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty = PageDirty(page);
453 if (dirty) {
454 ClearPageDirty(page);
455 SetPageDirty(newpage);
458 xas_store(&xas, newpage);
459 if (PageTransHuge(page)) {
460 int i;
462 for (i = 1; i < HPAGE_PMD_NR; i++) {
463 xas_next(&xas);
464 xas_store(&xas, newpage);
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
473 page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
475 xas_unlock(&xas);
476 /* Leave irq disabled to prevent preemption while updating stats */
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
488 if (newzone != oldzone) {
489 struct lruvec *old_lruvec, *new_lruvec;
490 struct mem_cgroup *memcg;
492 memcg = page_memcg(page);
493 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
494 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
497 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
498 if (PageSwapBacked(page) && !PageSwapCache(page)) {
499 __dec_lruvec_state(old_lruvec, NR_SHMEM);
500 __inc_lruvec_state(new_lruvec, NR_SHMEM);
502 if (dirty && mapping_can_writeback(mapping)) {
503 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
504 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
505 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
506 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
509 local_irq_enable();
511 return MIGRATEPAGE_SUCCESS;
513 EXPORT_SYMBOL(migrate_page_move_mapping);
516 * The expected number of remaining references is the same as that
517 * of migrate_page_move_mapping().
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520 struct page *newpage, struct page *page)
522 XA_STATE(xas, &mapping->i_pages, page_index(page));
523 int expected_count;
525 xas_lock_irq(&xas);
526 expected_count = 2 + page_has_private(page);
527 if (page_count(page) != expected_count || xas_load(&xas) != page) {
528 xas_unlock_irq(&xas);
529 return -EAGAIN;
532 if (!page_ref_freeze(page, expected_count)) {
533 xas_unlock_irq(&xas);
534 return -EAGAIN;
537 newpage->index = page->index;
538 newpage->mapping = page->mapping;
540 get_page(newpage);
542 xas_store(&xas, newpage);
544 page_ref_unfreeze(page, expected_count - 1);
546 xas_unlock_irq(&xas);
548 return MIGRATEPAGE_SUCCESS;
552 * Gigantic pages are so large that we do not guarantee that page++ pointer
553 * arithmetic will work across the entire page. We need something more
554 * specialized.
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 int nr_pages)
559 int i;
560 struct page *dst_base = dst;
561 struct page *src_base = src;
563 for (i = 0; i < nr_pages; ) {
564 cond_resched();
565 copy_highpage(dst, src);
567 i++;
568 dst = mem_map_next(dst, dst_base, i);
569 src = mem_map_next(src, src_base, i);
573 static void copy_huge_page(struct page *dst, struct page *src)
575 int i;
576 int nr_pages;
578 if (PageHuge(src)) {
579 /* hugetlbfs page */
580 struct hstate *h = page_hstate(src);
581 nr_pages = pages_per_huge_page(h);
583 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584 __copy_gigantic_page(dst, src, nr_pages);
585 return;
587 } else {
588 /* thp page */
589 BUG_ON(!PageTransHuge(src));
590 nr_pages = thp_nr_pages(src);
593 for (i = 0; i < nr_pages; i++) {
594 cond_resched();
595 copy_highpage(dst + i, src + i);
600 * Copy the page to its new location
602 void migrate_page_states(struct page *newpage, struct page *page)
604 int cpupid;
606 if (PageError(page))
607 SetPageError(newpage);
608 if (PageReferenced(page))
609 SetPageReferenced(newpage);
610 if (PageUptodate(page))
611 SetPageUptodate(newpage);
612 if (TestClearPageActive(page)) {
613 VM_BUG_ON_PAGE(PageUnevictable(page), page);
614 SetPageActive(newpage);
615 } else if (TestClearPageUnevictable(page))
616 SetPageUnevictable(newpage);
617 if (PageWorkingset(page))
618 SetPageWorkingset(newpage);
619 if (PageChecked(page))
620 SetPageChecked(newpage);
621 if (PageMappedToDisk(page))
622 SetPageMappedToDisk(newpage);
624 /* Move dirty on pages not done by migrate_page_move_mapping() */
625 if (PageDirty(page))
626 SetPageDirty(newpage);
628 if (page_is_young(page))
629 set_page_young(newpage);
630 if (page_is_idle(page))
631 set_page_idle(newpage);
634 * Copy NUMA information to the new page, to prevent over-eager
635 * future migrations of this same page.
637 cpupid = page_cpupid_xchg_last(page, -1);
638 page_cpupid_xchg_last(newpage, cpupid);
640 ksm_migrate_page(newpage, page);
642 * Please do not reorder this without considering how mm/ksm.c's
643 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
645 if (PageSwapCache(page))
646 ClearPageSwapCache(page);
647 ClearPagePrivate(page);
648 set_page_private(page, 0);
651 * If any waiters have accumulated on the new page then
652 * wake them up.
654 if (PageWriteback(newpage))
655 end_page_writeback(newpage);
658 * PG_readahead shares the same bit with PG_reclaim. The above
659 * end_page_writeback() may clear PG_readahead mistakenly, so set the
660 * bit after that.
662 if (PageReadahead(page))
663 SetPageReadahead(newpage);
665 copy_page_owner(page, newpage);
667 if (!PageHuge(page))
668 mem_cgroup_migrate(page, newpage);
670 EXPORT_SYMBOL(migrate_page_states);
672 void migrate_page_copy(struct page *newpage, struct page *page)
674 if (PageHuge(page) || PageTransHuge(page))
675 copy_huge_page(newpage, page);
676 else
677 copy_highpage(newpage, page);
679 migrate_page_states(newpage, page);
681 EXPORT_SYMBOL(migrate_page_copy);
683 /************************************************************
684 * Migration functions
685 ***********************************************************/
688 * Common logic to directly migrate a single LRU page suitable for
689 * pages that do not use PagePrivate/PagePrivate2.
691 * Pages are locked upon entry and exit.
693 int migrate_page(struct address_space *mapping,
694 struct page *newpage, struct page *page,
695 enum migrate_mode mode)
697 int rc;
699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
701 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
703 if (rc != MIGRATEPAGE_SUCCESS)
704 return rc;
706 if (mode != MIGRATE_SYNC_NO_COPY)
707 migrate_page_copy(newpage, page);
708 else
709 migrate_page_states(newpage, page);
710 return MIGRATEPAGE_SUCCESS;
712 EXPORT_SYMBOL(migrate_page);
714 #ifdef CONFIG_BLOCK
715 /* Returns true if all buffers are successfully locked */
716 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
717 enum migrate_mode mode)
719 struct buffer_head *bh = head;
721 /* Simple case, sync compaction */
722 if (mode != MIGRATE_ASYNC) {
723 do {
724 lock_buffer(bh);
725 bh = bh->b_this_page;
727 } while (bh != head);
729 return true;
732 /* async case, we cannot block on lock_buffer so use trylock_buffer */
733 do {
734 if (!trylock_buffer(bh)) {
736 * We failed to lock the buffer and cannot stall in
737 * async migration. Release the taken locks
739 struct buffer_head *failed_bh = bh;
740 bh = head;
741 while (bh != failed_bh) {
742 unlock_buffer(bh);
743 bh = bh->b_this_page;
745 return false;
748 bh = bh->b_this_page;
749 } while (bh != head);
750 return true;
753 static int __buffer_migrate_page(struct address_space *mapping,
754 struct page *newpage, struct page *page, enum migrate_mode mode,
755 bool check_refs)
757 struct buffer_head *bh, *head;
758 int rc;
759 int expected_count;
761 if (!page_has_buffers(page))
762 return migrate_page(mapping, newpage, page, mode);
764 /* Check whether page does not have extra refs before we do more work */
765 expected_count = expected_page_refs(mapping, page);
766 if (page_count(page) != expected_count)
767 return -EAGAIN;
769 head = page_buffers(page);
770 if (!buffer_migrate_lock_buffers(head, mode))
771 return -EAGAIN;
773 if (check_refs) {
774 bool busy;
775 bool invalidated = false;
777 recheck_buffers:
778 busy = false;
779 spin_lock(&mapping->private_lock);
780 bh = head;
781 do {
782 if (atomic_read(&bh->b_count)) {
783 busy = true;
784 break;
786 bh = bh->b_this_page;
787 } while (bh != head);
788 if (busy) {
789 if (invalidated) {
790 rc = -EAGAIN;
791 goto unlock_buffers;
793 spin_unlock(&mapping->private_lock);
794 invalidate_bh_lrus();
795 invalidated = true;
796 goto recheck_buffers;
800 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
801 if (rc != MIGRATEPAGE_SUCCESS)
802 goto unlock_buffers;
804 attach_page_private(newpage, detach_page_private(page));
806 bh = head;
807 do {
808 set_bh_page(bh, newpage, bh_offset(bh));
809 bh = bh->b_this_page;
811 } while (bh != head);
813 if (mode != MIGRATE_SYNC_NO_COPY)
814 migrate_page_copy(newpage, page);
815 else
816 migrate_page_states(newpage, page);
818 rc = MIGRATEPAGE_SUCCESS;
819 unlock_buffers:
820 if (check_refs)
821 spin_unlock(&mapping->private_lock);
822 bh = head;
823 do {
824 unlock_buffer(bh);
825 bh = bh->b_this_page;
827 } while (bh != head);
829 return rc;
833 * Migration function for pages with buffers. This function can only be used
834 * if the underlying filesystem guarantees that no other references to "page"
835 * exist. For example attached buffer heads are accessed only under page lock.
837 int buffer_migrate_page(struct address_space *mapping,
838 struct page *newpage, struct page *page, enum migrate_mode mode)
840 return __buffer_migrate_page(mapping, newpage, page, mode, false);
842 EXPORT_SYMBOL(buffer_migrate_page);
845 * Same as above except that this variant is more careful and checks that there
846 * are also no buffer head references. This function is the right one for
847 * mappings where buffer heads are directly looked up and referenced (such as
848 * block device mappings).
850 int buffer_migrate_page_norefs(struct address_space *mapping,
851 struct page *newpage, struct page *page, enum migrate_mode mode)
853 return __buffer_migrate_page(mapping, newpage, page, mode, true);
855 #endif
858 * Writeback a page to clean the dirty state
860 static int writeout(struct address_space *mapping, struct page *page)
862 struct writeback_control wbc = {
863 .sync_mode = WB_SYNC_NONE,
864 .nr_to_write = 1,
865 .range_start = 0,
866 .range_end = LLONG_MAX,
867 .for_reclaim = 1
869 int rc;
871 if (!mapping->a_ops->writepage)
872 /* No write method for the address space */
873 return -EINVAL;
875 if (!clear_page_dirty_for_io(page))
876 /* Someone else already triggered a write */
877 return -EAGAIN;
880 * A dirty page may imply that the underlying filesystem has
881 * the page on some queue. So the page must be clean for
882 * migration. Writeout may mean we loose the lock and the
883 * page state is no longer what we checked for earlier.
884 * At this point we know that the migration attempt cannot
885 * be successful.
887 remove_migration_ptes(page, page, false);
889 rc = mapping->a_ops->writepage(page, &wbc);
891 if (rc != AOP_WRITEPAGE_ACTIVATE)
892 /* unlocked. Relock */
893 lock_page(page);
895 return (rc < 0) ? -EIO : -EAGAIN;
899 * Default handling if a filesystem does not provide a migration function.
901 static int fallback_migrate_page(struct address_space *mapping,
902 struct page *newpage, struct page *page, enum migrate_mode mode)
904 if (PageDirty(page)) {
905 /* Only writeback pages in full synchronous migration */
906 switch (mode) {
907 case MIGRATE_SYNC:
908 case MIGRATE_SYNC_NO_COPY:
909 break;
910 default:
911 return -EBUSY;
913 return writeout(mapping, page);
917 * Buffers may be managed in a filesystem specific way.
918 * We must have no buffers or drop them.
920 if (page_has_private(page) &&
921 !try_to_release_page(page, GFP_KERNEL))
922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
924 return migrate_page(mapping, newpage, page, mode);
928 * Move a page to a newly allocated page
929 * The page is locked and all ptes have been successfully removed.
931 * The new page will have replaced the old page if this function
932 * is successful.
934 * Return value:
935 * < 0 - error code
936 * MIGRATEPAGE_SUCCESS - success
938 static int move_to_new_page(struct page *newpage, struct page *page,
939 enum migrate_mode mode)
941 struct address_space *mapping;
942 int rc = -EAGAIN;
943 bool is_lru = !__PageMovable(page);
945 VM_BUG_ON_PAGE(!PageLocked(page), page);
946 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
948 mapping = page_mapping(page);
950 if (likely(is_lru)) {
951 if (!mapping)
952 rc = migrate_page(mapping, newpage, page, mode);
953 else if (mapping->a_ops->migratepage)
955 * Most pages have a mapping and most filesystems
956 * provide a migratepage callback. Anonymous pages
957 * are part of swap space which also has its own
958 * migratepage callback. This is the most common path
959 * for page migration.
961 rc = mapping->a_ops->migratepage(mapping, newpage,
962 page, mode);
963 else
964 rc = fallback_migrate_page(mapping, newpage,
965 page, mode);
966 } else {
968 * In case of non-lru page, it could be released after
969 * isolation step. In that case, we shouldn't try migration.
971 VM_BUG_ON_PAGE(!PageIsolated(page), page);
972 if (!PageMovable(page)) {
973 rc = MIGRATEPAGE_SUCCESS;
974 __ClearPageIsolated(page);
975 goto out;
978 rc = mapping->a_ops->migratepage(mapping, newpage,
979 page, mode);
980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 !PageIsolated(page));
985 * When successful, old pagecache page->mapping must be cleared before
986 * page is freed; but stats require that PageAnon be left as PageAnon.
988 if (rc == MIGRATEPAGE_SUCCESS) {
989 if (__PageMovable(page)) {
990 VM_BUG_ON_PAGE(!PageIsolated(page), page);
993 * We clear PG_movable under page_lock so any compactor
994 * cannot try to migrate this page.
996 __ClearPageIsolated(page);
1000 * Anonymous and movable page->mapping will be cleared by
1001 * free_pages_prepare so don't reset it here for keeping
1002 * the type to work PageAnon, for example.
1004 if (!PageMappingFlags(page))
1005 page->mapping = NULL;
1007 if (likely(!is_zone_device_page(newpage)))
1008 flush_dcache_page(newpage);
1011 out:
1012 return rc;
1015 static int __unmap_and_move(struct page *page, struct page *newpage,
1016 int force, enum migrate_mode mode)
1018 int rc = -EAGAIN;
1019 int page_was_mapped = 0;
1020 struct anon_vma *anon_vma = NULL;
1021 bool is_lru = !__PageMovable(page);
1023 if (!trylock_page(page)) {
1024 if (!force || mode == MIGRATE_ASYNC)
1025 goto out;
1028 * It's not safe for direct compaction to call lock_page.
1029 * For example, during page readahead pages are added locked
1030 * to the LRU. Later, when the IO completes the pages are
1031 * marked uptodate and unlocked. However, the queueing
1032 * could be merging multiple pages for one bio (e.g.
1033 * mpage_readahead). If an allocation happens for the
1034 * second or third page, the process can end up locking
1035 * the same page twice and deadlocking. Rather than
1036 * trying to be clever about what pages can be locked,
1037 * avoid the use of lock_page for direct compaction
1038 * altogether.
1040 if (current->flags & PF_MEMALLOC)
1041 goto out;
1043 lock_page(page);
1046 if (PageWriteback(page)) {
1048 * Only in the case of a full synchronous migration is it
1049 * necessary to wait for PageWriteback. In the async case,
1050 * the retry loop is too short and in the sync-light case,
1051 * the overhead of stalling is too much
1053 switch (mode) {
1054 case MIGRATE_SYNC:
1055 case MIGRATE_SYNC_NO_COPY:
1056 break;
1057 default:
1058 rc = -EBUSY;
1059 goto out_unlock;
1061 if (!force)
1062 goto out_unlock;
1063 wait_on_page_writeback(page);
1067 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1068 * we cannot notice that anon_vma is freed while we migrates a page.
1069 * This get_anon_vma() delays freeing anon_vma pointer until the end
1070 * of migration. File cache pages are no problem because of page_lock()
1071 * File Caches may use write_page() or lock_page() in migration, then,
1072 * just care Anon page here.
1074 * Only page_get_anon_vma() understands the subtleties of
1075 * getting a hold on an anon_vma from outside one of its mms.
1076 * But if we cannot get anon_vma, then we won't need it anyway,
1077 * because that implies that the anon page is no longer mapped
1078 * (and cannot be remapped so long as we hold the page lock).
1080 if (PageAnon(page) && !PageKsm(page))
1081 anon_vma = page_get_anon_vma(page);
1084 * Block others from accessing the new page when we get around to
1085 * establishing additional references. We are usually the only one
1086 * holding a reference to newpage at this point. We used to have a BUG
1087 * here if trylock_page(newpage) fails, but would like to allow for
1088 * cases where there might be a race with the previous use of newpage.
1089 * This is much like races on refcount of oldpage: just don't BUG().
1091 if (unlikely(!trylock_page(newpage)))
1092 goto out_unlock;
1094 if (unlikely(!is_lru)) {
1095 rc = move_to_new_page(newpage, page, mode);
1096 goto out_unlock_both;
1100 * Corner case handling:
1101 * 1. When a new swap-cache page is read into, it is added to the LRU
1102 * and treated as swapcache but it has no rmap yet.
1103 * Calling try_to_unmap() against a page->mapping==NULL page will
1104 * trigger a BUG. So handle it here.
1105 * 2. An orphaned page (see truncate_cleanup_page) might have
1106 * fs-private metadata. The page can be picked up due to memory
1107 * offlining. Everywhere else except page reclaim, the page is
1108 * invisible to the vm, so the page can not be migrated. So try to
1109 * free the metadata, so the page can be freed.
1111 if (!page->mapping) {
1112 VM_BUG_ON_PAGE(PageAnon(page), page);
1113 if (page_has_private(page)) {
1114 try_to_free_buffers(page);
1115 goto out_unlock_both;
1117 } else if (page_mapped(page)) {
1118 /* Establish migration ptes */
1119 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1120 page);
1121 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1122 page_was_mapped = 1;
1125 if (!page_mapped(page))
1126 rc = move_to_new_page(newpage, page, mode);
1128 if (page_was_mapped)
1129 remove_migration_ptes(page,
1130 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1132 out_unlock_both:
1133 unlock_page(newpage);
1134 out_unlock:
1135 /* Drop an anon_vma reference if we took one */
1136 if (anon_vma)
1137 put_anon_vma(anon_vma);
1138 unlock_page(page);
1139 out:
1141 * If migration is successful, decrease refcount of the newpage
1142 * which will not free the page because new page owner increased
1143 * refcounter. As well, if it is LRU page, add the page to LRU
1144 * list in here. Use the old state of the isolated source page to
1145 * determine if we migrated a LRU page. newpage was already unlocked
1146 * and possibly modified by its owner - don't rely on the page
1147 * state.
1149 if (rc == MIGRATEPAGE_SUCCESS) {
1150 if (unlikely(!is_lru))
1151 put_page(newpage);
1152 else
1153 putback_lru_page(newpage);
1156 return rc;
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1163 static int unmap_and_move(new_page_t get_new_page,
1164 free_page_t put_new_page,
1165 unsigned long private, struct page *page,
1166 int force, enum migrate_mode mode,
1167 enum migrate_reason reason,
1168 struct list_head *ret)
1170 int rc = MIGRATEPAGE_SUCCESS;
1171 struct page *newpage = NULL;
1173 if (!thp_migration_supported() && PageTransHuge(page))
1174 return -ENOSYS;
1176 if (page_count(page) == 1) {
1177 /* page was freed from under us. So we are done. */
1178 ClearPageActive(page);
1179 ClearPageUnevictable(page);
1180 if (unlikely(__PageMovable(page))) {
1181 lock_page(page);
1182 if (!PageMovable(page))
1183 __ClearPageIsolated(page);
1184 unlock_page(page);
1186 goto out;
1189 newpage = get_new_page(page, private);
1190 if (!newpage)
1191 return -ENOMEM;
1193 rc = __unmap_and_move(page, newpage, force, mode);
1194 if (rc == MIGRATEPAGE_SUCCESS)
1195 set_page_owner_migrate_reason(newpage, reason);
1197 out:
1198 if (rc != -EAGAIN) {
1200 * A page that has been migrated has all references
1201 * removed and will be freed. A page that has not been
1202 * migrated will have kept its references and be restored.
1204 list_del(&page->lru);
1208 * If migration is successful, releases reference grabbed during
1209 * isolation. Otherwise, restore the page to right list unless
1210 * we want to retry.
1212 if (rc == MIGRATEPAGE_SUCCESS) {
1214 * Compaction can migrate also non-LRU pages which are
1215 * not accounted to NR_ISOLATED_*. They can be recognized
1216 * as __PageMovable
1218 if (likely(!__PageMovable(page)))
1219 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220 page_is_file_lru(page), -thp_nr_pages(page));
1222 if (reason != MR_MEMORY_FAILURE)
1224 * We release the page in page_handle_poison.
1226 put_page(page);
1227 } else {
1228 if (rc != -EAGAIN)
1229 list_add_tail(&page->lru, ret);
1231 if (put_new_page)
1232 put_new_page(newpage, private);
1233 else
1234 put_page(newpage);
1237 return rc;
1241 * Counterpart of unmap_and_move_page() for hugepage migration.
1243 * This function doesn't wait the completion of hugepage I/O
1244 * because there is no race between I/O and migration for hugepage.
1245 * Note that currently hugepage I/O occurs only in direct I/O
1246 * where no lock is held and PG_writeback is irrelevant,
1247 * and writeback status of all subpages are counted in the reference
1248 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1249 * under direct I/O, the reference of the head page is 512 and a bit more.)
1250 * This means that when we try to migrate hugepage whose subpages are
1251 * doing direct I/O, some references remain after try_to_unmap() and
1252 * hugepage migration fails without data corruption.
1254 * There is also no race when direct I/O is issued on the page under migration,
1255 * because then pte is replaced with migration swap entry and direct I/O code
1256 * will wait in the page fault for migration to complete.
1258 static int unmap_and_move_huge_page(new_page_t get_new_page,
1259 free_page_t put_new_page, unsigned long private,
1260 struct page *hpage, int force,
1261 enum migrate_mode mode, int reason,
1262 struct list_head *ret)
1264 int rc = -EAGAIN;
1265 int page_was_mapped = 0;
1266 struct page *new_hpage;
1267 struct anon_vma *anon_vma = NULL;
1268 struct address_space *mapping = NULL;
1271 * Migratability of hugepages depends on architectures and their size.
1272 * This check is necessary because some callers of hugepage migration
1273 * like soft offline and memory hotremove don't walk through page
1274 * tables or check whether the hugepage is pmd-based or not before
1275 * kicking migration.
1277 if (!hugepage_migration_supported(page_hstate(hpage))) {
1278 list_move_tail(&hpage->lru, ret);
1279 return -ENOSYS;
1282 new_hpage = get_new_page(hpage, private);
1283 if (!new_hpage)
1284 return -ENOMEM;
1286 if (!trylock_page(hpage)) {
1287 if (!force)
1288 goto out;
1289 switch (mode) {
1290 case MIGRATE_SYNC:
1291 case MIGRATE_SYNC_NO_COPY:
1292 break;
1293 default:
1294 goto out;
1296 lock_page(hpage);
1300 * Check for pages which are in the process of being freed. Without
1301 * page_mapping() set, hugetlbfs specific move page routine will not
1302 * be called and we could leak usage counts for subpools.
1304 if (page_private(hpage) && !page_mapping(hpage)) {
1305 rc = -EBUSY;
1306 goto out_unlock;
1309 if (PageAnon(hpage))
1310 anon_vma = page_get_anon_vma(hpage);
1312 if (unlikely(!trylock_page(new_hpage)))
1313 goto put_anon;
1315 if (page_mapped(hpage)) {
1316 bool mapping_locked = false;
1317 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1319 if (!PageAnon(hpage)) {
1321 * In shared mappings, try_to_unmap could potentially
1322 * call huge_pmd_unshare. Because of this, take
1323 * semaphore in write mode here and set TTU_RMAP_LOCKED
1324 * to let lower levels know we have taken the lock.
1326 mapping = hugetlb_page_mapping_lock_write(hpage);
1327 if (unlikely(!mapping))
1328 goto unlock_put_anon;
1330 mapping_locked = true;
1331 ttu |= TTU_RMAP_LOCKED;
1334 try_to_unmap(hpage, ttu);
1335 page_was_mapped = 1;
1337 if (mapping_locked)
1338 i_mmap_unlock_write(mapping);
1341 if (!page_mapped(hpage))
1342 rc = move_to_new_page(new_hpage, hpage, mode);
1344 if (page_was_mapped)
1345 remove_migration_ptes(hpage,
1346 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1348 unlock_put_anon:
1349 unlock_page(new_hpage);
1351 put_anon:
1352 if (anon_vma)
1353 put_anon_vma(anon_vma);
1355 if (rc == MIGRATEPAGE_SUCCESS) {
1356 move_hugetlb_state(hpage, new_hpage, reason);
1357 put_new_page = NULL;
1360 out_unlock:
1361 unlock_page(hpage);
1362 out:
1363 if (rc == MIGRATEPAGE_SUCCESS)
1364 putback_active_hugepage(hpage);
1365 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1366 list_move_tail(&hpage->lru, ret);
1369 * If migration was not successful and there's a freeing callback, use
1370 * it. Otherwise, put_page() will drop the reference grabbed during
1371 * isolation.
1373 if (put_new_page)
1374 put_new_page(new_hpage, private);
1375 else
1376 putback_active_hugepage(new_hpage);
1378 return rc;
1381 static inline int try_split_thp(struct page *page, struct page **page2,
1382 struct list_head *from)
1384 int rc = 0;
1386 lock_page(page);
1387 rc = split_huge_page_to_list(page, from);
1388 unlock_page(page);
1389 if (!rc)
1390 list_safe_reset_next(page, *page2, lru);
1392 return rc;
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * It is caller's responsibility to call putback_movable_pages() to return pages
1412 * to the LRU or free list only if ret != 0.
1414 * Returns the number of pages that were not migrated, or an error code.
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 free_page_t put_new_page, unsigned long private,
1418 enum migrate_mode mode, int reason)
1420 int retry = 1;
1421 int thp_retry = 1;
1422 int nr_failed = 0;
1423 int nr_succeeded = 0;
1424 int nr_thp_succeeded = 0;
1425 int nr_thp_failed = 0;
1426 int nr_thp_split = 0;
1427 int pass = 0;
1428 bool is_thp = false;
1429 struct page *page;
1430 struct page *page2;
1431 int swapwrite = current->flags & PF_SWAPWRITE;
1432 int rc, nr_subpages;
1433 LIST_HEAD(ret_pages);
1435 if (!swapwrite)
1436 current->flags |= PF_SWAPWRITE;
1438 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439 retry = 0;
1440 thp_retry = 0;
1442 list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1445 * THP statistics is based on the source huge page.
1446 * Capture required information that might get lost
1447 * during migration.
1449 is_thp = PageTransHuge(page) && !PageHuge(page);
1450 nr_subpages = thp_nr_pages(page);
1451 cond_resched();
1453 if (PageHuge(page))
1454 rc = unmap_and_move_huge_page(get_new_page,
1455 put_new_page, private, page,
1456 pass > 2, mode, reason,
1457 &ret_pages);
1458 else
1459 rc = unmap_and_move(get_new_page, put_new_page,
1460 private, page, pass > 2, mode,
1461 reason, &ret_pages);
1463 * The rules are:
1464 * Success: non hugetlb page will be freed, hugetlb
1465 * page will be put back
1466 * -EAGAIN: stay on the from list
1467 * -ENOMEM: stay on the from list
1468 * Other errno: put on ret_pages list then splice to
1469 * from list
1471 switch(rc) {
1473 * THP migration might be unsupported or the
1474 * allocation could've failed so we should
1475 * retry on the same page with the THP split
1476 * to base pages.
1478 * Head page is retried immediately and tail
1479 * pages are added to the tail of the list so
1480 * we encounter them after the rest of the list
1481 * is processed.
1483 case -ENOSYS:
1484 /* THP migration is unsupported */
1485 if (is_thp) {
1486 if (!try_split_thp(page, &page2, from)) {
1487 nr_thp_split++;
1488 goto retry;
1491 nr_thp_failed++;
1492 nr_failed += nr_subpages;
1493 break;
1496 /* Hugetlb migration is unsupported */
1497 nr_failed++;
1498 break;
1499 case -ENOMEM:
1501 * When memory is low, don't bother to try to migrate
1502 * other pages, just exit.
1504 if (is_thp) {
1505 if (!try_split_thp(page, &page2, from)) {
1506 nr_thp_split++;
1507 goto retry;
1510 nr_thp_failed++;
1511 nr_failed += nr_subpages;
1512 goto out;
1514 nr_failed++;
1515 goto out;
1516 case -EAGAIN:
1517 if (is_thp) {
1518 thp_retry++;
1519 break;
1521 retry++;
1522 break;
1523 case MIGRATEPAGE_SUCCESS:
1524 if (is_thp) {
1525 nr_thp_succeeded++;
1526 nr_succeeded += nr_subpages;
1527 break;
1529 nr_succeeded++;
1530 break;
1531 default:
1533 * Permanent failure (-EBUSY, etc.):
1534 * unlike -EAGAIN case, the failed page is
1535 * removed from migration page list and not
1536 * retried in the next outer loop.
1538 if (is_thp) {
1539 nr_thp_failed++;
1540 nr_failed += nr_subpages;
1541 break;
1543 nr_failed++;
1544 break;
1548 nr_failed += retry + thp_retry;
1549 nr_thp_failed += thp_retry;
1550 rc = nr_failed;
1551 out:
1553 * Put the permanent failure page back to migration list, they
1554 * will be put back to the right list by the caller.
1556 list_splice(&ret_pages, from);
1558 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1559 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1560 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1561 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1562 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1563 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1564 nr_thp_failed, nr_thp_split, mode, reason);
1566 if (!swapwrite)
1567 current->flags &= ~PF_SWAPWRITE;
1569 return rc;
1572 struct page *alloc_migration_target(struct page *page, unsigned long private)
1574 struct migration_target_control *mtc;
1575 gfp_t gfp_mask;
1576 unsigned int order = 0;
1577 struct page *new_page = NULL;
1578 int nid;
1579 int zidx;
1581 mtc = (struct migration_target_control *)private;
1582 gfp_mask = mtc->gfp_mask;
1583 nid = mtc->nid;
1584 if (nid == NUMA_NO_NODE)
1585 nid = page_to_nid(page);
1587 if (PageHuge(page)) {
1588 struct hstate *h = page_hstate(compound_head(page));
1590 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1591 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1594 if (PageTransHuge(page)) {
1596 * clear __GFP_RECLAIM to make the migration callback
1597 * consistent with regular THP allocations.
1599 gfp_mask &= ~__GFP_RECLAIM;
1600 gfp_mask |= GFP_TRANSHUGE;
1601 order = HPAGE_PMD_ORDER;
1603 zidx = zone_idx(page_zone(page));
1604 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1605 gfp_mask |= __GFP_HIGHMEM;
1607 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1609 if (new_page && PageTransHuge(new_page))
1610 prep_transhuge_page(new_page);
1612 return new_page;
1615 #ifdef CONFIG_NUMA
1617 static int store_status(int __user *status, int start, int value, int nr)
1619 while (nr-- > 0) {
1620 if (put_user(value, status + start))
1621 return -EFAULT;
1622 start++;
1625 return 0;
1628 static int do_move_pages_to_node(struct mm_struct *mm,
1629 struct list_head *pagelist, int node)
1631 int err;
1632 struct migration_target_control mtc = {
1633 .nid = node,
1634 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1637 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1638 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1639 if (err)
1640 putback_movable_pages(pagelist);
1641 return err;
1645 * Resolves the given address to a struct page, isolates it from the LRU and
1646 * puts it to the given pagelist.
1647 * Returns:
1648 * errno - if the page cannot be found/isolated
1649 * 0 - when it doesn't have to be migrated because it is already on the
1650 * target node
1651 * 1 - when it has been queued
1653 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1654 int node, struct list_head *pagelist, bool migrate_all)
1656 struct vm_area_struct *vma;
1657 struct page *page;
1658 unsigned int follflags;
1659 int err;
1661 mmap_read_lock(mm);
1662 err = -EFAULT;
1663 vma = find_vma(mm, addr);
1664 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1665 goto out;
1667 /* FOLL_DUMP to ignore special (like zero) pages */
1668 follflags = FOLL_GET | FOLL_DUMP;
1669 page = follow_page(vma, addr, follflags);
1671 err = PTR_ERR(page);
1672 if (IS_ERR(page))
1673 goto out;
1675 err = -ENOENT;
1676 if (!page)
1677 goto out;
1679 err = 0;
1680 if (page_to_nid(page) == node)
1681 goto out_putpage;
1683 err = -EACCES;
1684 if (page_mapcount(page) > 1 && !migrate_all)
1685 goto out_putpage;
1687 if (PageHuge(page)) {
1688 if (PageHead(page)) {
1689 isolate_huge_page(page, pagelist);
1690 err = 1;
1692 } else {
1693 struct page *head;
1695 head = compound_head(page);
1696 err = isolate_lru_page(head);
1697 if (err)
1698 goto out_putpage;
1700 err = 1;
1701 list_add_tail(&head->lru, pagelist);
1702 mod_node_page_state(page_pgdat(head),
1703 NR_ISOLATED_ANON + page_is_file_lru(head),
1704 thp_nr_pages(head));
1706 out_putpage:
1708 * Either remove the duplicate refcount from
1709 * isolate_lru_page() or drop the page ref if it was
1710 * not isolated.
1712 put_page(page);
1713 out:
1714 mmap_read_unlock(mm);
1715 return err;
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719 struct list_head *pagelist, int __user *status,
1720 int start, int i, unsigned long nr_pages)
1722 int err;
1724 if (list_empty(pagelist))
1725 return 0;
1727 err = do_move_pages_to_node(mm, pagelist, node);
1728 if (err) {
1730 * Positive err means the number of failed
1731 * pages to migrate. Since we are going to
1732 * abort and return the number of non-migrated
1733 * pages, so need to include the rest of the
1734 * nr_pages that have not been attempted as
1735 * well.
1737 if (err > 0)
1738 err += nr_pages - i - 1;
1739 return err;
1741 return store_status(status, start, node, i - start);
1745 * Migrate an array of page address onto an array of nodes and fill
1746 * the corresponding array of status.
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749 unsigned long nr_pages,
1750 const void __user * __user *pages,
1751 const int __user *nodes,
1752 int __user *status, int flags)
1754 int current_node = NUMA_NO_NODE;
1755 LIST_HEAD(pagelist);
1756 int start, i;
1757 int err = 0, err1;
1759 migrate_prep();
1761 for (i = start = 0; i < nr_pages; i++) {
1762 const void __user *p;
1763 unsigned long addr;
1764 int node;
1766 err = -EFAULT;
1767 if (get_user(p, pages + i))
1768 goto out_flush;
1769 if (get_user(node, nodes + i))
1770 goto out_flush;
1771 addr = (unsigned long)untagged_addr(p);
1773 err = -ENODEV;
1774 if (node < 0 || node >= MAX_NUMNODES)
1775 goto out_flush;
1776 if (!node_state(node, N_MEMORY))
1777 goto out_flush;
1779 err = -EACCES;
1780 if (!node_isset(node, task_nodes))
1781 goto out_flush;
1783 if (current_node == NUMA_NO_NODE) {
1784 current_node = node;
1785 start = i;
1786 } else if (node != current_node) {
1787 err = move_pages_and_store_status(mm, current_node,
1788 &pagelist, status, start, i, nr_pages);
1789 if (err)
1790 goto out;
1791 start = i;
1792 current_node = node;
1796 * Errors in the page lookup or isolation are not fatal and we simply
1797 * report them via status
1799 err = add_page_for_migration(mm, addr, current_node,
1800 &pagelist, flags & MPOL_MF_MOVE_ALL);
1802 if (err > 0) {
1803 /* The page is successfully queued for migration */
1804 continue;
1808 * If the page is already on the target node (!err), store the
1809 * node, otherwise, store the err.
1811 err = store_status(status, i, err ? : current_node, 1);
1812 if (err)
1813 goto out_flush;
1815 err = move_pages_and_store_status(mm, current_node, &pagelist,
1816 status, start, i, nr_pages);
1817 if (err)
1818 goto out;
1819 current_node = NUMA_NO_NODE;
1821 out_flush:
1822 /* Make sure we do not overwrite the existing error */
1823 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1824 status, start, i, nr_pages);
1825 if (err >= 0)
1826 err = err1;
1827 out:
1828 return err;
1832 * Determine the nodes of an array of pages and store it in an array of status.
1834 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1835 const void __user **pages, int *status)
1837 unsigned long i;
1839 mmap_read_lock(mm);
1841 for (i = 0; i < nr_pages; i++) {
1842 unsigned long addr = (unsigned long)(*pages);
1843 struct vm_area_struct *vma;
1844 struct page *page;
1845 int err = -EFAULT;
1847 vma = find_vma(mm, addr);
1848 if (!vma || addr < vma->vm_start)
1849 goto set_status;
1851 /* FOLL_DUMP to ignore special (like zero) pages */
1852 page = follow_page(vma, addr, FOLL_DUMP);
1854 err = PTR_ERR(page);
1855 if (IS_ERR(page))
1856 goto set_status;
1858 err = page ? page_to_nid(page) : -ENOENT;
1859 set_status:
1860 *status = err;
1862 pages++;
1863 status++;
1866 mmap_read_unlock(mm);
1870 * Determine the nodes of a user array of pages and store it in
1871 * a user array of status.
1873 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1874 const void __user * __user *pages,
1875 int __user *status)
1877 #define DO_PAGES_STAT_CHUNK_NR 16
1878 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1879 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1881 while (nr_pages) {
1882 unsigned long chunk_nr;
1884 chunk_nr = nr_pages;
1885 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1886 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1888 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1889 break;
1891 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1893 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1894 break;
1896 pages += chunk_nr;
1897 status += chunk_nr;
1898 nr_pages -= chunk_nr;
1900 return nr_pages ? -EFAULT : 0;
1903 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1905 struct task_struct *task;
1906 struct mm_struct *mm;
1909 * There is no need to check if current process has the right to modify
1910 * the specified process when they are same.
1912 if (!pid) {
1913 mmget(current->mm);
1914 *mem_nodes = cpuset_mems_allowed(current);
1915 return current->mm;
1918 /* Find the mm_struct */
1919 rcu_read_lock();
1920 task = find_task_by_vpid(pid);
1921 if (!task) {
1922 rcu_read_unlock();
1923 return ERR_PTR(-ESRCH);
1925 get_task_struct(task);
1928 * Check if this process has the right to modify the specified
1929 * process. Use the regular "ptrace_may_access()" checks.
1931 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1932 rcu_read_unlock();
1933 mm = ERR_PTR(-EPERM);
1934 goto out;
1936 rcu_read_unlock();
1938 mm = ERR_PTR(security_task_movememory(task));
1939 if (IS_ERR(mm))
1940 goto out;
1941 *mem_nodes = cpuset_mems_allowed(task);
1942 mm = get_task_mm(task);
1943 out:
1944 put_task_struct(task);
1945 if (!mm)
1946 mm = ERR_PTR(-EINVAL);
1947 return mm;
1951 * Move a list of pages in the address space of the currently executing
1952 * process.
1954 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1955 const void __user * __user *pages,
1956 const int __user *nodes,
1957 int __user *status, int flags)
1959 struct mm_struct *mm;
1960 int err;
1961 nodemask_t task_nodes;
1963 /* Check flags */
1964 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1965 return -EINVAL;
1967 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1968 return -EPERM;
1970 mm = find_mm_struct(pid, &task_nodes);
1971 if (IS_ERR(mm))
1972 return PTR_ERR(mm);
1974 if (nodes)
1975 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1976 nodes, status, flags);
1977 else
1978 err = do_pages_stat(mm, nr_pages, pages, status);
1980 mmput(mm);
1981 return err;
1984 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1985 const void __user * __user *, pages,
1986 const int __user *, nodes,
1987 int __user *, status, int, flags)
1989 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1992 #ifdef CONFIG_COMPAT
1993 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1994 compat_uptr_t __user *, pages32,
1995 const int __user *, nodes,
1996 int __user *, status,
1997 int, flags)
1999 const void __user * __user *pages;
2000 int i;
2002 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2003 for (i = 0; i < nr_pages; i++) {
2004 compat_uptr_t p;
2006 if (get_user(p, pages32 + i) ||
2007 put_user(compat_ptr(p), pages + i))
2008 return -EFAULT;
2010 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2012 #endif /* CONFIG_COMPAT */
2014 #ifdef CONFIG_NUMA_BALANCING
2016 * Returns true if this is a safe migration target node for misplaced NUMA
2017 * pages. Currently it only checks the watermarks which crude
2019 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2020 unsigned long nr_migrate_pages)
2022 int z;
2024 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2025 struct zone *zone = pgdat->node_zones + z;
2027 if (!populated_zone(zone))
2028 continue;
2030 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2031 if (!zone_watermark_ok(zone, 0,
2032 high_wmark_pages(zone) +
2033 nr_migrate_pages,
2034 ZONE_MOVABLE, 0))
2035 continue;
2036 return true;
2038 return false;
2041 static struct page *alloc_misplaced_dst_page(struct page *page,
2042 unsigned long data)
2044 int nid = (int) data;
2045 struct page *newpage;
2047 newpage = __alloc_pages_node(nid,
2048 (GFP_HIGHUSER_MOVABLE |
2049 __GFP_THISNODE | __GFP_NOMEMALLOC |
2050 __GFP_NORETRY | __GFP_NOWARN) &
2051 ~__GFP_RECLAIM, 0);
2053 return newpage;
2056 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2058 int page_lru;
2060 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2062 /* Avoid migrating to a node that is nearly full */
2063 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2064 return 0;
2066 if (isolate_lru_page(page))
2067 return 0;
2070 * migrate_misplaced_transhuge_page() skips page migration's usual
2071 * check on page_count(), so we must do it here, now that the page
2072 * has been isolated: a GUP pin, or any other pin, prevents migration.
2073 * The expected page count is 3: 1 for page's mapcount and 1 for the
2074 * caller's pin and 1 for the reference taken by isolate_lru_page().
2076 if (PageTransHuge(page) && page_count(page) != 3) {
2077 putback_lru_page(page);
2078 return 0;
2081 page_lru = page_is_file_lru(page);
2082 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2083 thp_nr_pages(page));
2086 * Isolating the page has taken another reference, so the
2087 * caller's reference can be safely dropped without the page
2088 * disappearing underneath us during migration.
2090 put_page(page);
2091 return 1;
2094 bool pmd_trans_migrating(pmd_t pmd)
2096 struct page *page = pmd_page(pmd);
2097 return PageLocked(page);
2100 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2101 struct page *page)
2103 if (page_mapcount(page) != 1 &&
2104 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2105 (vma->vm_flags & VM_EXEC))
2106 return true;
2108 return false;
2112 * Attempt to migrate a misplaced page to the specified destination
2113 * node. Caller is expected to have an elevated reference count on
2114 * the page that will be dropped by this function before returning.
2116 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2117 int node)
2119 pg_data_t *pgdat = NODE_DATA(node);
2120 int isolated;
2121 int nr_remaining;
2122 LIST_HEAD(migratepages);
2125 * Don't migrate file pages that are mapped in multiple processes
2126 * with execute permissions as they are probably shared libraries.
2128 if (is_shared_exec_page(vma, page))
2129 goto out;
2132 * Also do not migrate dirty pages as not all filesystems can move
2133 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2135 if (page_is_file_lru(page) && PageDirty(page))
2136 goto out;
2138 isolated = numamigrate_isolate_page(pgdat, page);
2139 if (!isolated)
2140 goto out;
2142 list_add(&page->lru, &migratepages);
2143 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2144 NULL, node, MIGRATE_ASYNC,
2145 MR_NUMA_MISPLACED);
2146 if (nr_remaining) {
2147 if (!list_empty(&migratepages)) {
2148 list_del(&page->lru);
2149 dec_node_page_state(page, NR_ISOLATED_ANON +
2150 page_is_file_lru(page));
2151 putback_lru_page(page);
2153 isolated = 0;
2154 } else
2155 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2156 BUG_ON(!list_empty(&migratepages));
2157 return isolated;
2159 out:
2160 put_page(page);
2161 return 0;
2163 #endif /* CONFIG_NUMA_BALANCING */
2165 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2167 * Migrates a THP to a given target node. page must be locked and is unlocked
2168 * before returning.
2170 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2171 struct vm_area_struct *vma,
2172 pmd_t *pmd, pmd_t entry,
2173 unsigned long address,
2174 struct page *page, int node)
2176 spinlock_t *ptl;
2177 pg_data_t *pgdat = NODE_DATA(node);
2178 int isolated = 0;
2179 struct page *new_page = NULL;
2180 int page_lru = page_is_file_lru(page);
2181 unsigned long start = address & HPAGE_PMD_MASK;
2183 if (is_shared_exec_page(vma, page))
2184 goto out;
2186 new_page = alloc_pages_node(node,
2187 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2188 HPAGE_PMD_ORDER);
2189 if (!new_page)
2190 goto out_fail;
2191 prep_transhuge_page(new_page);
2193 isolated = numamigrate_isolate_page(pgdat, page);
2194 if (!isolated) {
2195 put_page(new_page);
2196 goto out_fail;
2199 /* Prepare a page as a migration target */
2200 __SetPageLocked(new_page);
2201 if (PageSwapBacked(page))
2202 __SetPageSwapBacked(new_page);
2204 /* anon mapping, we can simply copy page->mapping to the new page: */
2205 new_page->mapping = page->mapping;
2206 new_page->index = page->index;
2207 /* flush the cache before copying using the kernel virtual address */
2208 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2209 migrate_page_copy(new_page, page);
2210 WARN_ON(PageLRU(new_page));
2212 /* Recheck the target PMD */
2213 ptl = pmd_lock(mm, pmd);
2214 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2215 spin_unlock(ptl);
2217 /* Reverse changes made by migrate_page_copy() */
2218 if (TestClearPageActive(new_page))
2219 SetPageActive(page);
2220 if (TestClearPageUnevictable(new_page))
2221 SetPageUnevictable(page);
2223 unlock_page(new_page);
2224 put_page(new_page); /* Free it */
2226 /* Retake the callers reference and putback on LRU */
2227 get_page(page);
2228 putback_lru_page(page);
2229 mod_node_page_state(page_pgdat(page),
2230 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2232 goto out_unlock;
2235 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2236 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2239 * Overwrite the old entry under pagetable lock and establish
2240 * the new PTE. Any parallel GUP will either observe the old
2241 * page blocking on the page lock, block on the page table
2242 * lock or observe the new page. The SetPageUptodate on the
2243 * new page and page_add_new_anon_rmap guarantee the copy is
2244 * visible before the pagetable update.
2246 page_add_anon_rmap(new_page, vma, start, true);
2248 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2249 * has already been flushed globally. So no TLB can be currently
2250 * caching this non present pmd mapping. There's no need to clear the
2251 * pmd before doing set_pmd_at(), nor to flush the TLB after
2252 * set_pmd_at(). Clearing the pmd here would introduce a race
2253 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2254 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2255 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2256 * pmd.
2258 set_pmd_at(mm, start, pmd, entry);
2259 update_mmu_cache_pmd(vma, address, &entry);
2261 page_ref_unfreeze(page, 2);
2262 mlock_migrate_page(new_page, page);
2263 page_remove_rmap(page, true);
2264 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2266 spin_unlock(ptl);
2268 /* Take an "isolate" reference and put new page on the LRU. */
2269 get_page(new_page);
2270 putback_lru_page(new_page);
2272 unlock_page(new_page);
2273 unlock_page(page);
2274 put_page(page); /* Drop the rmap reference */
2275 put_page(page); /* Drop the LRU isolation reference */
2277 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2278 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2280 mod_node_page_state(page_pgdat(page),
2281 NR_ISOLATED_ANON + page_lru,
2282 -HPAGE_PMD_NR);
2283 return isolated;
2285 out_fail:
2286 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2287 ptl = pmd_lock(mm, pmd);
2288 if (pmd_same(*pmd, entry)) {
2289 entry = pmd_modify(entry, vma->vm_page_prot);
2290 set_pmd_at(mm, start, pmd, entry);
2291 update_mmu_cache_pmd(vma, address, &entry);
2293 spin_unlock(ptl);
2295 out_unlock:
2296 unlock_page(page);
2297 out:
2298 put_page(page);
2299 return 0;
2301 #endif /* CONFIG_NUMA_BALANCING */
2303 #endif /* CONFIG_NUMA */
2305 #ifdef CONFIG_DEVICE_PRIVATE
2306 static int migrate_vma_collect_hole(unsigned long start,
2307 unsigned long end,
2308 __always_unused int depth,
2309 struct mm_walk *walk)
2311 struct migrate_vma *migrate = walk->private;
2312 unsigned long addr;
2314 /* Only allow populating anonymous memory. */
2315 if (!vma_is_anonymous(walk->vma)) {
2316 for (addr = start; addr < end; addr += PAGE_SIZE) {
2317 migrate->src[migrate->npages] = 0;
2318 migrate->dst[migrate->npages] = 0;
2319 migrate->npages++;
2321 return 0;
2324 for (addr = start; addr < end; addr += PAGE_SIZE) {
2325 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2326 migrate->dst[migrate->npages] = 0;
2327 migrate->npages++;
2328 migrate->cpages++;
2331 return 0;
2334 static int migrate_vma_collect_skip(unsigned long start,
2335 unsigned long end,
2336 struct mm_walk *walk)
2338 struct migrate_vma *migrate = walk->private;
2339 unsigned long addr;
2341 for (addr = start; addr < end; addr += PAGE_SIZE) {
2342 migrate->dst[migrate->npages] = 0;
2343 migrate->src[migrate->npages++] = 0;
2346 return 0;
2349 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2350 unsigned long start,
2351 unsigned long end,
2352 struct mm_walk *walk)
2354 struct migrate_vma *migrate = walk->private;
2355 struct vm_area_struct *vma = walk->vma;
2356 struct mm_struct *mm = vma->vm_mm;
2357 unsigned long addr = start, unmapped = 0;
2358 spinlock_t *ptl;
2359 pte_t *ptep;
2361 again:
2362 if (pmd_none(*pmdp))
2363 return migrate_vma_collect_hole(start, end, -1, walk);
2365 if (pmd_trans_huge(*pmdp)) {
2366 struct page *page;
2368 ptl = pmd_lock(mm, pmdp);
2369 if (unlikely(!pmd_trans_huge(*pmdp))) {
2370 spin_unlock(ptl);
2371 goto again;
2374 page = pmd_page(*pmdp);
2375 if (is_huge_zero_page(page)) {
2376 spin_unlock(ptl);
2377 split_huge_pmd(vma, pmdp, addr);
2378 if (pmd_trans_unstable(pmdp))
2379 return migrate_vma_collect_skip(start, end,
2380 walk);
2381 } else {
2382 int ret;
2384 get_page(page);
2385 spin_unlock(ptl);
2386 if (unlikely(!trylock_page(page)))
2387 return migrate_vma_collect_skip(start, end,
2388 walk);
2389 ret = split_huge_page(page);
2390 unlock_page(page);
2391 put_page(page);
2392 if (ret)
2393 return migrate_vma_collect_skip(start, end,
2394 walk);
2395 if (pmd_none(*pmdp))
2396 return migrate_vma_collect_hole(start, end, -1,
2397 walk);
2401 if (unlikely(pmd_bad(*pmdp)))
2402 return migrate_vma_collect_skip(start, end, walk);
2404 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2405 arch_enter_lazy_mmu_mode();
2407 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2408 unsigned long mpfn = 0, pfn;
2409 struct page *page;
2410 swp_entry_t entry;
2411 pte_t pte;
2413 pte = *ptep;
2415 if (pte_none(pte)) {
2416 if (vma_is_anonymous(vma)) {
2417 mpfn = MIGRATE_PFN_MIGRATE;
2418 migrate->cpages++;
2420 goto next;
2423 if (!pte_present(pte)) {
2425 * Only care about unaddressable device page special
2426 * page table entry. Other special swap entries are not
2427 * migratable, and we ignore regular swapped page.
2429 entry = pte_to_swp_entry(pte);
2430 if (!is_device_private_entry(entry))
2431 goto next;
2433 page = device_private_entry_to_page(entry);
2434 if (!(migrate->flags &
2435 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2436 page->pgmap->owner != migrate->pgmap_owner)
2437 goto next;
2439 mpfn = migrate_pfn(page_to_pfn(page)) |
2440 MIGRATE_PFN_MIGRATE;
2441 if (is_write_device_private_entry(entry))
2442 mpfn |= MIGRATE_PFN_WRITE;
2443 } else {
2444 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2445 goto next;
2446 pfn = pte_pfn(pte);
2447 if (is_zero_pfn(pfn)) {
2448 mpfn = MIGRATE_PFN_MIGRATE;
2449 migrate->cpages++;
2450 goto next;
2452 page = vm_normal_page(migrate->vma, addr, pte);
2453 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2454 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2457 /* FIXME support THP */
2458 if (!page || !page->mapping || PageTransCompound(page)) {
2459 mpfn = 0;
2460 goto next;
2464 * By getting a reference on the page we pin it and that blocks
2465 * any kind of migration. Side effect is that it "freezes" the
2466 * pte.
2468 * We drop this reference after isolating the page from the lru
2469 * for non device page (device page are not on the lru and thus
2470 * can't be dropped from it).
2472 get_page(page);
2473 migrate->cpages++;
2476 * Optimize for the common case where page is only mapped once
2477 * in one process. If we can lock the page, then we can safely
2478 * set up a special migration page table entry now.
2480 if (trylock_page(page)) {
2481 pte_t swp_pte;
2483 mpfn |= MIGRATE_PFN_LOCKED;
2484 ptep_get_and_clear(mm, addr, ptep);
2486 /* Setup special migration page table entry */
2487 entry = make_migration_entry(page, mpfn &
2488 MIGRATE_PFN_WRITE);
2489 swp_pte = swp_entry_to_pte(entry);
2490 if (pte_present(pte)) {
2491 if (pte_soft_dirty(pte))
2492 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2493 if (pte_uffd_wp(pte))
2494 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2495 } else {
2496 if (pte_swp_soft_dirty(pte))
2497 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2498 if (pte_swp_uffd_wp(pte))
2499 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2501 set_pte_at(mm, addr, ptep, swp_pte);
2504 * This is like regular unmap: we remove the rmap and
2505 * drop page refcount. Page won't be freed, as we took
2506 * a reference just above.
2508 page_remove_rmap(page, false);
2509 put_page(page);
2511 if (pte_present(pte))
2512 unmapped++;
2515 next:
2516 migrate->dst[migrate->npages] = 0;
2517 migrate->src[migrate->npages++] = mpfn;
2519 arch_leave_lazy_mmu_mode();
2520 pte_unmap_unlock(ptep - 1, ptl);
2522 /* Only flush the TLB if we actually modified any entries */
2523 if (unmapped)
2524 flush_tlb_range(walk->vma, start, end);
2526 return 0;
2529 static const struct mm_walk_ops migrate_vma_walk_ops = {
2530 .pmd_entry = migrate_vma_collect_pmd,
2531 .pte_hole = migrate_vma_collect_hole,
2535 * migrate_vma_collect() - collect pages over a range of virtual addresses
2536 * @migrate: migrate struct containing all migration information
2538 * This will walk the CPU page table. For each virtual address backed by a
2539 * valid page, it updates the src array and takes a reference on the page, in
2540 * order to pin the page until we lock it and unmap it.
2542 static void migrate_vma_collect(struct migrate_vma *migrate)
2544 struct mmu_notifier_range range;
2547 * Note that the pgmap_owner is passed to the mmu notifier callback so
2548 * that the registered device driver can skip invalidating device
2549 * private page mappings that won't be migrated.
2551 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2552 migrate->vma->vm_mm, migrate->start, migrate->end,
2553 migrate->pgmap_owner);
2554 mmu_notifier_invalidate_range_start(&range);
2556 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2557 &migrate_vma_walk_ops, migrate);
2559 mmu_notifier_invalidate_range_end(&range);
2560 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2564 * migrate_vma_check_page() - check if page is pinned or not
2565 * @page: struct page to check
2567 * Pinned pages cannot be migrated. This is the same test as in
2568 * migrate_page_move_mapping(), except that here we allow migration of a
2569 * ZONE_DEVICE page.
2571 static bool migrate_vma_check_page(struct page *page)
2574 * One extra ref because caller holds an extra reference, either from
2575 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2576 * a device page.
2578 int extra = 1;
2581 * FIXME support THP (transparent huge page), it is bit more complex to
2582 * check them than regular pages, because they can be mapped with a pmd
2583 * or with a pte (split pte mapping).
2585 if (PageCompound(page))
2586 return false;
2588 /* Page from ZONE_DEVICE have one extra reference */
2589 if (is_zone_device_page(page)) {
2591 * Private page can never be pin as they have no valid pte and
2592 * GUP will fail for those. Yet if there is a pending migration
2593 * a thread might try to wait on the pte migration entry and
2594 * will bump the page reference count. Sadly there is no way to
2595 * differentiate a regular pin from migration wait. Hence to
2596 * avoid 2 racing thread trying to migrate back to CPU to enter
2597 * infinite loop (one stopping migration because the other is
2598 * waiting on pte migration entry). We always return true here.
2600 * FIXME proper solution is to rework migration_entry_wait() so
2601 * it does not need to take a reference on page.
2603 return is_device_private_page(page);
2606 /* For file back page */
2607 if (page_mapping(page))
2608 extra += 1 + page_has_private(page);
2610 if ((page_count(page) - extra) > page_mapcount(page))
2611 return false;
2613 return true;
2617 * migrate_vma_prepare() - lock pages and isolate them from the lru
2618 * @migrate: migrate struct containing all migration information
2620 * This locks pages that have been collected by migrate_vma_collect(). Once each
2621 * page is locked it is isolated from the lru (for non-device pages). Finally,
2622 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2623 * migrated by concurrent kernel threads.
2625 static void migrate_vma_prepare(struct migrate_vma *migrate)
2627 const unsigned long npages = migrate->npages;
2628 const unsigned long start = migrate->start;
2629 unsigned long addr, i, restore = 0;
2630 bool allow_drain = true;
2632 lru_add_drain();
2634 for (i = 0; (i < npages) && migrate->cpages; i++) {
2635 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2636 bool remap = true;
2638 if (!page)
2639 continue;
2641 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2643 * Because we are migrating several pages there can be
2644 * a deadlock between 2 concurrent migration where each
2645 * are waiting on each other page lock.
2647 * Make migrate_vma() a best effort thing and backoff
2648 * for any page we can not lock right away.
2650 if (!trylock_page(page)) {
2651 migrate->src[i] = 0;
2652 migrate->cpages--;
2653 put_page(page);
2654 continue;
2656 remap = false;
2657 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2660 /* ZONE_DEVICE pages are not on LRU */
2661 if (!is_zone_device_page(page)) {
2662 if (!PageLRU(page) && allow_drain) {
2663 /* Drain CPU's pagevec */
2664 lru_add_drain_all();
2665 allow_drain = false;
2668 if (isolate_lru_page(page)) {
2669 if (remap) {
2670 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2671 migrate->cpages--;
2672 restore++;
2673 } else {
2674 migrate->src[i] = 0;
2675 unlock_page(page);
2676 migrate->cpages--;
2677 put_page(page);
2679 continue;
2682 /* Drop the reference we took in collect */
2683 put_page(page);
2686 if (!migrate_vma_check_page(page)) {
2687 if (remap) {
2688 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2689 migrate->cpages--;
2690 restore++;
2692 if (!is_zone_device_page(page)) {
2693 get_page(page);
2694 putback_lru_page(page);
2696 } else {
2697 migrate->src[i] = 0;
2698 unlock_page(page);
2699 migrate->cpages--;
2701 if (!is_zone_device_page(page))
2702 putback_lru_page(page);
2703 else
2704 put_page(page);
2709 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2710 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2712 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2713 continue;
2715 remove_migration_pte(page, migrate->vma, addr, page);
2717 migrate->src[i] = 0;
2718 unlock_page(page);
2719 put_page(page);
2720 restore--;
2725 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2726 * @migrate: migrate struct containing all migration information
2728 * Replace page mapping (CPU page table pte) with a special migration pte entry
2729 * and check again if it has been pinned. Pinned pages are restored because we
2730 * cannot migrate them.
2732 * This is the last step before we call the device driver callback to allocate
2733 * destination memory and copy contents of original page over to new page.
2735 static void migrate_vma_unmap(struct migrate_vma *migrate)
2737 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2738 const unsigned long npages = migrate->npages;
2739 const unsigned long start = migrate->start;
2740 unsigned long addr, i, restore = 0;
2742 for (i = 0; i < npages; i++) {
2743 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2745 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2746 continue;
2748 if (page_mapped(page)) {
2749 try_to_unmap(page, flags);
2750 if (page_mapped(page))
2751 goto restore;
2754 if (migrate_vma_check_page(page))
2755 continue;
2757 restore:
2758 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759 migrate->cpages--;
2760 restore++;
2763 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2764 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2766 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2767 continue;
2769 remove_migration_ptes(page, page, false);
2771 migrate->src[i] = 0;
2772 unlock_page(page);
2773 restore--;
2775 if (is_zone_device_page(page))
2776 put_page(page);
2777 else
2778 putback_lru_page(page);
2783 * migrate_vma_setup() - prepare to migrate a range of memory
2784 * @args: contains the vma, start, and pfns arrays for the migration
2786 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2787 * without an error.
2789 * Prepare to migrate a range of memory virtual address range by collecting all
2790 * the pages backing each virtual address in the range, saving them inside the
2791 * src array. Then lock those pages and unmap them. Once the pages are locked
2792 * and unmapped, check whether each page is pinned or not. Pages that aren't
2793 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2794 * corresponding src array entry. Then restores any pages that are pinned, by
2795 * remapping and unlocking those pages.
2797 * The caller should then allocate destination memory and copy source memory to
2798 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2799 * flag set). Once these are allocated and copied, the caller must update each
2800 * corresponding entry in the dst array with the pfn value of the destination
2801 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2802 * (destination pages must have their struct pages locked, via lock_page()).
2804 * Note that the caller does not have to migrate all the pages that are marked
2805 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2806 * device memory to system memory. If the caller cannot migrate a device page
2807 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2808 * consequences for the userspace process, so it must be avoided if at all
2809 * possible.
2811 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2812 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2813 * allowing the caller to allocate device memory for those unback virtual
2814 * address. For this the caller simply has to allocate device memory and
2815 * properly set the destination entry like for regular migration. Note that
2816 * this can still fails and thus inside the device driver must check if the
2817 * migration was successful for those entries after calling migrate_vma_pages()
2818 * just like for regular migration.
2820 * After that, the callers must call migrate_vma_pages() to go over each entry
2821 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2822 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2823 * then migrate_vma_pages() to migrate struct page information from the source
2824 * struct page to the destination struct page. If it fails to migrate the
2825 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2826 * src array.
2828 * At this point all successfully migrated pages have an entry in the src
2829 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2830 * array entry with MIGRATE_PFN_VALID flag set.
2832 * Once migrate_vma_pages() returns the caller may inspect which pages were
2833 * successfully migrated, and which were not. Successfully migrated pages will
2834 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2836 * It is safe to update device page table after migrate_vma_pages() because
2837 * both destination and source page are still locked, and the mmap_lock is held
2838 * in read mode (hence no one can unmap the range being migrated).
2840 * Once the caller is done cleaning up things and updating its page table (if it
2841 * chose to do so, this is not an obligation) it finally calls
2842 * migrate_vma_finalize() to update the CPU page table to point to new pages
2843 * for successfully migrated pages or otherwise restore the CPU page table to
2844 * point to the original source pages.
2846 int migrate_vma_setup(struct migrate_vma *args)
2848 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2850 args->start &= PAGE_MASK;
2851 args->end &= PAGE_MASK;
2852 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2853 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2854 return -EINVAL;
2855 if (nr_pages <= 0)
2856 return -EINVAL;
2857 if (args->start < args->vma->vm_start ||
2858 args->start >= args->vma->vm_end)
2859 return -EINVAL;
2860 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2861 return -EINVAL;
2862 if (!args->src || !args->dst)
2863 return -EINVAL;
2865 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2866 args->cpages = 0;
2867 args->npages = 0;
2869 migrate_vma_collect(args);
2871 if (args->cpages)
2872 migrate_vma_prepare(args);
2873 if (args->cpages)
2874 migrate_vma_unmap(args);
2877 * At this point pages are locked and unmapped, and thus they have
2878 * stable content and can safely be copied to destination memory that
2879 * is allocated by the drivers.
2881 return 0;
2884 EXPORT_SYMBOL(migrate_vma_setup);
2887 * This code closely matches the code in:
2888 * __handle_mm_fault()
2889 * handle_pte_fault()
2890 * do_anonymous_page()
2891 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2892 * private page.
2894 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2895 unsigned long addr,
2896 struct page *page,
2897 unsigned long *src)
2899 struct vm_area_struct *vma = migrate->vma;
2900 struct mm_struct *mm = vma->vm_mm;
2901 bool flush = false;
2902 spinlock_t *ptl;
2903 pte_t entry;
2904 pgd_t *pgdp;
2905 p4d_t *p4dp;
2906 pud_t *pudp;
2907 pmd_t *pmdp;
2908 pte_t *ptep;
2910 /* Only allow populating anonymous memory */
2911 if (!vma_is_anonymous(vma))
2912 goto abort;
2914 pgdp = pgd_offset(mm, addr);
2915 p4dp = p4d_alloc(mm, pgdp, addr);
2916 if (!p4dp)
2917 goto abort;
2918 pudp = pud_alloc(mm, p4dp, addr);
2919 if (!pudp)
2920 goto abort;
2921 pmdp = pmd_alloc(mm, pudp, addr);
2922 if (!pmdp)
2923 goto abort;
2925 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2926 goto abort;
2929 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2930 * pte_offset_map() on pmds where a huge pmd might be created
2931 * from a different thread.
2933 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2934 * parallel threads are excluded by other means.
2936 * Here we only have mmap_read_lock(mm).
2938 if (pte_alloc(mm, pmdp))
2939 goto abort;
2941 /* See the comment in pte_alloc_one_map() */
2942 if (unlikely(pmd_trans_unstable(pmdp)))
2943 goto abort;
2945 if (unlikely(anon_vma_prepare(vma)))
2946 goto abort;
2947 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2948 goto abort;
2951 * The memory barrier inside __SetPageUptodate makes sure that
2952 * preceding stores to the page contents become visible before
2953 * the set_pte_at() write.
2955 __SetPageUptodate(page);
2957 if (is_zone_device_page(page)) {
2958 if (is_device_private_page(page)) {
2959 swp_entry_t swp_entry;
2961 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2962 entry = swp_entry_to_pte(swp_entry);
2964 } else {
2965 entry = mk_pte(page, vma->vm_page_prot);
2966 if (vma->vm_flags & VM_WRITE)
2967 entry = pte_mkwrite(pte_mkdirty(entry));
2970 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2972 if (check_stable_address_space(mm))
2973 goto unlock_abort;
2975 if (pte_present(*ptep)) {
2976 unsigned long pfn = pte_pfn(*ptep);
2978 if (!is_zero_pfn(pfn))
2979 goto unlock_abort;
2980 flush = true;
2981 } else if (!pte_none(*ptep))
2982 goto unlock_abort;
2985 * Check for userfaultfd but do not deliver the fault. Instead,
2986 * just back off.
2988 if (userfaultfd_missing(vma))
2989 goto unlock_abort;
2991 inc_mm_counter(mm, MM_ANONPAGES);
2992 page_add_new_anon_rmap(page, vma, addr, false);
2993 if (!is_zone_device_page(page))
2994 lru_cache_add_inactive_or_unevictable(page, vma);
2995 get_page(page);
2997 if (flush) {
2998 flush_cache_page(vma, addr, pte_pfn(*ptep));
2999 ptep_clear_flush_notify(vma, addr, ptep);
3000 set_pte_at_notify(mm, addr, ptep, entry);
3001 update_mmu_cache(vma, addr, ptep);
3002 } else {
3003 /* No need to invalidate - it was non-present before */
3004 set_pte_at(mm, addr, ptep, entry);
3005 update_mmu_cache(vma, addr, ptep);
3008 pte_unmap_unlock(ptep, ptl);
3009 *src = MIGRATE_PFN_MIGRATE;
3010 return;
3012 unlock_abort:
3013 pte_unmap_unlock(ptep, ptl);
3014 abort:
3015 *src &= ~MIGRATE_PFN_MIGRATE;
3019 * migrate_vma_pages() - migrate meta-data from src page to dst page
3020 * @migrate: migrate struct containing all migration information
3022 * This migrates struct page meta-data from source struct page to destination
3023 * struct page. This effectively finishes the migration from source page to the
3024 * destination page.
3026 void migrate_vma_pages(struct migrate_vma *migrate)
3028 const unsigned long npages = migrate->npages;
3029 const unsigned long start = migrate->start;
3030 struct mmu_notifier_range range;
3031 unsigned long addr, i;
3032 bool notified = false;
3034 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3035 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3036 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3037 struct address_space *mapping;
3038 int r;
3040 if (!newpage) {
3041 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3042 continue;
3045 if (!page) {
3046 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3047 continue;
3048 if (!notified) {
3049 notified = true;
3051 mmu_notifier_range_init_migrate(&range, 0,
3052 migrate->vma, migrate->vma->vm_mm,
3053 addr, migrate->end,
3054 migrate->pgmap_owner);
3055 mmu_notifier_invalidate_range_start(&range);
3057 migrate_vma_insert_page(migrate, addr, newpage,
3058 &migrate->src[i]);
3059 continue;
3062 mapping = page_mapping(page);
3064 if (is_zone_device_page(newpage)) {
3065 if (is_device_private_page(newpage)) {
3067 * For now only support private anonymous when
3068 * migrating to un-addressable device memory.
3070 if (mapping) {
3071 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3072 continue;
3074 } else {
3076 * Other types of ZONE_DEVICE page are not
3077 * supported.
3079 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3080 continue;
3084 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3085 if (r != MIGRATEPAGE_SUCCESS)
3086 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3090 * No need to double call mmu_notifier->invalidate_range() callback as
3091 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3092 * did already call it.
3094 if (notified)
3095 mmu_notifier_invalidate_range_only_end(&range);
3097 EXPORT_SYMBOL(migrate_vma_pages);
3100 * migrate_vma_finalize() - restore CPU page table entry
3101 * @migrate: migrate struct containing all migration information
3103 * This replaces the special migration pte entry with either a mapping to the
3104 * new page if migration was successful for that page, or to the original page
3105 * otherwise.
3107 * This also unlocks the pages and puts them back on the lru, or drops the extra
3108 * refcount, for device pages.
3110 void migrate_vma_finalize(struct migrate_vma *migrate)
3112 const unsigned long npages = migrate->npages;
3113 unsigned long i;
3115 for (i = 0; i < npages; i++) {
3116 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3117 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3119 if (!page) {
3120 if (newpage) {
3121 unlock_page(newpage);
3122 put_page(newpage);
3124 continue;
3127 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3128 if (newpage) {
3129 unlock_page(newpage);
3130 put_page(newpage);
3132 newpage = page;
3135 remove_migration_ptes(page, newpage, false);
3136 unlock_page(page);
3138 if (is_zone_device_page(page))
3139 put_page(page);
3140 else
3141 putback_lru_page(page);
3143 if (newpage != page) {
3144 unlock_page(newpage);
3145 if (is_zone_device_page(newpage))
3146 put_page(newpage);
3147 else
3148 putback_lru_page(newpage);
3152 EXPORT_SYMBOL(migrate_vma_finalize);
3153 #endif /* CONFIG_DEVICE_PRIVATE */