1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 void migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
82 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
84 struct address_space
*mapping
;
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
95 if (unlikely(!get_page_unless_zero(page
)))
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
103 if (unlikely(!__PageMovable(page
)))
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
116 if (unlikely(!trylock_page(page
)))
119 if (!PageMovable(page
) || PageIsolated(page
))
120 goto out_no_isolated
;
122 mapping
= page_mapping(page
);
123 VM_BUG_ON_PAGE(!mapping
, page
);
125 if (!mapping
->a_ops
->isolate_page(page
, mode
))
126 goto out_no_isolated
;
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page
));
130 __SetPageIsolated(page
);
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page
*page
)
146 struct address_space
*mapping
;
148 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
149 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
150 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
152 mapping
= page_mapping(page
);
153 mapping
->a_ops
->putback_page(page
);
154 __ClearPageIsolated(page
);
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
165 void putback_movable_pages(struct list_head
*l
)
170 list_for_each_entry_safe(page
, page2
, l
, lru
) {
171 if (unlikely(PageHuge(page
))) {
172 putback_active_hugepage(page
);
175 list_del(&page
->lru
);
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
181 if (unlikely(__PageMovable(page
))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
184 if (PageMovable(page
))
185 putback_movable_page(page
);
187 __ClearPageIsolated(page
);
191 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
192 page_is_file_lru(page
), -thp_nr_pages(page
));
193 putback_lru_page(page
);
199 * Restore a potential migration pte to a working pte entry
201 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
202 unsigned long addr
, void *old
)
204 struct page_vma_mapped_walk pvmw
= {
208 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
214 VM_BUG_ON_PAGE(PageTail(page
), page
);
215 while (page_vma_mapped_walk(&pvmw
)) {
219 new = page
- pvmw
.page
->index
+
220 linear_page_index(vma
, pvmw
.address
);
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
225 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
226 remove_migration_pmd(&pvmw
, new);
232 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
233 if (pte_swp_soft_dirty(*pvmw
.pte
))
234 pte
= pte_mksoft_dirty(pte
);
237 * Recheck VMA as permissions can change since migration started
239 entry
= pte_to_swp_entry(*pvmw
.pte
);
240 if (is_write_migration_entry(entry
))
241 pte
= maybe_mkwrite(pte
, vma
);
242 else if (pte_swp_uffd_wp(*pvmw
.pte
))
243 pte
= pte_mkuffd_wp(pte
);
245 if (unlikely(is_device_private_page(new))) {
246 entry
= make_device_private_entry(new, pte_write(pte
));
247 pte
= swp_entry_to_pte(entry
);
248 if (pte_swp_soft_dirty(*pvmw
.pte
))
249 pte
= pte_swp_mksoft_dirty(pte
);
250 if (pte_swp_uffd_wp(*pvmw
.pte
))
251 pte
= pte_swp_mkuffd_wp(pte
);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte
= pte_mkhuge(pte
);
257 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
258 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
260 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
262 page_dup_rmap(new, true);
266 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
269 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
271 page_add_file_rmap(new, false);
273 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
276 if (PageTransHuge(page
) && PageMlocked(page
))
277 clear_page_mlock(page
);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
292 struct rmap_walk_control rwc
= {
293 .rmap_one
= remove_migration_pte
,
298 rmap_walk_locked(new, &rwc
);
300 rmap_walk(new, &rwc
);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
317 if (!is_swap_pte(pte
))
320 entry
= pte_to_swp_entry(pte
);
321 if (!is_migration_entry(entry
))
324 page
= migration_entry_to_page(entry
);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page
))
333 pte_unmap_unlock(ptep
, ptl
);
334 put_and_wait_on_page_locked(page
);
337 pte_unmap_unlock(ptep
, ptl
);
340 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
341 unsigned long address
)
343 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
344 pte_t
*ptep
= pte_offset_map(pmd
, address
);
345 __migration_entry_wait(mm
, ptep
, ptl
);
348 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
349 struct mm_struct
*mm
, pte_t
*pte
)
351 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
352 __migration_entry_wait(mm
, pte
, ptl
);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
361 ptl
= pmd_lock(mm
, pmd
);
362 if (!is_pmd_migration_entry(*pmd
))
364 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
365 if (!get_page_unless_zero(page
))
368 put_and_wait_on_page_locked(page
);
375 static int expected_page_refs(struct address_space
*mapping
, struct page
*page
)
377 int expected_count
= 1;
380 * Device private pages have an extra refcount as they are
383 expected_count
+= is_device_private_page(page
);
385 expected_count
+= thp_nr_pages(page
) + page_has_private(page
);
387 return expected_count
;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space
*mapping
,
399 struct page
*newpage
, struct page
*page
, int extra_count
)
401 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
402 struct zone
*oldzone
, *newzone
;
404 int expected_count
= expected_page_refs(mapping
, page
) + extra_count
;
407 /* Anonymous page without mapping */
408 if (page_count(page
) != expected_count
)
411 /* No turning back from here */
412 newpage
->index
= page
->index
;
413 newpage
->mapping
= page
->mapping
;
414 if (PageSwapBacked(page
))
415 __SetPageSwapBacked(newpage
);
417 return MIGRATEPAGE_SUCCESS
;
420 oldzone
= page_zone(page
);
421 newzone
= page_zone(newpage
);
424 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
425 xas_unlock_irq(&xas
);
429 if (!page_ref_freeze(page
, expected_count
)) {
430 xas_unlock_irq(&xas
);
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
438 newpage
->index
= page
->index
;
439 newpage
->mapping
= page
->mapping
;
440 page_ref_add(newpage
, thp_nr_pages(page
)); /* add cache reference */
441 if (PageSwapBacked(page
)) {
442 __SetPageSwapBacked(newpage
);
443 if (PageSwapCache(page
)) {
444 SetPageSwapCache(newpage
);
445 set_page_private(newpage
, page_private(page
));
448 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty
= PageDirty(page
);
454 ClearPageDirty(page
);
455 SetPageDirty(newpage
);
458 xas_store(&xas
, newpage
);
459 if (PageTransHuge(page
)) {
462 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
464 xas_store(&xas
, newpage
);
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
473 page_ref_unfreeze(page
, expected_count
- thp_nr_pages(page
));
476 /* Leave irq disabled to prevent preemption while updating stats */
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
488 if (newzone
!= oldzone
) {
489 struct lruvec
*old_lruvec
, *new_lruvec
;
490 struct mem_cgroup
*memcg
;
492 memcg
= page_memcg(page
);
493 old_lruvec
= mem_cgroup_lruvec(memcg
, oldzone
->zone_pgdat
);
494 new_lruvec
= mem_cgroup_lruvec(memcg
, newzone
->zone_pgdat
);
496 __dec_lruvec_state(old_lruvec
, NR_FILE_PAGES
);
497 __inc_lruvec_state(new_lruvec
, NR_FILE_PAGES
);
498 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
499 __dec_lruvec_state(old_lruvec
, NR_SHMEM
);
500 __inc_lruvec_state(new_lruvec
, NR_SHMEM
);
502 if (dirty
&& mapping_can_writeback(mapping
)) {
503 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
504 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
505 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
506 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
511 return MIGRATEPAGE_SUCCESS
;
513 EXPORT_SYMBOL(migrate_page_move_mapping
);
516 * The expected number of remaining references is the same as that
517 * of migrate_page_move_mapping().
519 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
520 struct page
*newpage
, struct page
*page
)
522 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
526 expected_count
= 2 + page_has_private(page
);
527 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
528 xas_unlock_irq(&xas
);
532 if (!page_ref_freeze(page
, expected_count
)) {
533 xas_unlock_irq(&xas
);
537 newpage
->index
= page
->index
;
538 newpage
->mapping
= page
->mapping
;
542 xas_store(&xas
, newpage
);
544 page_ref_unfreeze(page
, expected_count
- 1);
546 xas_unlock_irq(&xas
);
548 return MIGRATEPAGE_SUCCESS
;
552 * Gigantic pages are so large that we do not guarantee that page++ pointer
553 * arithmetic will work across the entire page. We need something more
556 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
560 struct page
*dst_base
= dst
;
561 struct page
*src_base
= src
;
563 for (i
= 0; i
< nr_pages
; ) {
565 copy_highpage(dst
, src
);
568 dst
= mem_map_next(dst
, dst_base
, i
);
569 src
= mem_map_next(src
, src_base
, i
);
573 static void copy_huge_page(struct page
*dst
, struct page
*src
)
580 struct hstate
*h
= page_hstate(src
);
581 nr_pages
= pages_per_huge_page(h
);
583 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
584 __copy_gigantic_page(dst
, src
, nr_pages
);
589 BUG_ON(!PageTransHuge(src
));
590 nr_pages
= thp_nr_pages(src
);
593 for (i
= 0; i
< nr_pages
; i
++) {
595 copy_highpage(dst
+ i
, src
+ i
);
600 * Copy the page to its new location
602 void migrate_page_states(struct page
*newpage
, struct page
*page
)
607 SetPageError(newpage
);
608 if (PageReferenced(page
))
609 SetPageReferenced(newpage
);
610 if (PageUptodate(page
))
611 SetPageUptodate(newpage
);
612 if (TestClearPageActive(page
)) {
613 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
614 SetPageActive(newpage
);
615 } else if (TestClearPageUnevictable(page
))
616 SetPageUnevictable(newpage
);
617 if (PageWorkingset(page
))
618 SetPageWorkingset(newpage
);
619 if (PageChecked(page
))
620 SetPageChecked(newpage
);
621 if (PageMappedToDisk(page
))
622 SetPageMappedToDisk(newpage
);
624 /* Move dirty on pages not done by migrate_page_move_mapping() */
626 SetPageDirty(newpage
);
628 if (page_is_young(page
))
629 set_page_young(newpage
);
630 if (page_is_idle(page
))
631 set_page_idle(newpage
);
634 * Copy NUMA information to the new page, to prevent over-eager
635 * future migrations of this same page.
637 cpupid
= page_cpupid_xchg_last(page
, -1);
638 page_cpupid_xchg_last(newpage
, cpupid
);
640 ksm_migrate_page(newpage
, page
);
642 * Please do not reorder this without considering how mm/ksm.c's
643 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
645 if (PageSwapCache(page
))
646 ClearPageSwapCache(page
);
647 ClearPagePrivate(page
);
648 set_page_private(page
, 0);
651 * If any waiters have accumulated on the new page then
654 if (PageWriteback(newpage
))
655 end_page_writeback(newpage
);
658 * PG_readahead shares the same bit with PG_reclaim. The above
659 * end_page_writeback() may clear PG_readahead mistakenly, so set the
662 if (PageReadahead(page
))
663 SetPageReadahead(newpage
);
665 copy_page_owner(page
, newpage
);
668 mem_cgroup_migrate(page
, newpage
);
670 EXPORT_SYMBOL(migrate_page_states
);
672 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
674 if (PageHuge(page
) || PageTransHuge(page
))
675 copy_huge_page(newpage
, page
);
677 copy_highpage(newpage
, page
);
679 migrate_page_states(newpage
, page
);
681 EXPORT_SYMBOL(migrate_page_copy
);
683 /************************************************************
684 * Migration functions
685 ***********************************************************/
688 * Common logic to directly migrate a single LRU page suitable for
689 * pages that do not use PagePrivate/PagePrivate2.
691 * Pages are locked upon entry and exit.
693 int migrate_page(struct address_space
*mapping
,
694 struct page
*newpage
, struct page
*page
,
695 enum migrate_mode mode
)
699 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
701 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
703 if (rc
!= MIGRATEPAGE_SUCCESS
)
706 if (mode
!= MIGRATE_SYNC_NO_COPY
)
707 migrate_page_copy(newpage
, page
);
709 migrate_page_states(newpage
, page
);
710 return MIGRATEPAGE_SUCCESS
;
712 EXPORT_SYMBOL(migrate_page
);
715 /* Returns true if all buffers are successfully locked */
716 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
717 enum migrate_mode mode
)
719 struct buffer_head
*bh
= head
;
721 /* Simple case, sync compaction */
722 if (mode
!= MIGRATE_ASYNC
) {
725 bh
= bh
->b_this_page
;
727 } while (bh
!= head
);
732 /* async case, we cannot block on lock_buffer so use trylock_buffer */
734 if (!trylock_buffer(bh
)) {
736 * We failed to lock the buffer and cannot stall in
737 * async migration. Release the taken locks
739 struct buffer_head
*failed_bh
= bh
;
741 while (bh
!= failed_bh
) {
743 bh
= bh
->b_this_page
;
748 bh
= bh
->b_this_page
;
749 } while (bh
!= head
);
753 static int __buffer_migrate_page(struct address_space
*mapping
,
754 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
,
757 struct buffer_head
*bh
, *head
;
761 if (!page_has_buffers(page
))
762 return migrate_page(mapping
, newpage
, page
, mode
);
764 /* Check whether page does not have extra refs before we do more work */
765 expected_count
= expected_page_refs(mapping
, page
);
766 if (page_count(page
) != expected_count
)
769 head
= page_buffers(page
);
770 if (!buffer_migrate_lock_buffers(head
, mode
))
775 bool invalidated
= false;
779 spin_lock(&mapping
->private_lock
);
782 if (atomic_read(&bh
->b_count
)) {
786 bh
= bh
->b_this_page
;
787 } while (bh
!= head
);
793 spin_unlock(&mapping
->private_lock
);
794 invalidate_bh_lrus();
796 goto recheck_buffers
;
800 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
801 if (rc
!= MIGRATEPAGE_SUCCESS
)
804 attach_page_private(newpage
, detach_page_private(page
));
808 set_bh_page(bh
, newpage
, bh_offset(bh
));
809 bh
= bh
->b_this_page
;
811 } while (bh
!= head
);
813 if (mode
!= MIGRATE_SYNC_NO_COPY
)
814 migrate_page_copy(newpage
, page
);
816 migrate_page_states(newpage
, page
);
818 rc
= MIGRATEPAGE_SUCCESS
;
821 spin_unlock(&mapping
->private_lock
);
825 bh
= bh
->b_this_page
;
827 } while (bh
!= head
);
833 * Migration function for pages with buffers. This function can only be used
834 * if the underlying filesystem guarantees that no other references to "page"
835 * exist. For example attached buffer heads are accessed only under page lock.
837 int buffer_migrate_page(struct address_space
*mapping
,
838 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
840 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, false);
842 EXPORT_SYMBOL(buffer_migrate_page
);
845 * Same as above except that this variant is more careful and checks that there
846 * are also no buffer head references. This function is the right one for
847 * mappings where buffer heads are directly looked up and referenced (such as
848 * block device mappings).
850 int buffer_migrate_page_norefs(struct address_space
*mapping
,
851 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
853 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, true);
858 * Writeback a page to clean the dirty state
860 static int writeout(struct address_space
*mapping
, struct page
*page
)
862 struct writeback_control wbc
= {
863 .sync_mode
= WB_SYNC_NONE
,
866 .range_end
= LLONG_MAX
,
871 if (!mapping
->a_ops
->writepage
)
872 /* No write method for the address space */
875 if (!clear_page_dirty_for_io(page
))
876 /* Someone else already triggered a write */
880 * A dirty page may imply that the underlying filesystem has
881 * the page on some queue. So the page must be clean for
882 * migration. Writeout may mean we loose the lock and the
883 * page state is no longer what we checked for earlier.
884 * At this point we know that the migration attempt cannot
887 remove_migration_ptes(page
, page
, false);
889 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
891 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
892 /* unlocked. Relock */
895 return (rc
< 0) ? -EIO
: -EAGAIN
;
899 * Default handling if a filesystem does not provide a migration function.
901 static int fallback_migrate_page(struct address_space
*mapping
,
902 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
904 if (PageDirty(page
)) {
905 /* Only writeback pages in full synchronous migration */
908 case MIGRATE_SYNC_NO_COPY
:
913 return writeout(mapping
, page
);
917 * Buffers may be managed in a filesystem specific way.
918 * We must have no buffers or drop them.
920 if (page_has_private(page
) &&
921 !try_to_release_page(page
, GFP_KERNEL
))
922 return mode
== MIGRATE_SYNC
? -EAGAIN
: -EBUSY
;
924 return migrate_page(mapping
, newpage
, page
, mode
);
928 * Move a page to a newly allocated page
929 * The page is locked and all ptes have been successfully removed.
931 * The new page will have replaced the old page if this function
936 * MIGRATEPAGE_SUCCESS - success
938 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
939 enum migrate_mode mode
)
941 struct address_space
*mapping
;
943 bool is_lru
= !__PageMovable(page
);
945 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
946 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
948 mapping
= page_mapping(page
);
950 if (likely(is_lru
)) {
952 rc
= migrate_page(mapping
, newpage
, page
, mode
);
953 else if (mapping
->a_ops
->migratepage
)
955 * Most pages have a mapping and most filesystems
956 * provide a migratepage callback. Anonymous pages
957 * are part of swap space which also has its own
958 * migratepage callback. This is the most common path
959 * for page migration.
961 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
964 rc
= fallback_migrate_page(mapping
, newpage
,
968 * In case of non-lru page, it could be released after
969 * isolation step. In that case, we shouldn't try migration.
971 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
972 if (!PageMovable(page
)) {
973 rc
= MIGRATEPAGE_SUCCESS
;
974 __ClearPageIsolated(page
);
978 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
980 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
981 !PageIsolated(page
));
985 * When successful, old pagecache page->mapping must be cleared before
986 * page is freed; but stats require that PageAnon be left as PageAnon.
988 if (rc
== MIGRATEPAGE_SUCCESS
) {
989 if (__PageMovable(page
)) {
990 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
993 * We clear PG_movable under page_lock so any compactor
994 * cannot try to migrate this page.
996 __ClearPageIsolated(page
);
1000 * Anonymous and movable page->mapping will be cleared by
1001 * free_pages_prepare so don't reset it here for keeping
1002 * the type to work PageAnon, for example.
1004 if (!PageMappingFlags(page
))
1005 page
->mapping
= NULL
;
1007 if (likely(!is_zone_device_page(newpage
)))
1008 flush_dcache_page(newpage
);
1015 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
1016 int force
, enum migrate_mode mode
)
1019 int page_was_mapped
= 0;
1020 struct anon_vma
*anon_vma
= NULL
;
1021 bool is_lru
= !__PageMovable(page
);
1023 if (!trylock_page(page
)) {
1024 if (!force
|| mode
== MIGRATE_ASYNC
)
1028 * It's not safe for direct compaction to call lock_page.
1029 * For example, during page readahead pages are added locked
1030 * to the LRU. Later, when the IO completes the pages are
1031 * marked uptodate and unlocked. However, the queueing
1032 * could be merging multiple pages for one bio (e.g.
1033 * mpage_readahead). If an allocation happens for the
1034 * second or third page, the process can end up locking
1035 * the same page twice and deadlocking. Rather than
1036 * trying to be clever about what pages can be locked,
1037 * avoid the use of lock_page for direct compaction
1040 if (current
->flags
& PF_MEMALLOC
)
1046 if (PageWriteback(page
)) {
1048 * Only in the case of a full synchronous migration is it
1049 * necessary to wait for PageWriteback. In the async case,
1050 * the retry loop is too short and in the sync-light case,
1051 * the overhead of stalling is too much
1055 case MIGRATE_SYNC_NO_COPY
:
1063 wait_on_page_writeback(page
);
1067 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1068 * we cannot notice that anon_vma is freed while we migrates a page.
1069 * This get_anon_vma() delays freeing anon_vma pointer until the end
1070 * of migration. File cache pages are no problem because of page_lock()
1071 * File Caches may use write_page() or lock_page() in migration, then,
1072 * just care Anon page here.
1074 * Only page_get_anon_vma() understands the subtleties of
1075 * getting a hold on an anon_vma from outside one of its mms.
1076 * But if we cannot get anon_vma, then we won't need it anyway,
1077 * because that implies that the anon page is no longer mapped
1078 * (and cannot be remapped so long as we hold the page lock).
1080 if (PageAnon(page
) && !PageKsm(page
))
1081 anon_vma
= page_get_anon_vma(page
);
1084 * Block others from accessing the new page when we get around to
1085 * establishing additional references. We are usually the only one
1086 * holding a reference to newpage at this point. We used to have a BUG
1087 * here if trylock_page(newpage) fails, but would like to allow for
1088 * cases where there might be a race with the previous use of newpage.
1089 * This is much like races on refcount of oldpage: just don't BUG().
1091 if (unlikely(!trylock_page(newpage
)))
1094 if (unlikely(!is_lru
)) {
1095 rc
= move_to_new_page(newpage
, page
, mode
);
1096 goto out_unlock_both
;
1100 * Corner case handling:
1101 * 1. When a new swap-cache page is read into, it is added to the LRU
1102 * and treated as swapcache but it has no rmap yet.
1103 * Calling try_to_unmap() against a page->mapping==NULL page will
1104 * trigger a BUG. So handle it here.
1105 * 2. An orphaned page (see truncate_cleanup_page) might have
1106 * fs-private metadata. The page can be picked up due to memory
1107 * offlining. Everywhere else except page reclaim, the page is
1108 * invisible to the vm, so the page can not be migrated. So try to
1109 * free the metadata, so the page can be freed.
1111 if (!page
->mapping
) {
1112 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1113 if (page_has_private(page
)) {
1114 try_to_free_buffers(page
);
1115 goto out_unlock_both
;
1117 } else if (page_mapped(page
)) {
1118 /* Establish migration ptes */
1119 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1121 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
);
1122 page_was_mapped
= 1;
1125 if (!page_mapped(page
))
1126 rc
= move_to_new_page(newpage
, page
, mode
);
1128 if (page_was_mapped
)
1129 remove_migration_ptes(page
,
1130 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1133 unlock_page(newpage
);
1135 /* Drop an anon_vma reference if we took one */
1137 put_anon_vma(anon_vma
);
1141 * If migration is successful, decrease refcount of the newpage
1142 * which will not free the page because new page owner increased
1143 * refcounter. As well, if it is LRU page, add the page to LRU
1144 * list in here. Use the old state of the isolated source page to
1145 * determine if we migrated a LRU page. newpage was already unlocked
1146 * and possibly modified by its owner - don't rely on the page
1149 if (rc
== MIGRATEPAGE_SUCCESS
) {
1150 if (unlikely(!is_lru
))
1153 putback_lru_page(newpage
);
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1163 static int unmap_and_move(new_page_t get_new_page
,
1164 free_page_t put_new_page
,
1165 unsigned long private, struct page
*page
,
1166 int force
, enum migrate_mode mode
,
1167 enum migrate_reason reason
,
1168 struct list_head
*ret
)
1170 int rc
= MIGRATEPAGE_SUCCESS
;
1171 struct page
*newpage
= NULL
;
1173 if (!thp_migration_supported() && PageTransHuge(page
))
1176 if (page_count(page
) == 1) {
1177 /* page was freed from under us. So we are done. */
1178 ClearPageActive(page
);
1179 ClearPageUnevictable(page
);
1180 if (unlikely(__PageMovable(page
))) {
1182 if (!PageMovable(page
))
1183 __ClearPageIsolated(page
);
1189 newpage
= get_new_page(page
, private);
1193 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1194 if (rc
== MIGRATEPAGE_SUCCESS
)
1195 set_page_owner_migrate_reason(newpage
, reason
);
1198 if (rc
!= -EAGAIN
) {
1200 * A page that has been migrated has all references
1201 * removed and will be freed. A page that has not been
1202 * migrated will have kept its references and be restored.
1204 list_del(&page
->lru
);
1208 * If migration is successful, releases reference grabbed during
1209 * isolation. Otherwise, restore the page to right list unless
1212 if (rc
== MIGRATEPAGE_SUCCESS
) {
1214 * Compaction can migrate also non-LRU pages which are
1215 * not accounted to NR_ISOLATED_*. They can be recognized
1218 if (likely(!__PageMovable(page
)))
1219 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1220 page_is_file_lru(page
), -thp_nr_pages(page
));
1222 if (reason
!= MR_MEMORY_FAILURE
)
1224 * We release the page in page_handle_poison.
1229 list_add_tail(&page
->lru
, ret
);
1232 put_new_page(newpage
, private);
1241 * Counterpart of unmap_and_move_page() for hugepage migration.
1243 * This function doesn't wait the completion of hugepage I/O
1244 * because there is no race between I/O and migration for hugepage.
1245 * Note that currently hugepage I/O occurs only in direct I/O
1246 * where no lock is held and PG_writeback is irrelevant,
1247 * and writeback status of all subpages are counted in the reference
1248 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1249 * under direct I/O, the reference of the head page is 512 and a bit more.)
1250 * This means that when we try to migrate hugepage whose subpages are
1251 * doing direct I/O, some references remain after try_to_unmap() and
1252 * hugepage migration fails without data corruption.
1254 * There is also no race when direct I/O is issued on the page under migration,
1255 * because then pte is replaced with migration swap entry and direct I/O code
1256 * will wait in the page fault for migration to complete.
1258 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1259 free_page_t put_new_page
, unsigned long private,
1260 struct page
*hpage
, int force
,
1261 enum migrate_mode mode
, int reason
,
1262 struct list_head
*ret
)
1265 int page_was_mapped
= 0;
1266 struct page
*new_hpage
;
1267 struct anon_vma
*anon_vma
= NULL
;
1268 struct address_space
*mapping
= NULL
;
1271 * Migratability of hugepages depends on architectures and their size.
1272 * This check is necessary because some callers of hugepage migration
1273 * like soft offline and memory hotremove don't walk through page
1274 * tables or check whether the hugepage is pmd-based or not before
1275 * kicking migration.
1277 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1278 list_move_tail(&hpage
->lru
, ret
);
1282 new_hpage
= get_new_page(hpage
, private);
1286 if (!trylock_page(hpage
)) {
1291 case MIGRATE_SYNC_NO_COPY
:
1300 * Check for pages which are in the process of being freed. Without
1301 * page_mapping() set, hugetlbfs specific move page routine will not
1302 * be called and we could leak usage counts for subpools.
1304 if (page_private(hpage
) && !page_mapping(hpage
)) {
1309 if (PageAnon(hpage
))
1310 anon_vma
= page_get_anon_vma(hpage
);
1312 if (unlikely(!trylock_page(new_hpage
)))
1315 if (page_mapped(hpage
)) {
1316 bool mapping_locked
= false;
1317 enum ttu_flags ttu
= TTU_MIGRATION
|TTU_IGNORE_MLOCK
;
1319 if (!PageAnon(hpage
)) {
1321 * In shared mappings, try_to_unmap could potentially
1322 * call huge_pmd_unshare. Because of this, take
1323 * semaphore in write mode here and set TTU_RMAP_LOCKED
1324 * to let lower levels know we have taken the lock.
1326 mapping
= hugetlb_page_mapping_lock_write(hpage
);
1327 if (unlikely(!mapping
))
1328 goto unlock_put_anon
;
1330 mapping_locked
= true;
1331 ttu
|= TTU_RMAP_LOCKED
;
1334 try_to_unmap(hpage
, ttu
);
1335 page_was_mapped
= 1;
1338 i_mmap_unlock_write(mapping
);
1341 if (!page_mapped(hpage
))
1342 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1344 if (page_was_mapped
)
1345 remove_migration_ptes(hpage
,
1346 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1349 unlock_page(new_hpage
);
1353 put_anon_vma(anon_vma
);
1355 if (rc
== MIGRATEPAGE_SUCCESS
) {
1356 move_hugetlb_state(hpage
, new_hpage
, reason
);
1357 put_new_page
= NULL
;
1363 if (rc
== MIGRATEPAGE_SUCCESS
)
1364 putback_active_hugepage(hpage
);
1365 else if (rc
!= -EAGAIN
&& rc
!= MIGRATEPAGE_SUCCESS
)
1366 list_move_tail(&hpage
->lru
, ret
);
1369 * If migration was not successful and there's a freeing callback, use
1370 * it. Otherwise, put_page() will drop the reference grabbed during
1374 put_new_page(new_hpage
, private);
1376 putback_active_hugepage(new_hpage
);
1381 static inline int try_split_thp(struct page
*page
, struct page
**page2
,
1382 struct list_head
*from
)
1387 rc
= split_huge_page_to_list(page
, from
);
1390 list_safe_reset_next(page
, *page2
, lru
);
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * It is caller's responsibility to call putback_movable_pages() to return pages
1412 * to the LRU or free list only if ret != 0.
1414 * Returns the number of pages that were not migrated, or an error code.
1416 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1417 free_page_t put_new_page
, unsigned long private,
1418 enum migrate_mode mode
, int reason
)
1423 int nr_succeeded
= 0;
1424 int nr_thp_succeeded
= 0;
1425 int nr_thp_failed
= 0;
1426 int nr_thp_split
= 0;
1428 bool is_thp
= false;
1431 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1432 int rc
, nr_subpages
;
1433 LIST_HEAD(ret_pages
);
1436 current
->flags
|= PF_SWAPWRITE
;
1438 for (pass
= 0; pass
< 10 && (retry
|| thp_retry
); pass
++) {
1442 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1445 * THP statistics is based on the source huge page.
1446 * Capture required information that might get lost
1449 is_thp
= PageTransHuge(page
) && !PageHuge(page
);
1450 nr_subpages
= thp_nr_pages(page
);
1454 rc
= unmap_and_move_huge_page(get_new_page
,
1455 put_new_page
, private, page
,
1456 pass
> 2, mode
, reason
,
1459 rc
= unmap_and_move(get_new_page
, put_new_page
,
1460 private, page
, pass
> 2, mode
,
1461 reason
, &ret_pages
);
1464 * Success: non hugetlb page will be freed, hugetlb
1465 * page will be put back
1466 * -EAGAIN: stay on the from list
1467 * -ENOMEM: stay on the from list
1468 * Other errno: put on ret_pages list then splice to
1473 * THP migration might be unsupported or the
1474 * allocation could've failed so we should
1475 * retry on the same page with the THP split
1478 * Head page is retried immediately and tail
1479 * pages are added to the tail of the list so
1480 * we encounter them after the rest of the list
1484 /* THP migration is unsupported */
1486 if (!try_split_thp(page
, &page2
, from
)) {
1492 nr_failed
+= nr_subpages
;
1496 /* Hugetlb migration is unsupported */
1501 * When memory is low, don't bother to try to migrate
1502 * other pages, just exit.
1505 if (!try_split_thp(page
, &page2
, from
)) {
1511 nr_failed
+= nr_subpages
;
1523 case MIGRATEPAGE_SUCCESS
:
1526 nr_succeeded
+= nr_subpages
;
1533 * Permanent failure (-EBUSY, etc.):
1534 * unlike -EAGAIN case, the failed page is
1535 * removed from migration page list and not
1536 * retried in the next outer loop.
1540 nr_failed
+= nr_subpages
;
1548 nr_failed
+= retry
+ thp_retry
;
1549 nr_thp_failed
+= thp_retry
;
1553 * Put the permanent failure page back to migration list, they
1554 * will be put back to the right list by the caller.
1556 list_splice(&ret_pages
, from
);
1558 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1559 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1560 count_vm_events(THP_MIGRATION_SUCCESS
, nr_thp_succeeded
);
1561 count_vm_events(THP_MIGRATION_FAIL
, nr_thp_failed
);
1562 count_vm_events(THP_MIGRATION_SPLIT
, nr_thp_split
);
1563 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, nr_thp_succeeded
,
1564 nr_thp_failed
, nr_thp_split
, mode
, reason
);
1567 current
->flags
&= ~PF_SWAPWRITE
;
1572 struct page
*alloc_migration_target(struct page
*page
, unsigned long private)
1574 struct migration_target_control
*mtc
;
1576 unsigned int order
= 0;
1577 struct page
*new_page
= NULL
;
1581 mtc
= (struct migration_target_control
*)private;
1582 gfp_mask
= mtc
->gfp_mask
;
1584 if (nid
== NUMA_NO_NODE
)
1585 nid
= page_to_nid(page
);
1587 if (PageHuge(page
)) {
1588 struct hstate
*h
= page_hstate(compound_head(page
));
1590 gfp_mask
= htlb_modify_alloc_mask(h
, gfp_mask
);
1591 return alloc_huge_page_nodemask(h
, nid
, mtc
->nmask
, gfp_mask
);
1594 if (PageTransHuge(page
)) {
1596 * clear __GFP_RECLAIM to make the migration callback
1597 * consistent with regular THP allocations.
1599 gfp_mask
&= ~__GFP_RECLAIM
;
1600 gfp_mask
|= GFP_TRANSHUGE
;
1601 order
= HPAGE_PMD_ORDER
;
1603 zidx
= zone_idx(page_zone(page
));
1604 if (is_highmem_idx(zidx
) || zidx
== ZONE_MOVABLE
)
1605 gfp_mask
|= __GFP_HIGHMEM
;
1607 new_page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, mtc
->nmask
);
1609 if (new_page
&& PageTransHuge(new_page
))
1610 prep_transhuge_page(new_page
);
1617 static int store_status(int __user
*status
, int start
, int value
, int nr
)
1620 if (put_user(value
, status
+ start
))
1628 static int do_move_pages_to_node(struct mm_struct
*mm
,
1629 struct list_head
*pagelist
, int node
)
1632 struct migration_target_control mtc
= {
1634 .gfp_mask
= GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
,
1637 err
= migrate_pages(pagelist
, alloc_migration_target
, NULL
,
1638 (unsigned long)&mtc
, MIGRATE_SYNC
, MR_SYSCALL
);
1640 putback_movable_pages(pagelist
);
1645 * Resolves the given address to a struct page, isolates it from the LRU and
1646 * puts it to the given pagelist.
1648 * errno - if the page cannot be found/isolated
1649 * 0 - when it doesn't have to be migrated because it is already on the
1651 * 1 - when it has been queued
1653 static int add_page_for_migration(struct mm_struct
*mm
, unsigned long addr
,
1654 int node
, struct list_head
*pagelist
, bool migrate_all
)
1656 struct vm_area_struct
*vma
;
1658 unsigned int follflags
;
1663 vma
= find_vma(mm
, addr
);
1664 if (!vma
|| addr
< vma
->vm_start
|| !vma_migratable(vma
))
1667 /* FOLL_DUMP to ignore special (like zero) pages */
1668 follflags
= FOLL_GET
| FOLL_DUMP
;
1669 page
= follow_page(vma
, addr
, follflags
);
1671 err
= PTR_ERR(page
);
1680 if (page_to_nid(page
) == node
)
1684 if (page_mapcount(page
) > 1 && !migrate_all
)
1687 if (PageHuge(page
)) {
1688 if (PageHead(page
)) {
1689 isolate_huge_page(page
, pagelist
);
1695 head
= compound_head(page
);
1696 err
= isolate_lru_page(head
);
1701 list_add_tail(&head
->lru
, pagelist
);
1702 mod_node_page_state(page_pgdat(head
),
1703 NR_ISOLATED_ANON
+ page_is_file_lru(head
),
1704 thp_nr_pages(head
));
1708 * Either remove the duplicate refcount from
1709 * isolate_lru_page() or drop the page ref if it was
1714 mmap_read_unlock(mm
);
1718 static int move_pages_and_store_status(struct mm_struct
*mm
, int node
,
1719 struct list_head
*pagelist
, int __user
*status
,
1720 int start
, int i
, unsigned long nr_pages
)
1724 if (list_empty(pagelist
))
1727 err
= do_move_pages_to_node(mm
, pagelist
, node
);
1730 * Positive err means the number of failed
1731 * pages to migrate. Since we are going to
1732 * abort and return the number of non-migrated
1733 * pages, so need to include the rest of the
1734 * nr_pages that have not been attempted as
1738 err
+= nr_pages
- i
- 1;
1741 return store_status(status
, start
, node
, i
- start
);
1745 * Migrate an array of page address onto an array of nodes and fill
1746 * the corresponding array of status.
1748 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1749 unsigned long nr_pages
,
1750 const void __user
* __user
*pages
,
1751 const int __user
*nodes
,
1752 int __user
*status
, int flags
)
1754 int current_node
= NUMA_NO_NODE
;
1755 LIST_HEAD(pagelist
);
1761 for (i
= start
= 0; i
< nr_pages
; i
++) {
1762 const void __user
*p
;
1767 if (get_user(p
, pages
+ i
))
1769 if (get_user(node
, nodes
+ i
))
1771 addr
= (unsigned long)untagged_addr(p
);
1774 if (node
< 0 || node
>= MAX_NUMNODES
)
1776 if (!node_state(node
, N_MEMORY
))
1780 if (!node_isset(node
, task_nodes
))
1783 if (current_node
== NUMA_NO_NODE
) {
1784 current_node
= node
;
1786 } else if (node
!= current_node
) {
1787 err
= move_pages_and_store_status(mm
, current_node
,
1788 &pagelist
, status
, start
, i
, nr_pages
);
1792 current_node
= node
;
1796 * Errors in the page lookup or isolation are not fatal and we simply
1797 * report them via status
1799 err
= add_page_for_migration(mm
, addr
, current_node
,
1800 &pagelist
, flags
& MPOL_MF_MOVE_ALL
);
1803 /* The page is successfully queued for migration */
1808 * If the page is already on the target node (!err), store the
1809 * node, otherwise, store the err.
1811 err
= store_status(status
, i
, err
? : current_node
, 1);
1815 err
= move_pages_and_store_status(mm
, current_node
, &pagelist
,
1816 status
, start
, i
, nr_pages
);
1819 current_node
= NUMA_NO_NODE
;
1822 /* Make sure we do not overwrite the existing error */
1823 err1
= move_pages_and_store_status(mm
, current_node
, &pagelist
,
1824 status
, start
, i
, nr_pages
);
1832 * Determine the nodes of an array of pages and store it in an array of status.
1834 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1835 const void __user
**pages
, int *status
)
1841 for (i
= 0; i
< nr_pages
; i
++) {
1842 unsigned long addr
= (unsigned long)(*pages
);
1843 struct vm_area_struct
*vma
;
1847 vma
= find_vma(mm
, addr
);
1848 if (!vma
|| addr
< vma
->vm_start
)
1851 /* FOLL_DUMP to ignore special (like zero) pages */
1852 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1854 err
= PTR_ERR(page
);
1858 err
= page
? page_to_nid(page
) : -ENOENT
;
1866 mmap_read_unlock(mm
);
1870 * Determine the nodes of a user array of pages and store it in
1871 * a user array of status.
1873 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1874 const void __user
* __user
*pages
,
1877 #define DO_PAGES_STAT_CHUNK_NR 16
1878 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1879 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1882 unsigned long chunk_nr
;
1884 chunk_nr
= nr_pages
;
1885 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1886 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1888 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1891 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1893 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1898 nr_pages
-= chunk_nr
;
1900 return nr_pages
? -EFAULT
: 0;
1903 static struct mm_struct
*find_mm_struct(pid_t pid
, nodemask_t
*mem_nodes
)
1905 struct task_struct
*task
;
1906 struct mm_struct
*mm
;
1909 * There is no need to check if current process has the right to modify
1910 * the specified process when they are same.
1914 *mem_nodes
= cpuset_mems_allowed(current
);
1918 /* Find the mm_struct */
1920 task
= find_task_by_vpid(pid
);
1923 return ERR_PTR(-ESRCH
);
1925 get_task_struct(task
);
1928 * Check if this process has the right to modify the specified
1929 * process. Use the regular "ptrace_may_access()" checks.
1931 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1933 mm
= ERR_PTR(-EPERM
);
1938 mm
= ERR_PTR(security_task_movememory(task
));
1941 *mem_nodes
= cpuset_mems_allowed(task
);
1942 mm
= get_task_mm(task
);
1944 put_task_struct(task
);
1946 mm
= ERR_PTR(-EINVAL
);
1951 * Move a list of pages in the address space of the currently executing
1954 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1955 const void __user
* __user
*pages
,
1956 const int __user
*nodes
,
1957 int __user
*status
, int flags
)
1959 struct mm_struct
*mm
;
1961 nodemask_t task_nodes
;
1964 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1967 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1970 mm
= find_mm_struct(pid
, &task_nodes
);
1975 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1976 nodes
, status
, flags
);
1978 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1984 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1985 const void __user
* __user
*, pages
,
1986 const int __user
*, nodes
,
1987 int __user
*, status
, int, flags
)
1989 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1992 #ifdef CONFIG_COMPAT
1993 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1994 compat_uptr_t __user
*, pages32
,
1995 const int __user
*, nodes
,
1996 int __user
*, status
,
1999 const void __user
* __user
*pages
;
2002 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
2003 for (i
= 0; i
< nr_pages
; i
++) {
2006 if (get_user(p
, pages32
+ i
) ||
2007 put_user(compat_ptr(p
), pages
+ i
))
2010 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
2012 #endif /* CONFIG_COMPAT */
2014 #ifdef CONFIG_NUMA_BALANCING
2016 * Returns true if this is a safe migration target node for misplaced NUMA
2017 * pages. Currently it only checks the watermarks which crude
2019 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
2020 unsigned long nr_migrate_pages
)
2024 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
2025 struct zone
*zone
= pgdat
->node_zones
+ z
;
2027 if (!populated_zone(zone
))
2030 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2031 if (!zone_watermark_ok(zone
, 0,
2032 high_wmark_pages(zone
) +
2041 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
2044 int nid
= (int) data
;
2045 struct page
*newpage
;
2047 newpage
= __alloc_pages_node(nid
,
2048 (GFP_HIGHUSER_MOVABLE
|
2049 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
2050 __GFP_NORETRY
| __GFP_NOWARN
) &
2056 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
2060 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
2062 /* Avoid migrating to a node that is nearly full */
2063 if (!migrate_balanced_pgdat(pgdat
, compound_nr(page
)))
2066 if (isolate_lru_page(page
))
2070 * migrate_misplaced_transhuge_page() skips page migration's usual
2071 * check on page_count(), so we must do it here, now that the page
2072 * has been isolated: a GUP pin, or any other pin, prevents migration.
2073 * The expected page count is 3: 1 for page's mapcount and 1 for the
2074 * caller's pin and 1 for the reference taken by isolate_lru_page().
2076 if (PageTransHuge(page
) && page_count(page
) != 3) {
2077 putback_lru_page(page
);
2081 page_lru
= page_is_file_lru(page
);
2082 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
2083 thp_nr_pages(page
));
2086 * Isolating the page has taken another reference, so the
2087 * caller's reference can be safely dropped without the page
2088 * disappearing underneath us during migration.
2094 bool pmd_trans_migrating(pmd_t pmd
)
2096 struct page
*page
= pmd_page(pmd
);
2097 return PageLocked(page
);
2100 static inline bool is_shared_exec_page(struct vm_area_struct
*vma
,
2103 if (page_mapcount(page
) != 1 &&
2104 (page_is_file_lru(page
) || vma_is_shmem(vma
)) &&
2105 (vma
->vm_flags
& VM_EXEC
))
2112 * Attempt to migrate a misplaced page to the specified destination
2113 * node. Caller is expected to have an elevated reference count on
2114 * the page that will be dropped by this function before returning.
2116 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
2119 pg_data_t
*pgdat
= NODE_DATA(node
);
2122 LIST_HEAD(migratepages
);
2125 * Don't migrate file pages that are mapped in multiple processes
2126 * with execute permissions as they are probably shared libraries.
2128 if (is_shared_exec_page(vma
, page
))
2132 * Also do not migrate dirty pages as not all filesystems can move
2133 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2135 if (page_is_file_lru(page
) && PageDirty(page
))
2138 isolated
= numamigrate_isolate_page(pgdat
, page
);
2142 list_add(&page
->lru
, &migratepages
);
2143 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
2144 NULL
, node
, MIGRATE_ASYNC
,
2147 if (!list_empty(&migratepages
)) {
2148 list_del(&page
->lru
);
2149 dec_node_page_state(page
, NR_ISOLATED_ANON
+
2150 page_is_file_lru(page
));
2151 putback_lru_page(page
);
2155 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
2156 BUG_ON(!list_empty(&migratepages
));
2163 #endif /* CONFIG_NUMA_BALANCING */
2165 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2167 * Migrates a THP to a given target node. page must be locked and is unlocked
2170 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2171 struct vm_area_struct
*vma
,
2172 pmd_t
*pmd
, pmd_t entry
,
2173 unsigned long address
,
2174 struct page
*page
, int node
)
2177 pg_data_t
*pgdat
= NODE_DATA(node
);
2179 struct page
*new_page
= NULL
;
2180 int page_lru
= page_is_file_lru(page
);
2181 unsigned long start
= address
& HPAGE_PMD_MASK
;
2183 if (is_shared_exec_page(vma
, page
))
2186 new_page
= alloc_pages_node(node
,
2187 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2191 prep_transhuge_page(new_page
);
2193 isolated
= numamigrate_isolate_page(pgdat
, page
);
2199 /* Prepare a page as a migration target */
2200 __SetPageLocked(new_page
);
2201 if (PageSwapBacked(page
))
2202 __SetPageSwapBacked(new_page
);
2204 /* anon mapping, we can simply copy page->mapping to the new page: */
2205 new_page
->mapping
= page
->mapping
;
2206 new_page
->index
= page
->index
;
2207 /* flush the cache before copying using the kernel virtual address */
2208 flush_cache_range(vma
, start
, start
+ HPAGE_PMD_SIZE
);
2209 migrate_page_copy(new_page
, page
);
2210 WARN_ON(PageLRU(new_page
));
2212 /* Recheck the target PMD */
2213 ptl
= pmd_lock(mm
, pmd
);
2214 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2217 /* Reverse changes made by migrate_page_copy() */
2218 if (TestClearPageActive(new_page
))
2219 SetPageActive(page
);
2220 if (TestClearPageUnevictable(new_page
))
2221 SetPageUnevictable(page
);
2223 unlock_page(new_page
);
2224 put_page(new_page
); /* Free it */
2226 /* Retake the callers reference and putback on LRU */
2228 putback_lru_page(page
);
2229 mod_node_page_state(page_pgdat(page
),
2230 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2235 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2236 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2239 * Overwrite the old entry under pagetable lock and establish
2240 * the new PTE. Any parallel GUP will either observe the old
2241 * page blocking on the page lock, block on the page table
2242 * lock or observe the new page. The SetPageUptodate on the
2243 * new page and page_add_new_anon_rmap guarantee the copy is
2244 * visible before the pagetable update.
2246 page_add_anon_rmap(new_page
, vma
, start
, true);
2248 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2249 * has already been flushed globally. So no TLB can be currently
2250 * caching this non present pmd mapping. There's no need to clear the
2251 * pmd before doing set_pmd_at(), nor to flush the TLB after
2252 * set_pmd_at(). Clearing the pmd here would introduce a race
2253 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2254 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2255 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2258 set_pmd_at(mm
, start
, pmd
, entry
);
2259 update_mmu_cache_pmd(vma
, address
, &entry
);
2261 page_ref_unfreeze(page
, 2);
2262 mlock_migrate_page(new_page
, page
);
2263 page_remove_rmap(page
, true);
2264 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2268 /* Take an "isolate" reference and put new page on the LRU. */
2270 putback_lru_page(new_page
);
2272 unlock_page(new_page
);
2274 put_page(page
); /* Drop the rmap reference */
2275 put_page(page
); /* Drop the LRU isolation reference */
2277 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2278 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2280 mod_node_page_state(page_pgdat(page
),
2281 NR_ISOLATED_ANON
+ page_lru
,
2286 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2287 ptl
= pmd_lock(mm
, pmd
);
2288 if (pmd_same(*pmd
, entry
)) {
2289 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2290 set_pmd_at(mm
, start
, pmd
, entry
);
2291 update_mmu_cache_pmd(vma
, address
, &entry
);
2301 #endif /* CONFIG_NUMA_BALANCING */
2303 #endif /* CONFIG_NUMA */
2305 #ifdef CONFIG_DEVICE_PRIVATE
2306 static int migrate_vma_collect_hole(unsigned long start
,
2308 __always_unused
int depth
,
2309 struct mm_walk
*walk
)
2311 struct migrate_vma
*migrate
= walk
->private;
2314 /* Only allow populating anonymous memory. */
2315 if (!vma_is_anonymous(walk
->vma
)) {
2316 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
2317 migrate
->src
[migrate
->npages
] = 0;
2318 migrate
->dst
[migrate
->npages
] = 0;
2324 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
2325 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2326 migrate
->dst
[migrate
->npages
] = 0;
2334 static int migrate_vma_collect_skip(unsigned long start
,
2336 struct mm_walk
*walk
)
2338 struct migrate_vma
*migrate
= walk
->private;
2341 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
2342 migrate
->dst
[migrate
->npages
] = 0;
2343 migrate
->src
[migrate
->npages
++] = 0;
2349 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2350 unsigned long start
,
2352 struct mm_walk
*walk
)
2354 struct migrate_vma
*migrate
= walk
->private;
2355 struct vm_area_struct
*vma
= walk
->vma
;
2356 struct mm_struct
*mm
= vma
->vm_mm
;
2357 unsigned long addr
= start
, unmapped
= 0;
2362 if (pmd_none(*pmdp
))
2363 return migrate_vma_collect_hole(start
, end
, -1, walk
);
2365 if (pmd_trans_huge(*pmdp
)) {
2368 ptl
= pmd_lock(mm
, pmdp
);
2369 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2374 page
= pmd_page(*pmdp
);
2375 if (is_huge_zero_page(page
)) {
2377 split_huge_pmd(vma
, pmdp
, addr
);
2378 if (pmd_trans_unstable(pmdp
))
2379 return migrate_vma_collect_skip(start
, end
,
2386 if (unlikely(!trylock_page(page
)))
2387 return migrate_vma_collect_skip(start
, end
,
2389 ret
= split_huge_page(page
);
2393 return migrate_vma_collect_skip(start
, end
,
2395 if (pmd_none(*pmdp
))
2396 return migrate_vma_collect_hole(start
, end
, -1,
2401 if (unlikely(pmd_bad(*pmdp
)))
2402 return migrate_vma_collect_skip(start
, end
, walk
);
2404 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2405 arch_enter_lazy_mmu_mode();
2407 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2408 unsigned long mpfn
= 0, pfn
;
2415 if (pte_none(pte
)) {
2416 if (vma_is_anonymous(vma
)) {
2417 mpfn
= MIGRATE_PFN_MIGRATE
;
2423 if (!pte_present(pte
)) {
2425 * Only care about unaddressable device page special
2426 * page table entry. Other special swap entries are not
2427 * migratable, and we ignore regular swapped page.
2429 entry
= pte_to_swp_entry(pte
);
2430 if (!is_device_private_entry(entry
))
2433 page
= device_private_entry_to_page(entry
);
2434 if (!(migrate
->flags
&
2435 MIGRATE_VMA_SELECT_DEVICE_PRIVATE
) ||
2436 page
->pgmap
->owner
!= migrate
->pgmap_owner
)
2439 mpfn
= migrate_pfn(page_to_pfn(page
)) |
2440 MIGRATE_PFN_MIGRATE
;
2441 if (is_write_device_private_entry(entry
))
2442 mpfn
|= MIGRATE_PFN_WRITE
;
2444 if (!(migrate
->flags
& MIGRATE_VMA_SELECT_SYSTEM
))
2447 if (is_zero_pfn(pfn
)) {
2448 mpfn
= MIGRATE_PFN_MIGRATE
;
2452 page
= vm_normal_page(migrate
->vma
, addr
, pte
);
2453 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2454 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2457 /* FIXME support THP */
2458 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2464 * By getting a reference on the page we pin it and that blocks
2465 * any kind of migration. Side effect is that it "freezes" the
2468 * We drop this reference after isolating the page from the lru
2469 * for non device page (device page are not on the lru and thus
2470 * can't be dropped from it).
2476 * Optimize for the common case where page is only mapped once
2477 * in one process. If we can lock the page, then we can safely
2478 * set up a special migration page table entry now.
2480 if (trylock_page(page
)) {
2483 mpfn
|= MIGRATE_PFN_LOCKED
;
2484 ptep_get_and_clear(mm
, addr
, ptep
);
2486 /* Setup special migration page table entry */
2487 entry
= make_migration_entry(page
, mpfn
&
2489 swp_pte
= swp_entry_to_pte(entry
);
2490 if (pte_present(pte
)) {
2491 if (pte_soft_dirty(pte
))
2492 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2493 if (pte_uffd_wp(pte
))
2494 swp_pte
= pte_swp_mkuffd_wp(swp_pte
);
2496 if (pte_swp_soft_dirty(pte
))
2497 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2498 if (pte_swp_uffd_wp(pte
))
2499 swp_pte
= pte_swp_mkuffd_wp(swp_pte
);
2501 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2504 * This is like regular unmap: we remove the rmap and
2505 * drop page refcount. Page won't be freed, as we took
2506 * a reference just above.
2508 page_remove_rmap(page
, false);
2511 if (pte_present(pte
))
2516 migrate
->dst
[migrate
->npages
] = 0;
2517 migrate
->src
[migrate
->npages
++] = mpfn
;
2519 arch_leave_lazy_mmu_mode();
2520 pte_unmap_unlock(ptep
- 1, ptl
);
2522 /* Only flush the TLB if we actually modified any entries */
2524 flush_tlb_range(walk
->vma
, start
, end
);
2529 static const struct mm_walk_ops migrate_vma_walk_ops
= {
2530 .pmd_entry
= migrate_vma_collect_pmd
,
2531 .pte_hole
= migrate_vma_collect_hole
,
2535 * migrate_vma_collect() - collect pages over a range of virtual addresses
2536 * @migrate: migrate struct containing all migration information
2538 * This will walk the CPU page table. For each virtual address backed by a
2539 * valid page, it updates the src array and takes a reference on the page, in
2540 * order to pin the page until we lock it and unmap it.
2542 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2544 struct mmu_notifier_range range
;
2547 * Note that the pgmap_owner is passed to the mmu notifier callback so
2548 * that the registered device driver can skip invalidating device
2549 * private page mappings that won't be migrated.
2551 mmu_notifier_range_init_migrate(&range
, 0, migrate
->vma
,
2552 migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
,
2553 migrate
->pgmap_owner
);
2554 mmu_notifier_invalidate_range_start(&range
);
2556 walk_page_range(migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
,
2557 &migrate_vma_walk_ops
, migrate
);
2559 mmu_notifier_invalidate_range_end(&range
);
2560 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2564 * migrate_vma_check_page() - check if page is pinned or not
2565 * @page: struct page to check
2567 * Pinned pages cannot be migrated. This is the same test as in
2568 * migrate_page_move_mapping(), except that here we allow migration of a
2571 static bool migrate_vma_check_page(struct page
*page
)
2574 * One extra ref because caller holds an extra reference, either from
2575 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2581 * FIXME support THP (transparent huge page), it is bit more complex to
2582 * check them than regular pages, because they can be mapped with a pmd
2583 * or with a pte (split pte mapping).
2585 if (PageCompound(page
))
2588 /* Page from ZONE_DEVICE have one extra reference */
2589 if (is_zone_device_page(page
)) {
2591 * Private page can never be pin as they have no valid pte and
2592 * GUP will fail for those. Yet if there is a pending migration
2593 * a thread might try to wait on the pte migration entry and
2594 * will bump the page reference count. Sadly there is no way to
2595 * differentiate a regular pin from migration wait. Hence to
2596 * avoid 2 racing thread trying to migrate back to CPU to enter
2597 * infinite loop (one stopping migration because the other is
2598 * waiting on pte migration entry). We always return true here.
2600 * FIXME proper solution is to rework migration_entry_wait() so
2601 * it does not need to take a reference on page.
2603 return is_device_private_page(page
);
2606 /* For file back page */
2607 if (page_mapping(page
))
2608 extra
+= 1 + page_has_private(page
);
2610 if ((page_count(page
) - extra
) > page_mapcount(page
))
2617 * migrate_vma_prepare() - lock pages and isolate them from the lru
2618 * @migrate: migrate struct containing all migration information
2620 * This locks pages that have been collected by migrate_vma_collect(). Once each
2621 * page is locked it is isolated from the lru (for non-device pages). Finally,
2622 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2623 * migrated by concurrent kernel threads.
2625 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2627 const unsigned long npages
= migrate
->npages
;
2628 const unsigned long start
= migrate
->start
;
2629 unsigned long addr
, i
, restore
= 0;
2630 bool allow_drain
= true;
2634 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2635 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2641 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2643 * Because we are migrating several pages there can be
2644 * a deadlock between 2 concurrent migration where each
2645 * are waiting on each other page lock.
2647 * Make migrate_vma() a best effort thing and backoff
2648 * for any page we can not lock right away.
2650 if (!trylock_page(page
)) {
2651 migrate
->src
[i
] = 0;
2657 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2660 /* ZONE_DEVICE pages are not on LRU */
2661 if (!is_zone_device_page(page
)) {
2662 if (!PageLRU(page
) && allow_drain
) {
2663 /* Drain CPU's pagevec */
2664 lru_add_drain_all();
2665 allow_drain
= false;
2668 if (isolate_lru_page(page
)) {
2670 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2674 migrate
->src
[i
] = 0;
2682 /* Drop the reference we took in collect */
2686 if (!migrate_vma_check_page(page
)) {
2688 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2692 if (!is_zone_device_page(page
)) {
2694 putback_lru_page(page
);
2697 migrate
->src
[i
] = 0;
2701 if (!is_zone_device_page(page
))
2702 putback_lru_page(page
);
2709 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2710 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2712 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2715 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2717 migrate
->src
[i
] = 0;
2725 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2726 * @migrate: migrate struct containing all migration information
2728 * Replace page mapping (CPU page table pte) with a special migration pte entry
2729 * and check again if it has been pinned. Pinned pages are restored because we
2730 * cannot migrate them.
2732 * This is the last step before we call the device driver callback to allocate
2733 * destination memory and copy contents of original page over to new page.
2735 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2737 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
;
2738 const unsigned long npages
= migrate
->npages
;
2739 const unsigned long start
= migrate
->start
;
2740 unsigned long addr
, i
, restore
= 0;
2742 for (i
= 0; i
< npages
; i
++) {
2743 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2745 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2748 if (page_mapped(page
)) {
2749 try_to_unmap(page
, flags
);
2750 if (page_mapped(page
))
2754 if (migrate_vma_check_page(page
))
2758 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2763 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2764 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2766 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2769 remove_migration_ptes(page
, page
, false);
2771 migrate
->src
[i
] = 0;
2775 if (is_zone_device_page(page
))
2778 putback_lru_page(page
);
2783 * migrate_vma_setup() - prepare to migrate a range of memory
2784 * @args: contains the vma, start, and pfns arrays for the migration
2786 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2789 * Prepare to migrate a range of memory virtual address range by collecting all
2790 * the pages backing each virtual address in the range, saving them inside the
2791 * src array. Then lock those pages and unmap them. Once the pages are locked
2792 * and unmapped, check whether each page is pinned or not. Pages that aren't
2793 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2794 * corresponding src array entry. Then restores any pages that are pinned, by
2795 * remapping and unlocking those pages.
2797 * The caller should then allocate destination memory and copy source memory to
2798 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2799 * flag set). Once these are allocated and copied, the caller must update each
2800 * corresponding entry in the dst array with the pfn value of the destination
2801 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2802 * (destination pages must have their struct pages locked, via lock_page()).
2804 * Note that the caller does not have to migrate all the pages that are marked
2805 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2806 * device memory to system memory. If the caller cannot migrate a device page
2807 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2808 * consequences for the userspace process, so it must be avoided if at all
2811 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2812 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2813 * allowing the caller to allocate device memory for those unback virtual
2814 * address. For this the caller simply has to allocate device memory and
2815 * properly set the destination entry like for regular migration. Note that
2816 * this can still fails and thus inside the device driver must check if the
2817 * migration was successful for those entries after calling migrate_vma_pages()
2818 * just like for regular migration.
2820 * After that, the callers must call migrate_vma_pages() to go over each entry
2821 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2822 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2823 * then migrate_vma_pages() to migrate struct page information from the source
2824 * struct page to the destination struct page. If it fails to migrate the
2825 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2828 * At this point all successfully migrated pages have an entry in the src
2829 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2830 * array entry with MIGRATE_PFN_VALID flag set.
2832 * Once migrate_vma_pages() returns the caller may inspect which pages were
2833 * successfully migrated, and which were not. Successfully migrated pages will
2834 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2836 * It is safe to update device page table after migrate_vma_pages() because
2837 * both destination and source page are still locked, and the mmap_lock is held
2838 * in read mode (hence no one can unmap the range being migrated).
2840 * Once the caller is done cleaning up things and updating its page table (if it
2841 * chose to do so, this is not an obligation) it finally calls
2842 * migrate_vma_finalize() to update the CPU page table to point to new pages
2843 * for successfully migrated pages or otherwise restore the CPU page table to
2844 * point to the original source pages.
2846 int migrate_vma_setup(struct migrate_vma
*args
)
2848 long nr_pages
= (args
->end
- args
->start
) >> PAGE_SHIFT
;
2850 args
->start
&= PAGE_MASK
;
2851 args
->end
&= PAGE_MASK
;
2852 if (!args
->vma
|| is_vm_hugetlb_page(args
->vma
) ||
2853 (args
->vma
->vm_flags
& VM_SPECIAL
) || vma_is_dax(args
->vma
))
2857 if (args
->start
< args
->vma
->vm_start
||
2858 args
->start
>= args
->vma
->vm_end
)
2860 if (args
->end
<= args
->vma
->vm_start
|| args
->end
> args
->vma
->vm_end
)
2862 if (!args
->src
|| !args
->dst
)
2865 memset(args
->src
, 0, sizeof(*args
->src
) * nr_pages
);
2869 migrate_vma_collect(args
);
2872 migrate_vma_prepare(args
);
2874 migrate_vma_unmap(args
);
2877 * At this point pages are locked and unmapped, and thus they have
2878 * stable content and can safely be copied to destination memory that
2879 * is allocated by the drivers.
2884 EXPORT_SYMBOL(migrate_vma_setup
);
2887 * This code closely matches the code in:
2888 * __handle_mm_fault()
2889 * handle_pte_fault()
2890 * do_anonymous_page()
2891 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2894 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2899 struct vm_area_struct
*vma
= migrate
->vma
;
2900 struct mm_struct
*mm
= vma
->vm_mm
;
2910 /* Only allow populating anonymous memory */
2911 if (!vma_is_anonymous(vma
))
2914 pgdp
= pgd_offset(mm
, addr
);
2915 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2918 pudp
= pud_alloc(mm
, p4dp
, addr
);
2921 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2925 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2929 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2930 * pte_offset_map() on pmds where a huge pmd might be created
2931 * from a different thread.
2933 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2934 * parallel threads are excluded by other means.
2936 * Here we only have mmap_read_lock(mm).
2938 if (pte_alloc(mm
, pmdp
))
2941 /* See the comment in pte_alloc_one_map() */
2942 if (unlikely(pmd_trans_unstable(pmdp
)))
2945 if (unlikely(anon_vma_prepare(vma
)))
2947 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
2951 * The memory barrier inside __SetPageUptodate makes sure that
2952 * preceding stores to the page contents become visible before
2953 * the set_pte_at() write.
2955 __SetPageUptodate(page
);
2957 if (is_zone_device_page(page
)) {
2958 if (is_device_private_page(page
)) {
2959 swp_entry_t swp_entry
;
2961 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2962 entry
= swp_entry_to_pte(swp_entry
);
2965 entry
= mk_pte(page
, vma
->vm_page_prot
);
2966 if (vma
->vm_flags
& VM_WRITE
)
2967 entry
= pte_mkwrite(pte_mkdirty(entry
));
2970 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2972 if (check_stable_address_space(mm
))
2975 if (pte_present(*ptep
)) {
2976 unsigned long pfn
= pte_pfn(*ptep
);
2978 if (!is_zero_pfn(pfn
))
2981 } else if (!pte_none(*ptep
))
2985 * Check for userfaultfd but do not deliver the fault. Instead,
2988 if (userfaultfd_missing(vma
))
2991 inc_mm_counter(mm
, MM_ANONPAGES
);
2992 page_add_new_anon_rmap(page
, vma
, addr
, false);
2993 if (!is_zone_device_page(page
))
2994 lru_cache_add_inactive_or_unevictable(page
, vma
);
2998 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2999 ptep_clear_flush_notify(vma
, addr
, ptep
);
3000 set_pte_at_notify(mm
, addr
, ptep
, entry
);
3001 update_mmu_cache(vma
, addr
, ptep
);
3003 /* No need to invalidate - it was non-present before */
3004 set_pte_at(mm
, addr
, ptep
, entry
);
3005 update_mmu_cache(vma
, addr
, ptep
);
3008 pte_unmap_unlock(ptep
, ptl
);
3009 *src
= MIGRATE_PFN_MIGRATE
;
3013 pte_unmap_unlock(ptep
, ptl
);
3015 *src
&= ~MIGRATE_PFN_MIGRATE
;
3019 * migrate_vma_pages() - migrate meta-data from src page to dst page
3020 * @migrate: migrate struct containing all migration information
3022 * This migrates struct page meta-data from source struct page to destination
3023 * struct page. This effectively finishes the migration from source page to the
3026 void migrate_vma_pages(struct migrate_vma
*migrate
)
3028 const unsigned long npages
= migrate
->npages
;
3029 const unsigned long start
= migrate
->start
;
3030 struct mmu_notifier_range range
;
3031 unsigned long addr
, i
;
3032 bool notified
= false;
3034 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
3035 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
3036 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
3037 struct address_space
*mapping
;
3041 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
3046 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
3051 mmu_notifier_range_init_migrate(&range
, 0,
3052 migrate
->vma
, migrate
->vma
->vm_mm
,
3054 migrate
->pgmap_owner
);
3055 mmu_notifier_invalidate_range_start(&range
);
3057 migrate_vma_insert_page(migrate
, addr
, newpage
,
3062 mapping
= page_mapping(page
);
3064 if (is_zone_device_page(newpage
)) {
3065 if (is_device_private_page(newpage
)) {
3067 * For now only support private anonymous when
3068 * migrating to un-addressable device memory.
3071 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
3076 * Other types of ZONE_DEVICE page are not
3079 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
3084 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
3085 if (r
!= MIGRATEPAGE_SUCCESS
)
3086 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
3090 * No need to double call mmu_notifier->invalidate_range() callback as
3091 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3092 * did already call it.
3095 mmu_notifier_invalidate_range_only_end(&range
);
3097 EXPORT_SYMBOL(migrate_vma_pages
);
3100 * migrate_vma_finalize() - restore CPU page table entry
3101 * @migrate: migrate struct containing all migration information
3103 * This replaces the special migration pte entry with either a mapping to the
3104 * new page if migration was successful for that page, or to the original page
3107 * This also unlocks the pages and puts them back on the lru, or drops the extra
3108 * refcount, for device pages.
3110 void migrate_vma_finalize(struct migrate_vma
*migrate
)
3112 const unsigned long npages
= migrate
->npages
;
3115 for (i
= 0; i
< npages
; i
++) {
3116 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
3117 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
3121 unlock_page(newpage
);
3127 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
3129 unlock_page(newpage
);
3135 remove_migration_ptes(page
, newpage
, false);
3138 if (is_zone_device_page(page
))
3141 putback_lru_page(page
);
3143 if (newpage
!= page
) {
3144 unlock_page(newpage
);
3145 if (is_zone_device_page(newpage
))
3148 putback_lru_page(newpage
);
3152 EXPORT_SYMBOL(migrate_vma_finalize
);
3153 #endif /* CONFIG_DEVICE_PRIVATE */