WIP FPC-III support
[linux/fpc-iii.git] / mm / page_alloc.c
blobbdbec4c981738dc4e821564d32abc0d897de29d1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
86 /* No special request */
87 #define FPI_NONE ((__force fpi_t)0)
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION (8)
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
147 * Array of node states.
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 [N_MEMORY] = { { [0] = 1UL } },
158 [N_CPU] = { { [0] = 1UL } },
159 #endif /* NUMA */
161 EXPORT_SYMBOL(node_states);
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
176 static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
183 early_param("init_on_alloc", early_init_on_alloc);
185 static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
189 return kstrtobool(buf, &_init_on_free_enabled_early);
191 early_param("init_on_free", early_init_on_free);
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
201 static inline int get_pcppage_migratetype(struct page *page)
203 return page->index;
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
208 page->index = migratetype;
211 #ifdef CONFIG_PM_SLEEP
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
222 static gfp_t saved_gfp_mask;
224 void pm_restore_gfp_mask(void)
226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
233 void pm_restrict_gfp_mask(void)
235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
241 bool pm_suspended_storage(void)
243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 return false;
245 return true;
247 #endif /* CONFIG_PM_SLEEP */
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 [ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 [ZONE_DMA32] = 256,
273 #endif
274 [ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 [ZONE_HIGHMEM] = 0,
277 #endif
278 [ZONE_MOVABLE] = 0,
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 "DMA32",
287 #endif
288 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 "HighMem",
291 #endif
292 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 "Device",
295 #endif
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303 #ifdef CONFIG_CMA
304 "CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308 #endif
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 [HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
364 int page_group_by_mobility_disabled __read_mostly;
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
396 int nid = early_pfn_to_nid(pfn);
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 return true;
401 return false;
405 * Returns true when the remaining initialisation should be deferred until
406 * later in the boot cycle when it can be parallelised.
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
411 static unsigned long prev_end_pfn, nr_initialised;
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
422 /* Always populate low zones for address-constrained allocations */
423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 return false;
426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 return true;
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
432 nr_initialised++;
433 if ((nr_initialised > PAGES_PER_SECTION) &&
434 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 NODE_DATA(nid)->first_deferred_pfn = pfn;
436 return true;
438 return false;
440 #else
441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
443 static inline bool early_page_uninitialised(unsigned long pfn)
445 return false;
448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
450 return false;
452 #endif
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 unsigned long pfn)
458 #ifdef CONFIG_SPARSEMEM
459 return section_to_usemap(__pfn_to_section(pfn));
460 #else
461 return page_zone(page)->pageblock_flags;
462 #endif /* CONFIG_SPARSEMEM */
465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
467 #ifdef CONFIG_SPARSEMEM
468 pfn &= (PAGES_PER_SECTION-1);
469 #else
470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471 #endif /* CONFIG_SPARSEMEM */
472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page *page,
477 unsigned long pfn,
478 unsigned long mask)
480 unsigned long *bitmap;
481 unsigned long bitidx, word_bitidx;
482 unsigned long word;
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
489 word = bitmap[word_bitidx];
490 return (word >> bitidx) & mask;
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
499 * Return: pageblock_bits flags
501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 unsigned long mask)
504 return __get_pfnblock_flags_mask(page, pfn, mask);
507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
517 * @mask: mask of bits that the caller is interested in
519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long pfn,
521 unsigned long mask)
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537 mask <<= bitidx;
538 flags <<= bitidx;
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
549 void set_pageblock_migratetype(struct page *page, int migratetype)
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
555 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 page_to_pfn(page), MIGRATETYPE_MASK);
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
567 do {
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
575 if (ret)
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
580 return ret;
583 static int page_is_consistent(struct zone *zone, struct page *page)
585 if (!pfn_valid_within(page_to_pfn(page)))
586 return 0;
587 if (zone != page_zone(page))
588 return 0;
590 return 1;
593 * Temporary debugging check for pages not lying within a given zone.
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
602 return 0;
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 return 0;
609 #endif
611 static void bad_page(struct page *page, const char *reason)
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
632 nr_shown = 0;
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 __dump_page(page, reason);
640 dump_page_owner(page);
642 print_modules();
643 dump_stack();
644 out:
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
651 * Higher-order pages are called "compound pages". They are structured thusly:
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
665 void free_compound_page(struct page *page)
667 mem_cgroup_uncharge(page);
668 __free_pages_ok(page, compound_order(page), FPI_NONE);
671 void prep_compound_page(struct page *page, unsigned int order)
673 int i;
674 int nr_pages = 1 << order;
676 __SetPageHead(page);
677 for (i = 1; i < nr_pages; i++) {
678 struct page *p = page + i;
679 set_page_count(p, 0);
680 p->mapping = TAIL_MAPPING;
681 set_compound_head(p, page);
684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 set_compound_order(page, order);
686 atomic_set(compound_mapcount_ptr(page), -1);
687 if (hpage_pincount_available(page))
688 atomic_set(compound_pincount_ptr(page), 0);
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder;
694 bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled);
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
702 static int __init early_debug_pagealloc(char *buf)
704 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
706 early_param("debug_pagealloc", early_debug_pagealloc);
708 static int __init debug_guardpage_minorder_setup(char *buf)
710 unsigned long res;
712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
713 pr_err("Bad debug_guardpage_minorder value\n");
714 return 0;
716 _debug_guardpage_minorder = res;
717 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 return 0;
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
722 static inline bool set_page_guard(struct zone *zone, struct page *page,
723 unsigned int order, int migratetype)
725 if (!debug_guardpage_enabled())
726 return false;
728 if (order >= debug_guardpage_minorder())
729 return false;
731 __SetPageGuard(page);
732 INIT_LIST_HEAD(&page->lru);
733 set_page_private(page, order);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
737 return true;
740 static inline void clear_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
743 if (!debug_guardpage_enabled())
744 return;
746 __ClearPageGuard(page);
748 set_page_private(page, 0);
749 if (!is_migrate_isolate(migratetype))
750 __mod_zone_freepage_state(zone, (1 << order), migratetype);
752 #else
753 static inline bool set_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) { return false; }
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 unsigned int order, int migratetype) {}
757 #endif
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
765 void init_mem_debugging_and_hardening(void)
767 if (_init_on_alloc_enabled_early) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
771 else
772 static_branch_enable(&init_on_alloc);
774 if (_init_on_free_enabled_early) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
778 else
779 static_branch_enable(&init_on_free);
782 #ifdef CONFIG_PAGE_POISONING
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled);
791 #endif
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
795 return;
797 static_branch_enable(&_debug_pagealloc_enabled);
799 if (!debug_guardpage_minorder())
800 return;
802 static_branch_enable(&_debug_guardpage_enabled);
803 #endif
806 static inline void set_buddy_order(struct page *page, unsigned int order)
808 set_page_private(page, order);
809 __SetPageBuddy(page);
813 * This function checks whether a page is free && is the buddy
814 * we can coalesce a page and its buddy if
815 * (a) the buddy is not in a hole (check before calling!) &&
816 * (b) the buddy is in the buddy system &&
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
823 * For recording page's order, we use page_private(page).
825 static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 unsigned int order)
828 if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 return false;
831 if (buddy_order(buddy) != order)
832 return false;
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
838 if (page_zone_id(page) != page_zone_id(buddy))
839 return false;
841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
843 return true;
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control *task_capc(struct zone *zone)
849 struct capture_control *capc = current->capture_control;
851 return unlikely(capc) &&
852 !(current->flags & PF_KTHREAD) &&
853 !capc->page &&
854 capc->cc->zone == zone ? capc : NULL;
857 static inline bool
858 compaction_capture(struct capture_control *capc, struct page *page,
859 int order, int migratetype)
861 if (!capc || order != capc->cc->order)
862 return false;
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype) ||
866 is_migrate_isolate(migratetype))
867 return false;
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 return false;
878 capc->page = page;
879 return true;
882 #else
883 static inline struct capture_control *task_capc(struct zone *zone)
885 return NULL;
888 static inline bool
889 compaction_capture(struct capture_control *capc, struct page *page,
890 int order, int migratetype)
892 return false;
894 #endif /* CONFIG_COMPACTION */
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
900 struct free_area *area = &zone->free_area[order];
902 list_add(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 unsigned int order, int migratetype)
910 struct free_area *area = &zone->free_area[order];
912 list_add_tail(&page->lru, &area->free_list[migratetype]);
913 area->nr_free++;
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
921 static inline void move_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
924 struct free_area *area = &zone->free_area[order];
926 list_move_tail(&page->lru, &area->free_list[migratetype]);
929 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 unsigned int order)
932 /* clear reported state and update reported page count */
933 if (page_reported(page))
934 __ClearPageReported(page);
936 list_del(&page->lru);
937 __ClearPageBuddy(page);
938 set_page_private(page, 0);
939 zone->free_area[order].nr_free--;
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
950 static inline bool
951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 struct page *page, unsigned int order)
954 struct page *higher_page, *higher_buddy;
955 unsigned long combined_pfn;
957 if (order >= MAX_ORDER - 2)
958 return false;
960 if (!pfn_valid_within(buddy_pfn))
961 return false;
963 combined_pfn = buddy_pfn & pfn;
964 higher_page = page + (combined_pfn - pfn);
965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
968 return pfn_valid_within(buddy_pfn) &&
969 page_is_buddy(higher_page, higher_buddy, order + 1);
973 * Freeing function for a buddy system allocator.
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
987 * So when we are allocating or freeing one, we can derive the state of the
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
990 * If a block is freed, and its buddy is also free, then this
991 * triggers coalescing into a block of larger size.
993 * -- nyc
996 static inline void __free_one_page(struct page *page,
997 unsigned long pfn,
998 struct zone *zone, unsigned int order,
999 int migratetype, fpi_t fpi_flags)
1001 struct capture_control *capc = task_capc(zone);
1002 unsigned long buddy_pfn;
1003 unsigned long combined_pfn;
1004 unsigned int max_order;
1005 struct page *buddy;
1006 bool to_tail;
1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1010 VM_BUG_ON(!zone_is_initialized(zone));
1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1013 VM_BUG_ON(migratetype == -1);
1014 if (likely(!is_migrate_isolate(migratetype)))
1015 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1020 continue_merging:
1021 while (order < max_order) {
1022 if (compaction_capture(capc, page, order, migratetype)) {
1023 __mod_zone_freepage_state(zone, -(1 << order),
1024 migratetype);
1025 return;
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
1030 if (!pfn_valid_within(buddy_pfn))
1031 goto done_merging;
1032 if (!page_is_buddy(page, buddy, order))
1033 goto done_merging;
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1038 if (page_is_guard(buddy))
1039 clear_page_guard(zone, buddy, order, migratetype);
1040 else
1041 del_page_from_free_list(buddy, zone, order);
1042 combined_pfn = buddy_pfn & pfn;
1043 page = page + (combined_pfn - pfn);
1044 pfn = combined_pfn;
1045 order++;
1047 if (order < MAX_ORDER - 1) {
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1056 if (unlikely(has_isolate_pageblock(zone))) {
1057 int buddy_mt;
1059 buddy_pfn = __find_buddy_pfn(pfn, order);
1060 buddy = page + (buddy_pfn - pfn);
1061 buddy_mt = get_pageblock_migratetype(buddy);
1063 if (migratetype != buddy_mt
1064 && (is_migrate_isolate(migratetype) ||
1065 is_migrate_isolate(buddy_mt)))
1066 goto done_merging;
1068 max_order = order + 1;
1069 goto continue_merging;
1072 done_merging:
1073 set_buddy_order(page, order);
1075 if (fpi_flags & FPI_TO_TAIL)
1076 to_tail = true;
1077 else if (is_shuffle_order(order))
1078 to_tail = shuffle_pick_tail();
1079 else
1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1082 if (to_tail)
1083 add_to_free_list_tail(page, zone, order, migratetype);
1084 else
1085 add_to_free_list(page, zone, order, migratetype);
1087 /* Notify page reporting subsystem of freed page */
1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 page_reporting_notify_free(order);
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1097 static inline bool page_expected_state(struct page *page,
1098 unsigned long check_flags)
1100 if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 return false;
1103 if (unlikely((unsigned long)page->mapping |
1104 page_ref_count(page) |
1105 #ifdef CONFIG_MEMCG
1106 (unsigned long)page_memcg(page) |
1107 #endif
1108 (page->flags & check_flags)))
1109 return false;
1111 return true;
1114 static const char *page_bad_reason(struct page *page, unsigned long flags)
1116 const char *bad_reason = NULL;
1118 if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 bad_reason = "nonzero mapcount";
1120 if (unlikely(page->mapping != NULL))
1121 bad_reason = "non-NULL mapping";
1122 if (unlikely(page_ref_count(page) != 0))
1123 bad_reason = "nonzero _refcount";
1124 if (unlikely(page->flags & flags)) {
1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 else
1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1130 #ifdef CONFIG_MEMCG
1131 if (unlikely(page_memcg(page)))
1132 bad_reason = "page still charged to cgroup";
1133 #endif
1134 return bad_reason;
1137 static void check_free_page_bad(struct page *page)
1139 bad_page(page,
1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1143 static inline int check_free_page(struct page *page)
1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 return 0;
1148 /* Something has gone sideways, find it */
1149 check_free_page_bad(page);
1150 return 1;
1153 static int free_tail_pages_check(struct page *head_page, struct page *page)
1155 int ret = 1;
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 ret = 0;
1165 goto out;
1167 switch (page - head_page) {
1168 case 1:
1169 /* the first tail page: ->mapping may be compound_mapcount() */
1170 if (unlikely(compound_mapcount(page))) {
1171 bad_page(page, "nonzero compound_mapcount");
1172 goto out;
1174 break;
1175 case 2:
1177 * the second tail page: ->mapping is
1178 * deferred_list.next -- ignore value.
1180 break;
1181 default:
1182 if (page->mapping != TAIL_MAPPING) {
1183 bad_page(page, "corrupted mapping in tail page");
1184 goto out;
1186 break;
1188 if (unlikely(!PageTail(page))) {
1189 bad_page(page, "PageTail not set");
1190 goto out;
1192 if (unlikely(compound_head(page) != head_page)) {
1193 bad_page(page, "compound_head not consistent");
1194 goto out;
1196 ret = 0;
1197 out:
1198 page->mapping = NULL;
1199 clear_compound_head(page);
1200 return ret;
1203 static void kernel_init_free_pages(struct page *page, int numpages)
1205 int i;
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
1209 for (i = 0; i < numpages; i++) {
1210 page_kasan_tag_reset(page + i);
1211 clear_highpage(page + i);
1213 kasan_enable_current();
1216 static __always_inline bool free_pages_prepare(struct page *page,
1217 unsigned int order, bool check_free)
1219 int bad = 0;
1221 VM_BUG_ON_PAGE(PageTail(page), page);
1223 trace_mm_page_free(page, order);
1225 if (unlikely(PageHWPoison(page)) && !order) {
1227 * Do not let hwpoison pages hit pcplists/buddy
1228 * Untie memcg state and reset page's owner
1230 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1231 __memcg_kmem_uncharge_page(page, order);
1232 reset_page_owner(page, order);
1233 return false;
1237 * Check tail pages before head page information is cleared to
1238 * avoid checking PageCompound for order-0 pages.
1240 if (unlikely(order)) {
1241 bool compound = PageCompound(page);
1242 int i;
1244 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1246 if (compound)
1247 ClearPageDoubleMap(page);
1248 for (i = 1; i < (1 << order); i++) {
1249 if (compound)
1250 bad += free_tail_pages_check(page, page + i);
1251 if (unlikely(check_free_page(page + i))) {
1252 bad++;
1253 continue;
1255 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 if (PageMappingFlags(page))
1259 page->mapping = NULL;
1260 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1261 __memcg_kmem_uncharge_page(page, order);
1262 if (check_free)
1263 bad += check_free_page(page);
1264 if (bad)
1265 return false;
1267 page_cpupid_reset_last(page);
1268 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1269 reset_page_owner(page, order);
1271 if (!PageHighMem(page)) {
1272 debug_check_no_locks_freed(page_address(page),
1273 PAGE_SIZE << order);
1274 debug_check_no_obj_freed(page_address(page),
1275 PAGE_SIZE << order);
1277 if (want_init_on_free())
1278 kernel_init_free_pages(page, 1 << order);
1280 kernel_poison_pages(page, 1 << order);
1283 * arch_free_page() can make the page's contents inaccessible. s390
1284 * does this. So nothing which can access the page's contents should
1285 * happen after this.
1287 arch_free_page(page, order);
1289 debug_pagealloc_unmap_pages(page, 1 << order);
1291 kasan_free_nondeferred_pages(page, order);
1293 return true;
1296 #ifdef CONFIG_DEBUG_VM
1298 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1299 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1300 * moved from pcp lists to free lists.
1302 static bool free_pcp_prepare(struct page *page)
1304 return free_pages_prepare(page, 0, true);
1307 static bool bulkfree_pcp_prepare(struct page *page)
1309 if (debug_pagealloc_enabled_static())
1310 return check_free_page(page);
1311 else
1312 return false;
1314 #else
1316 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1317 * moving from pcp lists to free list in order to reduce overhead. With
1318 * debug_pagealloc enabled, they are checked also immediately when being freed
1319 * to the pcp lists.
1321 static bool free_pcp_prepare(struct page *page)
1323 if (debug_pagealloc_enabled_static())
1324 return free_pages_prepare(page, 0, true);
1325 else
1326 return free_pages_prepare(page, 0, false);
1329 static bool bulkfree_pcp_prepare(struct page *page)
1331 return check_free_page(page);
1333 #endif /* CONFIG_DEBUG_VM */
1335 static inline void prefetch_buddy(struct page *page)
1337 unsigned long pfn = page_to_pfn(page);
1338 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1339 struct page *buddy = page + (buddy_pfn - pfn);
1341 prefetch(buddy);
1345 * Frees a number of pages from the PCP lists
1346 * Assumes all pages on list are in same zone, and of same order.
1347 * count is the number of pages to free.
1349 * If the zone was previously in an "all pages pinned" state then look to
1350 * see if this freeing clears that state.
1352 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1353 * pinned" detection logic.
1355 static void free_pcppages_bulk(struct zone *zone, int count,
1356 struct per_cpu_pages *pcp)
1358 int migratetype = 0;
1359 int batch_free = 0;
1360 int prefetch_nr = READ_ONCE(pcp->batch);
1361 bool isolated_pageblocks;
1362 struct page *page, *tmp;
1363 LIST_HEAD(head);
1366 * Ensure proper count is passed which otherwise would stuck in the
1367 * below while (list_empty(list)) loop.
1369 count = min(pcp->count, count);
1370 while (count) {
1371 struct list_head *list;
1374 * Remove pages from lists in a round-robin fashion. A
1375 * batch_free count is maintained that is incremented when an
1376 * empty list is encountered. This is so more pages are freed
1377 * off fuller lists instead of spinning excessively around empty
1378 * lists
1380 do {
1381 batch_free++;
1382 if (++migratetype == MIGRATE_PCPTYPES)
1383 migratetype = 0;
1384 list = &pcp->lists[migratetype];
1385 } while (list_empty(list));
1387 /* This is the only non-empty list. Free them all. */
1388 if (batch_free == MIGRATE_PCPTYPES)
1389 batch_free = count;
1391 do {
1392 page = list_last_entry(list, struct page, lru);
1393 /* must delete to avoid corrupting pcp list */
1394 list_del(&page->lru);
1395 pcp->count--;
1397 if (bulkfree_pcp_prepare(page))
1398 continue;
1400 list_add_tail(&page->lru, &head);
1403 * We are going to put the page back to the global
1404 * pool, prefetch its buddy to speed up later access
1405 * under zone->lock. It is believed the overhead of
1406 * an additional test and calculating buddy_pfn here
1407 * can be offset by reduced memory latency later. To
1408 * avoid excessive prefetching due to large count, only
1409 * prefetch buddy for the first pcp->batch nr of pages.
1411 if (prefetch_nr) {
1412 prefetch_buddy(page);
1413 prefetch_nr--;
1415 } while (--count && --batch_free && !list_empty(list));
1418 spin_lock(&zone->lock);
1419 isolated_pageblocks = has_isolate_pageblock(zone);
1422 * Use safe version since after __free_one_page(),
1423 * page->lru.next will not point to original list.
1425 list_for_each_entry_safe(page, tmp, &head, lru) {
1426 int mt = get_pcppage_migratetype(page);
1427 /* MIGRATE_ISOLATE page should not go to pcplists */
1428 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1429 /* Pageblock could have been isolated meanwhile */
1430 if (unlikely(isolated_pageblocks))
1431 mt = get_pageblock_migratetype(page);
1433 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1434 trace_mm_page_pcpu_drain(page, 0, mt);
1436 spin_unlock(&zone->lock);
1439 static void free_one_page(struct zone *zone,
1440 struct page *page, unsigned long pfn,
1441 unsigned int order,
1442 int migratetype, fpi_t fpi_flags)
1444 spin_lock(&zone->lock);
1445 if (unlikely(has_isolate_pageblock(zone) ||
1446 is_migrate_isolate(migratetype))) {
1447 migratetype = get_pfnblock_migratetype(page, pfn);
1449 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1450 spin_unlock(&zone->lock);
1453 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1454 unsigned long zone, int nid)
1456 mm_zero_struct_page(page);
1457 set_page_links(page, zone, nid, pfn);
1458 init_page_count(page);
1459 page_mapcount_reset(page);
1460 page_cpupid_reset_last(page);
1461 page_kasan_tag_reset(page);
1463 INIT_LIST_HEAD(&page->lru);
1464 #ifdef WANT_PAGE_VIRTUAL
1465 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1466 if (!is_highmem_idx(zone))
1467 set_page_address(page, __va(pfn << PAGE_SHIFT));
1468 #endif
1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1472 static void __meminit init_reserved_page(unsigned long pfn)
1474 pg_data_t *pgdat;
1475 int nid, zid;
1477 if (!early_page_uninitialised(pfn))
1478 return;
1480 nid = early_pfn_to_nid(pfn);
1481 pgdat = NODE_DATA(nid);
1483 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1484 struct zone *zone = &pgdat->node_zones[zid];
1486 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1487 break;
1489 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1491 #else
1492 static inline void init_reserved_page(unsigned long pfn)
1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498 * Initialised pages do not have PageReserved set. This function is
1499 * called for each range allocated by the bootmem allocator and
1500 * marks the pages PageReserved. The remaining valid pages are later
1501 * sent to the buddy page allocator.
1503 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1505 unsigned long start_pfn = PFN_DOWN(start);
1506 unsigned long end_pfn = PFN_UP(end);
1508 for (; start_pfn < end_pfn; start_pfn++) {
1509 if (pfn_valid(start_pfn)) {
1510 struct page *page = pfn_to_page(start_pfn);
1512 init_reserved_page(start_pfn);
1514 /* Avoid false-positive PageTail() */
1515 INIT_LIST_HEAD(&page->lru);
1518 * no need for atomic set_bit because the struct
1519 * page is not visible yet so nobody should
1520 * access it yet.
1522 __SetPageReserved(page);
1527 static void __free_pages_ok(struct page *page, unsigned int order,
1528 fpi_t fpi_flags)
1530 unsigned long flags;
1531 int migratetype;
1532 unsigned long pfn = page_to_pfn(page);
1534 if (!free_pages_prepare(page, order, true))
1535 return;
1537 migratetype = get_pfnblock_migratetype(page, pfn);
1538 local_irq_save(flags);
1539 __count_vm_events(PGFREE, 1 << order);
1540 free_one_page(page_zone(page), page, pfn, order, migratetype,
1541 fpi_flags);
1542 local_irq_restore(flags);
1545 void __free_pages_core(struct page *page, unsigned int order)
1547 unsigned int nr_pages = 1 << order;
1548 struct page *p = page;
1549 unsigned int loop;
1552 * When initializing the memmap, __init_single_page() sets the refcount
1553 * of all pages to 1 ("allocated"/"not free"). We have to set the
1554 * refcount of all involved pages to 0.
1556 prefetchw(p);
1557 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1558 prefetchw(p + 1);
1559 __ClearPageReserved(p);
1560 set_page_count(p, 0);
1562 __ClearPageReserved(p);
1563 set_page_count(p, 0);
1565 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1568 * Bypass PCP and place fresh pages right to the tail, primarily
1569 * relevant for memory onlining.
1571 __free_pages_ok(page, order, FPI_TO_TAIL);
1574 #ifdef CONFIG_NEED_MULTIPLE_NODES
1577 * During memory init memblocks map pfns to nids. The search is expensive and
1578 * this caches recent lookups. The implementation of __early_pfn_to_nid
1579 * treats start/end as pfns.
1581 struct mminit_pfnnid_cache {
1582 unsigned long last_start;
1583 unsigned long last_end;
1584 int last_nid;
1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1592 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1593 struct mminit_pfnnid_cache *state)
1595 unsigned long start_pfn, end_pfn;
1596 int nid;
1598 if (state->last_start <= pfn && pfn < state->last_end)
1599 return state->last_nid;
1601 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1602 if (nid != NUMA_NO_NODE) {
1603 state->last_start = start_pfn;
1604 state->last_end = end_pfn;
1605 state->last_nid = nid;
1608 return nid;
1611 int __meminit early_pfn_to_nid(unsigned long pfn)
1613 static DEFINE_SPINLOCK(early_pfn_lock);
1614 int nid;
1616 spin_lock(&early_pfn_lock);
1617 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1618 if (nid < 0)
1619 nid = first_online_node;
1620 spin_unlock(&early_pfn_lock);
1622 return nid;
1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1626 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1627 unsigned int order)
1629 if (early_page_uninitialised(pfn))
1630 return;
1631 __free_pages_core(page, order);
1635 * Check that the whole (or subset of) a pageblock given by the interval of
1636 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1637 * with the migration of free compaction scanner. The scanners then need to
1638 * use only pfn_valid_within() check for arches that allow holes within
1639 * pageblocks.
1641 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1643 * It's possible on some configurations to have a setup like node0 node1 node0
1644 * i.e. it's possible that all pages within a zones range of pages do not
1645 * belong to a single zone. We assume that a border between node0 and node1
1646 * can occur within a single pageblock, but not a node0 node1 node0
1647 * interleaving within a single pageblock. It is therefore sufficient to check
1648 * the first and last page of a pageblock and avoid checking each individual
1649 * page in a pageblock.
1651 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1652 unsigned long end_pfn, struct zone *zone)
1654 struct page *start_page;
1655 struct page *end_page;
1657 /* end_pfn is one past the range we are checking */
1658 end_pfn--;
1660 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1661 return NULL;
1663 start_page = pfn_to_online_page(start_pfn);
1664 if (!start_page)
1665 return NULL;
1667 if (page_zone(start_page) != zone)
1668 return NULL;
1670 end_page = pfn_to_page(end_pfn);
1672 /* This gives a shorter code than deriving page_zone(end_page) */
1673 if (page_zone_id(start_page) != page_zone_id(end_page))
1674 return NULL;
1676 return start_page;
1679 void set_zone_contiguous(struct zone *zone)
1681 unsigned long block_start_pfn = zone->zone_start_pfn;
1682 unsigned long block_end_pfn;
1684 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1685 for (; block_start_pfn < zone_end_pfn(zone);
1686 block_start_pfn = block_end_pfn,
1687 block_end_pfn += pageblock_nr_pages) {
1689 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1691 if (!__pageblock_pfn_to_page(block_start_pfn,
1692 block_end_pfn, zone))
1693 return;
1694 cond_resched();
1697 /* We confirm that there is no hole */
1698 zone->contiguous = true;
1701 void clear_zone_contiguous(struct zone *zone)
1703 zone->contiguous = false;
1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1707 static void __init deferred_free_range(unsigned long pfn,
1708 unsigned long nr_pages)
1710 struct page *page;
1711 unsigned long i;
1713 if (!nr_pages)
1714 return;
1716 page = pfn_to_page(pfn);
1718 /* Free a large naturally-aligned chunk if possible */
1719 if (nr_pages == pageblock_nr_pages &&
1720 (pfn & (pageblock_nr_pages - 1)) == 0) {
1721 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1722 __free_pages_core(page, pageblock_order);
1723 return;
1726 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1727 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1728 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1729 __free_pages_core(page, 0);
1733 /* Completion tracking for deferred_init_memmap() threads */
1734 static atomic_t pgdat_init_n_undone __initdata;
1735 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1737 static inline void __init pgdat_init_report_one_done(void)
1739 if (atomic_dec_and_test(&pgdat_init_n_undone))
1740 complete(&pgdat_init_all_done_comp);
1744 * Returns true if page needs to be initialized or freed to buddy allocator.
1746 * First we check if pfn is valid on architectures where it is possible to have
1747 * holes within pageblock_nr_pages. On systems where it is not possible, this
1748 * function is optimized out.
1750 * Then, we check if a current large page is valid by only checking the validity
1751 * of the head pfn.
1753 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1755 if (!pfn_valid_within(pfn))
1756 return false;
1757 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1758 return false;
1759 return true;
1763 * Free pages to buddy allocator. Try to free aligned pages in
1764 * pageblock_nr_pages sizes.
1766 static void __init deferred_free_pages(unsigned long pfn,
1767 unsigned long end_pfn)
1769 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1770 unsigned long nr_free = 0;
1772 for (; pfn < end_pfn; pfn++) {
1773 if (!deferred_pfn_valid(pfn)) {
1774 deferred_free_range(pfn - nr_free, nr_free);
1775 nr_free = 0;
1776 } else if (!(pfn & nr_pgmask)) {
1777 deferred_free_range(pfn - nr_free, nr_free);
1778 nr_free = 1;
1779 } else {
1780 nr_free++;
1783 /* Free the last block of pages to allocator */
1784 deferred_free_range(pfn - nr_free, nr_free);
1788 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1789 * by performing it only once every pageblock_nr_pages.
1790 * Return number of pages initialized.
1792 static unsigned long __init deferred_init_pages(struct zone *zone,
1793 unsigned long pfn,
1794 unsigned long end_pfn)
1796 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1797 int nid = zone_to_nid(zone);
1798 unsigned long nr_pages = 0;
1799 int zid = zone_idx(zone);
1800 struct page *page = NULL;
1802 for (; pfn < end_pfn; pfn++) {
1803 if (!deferred_pfn_valid(pfn)) {
1804 page = NULL;
1805 continue;
1806 } else if (!page || !(pfn & nr_pgmask)) {
1807 page = pfn_to_page(pfn);
1808 } else {
1809 page++;
1811 __init_single_page(page, pfn, zid, nid);
1812 nr_pages++;
1814 return (nr_pages);
1818 * This function is meant to pre-load the iterator for the zone init.
1819 * Specifically it walks through the ranges until we are caught up to the
1820 * first_init_pfn value and exits there. If we never encounter the value we
1821 * return false indicating there are no valid ranges left.
1823 static bool __init
1824 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1825 unsigned long *spfn, unsigned long *epfn,
1826 unsigned long first_init_pfn)
1828 u64 j;
1831 * Start out by walking through the ranges in this zone that have
1832 * already been initialized. We don't need to do anything with them
1833 * so we just need to flush them out of the system.
1835 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1836 if (*epfn <= first_init_pfn)
1837 continue;
1838 if (*spfn < first_init_pfn)
1839 *spfn = first_init_pfn;
1840 *i = j;
1841 return true;
1844 return false;
1848 * Initialize and free pages. We do it in two loops: first we initialize
1849 * struct page, then free to buddy allocator, because while we are
1850 * freeing pages we can access pages that are ahead (computing buddy
1851 * page in __free_one_page()).
1853 * In order to try and keep some memory in the cache we have the loop
1854 * broken along max page order boundaries. This way we will not cause
1855 * any issues with the buddy page computation.
1857 static unsigned long __init
1858 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1859 unsigned long *end_pfn)
1861 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1862 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1863 unsigned long nr_pages = 0;
1864 u64 j = *i;
1866 /* First we loop through and initialize the page values */
1867 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1868 unsigned long t;
1870 if (mo_pfn <= *start_pfn)
1871 break;
1873 t = min(mo_pfn, *end_pfn);
1874 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1876 if (mo_pfn < *end_pfn) {
1877 *start_pfn = mo_pfn;
1878 break;
1882 /* Reset values and now loop through freeing pages as needed */
1883 swap(j, *i);
1885 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1886 unsigned long t;
1888 if (mo_pfn <= spfn)
1889 break;
1891 t = min(mo_pfn, epfn);
1892 deferred_free_pages(spfn, t);
1894 if (mo_pfn <= epfn)
1895 break;
1898 return nr_pages;
1901 static void __init
1902 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1903 void *arg)
1905 unsigned long spfn, epfn;
1906 struct zone *zone = arg;
1907 u64 i;
1909 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1912 * Initialize and free pages in MAX_ORDER sized increments so that we
1913 * can avoid introducing any issues with the buddy allocator.
1915 while (spfn < end_pfn) {
1916 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1917 cond_resched();
1921 /* An arch may override for more concurrency. */
1922 __weak int __init
1923 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1925 return 1;
1928 /* Initialise remaining memory on a node */
1929 static int __init deferred_init_memmap(void *data)
1931 pg_data_t *pgdat = data;
1932 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1933 unsigned long spfn = 0, epfn = 0;
1934 unsigned long first_init_pfn, flags;
1935 unsigned long start = jiffies;
1936 struct zone *zone;
1937 int zid, max_threads;
1938 u64 i;
1940 /* Bind memory initialisation thread to a local node if possible */
1941 if (!cpumask_empty(cpumask))
1942 set_cpus_allowed_ptr(current, cpumask);
1944 pgdat_resize_lock(pgdat, &flags);
1945 first_init_pfn = pgdat->first_deferred_pfn;
1946 if (first_init_pfn == ULONG_MAX) {
1947 pgdat_resize_unlock(pgdat, &flags);
1948 pgdat_init_report_one_done();
1949 return 0;
1952 /* Sanity check boundaries */
1953 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1954 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1955 pgdat->first_deferred_pfn = ULONG_MAX;
1958 * Once we unlock here, the zone cannot be grown anymore, thus if an
1959 * interrupt thread must allocate this early in boot, zone must be
1960 * pre-grown prior to start of deferred page initialization.
1962 pgdat_resize_unlock(pgdat, &flags);
1964 /* Only the highest zone is deferred so find it */
1965 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1966 zone = pgdat->node_zones + zid;
1967 if (first_init_pfn < zone_end_pfn(zone))
1968 break;
1971 /* If the zone is empty somebody else may have cleared out the zone */
1972 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1973 first_init_pfn))
1974 goto zone_empty;
1976 max_threads = deferred_page_init_max_threads(cpumask);
1978 while (spfn < epfn) {
1979 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1980 struct padata_mt_job job = {
1981 .thread_fn = deferred_init_memmap_chunk,
1982 .fn_arg = zone,
1983 .start = spfn,
1984 .size = epfn_align - spfn,
1985 .align = PAGES_PER_SECTION,
1986 .min_chunk = PAGES_PER_SECTION,
1987 .max_threads = max_threads,
1990 padata_do_multithreaded(&job);
1991 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1992 epfn_align);
1994 zone_empty:
1995 /* Sanity check that the next zone really is unpopulated */
1996 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1998 pr_info("node %d deferred pages initialised in %ums\n",
1999 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2001 pgdat_init_report_one_done();
2002 return 0;
2006 * If this zone has deferred pages, try to grow it by initializing enough
2007 * deferred pages to satisfy the allocation specified by order, rounded up to
2008 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2009 * of SECTION_SIZE bytes by initializing struct pages in increments of
2010 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2012 * Return true when zone was grown, otherwise return false. We return true even
2013 * when we grow less than requested, to let the caller decide if there are
2014 * enough pages to satisfy the allocation.
2016 * Note: We use noinline because this function is needed only during boot, and
2017 * it is called from a __ref function _deferred_grow_zone. This way we are
2018 * making sure that it is not inlined into permanent text section.
2020 static noinline bool __init
2021 deferred_grow_zone(struct zone *zone, unsigned int order)
2023 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2024 pg_data_t *pgdat = zone->zone_pgdat;
2025 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2026 unsigned long spfn, epfn, flags;
2027 unsigned long nr_pages = 0;
2028 u64 i;
2030 /* Only the last zone may have deferred pages */
2031 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2032 return false;
2034 pgdat_resize_lock(pgdat, &flags);
2037 * If someone grew this zone while we were waiting for spinlock, return
2038 * true, as there might be enough pages already.
2040 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2041 pgdat_resize_unlock(pgdat, &flags);
2042 return true;
2045 /* If the zone is empty somebody else may have cleared out the zone */
2046 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2047 first_deferred_pfn)) {
2048 pgdat->first_deferred_pfn = ULONG_MAX;
2049 pgdat_resize_unlock(pgdat, &flags);
2050 /* Retry only once. */
2051 return first_deferred_pfn != ULONG_MAX;
2055 * Initialize and free pages in MAX_ORDER sized increments so
2056 * that we can avoid introducing any issues with the buddy
2057 * allocator.
2059 while (spfn < epfn) {
2060 /* update our first deferred PFN for this section */
2061 first_deferred_pfn = spfn;
2063 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2064 touch_nmi_watchdog();
2066 /* We should only stop along section boundaries */
2067 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2068 continue;
2070 /* If our quota has been met we can stop here */
2071 if (nr_pages >= nr_pages_needed)
2072 break;
2075 pgdat->first_deferred_pfn = spfn;
2076 pgdat_resize_unlock(pgdat, &flags);
2078 return nr_pages > 0;
2082 * deferred_grow_zone() is __init, but it is called from
2083 * get_page_from_freelist() during early boot until deferred_pages permanently
2084 * disables this call. This is why we have refdata wrapper to avoid warning,
2085 * and to ensure that the function body gets unloaded.
2087 static bool __ref
2088 _deferred_grow_zone(struct zone *zone, unsigned int order)
2090 return deferred_grow_zone(zone, order);
2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2095 void __init page_alloc_init_late(void)
2097 struct zone *zone;
2098 int nid;
2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2102 /* There will be num_node_state(N_MEMORY) threads */
2103 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2104 for_each_node_state(nid, N_MEMORY) {
2105 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2108 /* Block until all are initialised */
2109 wait_for_completion(&pgdat_init_all_done_comp);
2112 * The number of managed pages has changed due to the initialisation
2113 * so the pcpu batch and high limits needs to be updated or the limits
2114 * will be artificially small.
2116 for_each_populated_zone(zone)
2117 zone_pcp_update(zone);
2120 * We initialized the rest of the deferred pages. Permanently disable
2121 * on-demand struct page initialization.
2123 static_branch_disable(&deferred_pages);
2125 /* Reinit limits that are based on free pages after the kernel is up */
2126 files_maxfiles_init();
2127 #endif
2129 buffer_init();
2131 /* Discard memblock private memory */
2132 memblock_discard();
2134 for_each_node_state(nid, N_MEMORY)
2135 shuffle_free_memory(NODE_DATA(nid));
2137 for_each_populated_zone(zone)
2138 set_zone_contiguous(zone);
2141 #ifdef CONFIG_CMA
2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2143 void __init init_cma_reserved_pageblock(struct page *page)
2145 unsigned i = pageblock_nr_pages;
2146 struct page *p = page;
2148 do {
2149 __ClearPageReserved(p);
2150 set_page_count(p, 0);
2151 } while (++p, --i);
2153 set_pageblock_migratetype(page, MIGRATE_CMA);
2155 if (pageblock_order >= MAX_ORDER) {
2156 i = pageblock_nr_pages;
2157 p = page;
2158 do {
2159 set_page_refcounted(p);
2160 __free_pages(p, MAX_ORDER - 1);
2161 p += MAX_ORDER_NR_PAGES;
2162 } while (i -= MAX_ORDER_NR_PAGES);
2163 } else {
2164 set_page_refcounted(page);
2165 __free_pages(page, pageblock_order);
2168 adjust_managed_page_count(page, pageblock_nr_pages);
2170 #endif
2173 * The order of subdivision here is critical for the IO subsystem.
2174 * Please do not alter this order without good reasons and regression
2175 * testing. Specifically, as large blocks of memory are subdivided,
2176 * the order in which smaller blocks are delivered depends on the order
2177 * they're subdivided in this function. This is the primary factor
2178 * influencing the order in which pages are delivered to the IO
2179 * subsystem according to empirical testing, and this is also justified
2180 * by considering the behavior of a buddy system containing a single
2181 * large block of memory acted on by a series of small allocations.
2182 * This behavior is a critical factor in sglist merging's success.
2184 * -- nyc
2186 static inline void expand(struct zone *zone, struct page *page,
2187 int low, int high, int migratetype)
2189 unsigned long size = 1 << high;
2191 while (high > low) {
2192 high--;
2193 size >>= 1;
2194 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2197 * Mark as guard pages (or page), that will allow to
2198 * merge back to allocator when buddy will be freed.
2199 * Corresponding page table entries will not be touched,
2200 * pages will stay not present in virtual address space
2202 if (set_page_guard(zone, &page[size], high, migratetype))
2203 continue;
2205 add_to_free_list(&page[size], zone, high, migratetype);
2206 set_buddy_order(&page[size], high);
2210 static void check_new_page_bad(struct page *page)
2212 if (unlikely(page->flags & __PG_HWPOISON)) {
2213 /* Don't complain about hwpoisoned pages */
2214 page_mapcount_reset(page); /* remove PageBuddy */
2215 return;
2218 bad_page(page,
2219 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2223 * This page is about to be returned from the page allocator
2225 static inline int check_new_page(struct page *page)
2227 if (likely(page_expected_state(page,
2228 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2229 return 0;
2231 check_new_page_bad(page);
2232 return 1;
2235 #ifdef CONFIG_DEBUG_VM
2237 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2238 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2239 * also checked when pcp lists are refilled from the free lists.
2241 static inline bool check_pcp_refill(struct page *page)
2243 if (debug_pagealloc_enabled_static())
2244 return check_new_page(page);
2245 else
2246 return false;
2249 static inline bool check_new_pcp(struct page *page)
2251 return check_new_page(page);
2253 #else
2255 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2256 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2257 * enabled, they are also checked when being allocated from the pcp lists.
2259 static inline bool check_pcp_refill(struct page *page)
2261 return check_new_page(page);
2263 static inline bool check_new_pcp(struct page *page)
2265 if (debug_pagealloc_enabled_static())
2266 return check_new_page(page);
2267 else
2268 return false;
2270 #endif /* CONFIG_DEBUG_VM */
2272 static bool check_new_pages(struct page *page, unsigned int order)
2274 int i;
2275 for (i = 0; i < (1 << order); i++) {
2276 struct page *p = page + i;
2278 if (unlikely(check_new_page(p)))
2279 return true;
2282 return false;
2285 inline void post_alloc_hook(struct page *page, unsigned int order,
2286 gfp_t gfp_flags)
2288 set_page_private(page, 0);
2289 set_page_refcounted(page);
2291 arch_alloc_page(page, order);
2292 debug_pagealloc_map_pages(page, 1 << order);
2293 kasan_alloc_pages(page, order);
2294 kernel_unpoison_pages(page, 1 << order);
2295 set_page_owner(page, order, gfp_flags);
2297 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2298 kernel_init_free_pages(page, 1 << order);
2301 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2302 unsigned int alloc_flags)
2304 post_alloc_hook(page, order, gfp_flags);
2306 if (order && (gfp_flags & __GFP_COMP))
2307 prep_compound_page(page, order);
2310 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2311 * allocate the page. The expectation is that the caller is taking
2312 * steps that will free more memory. The caller should avoid the page
2313 * being used for !PFMEMALLOC purposes.
2315 if (alloc_flags & ALLOC_NO_WATERMARKS)
2316 set_page_pfmemalloc(page);
2317 else
2318 clear_page_pfmemalloc(page);
2322 * Go through the free lists for the given migratetype and remove
2323 * the smallest available page from the freelists
2325 static __always_inline
2326 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2327 int migratetype)
2329 unsigned int current_order;
2330 struct free_area *area;
2331 struct page *page;
2333 /* Find a page of the appropriate size in the preferred list */
2334 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2335 area = &(zone->free_area[current_order]);
2336 page = get_page_from_free_area(area, migratetype);
2337 if (!page)
2338 continue;
2339 del_page_from_free_list(page, zone, current_order);
2340 expand(zone, page, order, current_order, migratetype);
2341 set_pcppage_migratetype(page, migratetype);
2342 return page;
2345 return NULL;
2350 * This array describes the order lists are fallen back to when
2351 * the free lists for the desirable migrate type are depleted
2353 static int fallbacks[MIGRATE_TYPES][3] = {
2354 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2355 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2356 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2357 #ifdef CONFIG_CMA
2358 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2359 #endif
2360 #ifdef CONFIG_MEMORY_ISOLATION
2361 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2362 #endif
2365 #ifdef CONFIG_CMA
2366 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2367 unsigned int order)
2369 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2371 #else
2372 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2373 unsigned int order) { return NULL; }
2374 #endif
2377 * Move the free pages in a range to the freelist tail of the requested type.
2378 * Note that start_page and end_pages are not aligned on a pageblock
2379 * boundary. If alignment is required, use move_freepages_block()
2381 static int move_freepages(struct zone *zone,
2382 struct page *start_page, struct page *end_page,
2383 int migratetype, int *num_movable)
2385 struct page *page;
2386 unsigned int order;
2387 int pages_moved = 0;
2389 for (page = start_page; page <= end_page;) {
2390 if (!pfn_valid_within(page_to_pfn(page))) {
2391 page++;
2392 continue;
2395 if (!PageBuddy(page)) {
2397 * We assume that pages that could be isolated for
2398 * migration are movable. But we don't actually try
2399 * isolating, as that would be expensive.
2401 if (num_movable &&
2402 (PageLRU(page) || __PageMovable(page)))
2403 (*num_movable)++;
2405 page++;
2406 continue;
2409 /* Make sure we are not inadvertently changing nodes */
2410 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2411 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2413 order = buddy_order(page);
2414 move_to_free_list(page, zone, order, migratetype);
2415 page += 1 << order;
2416 pages_moved += 1 << order;
2419 return pages_moved;
2422 int move_freepages_block(struct zone *zone, struct page *page,
2423 int migratetype, int *num_movable)
2425 unsigned long start_pfn, end_pfn;
2426 struct page *start_page, *end_page;
2428 if (num_movable)
2429 *num_movable = 0;
2431 start_pfn = page_to_pfn(page);
2432 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2433 start_page = pfn_to_page(start_pfn);
2434 end_page = start_page + pageblock_nr_pages - 1;
2435 end_pfn = start_pfn + pageblock_nr_pages - 1;
2437 /* Do not cross zone boundaries */
2438 if (!zone_spans_pfn(zone, start_pfn))
2439 start_page = page;
2440 if (!zone_spans_pfn(zone, end_pfn))
2441 return 0;
2443 return move_freepages(zone, start_page, end_page, migratetype,
2444 num_movable);
2447 static void change_pageblock_range(struct page *pageblock_page,
2448 int start_order, int migratetype)
2450 int nr_pageblocks = 1 << (start_order - pageblock_order);
2452 while (nr_pageblocks--) {
2453 set_pageblock_migratetype(pageblock_page, migratetype);
2454 pageblock_page += pageblock_nr_pages;
2459 * When we are falling back to another migratetype during allocation, try to
2460 * steal extra free pages from the same pageblocks to satisfy further
2461 * allocations, instead of polluting multiple pageblocks.
2463 * If we are stealing a relatively large buddy page, it is likely there will
2464 * be more free pages in the pageblock, so try to steal them all. For
2465 * reclaimable and unmovable allocations, we steal regardless of page size,
2466 * as fragmentation caused by those allocations polluting movable pageblocks
2467 * is worse than movable allocations stealing from unmovable and reclaimable
2468 * pageblocks.
2470 static bool can_steal_fallback(unsigned int order, int start_mt)
2473 * Leaving this order check is intended, although there is
2474 * relaxed order check in next check. The reason is that
2475 * we can actually steal whole pageblock if this condition met,
2476 * but, below check doesn't guarantee it and that is just heuristic
2477 * so could be changed anytime.
2479 if (order >= pageblock_order)
2480 return true;
2482 if (order >= pageblock_order / 2 ||
2483 start_mt == MIGRATE_RECLAIMABLE ||
2484 start_mt == MIGRATE_UNMOVABLE ||
2485 page_group_by_mobility_disabled)
2486 return true;
2488 return false;
2491 static inline bool boost_watermark(struct zone *zone)
2493 unsigned long max_boost;
2495 if (!watermark_boost_factor)
2496 return false;
2498 * Don't bother in zones that are unlikely to produce results.
2499 * On small machines, including kdump capture kernels running
2500 * in a small area, boosting the watermark can cause an out of
2501 * memory situation immediately.
2503 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2504 return false;
2506 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2507 watermark_boost_factor, 10000);
2510 * high watermark may be uninitialised if fragmentation occurs
2511 * very early in boot so do not boost. We do not fall
2512 * through and boost by pageblock_nr_pages as failing
2513 * allocations that early means that reclaim is not going
2514 * to help and it may even be impossible to reclaim the
2515 * boosted watermark resulting in a hang.
2517 if (!max_boost)
2518 return false;
2520 max_boost = max(pageblock_nr_pages, max_boost);
2522 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2523 max_boost);
2525 return true;
2529 * This function implements actual steal behaviour. If order is large enough,
2530 * we can steal whole pageblock. If not, we first move freepages in this
2531 * pageblock to our migratetype and determine how many already-allocated pages
2532 * are there in the pageblock with a compatible migratetype. If at least half
2533 * of pages are free or compatible, we can change migratetype of the pageblock
2534 * itself, so pages freed in the future will be put on the correct free list.
2536 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2537 unsigned int alloc_flags, int start_type, bool whole_block)
2539 unsigned int current_order = buddy_order(page);
2540 int free_pages, movable_pages, alike_pages;
2541 int old_block_type;
2543 old_block_type = get_pageblock_migratetype(page);
2546 * This can happen due to races and we want to prevent broken
2547 * highatomic accounting.
2549 if (is_migrate_highatomic(old_block_type))
2550 goto single_page;
2552 /* Take ownership for orders >= pageblock_order */
2553 if (current_order >= pageblock_order) {
2554 change_pageblock_range(page, current_order, start_type);
2555 goto single_page;
2559 * Boost watermarks to increase reclaim pressure to reduce the
2560 * likelihood of future fallbacks. Wake kswapd now as the node
2561 * may be balanced overall and kswapd will not wake naturally.
2563 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2564 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2566 /* We are not allowed to try stealing from the whole block */
2567 if (!whole_block)
2568 goto single_page;
2570 free_pages = move_freepages_block(zone, page, start_type,
2571 &movable_pages);
2573 * Determine how many pages are compatible with our allocation.
2574 * For movable allocation, it's the number of movable pages which
2575 * we just obtained. For other types it's a bit more tricky.
2577 if (start_type == MIGRATE_MOVABLE) {
2578 alike_pages = movable_pages;
2579 } else {
2581 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2582 * to MOVABLE pageblock, consider all non-movable pages as
2583 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2584 * vice versa, be conservative since we can't distinguish the
2585 * exact migratetype of non-movable pages.
2587 if (old_block_type == MIGRATE_MOVABLE)
2588 alike_pages = pageblock_nr_pages
2589 - (free_pages + movable_pages);
2590 else
2591 alike_pages = 0;
2594 /* moving whole block can fail due to zone boundary conditions */
2595 if (!free_pages)
2596 goto single_page;
2599 * If a sufficient number of pages in the block are either free or of
2600 * comparable migratability as our allocation, claim the whole block.
2602 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2603 page_group_by_mobility_disabled)
2604 set_pageblock_migratetype(page, start_type);
2606 return;
2608 single_page:
2609 move_to_free_list(page, zone, current_order, start_type);
2613 * Check whether there is a suitable fallback freepage with requested order.
2614 * If only_stealable is true, this function returns fallback_mt only if
2615 * we can steal other freepages all together. This would help to reduce
2616 * fragmentation due to mixed migratetype pages in one pageblock.
2618 int find_suitable_fallback(struct free_area *area, unsigned int order,
2619 int migratetype, bool only_stealable, bool *can_steal)
2621 int i;
2622 int fallback_mt;
2624 if (area->nr_free == 0)
2625 return -1;
2627 *can_steal = false;
2628 for (i = 0;; i++) {
2629 fallback_mt = fallbacks[migratetype][i];
2630 if (fallback_mt == MIGRATE_TYPES)
2631 break;
2633 if (free_area_empty(area, fallback_mt))
2634 continue;
2636 if (can_steal_fallback(order, migratetype))
2637 *can_steal = true;
2639 if (!only_stealable)
2640 return fallback_mt;
2642 if (*can_steal)
2643 return fallback_mt;
2646 return -1;
2650 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2651 * there are no empty page blocks that contain a page with a suitable order
2653 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2654 unsigned int alloc_order)
2656 int mt;
2657 unsigned long max_managed, flags;
2660 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2661 * Check is race-prone but harmless.
2663 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2664 if (zone->nr_reserved_highatomic >= max_managed)
2665 return;
2667 spin_lock_irqsave(&zone->lock, flags);
2669 /* Recheck the nr_reserved_highatomic limit under the lock */
2670 if (zone->nr_reserved_highatomic >= max_managed)
2671 goto out_unlock;
2673 /* Yoink! */
2674 mt = get_pageblock_migratetype(page);
2675 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2676 && !is_migrate_cma(mt)) {
2677 zone->nr_reserved_highatomic += pageblock_nr_pages;
2678 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2679 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2682 out_unlock:
2683 spin_unlock_irqrestore(&zone->lock, flags);
2687 * Used when an allocation is about to fail under memory pressure. This
2688 * potentially hurts the reliability of high-order allocations when under
2689 * intense memory pressure but failed atomic allocations should be easier
2690 * to recover from than an OOM.
2692 * If @force is true, try to unreserve a pageblock even though highatomic
2693 * pageblock is exhausted.
2695 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2696 bool force)
2698 struct zonelist *zonelist = ac->zonelist;
2699 unsigned long flags;
2700 struct zoneref *z;
2701 struct zone *zone;
2702 struct page *page;
2703 int order;
2704 bool ret;
2706 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2707 ac->nodemask) {
2709 * Preserve at least one pageblock unless memory pressure
2710 * is really high.
2712 if (!force && zone->nr_reserved_highatomic <=
2713 pageblock_nr_pages)
2714 continue;
2716 spin_lock_irqsave(&zone->lock, flags);
2717 for (order = 0; order < MAX_ORDER; order++) {
2718 struct free_area *area = &(zone->free_area[order]);
2720 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2721 if (!page)
2722 continue;
2725 * In page freeing path, migratetype change is racy so
2726 * we can counter several free pages in a pageblock
2727 * in this loop althoug we changed the pageblock type
2728 * from highatomic to ac->migratetype. So we should
2729 * adjust the count once.
2731 if (is_migrate_highatomic_page(page)) {
2733 * It should never happen but changes to
2734 * locking could inadvertently allow a per-cpu
2735 * drain to add pages to MIGRATE_HIGHATOMIC
2736 * while unreserving so be safe and watch for
2737 * underflows.
2739 zone->nr_reserved_highatomic -= min(
2740 pageblock_nr_pages,
2741 zone->nr_reserved_highatomic);
2745 * Convert to ac->migratetype and avoid the normal
2746 * pageblock stealing heuristics. Minimally, the caller
2747 * is doing the work and needs the pages. More
2748 * importantly, if the block was always converted to
2749 * MIGRATE_UNMOVABLE or another type then the number
2750 * of pageblocks that cannot be completely freed
2751 * may increase.
2753 set_pageblock_migratetype(page, ac->migratetype);
2754 ret = move_freepages_block(zone, page, ac->migratetype,
2755 NULL);
2756 if (ret) {
2757 spin_unlock_irqrestore(&zone->lock, flags);
2758 return ret;
2761 spin_unlock_irqrestore(&zone->lock, flags);
2764 return false;
2768 * Try finding a free buddy page on the fallback list and put it on the free
2769 * list of requested migratetype, possibly along with other pages from the same
2770 * block, depending on fragmentation avoidance heuristics. Returns true if
2771 * fallback was found so that __rmqueue_smallest() can grab it.
2773 * The use of signed ints for order and current_order is a deliberate
2774 * deviation from the rest of this file, to make the for loop
2775 * condition simpler.
2777 static __always_inline bool
2778 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2779 unsigned int alloc_flags)
2781 struct free_area *area;
2782 int current_order;
2783 int min_order = order;
2784 struct page *page;
2785 int fallback_mt;
2786 bool can_steal;
2789 * Do not steal pages from freelists belonging to other pageblocks
2790 * i.e. orders < pageblock_order. If there are no local zones free,
2791 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2793 if (alloc_flags & ALLOC_NOFRAGMENT)
2794 min_order = pageblock_order;
2797 * Find the largest available free page in the other list. This roughly
2798 * approximates finding the pageblock with the most free pages, which
2799 * would be too costly to do exactly.
2801 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2802 --current_order) {
2803 area = &(zone->free_area[current_order]);
2804 fallback_mt = find_suitable_fallback(area, current_order,
2805 start_migratetype, false, &can_steal);
2806 if (fallback_mt == -1)
2807 continue;
2810 * We cannot steal all free pages from the pageblock and the
2811 * requested migratetype is movable. In that case it's better to
2812 * steal and split the smallest available page instead of the
2813 * largest available page, because even if the next movable
2814 * allocation falls back into a different pageblock than this
2815 * one, it won't cause permanent fragmentation.
2817 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2818 && current_order > order)
2819 goto find_smallest;
2821 goto do_steal;
2824 return false;
2826 find_smallest:
2827 for (current_order = order; current_order < MAX_ORDER;
2828 current_order++) {
2829 area = &(zone->free_area[current_order]);
2830 fallback_mt = find_suitable_fallback(area, current_order,
2831 start_migratetype, false, &can_steal);
2832 if (fallback_mt != -1)
2833 break;
2837 * This should not happen - we already found a suitable fallback
2838 * when looking for the largest page.
2840 VM_BUG_ON(current_order == MAX_ORDER);
2842 do_steal:
2843 page = get_page_from_free_area(area, fallback_mt);
2845 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2846 can_steal);
2848 trace_mm_page_alloc_extfrag(page, order, current_order,
2849 start_migratetype, fallback_mt);
2851 return true;
2856 * Do the hard work of removing an element from the buddy allocator.
2857 * Call me with the zone->lock already held.
2859 static __always_inline struct page *
2860 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2861 unsigned int alloc_flags)
2863 struct page *page;
2865 #ifdef CONFIG_CMA
2867 * Balance movable allocations between regular and CMA areas by
2868 * allocating from CMA when over half of the zone's free memory
2869 * is in the CMA area.
2871 if (alloc_flags & ALLOC_CMA &&
2872 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2873 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2874 page = __rmqueue_cma_fallback(zone, order);
2875 if (page)
2876 return page;
2878 #endif
2879 retry:
2880 page = __rmqueue_smallest(zone, order, migratetype);
2881 if (unlikely(!page)) {
2882 if (alloc_flags & ALLOC_CMA)
2883 page = __rmqueue_cma_fallback(zone, order);
2885 if (!page && __rmqueue_fallback(zone, order, migratetype,
2886 alloc_flags))
2887 goto retry;
2890 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2891 return page;
2895 * Obtain a specified number of elements from the buddy allocator, all under
2896 * a single hold of the lock, for efficiency. Add them to the supplied list.
2897 * Returns the number of new pages which were placed at *list.
2899 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2900 unsigned long count, struct list_head *list,
2901 int migratetype, unsigned int alloc_flags)
2903 int i, alloced = 0;
2905 spin_lock(&zone->lock);
2906 for (i = 0; i < count; ++i) {
2907 struct page *page = __rmqueue(zone, order, migratetype,
2908 alloc_flags);
2909 if (unlikely(page == NULL))
2910 break;
2912 if (unlikely(check_pcp_refill(page)))
2913 continue;
2916 * Split buddy pages returned by expand() are received here in
2917 * physical page order. The page is added to the tail of
2918 * caller's list. From the callers perspective, the linked list
2919 * is ordered by page number under some conditions. This is
2920 * useful for IO devices that can forward direction from the
2921 * head, thus also in the physical page order. This is useful
2922 * for IO devices that can merge IO requests if the physical
2923 * pages are ordered properly.
2925 list_add_tail(&page->lru, list);
2926 alloced++;
2927 if (is_migrate_cma(get_pcppage_migratetype(page)))
2928 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2929 -(1 << order));
2933 * i pages were removed from the buddy list even if some leak due
2934 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2935 * on i. Do not confuse with 'alloced' which is the number of
2936 * pages added to the pcp list.
2938 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2939 spin_unlock(&zone->lock);
2940 return alloced;
2943 #ifdef CONFIG_NUMA
2945 * Called from the vmstat counter updater to drain pagesets of this
2946 * currently executing processor on remote nodes after they have
2947 * expired.
2949 * Note that this function must be called with the thread pinned to
2950 * a single processor.
2952 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2954 unsigned long flags;
2955 int to_drain, batch;
2957 local_irq_save(flags);
2958 batch = READ_ONCE(pcp->batch);
2959 to_drain = min(pcp->count, batch);
2960 if (to_drain > 0)
2961 free_pcppages_bulk(zone, to_drain, pcp);
2962 local_irq_restore(flags);
2964 #endif
2967 * Drain pcplists of the indicated processor and zone.
2969 * The processor must either be the current processor and the
2970 * thread pinned to the current processor or a processor that
2971 * is not online.
2973 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2975 unsigned long flags;
2976 struct per_cpu_pageset *pset;
2977 struct per_cpu_pages *pcp;
2979 local_irq_save(flags);
2980 pset = per_cpu_ptr(zone->pageset, cpu);
2982 pcp = &pset->pcp;
2983 if (pcp->count)
2984 free_pcppages_bulk(zone, pcp->count, pcp);
2985 local_irq_restore(flags);
2989 * Drain pcplists of all zones on the indicated processor.
2991 * The processor must either be the current processor and the
2992 * thread pinned to the current processor or a processor that
2993 * is not online.
2995 static void drain_pages(unsigned int cpu)
2997 struct zone *zone;
2999 for_each_populated_zone(zone) {
3000 drain_pages_zone(cpu, zone);
3005 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3007 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3008 * the single zone's pages.
3010 void drain_local_pages(struct zone *zone)
3012 int cpu = smp_processor_id();
3014 if (zone)
3015 drain_pages_zone(cpu, zone);
3016 else
3017 drain_pages(cpu);
3020 static void drain_local_pages_wq(struct work_struct *work)
3022 struct pcpu_drain *drain;
3024 drain = container_of(work, struct pcpu_drain, work);
3027 * drain_all_pages doesn't use proper cpu hotplug protection so
3028 * we can race with cpu offline when the WQ can move this from
3029 * a cpu pinned worker to an unbound one. We can operate on a different
3030 * cpu which is allright but we also have to make sure to not move to
3031 * a different one.
3033 preempt_disable();
3034 drain_local_pages(drain->zone);
3035 preempt_enable();
3039 * The implementation of drain_all_pages(), exposing an extra parameter to
3040 * drain on all cpus.
3042 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3043 * not empty. The check for non-emptiness can however race with a free to
3044 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3045 * that need the guarantee that every CPU has drained can disable the
3046 * optimizing racy check.
3048 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3050 int cpu;
3053 * Allocate in the BSS so we wont require allocation in
3054 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3056 static cpumask_t cpus_with_pcps;
3059 * Make sure nobody triggers this path before mm_percpu_wq is fully
3060 * initialized.
3062 if (WARN_ON_ONCE(!mm_percpu_wq))
3063 return;
3066 * Do not drain if one is already in progress unless it's specific to
3067 * a zone. Such callers are primarily CMA and memory hotplug and need
3068 * the drain to be complete when the call returns.
3070 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3071 if (!zone)
3072 return;
3073 mutex_lock(&pcpu_drain_mutex);
3077 * We don't care about racing with CPU hotplug event
3078 * as offline notification will cause the notified
3079 * cpu to drain that CPU pcps and on_each_cpu_mask
3080 * disables preemption as part of its processing
3082 for_each_online_cpu(cpu) {
3083 struct per_cpu_pageset *pcp;
3084 struct zone *z;
3085 bool has_pcps = false;
3087 if (force_all_cpus) {
3089 * The pcp.count check is racy, some callers need a
3090 * guarantee that no cpu is missed.
3092 has_pcps = true;
3093 } else if (zone) {
3094 pcp = per_cpu_ptr(zone->pageset, cpu);
3095 if (pcp->pcp.count)
3096 has_pcps = true;
3097 } else {
3098 for_each_populated_zone(z) {
3099 pcp = per_cpu_ptr(z->pageset, cpu);
3100 if (pcp->pcp.count) {
3101 has_pcps = true;
3102 break;
3107 if (has_pcps)
3108 cpumask_set_cpu(cpu, &cpus_with_pcps);
3109 else
3110 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3113 for_each_cpu(cpu, &cpus_with_pcps) {
3114 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3116 drain->zone = zone;
3117 INIT_WORK(&drain->work, drain_local_pages_wq);
3118 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3120 for_each_cpu(cpu, &cpus_with_pcps)
3121 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3123 mutex_unlock(&pcpu_drain_mutex);
3127 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3129 * When zone parameter is non-NULL, spill just the single zone's pages.
3131 * Note that this can be extremely slow as the draining happens in a workqueue.
3133 void drain_all_pages(struct zone *zone)
3135 __drain_all_pages(zone, false);
3138 #ifdef CONFIG_HIBERNATION
3141 * Touch the watchdog for every WD_PAGE_COUNT pages.
3143 #define WD_PAGE_COUNT (128*1024)
3145 void mark_free_pages(struct zone *zone)
3147 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3148 unsigned long flags;
3149 unsigned int order, t;
3150 struct page *page;
3152 if (zone_is_empty(zone))
3153 return;
3155 spin_lock_irqsave(&zone->lock, flags);
3157 max_zone_pfn = zone_end_pfn(zone);
3158 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3159 if (pfn_valid(pfn)) {
3160 page = pfn_to_page(pfn);
3162 if (!--page_count) {
3163 touch_nmi_watchdog();
3164 page_count = WD_PAGE_COUNT;
3167 if (page_zone(page) != zone)
3168 continue;
3170 if (!swsusp_page_is_forbidden(page))
3171 swsusp_unset_page_free(page);
3174 for_each_migratetype_order(order, t) {
3175 list_for_each_entry(page,
3176 &zone->free_area[order].free_list[t], lru) {
3177 unsigned long i;
3179 pfn = page_to_pfn(page);
3180 for (i = 0; i < (1UL << order); i++) {
3181 if (!--page_count) {
3182 touch_nmi_watchdog();
3183 page_count = WD_PAGE_COUNT;
3185 swsusp_set_page_free(pfn_to_page(pfn + i));
3189 spin_unlock_irqrestore(&zone->lock, flags);
3191 #endif /* CONFIG_PM */
3193 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3195 int migratetype;
3197 if (!free_pcp_prepare(page))
3198 return false;
3200 migratetype = get_pfnblock_migratetype(page, pfn);
3201 set_pcppage_migratetype(page, migratetype);
3202 return true;
3205 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3207 struct zone *zone = page_zone(page);
3208 struct per_cpu_pages *pcp;
3209 int migratetype;
3211 migratetype = get_pcppage_migratetype(page);
3212 __count_vm_event(PGFREE);
3215 * We only track unmovable, reclaimable and movable on pcp lists.
3216 * Free ISOLATE pages back to the allocator because they are being
3217 * offlined but treat HIGHATOMIC as movable pages so we can get those
3218 * areas back if necessary. Otherwise, we may have to free
3219 * excessively into the page allocator
3221 if (migratetype >= MIGRATE_PCPTYPES) {
3222 if (unlikely(is_migrate_isolate(migratetype))) {
3223 free_one_page(zone, page, pfn, 0, migratetype,
3224 FPI_NONE);
3225 return;
3227 migratetype = MIGRATE_MOVABLE;
3230 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3231 list_add(&page->lru, &pcp->lists[migratetype]);
3232 pcp->count++;
3233 if (pcp->count >= READ_ONCE(pcp->high))
3234 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3238 * Free a 0-order page
3240 void free_unref_page(struct page *page)
3242 unsigned long flags;
3243 unsigned long pfn = page_to_pfn(page);
3245 if (!free_unref_page_prepare(page, pfn))
3246 return;
3248 local_irq_save(flags);
3249 free_unref_page_commit(page, pfn);
3250 local_irq_restore(flags);
3254 * Free a list of 0-order pages
3256 void free_unref_page_list(struct list_head *list)
3258 struct page *page, *next;
3259 unsigned long flags, pfn;
3260 int batch_count = 0;
3262 /* Prepare pages for freeing */
3263 list_for_each_entry_safe(page, next, list, lru) {
3264 pfn = page_to_pfn(page);
3265 if (!free_unref_page_prepare(page, pfn))
3266 list_del(&page->lru);
3267 set_page_private(page, pfn);
3270 local_irq_save(flags);
3271 list_for_each_entry_safe(page, next, list, lru) {
3272 unsigned long pfn = page_private(page);
3274 set_page_private(page, 0);
3275 trace_mm_page_free_batched(page);
3276 free_unref_page_commit(page, pfn);
3279 * Guard against excessive IRQ disabled times when we get
3280 * a large list of pages to free.
3282 if (++batch_count == SWAP_CLUSTER_MAX) {
3283 local_irq_restore(flags);
3284 batch_count = 0;
3285 local_irq_save(flags);
3288 local_irq_restore(flags);
3292 * split_page takes a non-compound higher-order page, and splits it into
3293 * n (1<<order) sub-pages: page[0..n]
3294 * Each sub-page must be freed individually.
3296 * Note: this is probably too low level an operation for use in drivers.
3297 * Please consult with lkml before using this in your driver.
3299 void split_page(struct page *page, unsigned int order)
3301 int i;
3303 VM_BUG_ON_PAGE(PageCompound(page), page);
3304 VM_BUG_ON_PAGE(!page_count(page), page);
3306 for (i = 1; i < (1 << order); i++)
3307 set_page_refcounted(page + i);
3308 split_page_owner(page, 1 << order);
3310 EXPORT_SYMBOL_GPL(split_page);
3312 int __isolate_free_page(struct page *page, unsigned int order)
3314 unsigned long watermark;
3315 struct zone *zone;
3316 int mt;
3318 BUG_ON(!PageBuddy(page));
3320 zone = page_zone(page);
3321 mt = get_pageblock_migratetype(page);
3323 if (!is_migrate_isolate(mt)) {
3325 * Obey watermarks as if the page was being allocated. We can
3326 * emulate a high-order watermark check with a raised order-0
3327 * watermark, because we already know our high-order page
3328 * exists.
3330 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3331 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3332 return 0;
3334 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3337 /* Remove page from free list */
3339 del_page_from_free_list(page, zone, order);
3342 * Set the pageblock if the isolated page is at least half of a
3343 * pageblock
3345 if (order >= pageblock_order - 1) {
3346 struct page *endpage = page + (1 << order) - 1;
3347 for (; page < endpage; page += pageblock_nr_pages) {
3348 int mt = get_pageblock_migratetype(page);
3349 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3350 && !is_migrate_highatomic(mt))
3351 set_pageblock_migratetype(page,
3352 MIGRATE_MOVABLE);
3357 return 1UL << order;
3361 * __putback_isolated_page - Return a now-isolated page back where we got it
3362 * @page: Page that was isolated
3363 * @order: Order of the isolated page
3364 * @mt: The page's pageblock's migratetype
3366 * This function is meant to return a page pulled from the free lists via
3367 * __isolate_free_page back to the free lists they were pulled from.
3369 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3371 struct zone *zone = page_zone(page);
3373 /* zone lock should be held when this function is called */
3374 lockdep_assert_held(&zone->lock);
3376 /* Return isolated page to tail of freelist. */
3377 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3378 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3382 * Update NUMA hit/miss statistics
3384 * Must be called with interrupts disabled.
3386 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3388 #ifdef CONFIG_NUMA
3389 enum numa_stat_item local_stat = NUMA_LOCAL;
3391 /* skip numa counters update if numa stats is disabled */
3392 if (!static_branch_likely(&vm_numa_stat_key))
3393 return;
3395 if (zone_to_nid(z) != numa_node_id())
3396 local_stat = NUMA_OTHER;
3398 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3399 __inc_numa_state(z, NUMA_HIT);
3400 else {
3401 __inc_numa_state(z, NUMA_MISS);
3402 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3404 __inc_numa_state(z, local_stat);
3405 #endif
3408 /* Remove page from the per-cpu list, caller must protect the list */
3409 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3410 unsigned int alloc_flags,
3411 struct per_cpu_pages *pcp,
3412 struct list_head *list)
3414 struct page *page;
3416 do {
3417 if (list_empty(list)) {
3418 pcp->count += rmqueue_bulk(zone, 0,
3419 READ_ONCE(pcp->batch), list,
3420 migratetype, alloc_flags);
3421 if (unlikely(list_empty(list)))
3422 return NULL;
3425 page = list_first_entry(list, struct page, lru);
3426 list_del(&page->lru);
3427 pcp->count--;
3428 } while (check_new_pcp(page));
3430 return page;
3433 /* Lock and remove page from the per-cpu list */
3434 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3435 struct zone *zone, gfp_t gfp_flags,
3436 int migratetype, unsigned int alloc_flags)
3438 struct per_cpu_pages *pcp;
3439 struct list_head *list;
3440 struct page *page;
3441 unsigned long flags;
3443 local_irq_save(flags);
3444 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3445 list = &pcp->lists[migratetype];
3446 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3447 if (page) {
3448 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3449 zone_statistics(preferred_zone, zone);
3451 local_irq_restore(flags);
3452 return page;
3456 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3458 static inline
3459 struct page *rmqueue(struct zone *preferred_zone,
3460 struct zone *zone, unsigned int order,
3461 gfp_t gfp_flags, unsigned int alloc_flags,
3462 int migratetype)
3464 unsigned long flags;
3465 struct page *page;
3467 if (likely(order == 0)) {
3469 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3470 * we need to skip it when CMA area isn't allowed.
3472 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3473 migratetype != MIGRATE_MOVABLE) {
3474 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3475 migratetype, alloc_flags);
3476 goto out;
3481 * We most definitely don't want callers attempting to
3482 * allocate greater than order-1 page units with __GFP_NOFAIL.
3484 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3485 spin_lock_irqsave(&zone->lock, flags);
3487 do {
3488 page = NULL;
3490 * order-0 request can reach here when the pcplist is skipped
3491 * due to non-CMA allocation context. HIGHATOMIC area is
3492 * reserved for high-order atomic allocation, so order-0
3493 * request should skip it.
3495 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3496 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3497 if (page)
3498 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3500 if (!page)
3501 page = __rmqueue(zone, order, migratetype, alloc_flags);
3502 } while (page && check_new_pages(page, order));
3503 spin_unlock(&zone->lock);
3504 if (!page)
3505 goto failed;
3506 __mod_zone_freepage_state(zone, -(1 << order),
3507 get_pcppage_migratetype(page));
3509 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3510 zone_statistics(preferred_zone, zone);
3511 local_irq_restore(flags);
3513 out:
3514 /* Separate test+clear to avoid unnecessary atomics */
3515 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3516 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3517 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3520 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3521 return page;
3523 failed:
3524 local_irq_restore(flags);
3525 return NULL;
3528 #ifdef CONFIG_FAIL_PAGE_ALLOC
3530 static struct {
3531 struct fault_attr attr;
3533 bool ignore_gfp_highmem;
3534 bool ignore_gfp_reclaim;
3535 u32 min_order;
3536 } fail_page_alloc = {
3537 .attr = FAULT_ATTR_INITIALIZER,
3538 .ignore_gfp_reclaim = true,
3539 .ignore_gfp_highmem = true,
3540 .min_order = 1,
3543 static int __init setup_fail_page_alloc(char *str)
3545 return setup_fault_attr(&fail_page_alloc.attr, str);
3547 __setup("fail_page_alloc=", setup_fail_page_alloc);
3549 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3551 if (order < fail_page_alloc.min_order)
3552 return false;
3553 if (gfp_mask & __GFP_NOFAIL)
3554 return false;
3555 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3556 return false;
3557 if (fail_page_alloc.ignore_gfp_reclaim &&
3558 (gfp_mask & __GFP_DIRECT_RECLAIM))
3559 return false;
3561 return should_fail(&fail_page_alloc.attr, 1 << order);
3564 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3566 static int __init fail_page_alloc_debugfs(void)
3568 umode_t mode = S_IFREG | 0600;
3569 struct dentry *dir;
3571 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3572 &fail_page_alloc.attr);
3574 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3575 &fail_page_alloc.ignore_gfp_reclaim);
3576 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3577 &fail_page_alloc.ignore_gfp_highmem);
3578 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3580 return 0;
3583 late_initcall(fail_page_alloc_debugfs);
3585 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3587 #else /* CONFIG_FAIL_PAGE_ALLOC */
3589 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3591 return false;
3594 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3596 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3598 return __should_fail_alloc_page(gfp_mask, order);
3600 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3602 static inline long __zone_watermark_unusable_free(struct zone *z,
3603 unsigned int order, unsigned int alloc_flags)
3605 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3606 long unusable_free = (1 << order) - 1;
3609 * If the caller does not have rights to ALLOC_HARDER then subtract
3610 * the high-atomic reserves. This will over-estimate the size of the
3611 * atomic reserve but it avoids a search.
3613 if (likely(!alloc_harder))
3614 unusable_free += z->nr_reserved_highatomic;
3616 #ifdef CONFIG_CMA
3617 /* If allocation can't use CMA areas don't use free CMA pages */
3618 if (!(alloc_flags & ALLOC_CMA))
3619 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3620 #endif
3622 return unusable_free;
3626 * Return true if free base pages are above 'mark'. For high-order checks it
3627 * will return true of the order-0 watermark is reached and there is at least
3628 * one free page of a suitable size. Checking now avoids taking the zone lock
3629 * to check in the allocation paths if no pages are free.
3631 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3632 int highest_zoneidx, unsigned int alloc_flags,
3633 long free_pages)
3635 long min = mark;
3636 int o;
3637 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3639 /* free_pages may go negative - that's OK */
3640 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3642 if (alloc_flags & ALLOC_HIGH)
3643 min -= min / 2;
3645 if (unlikely(alloc_harder)) {
3647 * OOM victims can try even harder than normal ALLOC_HARDER
3648 * users on the grounds that it's definitely going to be in
3649 * the exit path shortly and free memory. Any allocation it
3650 * makes during the free path will be small and short-lived.
3652 if (alloc_flags & ALLOC_OOM)
3653 min -= min / 2;
3654 else
3655 min -= min / 4;
3659 * Check watermarks for an order-0 allocation request. If these
3660 * are not met, then a high-order request also cannot go ahead
3661 * even if a suitable page happened to be free.
3663 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3664 return false;
3666 /* If this is an order-0 request then the watermark is fine */
3667 if (!order)
3668 return true;
3670 /* For a high-order request, check at least one suitable page is free */
3671 for (o = order; o < MAX_ORDER; o++) {
3672 struct free_area *area = &z->free_area[o];
3673 int mt;
3675 if (!area->nr_free)
3676 continue;
3678 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3679 if (!free_area_empty(area, mt))
3680 return true;
3683 #ifdef CONFIG_CMA
3684 if ((alloc_flags & ALLOC_CMA) &&
3685 !free_area_empty(area, MIGRATE_CMA)) {
3686 return true;
3688 #endif
3689 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3690 return true;
3692 return false;
3695 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3696 int highest_zoneidx, unsigned int alloc_flags)
3698 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3699 zone_page_state(z, NR_FREE_PAGES));
3702 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3703 unsigned long mark, int highest_zoneidx,
3704 unsigned int alloc_flags, gfp_t gfp_mask)
3706 long free_pages;
3708 free_pages = zone_page_state(z, NR_FREE_PAGES);
3711 * Fast check for order-0 only. If this fails then the reserves
3712 * need to be calculated.
3714 if (!order) {
3715 long fast_free;
3717 fast_free = free_pages;
3718 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3719 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3720 return true;
3723 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3724 free_pages))
3725 return true;
3727 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3728 * when checking the min watermark. The min watermark is the
3729 * point where boosting is ignored so that kswapd is woken up
3730 * when below the low watermark.
3732 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3733 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3734 mark = z->_watermark[WMARK_MIN];
3735 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3736 alloc_flags, free_pages);
3739 return false;
3742 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3743 unsigned long mark, int highest_zoneidx)
3745 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3747 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3748 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3750 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3751 free_pages);
3754 #ifdef CONFIG_NUMA
3755 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3757 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3758 node_reclaim_distance;
3760 #else /* CONFIG_NUMA */
3761 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3763 return true;
3765 #endif /* CONFIG_NUMA */
3768 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3769 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3770 * premature use of a lower zone may cause lowmem pressure problems that
3771 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3772 * probably too small. It only makes sense to spread allocations to avoid
3773 * fragmentation between the Normal and DMA32 zones.
3775 static inline unsigned int
3776 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3778 unsigned int alloc_flags;
3781 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3782 * to save a branch.
3784 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3786 #ifdef CONFIG_ZONE_DMA32
3787 if (!zone)
3788 return alloc_flags;
3790 if (zone_idx(zone) != ZONE_NORMAL)
3791 return alloc_flags;
3794 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3795 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3796 * on UMA that if Normal is populated then so is DMA32.
3798 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3799 if (nr_online_nodes > 1 && !populated_zone(--zone))
3800 return alloc_flags;
3802 alloc_flags |= ALLOC_NOFRAGMENT;
3803 #endif /* CONFIG_ZONE_DMA32 */
3804 return alloc_flags;
3807 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3808 unsigned int alloc_flags)
3810 #ifdef CONFIG_CMA
3811 unsigned int pflags = current->flags;
3813 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3814 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3815 alloc_flags |= ALLOC_CMA;
3817 #endif
3818 return alloc_flags;
3822 * get_page_from_freelist goes through the zonelist trying to allocate
3823 * a page.
3825 static struct page *
3826 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3827 const struct alloc_context *ac)
3829 struct zoneref *z;
3830 struct zone *zone;
3831 struct pglist_data *last_pgdat_dirty_limit = NULL;
3832 bool no_fallback;
3834 retry:
3836 * Scan zonelist, looking for a zone with enough free.
3837 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3839 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3840 z = ac->preferred_zoneref;
3841 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3842 ac->nodemask) {
3843 struct page *page;
3844 unsigned long mark;
3846 if (cpusets_enabled() &&
3847 (alloc_flags & ALLOC_CPUSET) &&
3848 !__cpuset_zone_allowed(zone, gfp_mask))
3849 continue;
3851 * When allocating a page cache page for writing, we
3852 * want to get it from a node that is within its dirty
3853 * limit, such that no single node holds more than its
3854 * proportional share of globally allowed dirty pages.
3855 * The dirty limits take into account the node's
3856 * lowmem reserves and high watermark so that kswapd
3857 * should be able to balance it without having to
3858 * write pages from its LRU list.
3860 * XXX: For now, allow allocations to potentially
3861 * exceed the per-node dirty limit in the slowpath
3862 * (spread_dirty_pages unset) before going into reclaim,
3863 * which is important when on a NUMA setup the allowed
3864 * nodes are together not big enough to reach the
3865 * global limit. The proper fix for these situations
3866 * will require awareness of nodes in the
3867 * dirty-throttling and the flusher threads.
3869 if (ac->spread_dirty_pages) {
3870 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3871 continue;
3873 if (!node_dirty_ok(zone->zone_pgdat)) {
3874 last_pgdat_dirty_limit = zone->zone_pgdat;
3875 continue;
3879 if (no_fallback && nr_online_nodes > 1 &&
3880 zone != ac->preferred_zoneref->zone) {
3881 int local_nid;
3884 * If moving to a remote node, retry but allow
3885 * fragmenting fallbacks. Locality is more important
3886 * than fragmentation avoidance.
3888 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3889 if (zone_to_nid(zone) != local_nid) {
3890 alloc_flags &= ~ALLOC_NOFRAGMENT;
3891 goto retry;
3895 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3896 if (!zone_watermark_fast(zone, order, mark,
3897 ac->highest_zoneidx, alloc_flags,
3898 gfp_mask)) {
3899 int ret;
3901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3903 * Watermark failed for this zone, but see if we can
3904 * grow this zone if it contains deferred pages.
3906 if (static_branch_unlikely(&deferred_pages)) {
3907 if (_deferred_grow_zone(zone, order))
3908 goto try_this_zone;
3910 #endif
3911 /* Checked here to keep the fast path fast */
3912 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3913 if (alloc_flags & ALLOC_NO_WATERMARKS)
3914 goto try_this_zone;
3916 if (node_reclaim_mode == 0 ||
3917 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3918 continue;
3920 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3921 switch (ret) {
3922 case NODE_RECLAIM_NOSCAN:
3923 /* did not scan */
3924 continue;
3925 case NODE_RECLAIM_FULL:
3926 /* scanned but unreclaimable */
3927 continue;
3928 default:
3929 /* did we reclaim enough */
3930 if (zone_watermark_ok(zone, order, mark,
3931 ac->highest_zoneidx, alloc_flags))
3932 goto try_this_zone;
3934 continue;
3938 try_this_zone:
3939 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3940 gfp_mask, alloc_flags, ac->migratetype);
3941 if (page) {
3942 prep_new_page(page, order, gfp_mask, alloc_flags);
3945 * If this is a high-order atomic allocation then check
3946 * if the pageblock should be reserved for the future
3948 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3949 reserve_highatomic_pageblock(page, zone, order);
3951 return page;
3952 } else {
3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3954 /* Try again if zone has deferred pages */
3955 if (static_branch_unlikely(&deferred_pages)) {
3956 if (_deferred_grow_zone(zone, order))
3957 goto try_this_zone;
3959 #endif
3964 * It's possible on a UMA machine to get through all zones that are
3965 * fragmented. If avoiding fragmentation, reset and try again.
3967 if (no_fallback) {
3968 alloc_flags &= ~ALLOC_NOFRAGMENT;
3969 goto retry;
3972 return NULL;
3975 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3977 unsigned int filter = SHOW_MEM_FILTER_NODES;
3980 * This documents exceptions given to allocations in certain
3981 * contexts that are allowed to allocate outside current's set
3982 * of allowed nodes.
3984 if (!(gfp_mask & __GFP_NOMEMALLOC))
3985 if (tsk_is_oom_victim(current) ||
3986 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3987 filter &= ~SHOW_MEM_FILTER_NODES;
3988 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3989 filter &= ~SHOW_MEM_FILTER_NODES;
3991 show_mem(filter, nodemask);
3994 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3996 struct va_format vaf;
3997 va_list args;
3998 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4000 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4001 return;
4003 va_start(args, fmt);
4004 vaf.fmt = fmt;
4005 vaf.va = &args;
4006 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4007 current->comm, &vaf, gfp_mask, &gfp_mask,
4008 nodemask_pr_args(nodemask));
4009 va_end(args);
4011 cpuset_print_current_mems_allowed();
4012 pr_cont("\n");
4013 dump_stack();
4014 warn_alloc_show_mem(gfp_mask, nodemask);
4017 static inline struct page *
4018 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4019 unsigned int alloc_flags,
4020 const struct alloc_context *ac)
4022 struct page *page;
4024 page = get_page_from_freelist(gfp_mask, order,
4025 alloc_flags|ALLOC_CPUSET, ac);
4027 * fallback to ignore cpuset restriction if our nodes
4028 * are depleted
4030 if (!page)
4031 page = get_page_from_freelist(gfp_mask, order,
4032 alloc_flags, ac);
4034 return page;
4037 static inline struct page *
4038 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4039 const struct alloc_context *ac, unsigned long *did_some_progress)
4041 struct oom_control oc = {
4042 .zonelist = ac->zonelist,
4043 .nodemask = ac->nodemask,
4044 .memcg = NULL,
4045 .gfp_mask = gfp_mask,
4046 .order = order,
4048 struct page *page;
4050 *did_some_progress = 0;
4053 * Acquire the oom lock. If that fails, somebody else is
4054 * making progress for us.
4056 if (!mutex_trylock(&oom_lock)) {
4057 *did_some_progress = 1;
4058 schedule_timeout_uninterruptible(1);
4059 return NULL;
4063 * Go through the zonelist yet one more time, keep very high watermark
4064 * here, this is only to catch a parallel oom killing, we must fail if
4065 * we're still under heavy pressure. But make sure that this reclaim
4066 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4067 * allocation which will never fail due to oom_lock already held.
4069 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4070 ~__GFP_DIRECT_RECLAIM, order,
4071 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4072 if (page)
4073 goto out;
4075 /* Coredumps can quickly deplete all memory reserves */
4076 if (current->flags & PF_DUMPCORE)
4077 goto out;
4078 /* The OOM killer will not help higher order allocs */
4079 if (order > PAGE_ALLOC_COSTLY_ORDER)
4080 goto out;
4082 * We have already exhausted all our reclaim opportunities without any
4083 * success so it is time to admit defeat. We will skip the OOM killer
4084 * because it is very likely that the caller has a more reasonable
4085 * fallback than shooting a random task.
4087 * The OOM killer may not free memory on a specific node.
4089 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4090 goto out;
4091 /* The OOM killer does not needlessly kill tasks for lowmem */
4092 if (ac->highest_zoneidx < ZONE_NORMAL)
4093 goto out;
4094 if (pm_suspended_storage())
4095 goto out;
4097 * XXX: GFP_NOFS allocations should rather fail than rely on
4098 * other request to make a forward progress.
4099 * We are in an unfortunate situation where out_of_memory cannot
4100 * do much for this context but let's try it to at least get
4101 * access to memory reserved if the current task is killed (see
4102 * out_of_memory). Once filesystems are ready to handle allocation
4103 * failures more gracefully we should just bail out here.
4106 /* Exhausted what can be done so it's blame time */
4107 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4108 *did_some_progress = 1;
4111 * Help non-failing allocations by giving them access to memory
4112 * reserves
4114 if (gfp_mask & __GFP_NOFAIL)
4115 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4116 ALLOC_NO_WATERMARKS, ac);
4118 out:
4119 mutex_unlock(&oom_lock);
4120 return page;
4124 * Maximum number of compaction retries wit a progress before OOM
4125 * killer is consider as the only way to move forward.
4127 #define MAX_COMPACT_RETRIES 16
4129 #ifdef CONFIG_COMPACTION
4130 /* Try memory compaction for high-order allocations before reclaim */
4131 static struct page *
4132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4133 unsigned int alloc_flags, const struct alloc_context *ac,
4134 enum compact_priority prio, enum compact_result *compact_result)
4136 struct page *page = NULL;
4137 unsigned long pflags;
4138 unsigned int noreclaim_flag;
4140 if (!order)
4141 return NULL;
4143 psi_memstall_enter(&pflags);
4144 noreclaim_flag = memalloc_noreclaim_save();
4146 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4147 prio, &page);
4149 memalloc_noreclaim_restore(noreclaim_flag);
4150 psi_memstall_leave(&pflags);
4153 * At least in one zone compaction wasn't deferred or skipped, so let's
4154 * count a compaction stall
4156 count_vm_event(COMPACTSTALL);
4158 /* Prep a captured page if available */
4159 if (page)
4160 prep_new_page(page, order, gfp_mask, alloc_flags);
4162 /* Try get a page from the freelist if available */
4163 if (!page)
4164 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4166 if (page) {
4167 struct zone *zone = page_zone(page);
4169 zone->compact_blockskip_flush = false;
4170 compaction_defer_reset(zone, order, true);
4171 count_vm_event(COMPACTSUCCESS);
4172 return page;
4176 * It's bad if compaction run occurs and fails. The most likely reason
4177 * is that pages exist, but not enough to satisfy watermarks.
4179 count_vm_event(COMPACTFAIL);
4181 cond_resched();
4183 return NULL;
4186 static inline bool
4187 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4188 enum compact_result compact_result,
4189 enum compact_priority *compact_priority,
4190 int *compaction_retries)
4192 int max_retries = MAX_COMPACT_RETRIES;
4193 int min_priority;
4194 bool ret = false;
4195 int retries = *compaction_retries;
4196 enum compact_priority priority = *compact_priority;
4198 if (!order)
4199 return false;
4201 if (compaction_made_progress(compact_result))
4202 (*compaction_retries)++;
4205 * compaction considers all the zone as desperately out of memory
4206 * so it doesn't really make much sense to retry except when the
4207 * failure could be caused by insufficient priority
4209 if (compaction_failed(compact_result))
4210 goto check_priority;
4213 * compaction was skipped because there are not enough order-0 pages
4214 * to work with, so we retry only if it looks like reclaim can help.
4216 if (compaction_needs_reclaim(compact_result)) {
4217 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4218 goto out;
4222 * make sure the compaction wasn't deferred or didn't bail out early
4223 * due to locks contention before we declare that we should give up.
4224 * But the next retry should use a higher priority if allowed, so
4225 * we don't just keep bailing out endlessly.
4227 if (compaction_withdrawn(compact_result)) {
4228 goto check_priority;
4232 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4233 * costly ones because they are de facto nofail and invoke OOM
4234 * killer to move on while costly can fail and users are ready
4235 * to cope with that. 1/4 retries is rather arbitrary but we
4236 * would need much more detailed feedback from compaction to
4237 * make a better decision.
4239 if (order > PAGE_ALLOC_COSTLY_ORDER)
4240 max_retries /= 4;
4241 if (*compaction_retries <= max_retries) {
4242 ret = true;
4243 goto out;
4247 * Make sure there are attempts at the highest priority if we exhausted
4248 * all retries or failed at the lower priorities.
4250 check_priority:
4251 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4252 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4254 if (*compact_priority > min_priority) {
4255 (*compact_priority)--;
4256 *compaction_retries = 0;
4257 ret = true;
4259 out:
4260 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4261 return ret;
4263 #else
4264 static inline struct page *
4265 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4266 unsigned int alloc_flags, const struct alloc_context *ac,
4267 enum compact_priority prio, enum compact_result *compact_result)
4269 *compact_result = COMPACT_SKIPPED;
4270 return NULL;
4273 static inline bool
4274 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4275 enum compact_result compact_result,
4276 enum compact_priority *compact_priority,
4277 int *compaction_retries)
4279 struct zone *zone;
4280 struct zoneref *z;
4282 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4283 return false;
4286 * There are setups with compaction disabled which would prefer to loop
4287 * inside the allocator rather than hit the oom killer prematurely.
4288 * Let's give them a good hope and keep retrying while the order-0
4289 * watermarks are OK.
4291 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4292 ac->highest_zoneidx, ac->nodemask) {
4293 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4294 ac->highest_zoneidx, alloc_flags))
4295 return true;
4297 return false;
4299 #endif /* CONFIG_COMPACTION */
4301 #ifdef CONFIG_LOCKDEP
4302 static struct lockdep_map __fs_reclaim_map =
4303 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4305 static bool __need_reclaim(gfp_t gfp_mask)
4307 /* no reclaim without waiting on it */
4308 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4309 return false;
4311 /* this guy won't enter reclaim */
4312 if (current->flags & PF_MEMALLOC)
4313 return false;
4315 if (gfp_mask & __GFP_NOLOCKDEP)
4316 return false;
4318 return true;
4321 void __fs_reclaim_acquire(void)
4323 lock_map_acquire(&__fs_reclaim_map);
4326 void __fs_reclaim_release(void)
4328 lock_map_release(&__fs_reclaim_map);
4331 void fs_reclaim_acquire(gfp_t gfp_mask)
4333 gfp_mask = current_gfp_context(gfp_mask);
4335 if (__need_reclaim(gfp_mask)) {
4336 if (gfp_mask & __GFP_FS)
4337 __fs_reclaim_acquire();
4339 #ifdef CONFIG_MMU_NOTIFIER
4340 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4341 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4342 #endif
4346 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4348 void fs_reclaim_release(gfp_t gfp_mask)
4350 gfp_mask = current_gfp_context(gfp_mask);
4352 if (__need_reclaim(gfp_mask)) {
4353 if (gfp_mask & __GFP_FS)
4354 __fs_reclaim_release();
4357 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4358 #endif
4360 /* Perform direct synchronous page reclaim */
4361 static unsigned long
4362 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4363 const struct alloc_context *ac)
4365 unsigned int noreclaim_flag;
4366 unsigned long pflags, progress;
4368 cond_resched();
4370 /* We now go into synchronous reclaim */
4371 cpuset_memory_pressure_bump();
4372 psi_memstall_enter(&pflags);
4373 fs_reclaim_acquire(gfp_mask);
4374 noreclaim_flag = memalloc_noreclaim_save();
4376 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4377 ac->nodemask);
4379 memalloc_noreclaim_restore(noreclaim_flag);
4380 fs_reclaim_release(gfp_mask);
4381 psi_memstall_leave(&pflags);
4383 cond_resched();
4385 return progress;
4388 /* The really slow allocator path where we enter direct reclaim */
4389 static inline struct page *
4390 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4391 unsigned int alloc_flags, const struct alloc_context *ac,
4392 unsigned long *did_some_progress)
4394 struct page *page = NULL;
4395 bool drained = false;
4397 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4398 if (unlikely(!(*did_some_progress)))
4399 return NULL;
4401 retry:
4402 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4405 * If an allocation failed after direct reclaim, it could be because
4406 * pages are pinned on the per-cpu lists or in high alloc reserves.
4407 * Shrink them and try again
4409 if (!page && !drained) {
4410 unreserve_highatomic_pageblock(ac, false);
4411 drain_all_pages(NULL);
4412 drained = true;
4413 goto retry;
4416 return page;
4419 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4420 const struct alloc_context *ac)
4422 struct zoneref *z;
4423 struct zone *zone;
4424 pg_data_t *last_pgdat = NULL;
4425 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4427 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4428 ac->nodemask) {
4429 if (last_pgdat != zone->zone_pgdat)
4430 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4431 last_pgdat = zone->zone_pgdat;
4435 static inline unsigned int
4436 gfp_to_alloc_flags(gfp_t gfp_mask)
4438 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4441 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4442 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4443 * to save two branches.
4445 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4446 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4449 * The caller may dip into page reserves a bit more if the caller
4450 * cannot run direct reclaim, or if the caller has realtime scheduling
4451 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4452 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4454 alloc_flags |= (__force int)
4455 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4457 if (gfp_mask & __GFP_ATOMIC) {
4459 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4460 * if it can't schedule.
4462 if (!(gfp_mask & __GFP_NOMEMALLOC))
4463 alloc_flags |= ALLOC_HARDER;
4465 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4466 * comment for __cpuset_node_allowed().
4468 alloc_flags &= ~ALLOC_CPUSET;
4469 } else if (unlikely(rt_task(current)) && !in_interrupt())
4470 alloc_flags |= ALLOC_HARDER;
4472 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4474 return alloc_flags;
4477 static bool oom_reserves_allowed(struct task_struct *tsk)
4479 if (!tsk_is_oom_victim(tsk))
4480 return false;
4483 * !MMU doesn't have oom reaper so give access to memory reserves
4484 * only to the thread with TIF_MEMDIE set
4486 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4487 return false;
4489 return true;
4493 * Distinguish requests which really need access to full memory
4494 * reserves from oom victims which can live with a portion of it
4496 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4498 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4499 return 0;
4500 if (gfp_mask & __GFP_MEMALLOC)
4501 return ALLOC_NO_WATERMARKS;
4502 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4503 return ALLOC_NO_WATERMARKS;
4504 if (!in_interrupt()) {
4505 if (current->flags & PF_MEMALLOC)
4506 return ALLOC_NO_WATERMARKS;
4507 else if (oom_reserves_allowed(current))
4508 return ALLOC_OOM;
4511 return 0;
4514 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4516 return !!__gfp_pfmemalloc_flags(gfp_mask);
4520 * Checks whether it makes sense to retry the reclaim to make a forward progress
4521 * for the given allocation request.
4523 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4524 * without success, or when we couldn't even meet the watermark if we
4525 * reclaimed all remaining pages on the LRU lists.
4527 * Returns true if a retry is viable or false to enter the oom path.
4529 static inline bool
4530 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4531 struct alloc_context *ac, int alloc_flags,
4532 bool did_some_progress, int *no_progress_loops)
4534 struct zone *zone;
4535 struct zoneref *z;
4536 bool ret = false;
4539 * Costly allocations might have made a progress but this doesn't mean
4540 * their order will become available due to high fragmentation so
4541 * always increment the no progress counter for them
4543 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4544 *no_progress_loops = 0;
4545 else
4546 (*no_progress_loops)++;
4549 * Make sure we converge to OOM if we cannot make any progress
4550 * several times in the row.
4552 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4553 /* Before OOM, exhaust highatomic_reserve */
4554 return unreserve_highatomic_pageblock(ac, true);
4558 * Keep reclaiming pages while there is a chance this will lead
4559 * somewhere. If none of the target zones can satisfy our allocation
4560 * request even if all reclaimable pages are considered then we are
4561 * screwed and have to go OOM.
4563 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4564 ac->highest_zoneidx, ac->nodemask) {
4565 unsigned long available;
4566 unsigned long reclaimable;
4567 unsigned long min_wmark = min_wmark_pages(zone);
4568 bool wmark;
4570 available = reclaimable = zone_reclaimable_pages(zone);
4571 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4574 * Would the allocation succeed if we reclaimed all
4575 * reclaimable pages?
4577 wmark = __zone_watermark_ok(zone, order, min_wmark,
4578 ac->highest_zoneidx, alloc_flags, available);
4579 trace_reclaim_retry_zone(z, order, reclaimable,
4580 available, min_wmark, *no_progress_loops, wmark);
4581 if (wmark) {
4583 * If we didn't make any progress and have a lot of
4584 * dirty + writeback pages then we should wait for
4585 * an IO to complete to slow down the reclaim and
4586 * prevent from pre mature OOM
4588 if (!did_some_progress) {
4589 unsigned long write_pending;
4591 write_pending = zone_page_state_snapshot(zone,
4592 NR_ZONE_WRITE_PENDING);
4594 if (2 * write_pending > reclaimable) {
4595 congestion_wait(BLK_RW_ASYNC, HZ/10);
4596 return true;
4600 ret = true;
4601 goto out;
4605 out:
4607 * Memory allocation/reclaim might be called from a WQ context and the
4608 * current implementation of the WQ concurrency control doesn't
4609 * recognize that a particular WQ is congested if the worker thread is
4610 * looping without ever sleeping. Therefore we have to do a short sleep
4611 * here rather than calling cond_resched().
4613 if (current->flags & PF_WQ_WORKER)
4614 schedule_timeout_uninterruptible(1);
4615 else
4616 cond_resched();
4617 return ret;
4620 static inline bool
4621 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4624 * It's possible that cpuset's mems_allowed and the nodemask from
4625 * mempolicy don't intersect. This should be normally dealt with by
4626 * policy_nodemask(), but it's possible to race with cpuset update in
4627 * such a way the check therein was true, and then it became false
4628 * before we got our cpuset_mems_cookie here.
4629 * This assumes that for all allocations, ac->nodemask can come only
4630 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4631 * when it does not intersect with the cpuset restrictions) or the
4632 * caller can deal with a violated nodemask.
4634 if (cpusets_enabled() && ac->nodemask &&
4635 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4636 ac->nodemask = NULL;
4637 return true;
4641 * When updating a task's mems_allowed or mempolicy nodemask, it is
4642 * possible to race with parallel threads in such a way that our
4643 * allocation can fail while the mask is being updated. If we are about
4644 * to fail, check if the cpuset changed during allocation and if so,
4645 * retry.
4647 if (read_mems_allowed_retry(cpuset_mems_cookie))
4648 return true;
4650 return false;
4653 static inline struct page *
4654 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4655 struct alloc_context *ac)
4657 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4658 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4659 struct page *page = NULL;
4660 unsigned int alloc_flags;
4661 unsigned long did_some_progress;
4662 enum compact_priority compact_priority;
4663 enum compact_result compact_result;
4664 int compaction_retries;
4665 int no_progress_loops;
4666 unsigned int cpuset_mems_cookie;
4667 int reserve_flags;
4670 * We also sanity check to catch abuse of atomic reserves being used by
4671 * callers that are not in atomic context.
4673 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4674 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4675 gfp_mask &= ~__GFP_ATOMIC;
4677 retry_cpuset:
4678 compaction_retries = 0;
4679 no_progress_loops = 0;
4680 compact_priority = DEF_COMPACT_PRIORITY;
4681 cpuset_mems_cookie = read_mems_allowed_begin();
4684 * The fast path uses conservative alloc_flags to succeed only until
4685 * kswapd needs to be woken up, and to avoid the cost of setting up
4686 * alloc_flags precisely. So we do that now.
4688 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4691 * We need to recalculate the starting point for the zonelist iterator
4692 * because we might have used different nodemask in the fast path, or
4693 * there was a cpuset modification and we are retrying - otherwise we
4694 * could end up iterating over non-eligible zones endlessly.
4696 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4697 ac->highest_zoneidx, ac->nodemask);
4698 if (!ac->preferred_zoneref->zone)
4699 goto nopage;
4701 if (alloc_flags & ALLOC_KSWAPD)
4702 wake_all_kswapds(order, gfp_mask, ac);
4705 * The adjusted alloc_flags might result in immediate success, so try
4706 * that first
4708 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4709 if (page)
4710 goto got_pg;
4713 * For costly allocations, try direct compaction first, as it's likely
4714 * that we have enough base pages and don't need to reclaim. For non-
4715 * movable high-order allocations, do that as well, as compaction will
4716 * try prevent permanent fragmentation by migrating from blocks of the
4717 * same migratetype.
4718 * Don't try this for allocations that are allowed to ignore
4719 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4721 if (can_direct_reclaim &&
4722 (costly_order ||
4723 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4724 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4725 page = __alloc_pages_direct_compact(gfp_mask, order,
4726 alloc_flags, ac,
4727 INIT_COMPACT_PRIORITY,
4728 &compact_result);
4729 if (page)
4730 goto got_pg;
4733 * Checks for costly allocations with __GFP_NORETRY, which
4734 * includes some THP page fault allocations
4736 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4738 * If allocating entire pageblock(s) and compaction
4739 * failed because all zones are below low watermarks
4740 * or is prohibited because it recently failed at this
4741 * order, fail immediately unless the allocator has
4742 * requested compaction and reclaim retry.
4744 * Reclaim is
4745 * - potentially very expensive because zones are far
4746 * below their low watermarks or this is part of very
4747 * bursty high order allocations,
4748 * - not guaranteed to help because isolate_freepages()
4749 * may not iterate over freed pages as part of its
4750 * linear scan, and
4751 * - unlikely to make entire pageblocks free on its
4752 * own.
4754 if (compact_result == COMPACT_SKIPPED ||
4755 compact_result == COMPACT_DEFERRED)
4756 goto nopage;
4759 * Looks like reclaim/compaction is worth trying, but
4760 * sync compaction could be very expensive, so keep
4761 * using async compaction.
4763 compact_priority = INIT_COMPACT_PRIORITY;
4767 retry:
4768 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4769 if (alloc_flags & ALLOC_KSWAPD)
4770 wake_all_kswapds(order, gfp_mask, ac);
4772 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4773 if (reserve_flags)
4774 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4777 * Reset the nodemask and zonelist iterators if memory policies can be
4778 * ignored. These allocations are high priority and system rather than
4779 * user oriented.
4781 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4782 ac->nodemask = NULL;
4783 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4784 ac->highest_zoneidx, ac->nodemask);
4787 /* Attempt with potentially adjusted zonelist and alloc_flags */
4788 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4789 if (page)
4790 goto got_pg;
4792 /* Caller is not willing to reclaim, we can't balance anything */
4793 if (!can_direct_reclaim)
4794 goto nopage;
4796 /* Avoid recursion of direct reclaim */
4797 if (current->flags & PF_MEMALLOC)
4798 goto nopage;
4800 /* Try direct reclaim and then allocating */
4801 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4802 &did_some_progress);
4803 if (page)
4804 goto got_pg;
4806 /* Try direct compaction and then allocating */
4807 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4808 compact_priority, &compact_result);
4809 if (page)
4810 goto got_pg;
4812 /* Do not loop if specifically requested */
4813 if (gfp_mask & __GFP_NORETRY)
4814 goto nopage;
4817 * Do not retry costly high order allocations unless they are
4818 * __GFP_RETRY_MAYFAIL
4820 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4821 goto nopage;
4823 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4824 did_some_progress > 0, &no_progress_loops))
4825 goto retry;
4828 * It doesn't make any sense to retry for the compaction if the order-0
4829 * reclaim is not able to make any progress because the current
4830 * implementation of the compaction depends on the sufficient amount
4831 * of free memory (see __compaction_suitable)
4833 if (did_some_progress > 0 &&
4834 should_compact_retry(ac, order, alloc_flags,
4835 compact_result, &compact_priority,
4836 &compaction_retries))
4837 goto retry;
4840 /* Deal with possible cpuset update races before we start OOM killing */
4841 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4842 goto retry_cpuset;
4844 /* Reclaim has failed us, start killing things */
4845 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4846 if (page)
4847 goto got_pg;
4849 /* Avoid allocations with no watermarks from looping endlessly */
4850 if (tsk_is_oom_victim(current) &&
4851 (alloc_flags & ALLOC_OOM ||
4852 (gfp_mask & __GFP_NOMEMALLOC)))
4853 goto nopage;
4855 /* Retry as long as the OOM killer is making progress */
4856 if (did_some_progress) {
4857 no_progress_loops = 0;
4858 goto retry;
4861 nopage:
4862 /* Deal with possible cpuset update races before we fail */
4863 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4864 goto retry_cpuset;
4867 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4868 * we always retry
4870 if (gfp_mask & __GFP_NOFAIL) {
4872 * All existing users of the __GFP_NOFAIL are blockable, so warn
4873 * of any new users that actually require GFP_NOWAIT
4875 if (WARN_ON_ONCE(!can_direct_reclaim))
4876 goto fail;
4879 * PF_MEMALLOC request from this context is rather bizarre
4880 * because we cannot reclaim anything and only can loop waiting
4881 * for somebody to do a work for us
4883 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4886 * non failing costly orders are a hard requirement which we
4887 * are not prepared for much so let's warn about these users
4888 * so that we can identify them and convert them to something
4889 * else.
4891 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4894 * Help non-failing allocations by giving them access to memory
4895 * reserves but do not use ALLOC_NO_WATERMARKS because this
4896 * could deplete whole memory reserves which would just make
4897 * the situation worse
4899 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4900 if (page)
4901 goto got_pg;
4903 cond_resched();
4904 goto retry;
4906 fail:
4907 warn_alloc(gfp_mask, ac->nodemask,
4908 "page allocation failure: order:%u", order);
4909 got_pg:
4910 return page;
4913 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4914 int preferred_nid, nodemask_t *nodemask,
4915 struct alloc_context *ac, gfp_t *alloc_mask,
4916 unsigned int *alloc_flags)
4918 ac->highest_zoneidx = gfp_zone(gfp_mask);
4919 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4920 ac->nodemask = nodemask;
4921 ac->migratetype = gfp_migratetype(gfp_mask);
4923 if (cpusets_enabled()) {
4924 *alloc_mask |= __GFP_HARDWALL;
4926 * When we are in the interrupt context, it is irrelevant
4927 * to the current task context. It means that any node ok.
4929 if (!in_interrupt() && !ac->nodemask)
4930 ac->nodemask = &cpuset_current_mems_allowed;
4931 else
4932 *alloc_flags |= ALLOC_CPUSET;
4935 fs_reclaim_acquire(gfp_mask);
4936 fs_reclaim_release(gfp_mask);
4938 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4940 if (should_fail_alloc_page(gfp_mask, order))
4941 return false;
4943 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4945 /* Dirty zone balancing only done in the fast path */
4946 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4949 * The preferred zone is used for statistics but crucially it is
4950 * also used as the starting point for the zonelist iterator. It
4951 * may get reset for allocations that ignore memory policies.
4953 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4954 ac->highest_zoneidx, ac->nodemask);
4956 return true;
4960 * This is the 'heart' of the zoned buddy allocator.
4962 struct page *
4963 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4964 nodemask_t *nodemask)
4966 struct page *page;
4967 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4968 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4969 struct alloc_context ac = { };
4972 * There are several places where we assume that the order value is sane
4973 * so bail out early if the request is out of bound.
4975 if (unlikely(order >= MAX_ORDER)) {
4976 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4977 return NULL;
4980 gfp_mask &= gfp_allowed_mask;
4981 alloc_mask = gfp_mask;
4982 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4983 return NULL;
4986 * Forbid the first pass from falling back to types that fragment
4987 * memory until all local zones are considered.
4989 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4991 /* First allocation attempt */
4992 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4993 if (likely(page))
4994 goto out;
4997 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4998 * resp. GFP_NOIO which has to be inherited for all allocation requests
4999 * from a particular context which has been marked by
5000 * memalloc_no{fs,io}_{save,restore}.
5002 alloc_mask = current_gfp_context(gfp_mask);
5003 ac.spread_dirty_pages = false;
5006 * Restore the original nodemask if it was potentially replaced with
5007 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5009 ac.nodemask = nodemask;
5011 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5013 out:
5014 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5015 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5016 __free_pages(page, order);
5017 page = NULL;
5020 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5022 return page;
5024 EXPORT_SYMBOL(__alloc_pages_nodemask);
5027 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5028 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5029 * you need to access high mem.
5031 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5033 struct page *page;
5035 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5036 if (!page)
5037 return 0;
5038 return (unsigned long) page_address(page);
5040 EXPORT_SYMBOL(__get_free_pages);
5042 unsigned long get_zeroed_page(gfp_t gfp_mask)
5044 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5046 EXPORT_SYMBOL(get_zeroed_page);
5048 static inline void free_the_page(struct page *page, unsigned int order)
5050 if (order == 0) /* Via pcp? */
5051 free_unref_page(page);
5052 else
5053 __free_pages_ok(page, order, FPI_NONE);
5057 * __free_pages - Free pages allocated with alloc_pages().
5058 * @page: The page pointer returned from alloc_pages().
5059 * @order: The order of the allocation.
5061 * This function can free multi-page allocations that are not compound
5062 * pages. It does not check that the @order passed in matches that of
5063 * the allocation, so it is easy to leak memory. Freeing more memory
5064 * than was allocated will probably emit a warning.
5066 * If the last reference to this page is speculative, it will be released
5067 * by put_page() which only frees the first page of a non-compound
5068 * allocation. To prevent the remaining pages from being leaked, we free
5069 * the subsequent pages here. If you want to use the page's reference
5070 * count to decide when to free the allocation, you should allocate a
5071 * compound page, and use put_page() instead of __free_pages().
5073 * Context: May be called in interrupt context or while holding a normal
5074 * spinlock, but not in NMI context or while holding a raw spinlock.
5076 void __free_pages(struct page *page, unsigned int order)
5078 if (put_page_testzero(page))
5079 free_the_page(page, order);
5080 else if (!PageHead(page))
5081 while (order-- > 0)
5082 free_the_page(page + (1 << order), order);
5084 EXPORT_SYMBOL(__free_pages);
5086 void free_pages(unsigned long addr, unsigned int order)
5088 if (addr != 0) {
5089 VM_BUG_ON(!virt_addr_valid((void *)addr));
5090 __free_pages(virt_to_page((void *)addr), order);
5094 EXPORT_SYMBOL(free_pages);
5097 * Page Fragment:
5098 * An arbitrary-length arbitrary-offset area of memory which resides
5099 * within a 0 or higher order page. Multiple fragments within that page
5100 * are individually refcounted, in the page's reference counter.
5102 * The page_frag functions below provide a simple allocation framework for
5103 * page fragments. This is used by the network stack and network device
5104 * drivers to provide a backing region of memory for use as either an
5105 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5107 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5108 gfp_t gfp_mask)
5110 struct page *page = NULL;
5111 gfp_t gfp = gfp_mask;
5113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5114 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5115 __GFP_NOMEMALLOC;
5116 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5117 PAGE_FRAG_CACHE_MAX_ORDER);
5118 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5119 #endif
5120 if (unlikely(!page))
5121 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5123 nc->va = page ? page_address(page) : NULL;
5125 return page;
5128 void __page_frag_cache_drain(struct page *page, unsigned int count)
5130 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5132 if (page_ref_sub_and_test(page, count))
5133 free_the_page(page, compound_order(page));
5135 EXPORT_SYMBOL(__page_frag_cache_drain);
5137 void *page_frag_alloc(struct page_frag_cache *nc,
5138 unsigned int fragsz, gfp_t gfp_mask)
5140 unsigned int size = PAGE_SIZE;
5141 struct page *page;
5142 int offset;
5144 if (unlikely(!nc->va)) {
5145 refill:
5146 page = __page_frag_cache_refill(nc, gfp_mask);
5147 if (!page)
5148 return NULL;
5150 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5151 /* if size can vary use size else just use PAGE_SIZE */
5152 size = nc->size;
5153 #endif
5154 /* Even if we own the page, we do not use atomic_set().
5155 * This would break get_page_unless_zero() users.
5157 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5159 /* reset page count bias and offset to start of new frag */
5160 nc->pfmemalloc = page_is_pfmemalloc(page);
5161 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5162 nc->offset = size;
5165 offset = nc->offset - fragsz;
5166 if (unlikely(offset < 0)) {
5167 page = virt_to_page(nc->va);
5169 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5170 goto refill;
5172 if (unlikely(nc->pfmemalloc)) {
5173 free_the_page(page, compound_order(page));
5174 goto refill;
5177 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5178 /* if size can vary use size else just use PAGE_SIZE */
5179 size = nc->size;
5180 #endif
5181 /* OK, page count is 0, we can safely set it */
5182 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5184 /* reset page count bias and offset to start of new frag */
5185 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5186 offset = size - fragsz;
5189 nc->pagecnt_bias--;
5190 nc->offset = offset;
5192 return nc->va + offset;
5194 EXPORT_SYMBOL(page_frag_alloc);
5197 * Frees a page fragment allocated out of either a compound or order 0 page.
5199 void page_frag_free(void *addr)
5201 struct page *page = virt_to_head_page(addr);
5203 if (unlikely(put_page_testzero(page)))
5204 free_the_page(page, compound_order(page));
5206 EXPORT_SYMBOL(page_frag_free);
5208 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5209 size_t size)
5211 if (addr) {
5212 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5213 unsigned long used = addr + PAGE_ALIGN(size);
5215 split_page(virt_to_page((void *)addr), order);
5216 while (used < alloc_end) {
5217 free_page(used);
5218 used += PAGE_SIZE;
5221 return (void *)addr;
5225 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5226 * @size: the number of bytes to allocate
5227 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5229 * This function is similar to alloc_pages(), except that it allocates the
5230 * minimum number of pages to satisfy the request. alloc_pages() can only
5231 * allocate memory in power-of-two pages.
5233 * This function is also limited by MAX_ORDER.
5235 * Memory allocated by this function must be released by free_pages_exact().
5237 * Return: pointer to the allocated area or %NULL in case of error.
5239 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5241 unsigned int order = get_order(size);
5242 unsigned long addr;
5244 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5245 gfp_mask &= ~__GFP_COMP;
5247 addr = __get_free_pages(gfp_mask, order);
5248 return make_alloc_exact(addr, order, size);
5250 EXPORT_SYMBOL(alloc_pages_exact);
5253 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5254 * pages on a node.
5255 * @nid: the preferred node ID where memory should be allocated
5256 * @size: the number of bytes to allocate
5257 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5259 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5260 * back.
5262 * Return: pointer to the allocated area or %NULL in case of error.
5264 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5266 unsigned int order = get_order(size);
5267 struct page *p;
5269 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5270 gfp_mask &= ~__GFP_COMP;
5272 p = alloc_pages_node(nid, gfp_mask, order);
5273 if (!p)
5274 return NULL;
5275 return make_alloc_exact((unsigned long)page_address(p), order, size);
5279 * free_pages_exact - release memory allocated via alloc_pages_exact()
5280 * @virt: the value returned by alloc_pages_exact.
5281 * @size: size of allocation, same value as passed to alloc_pages_exact().
5283 * Release the memory allocated by a previous call to alloc_pages_exact.
5285 void free_pages_exact(void *virt, size_t size)
5287 unsigned long addr = (unsigned long)virt;
5288 unsigned long end = addr + PAGE_ALIGN(size);
5290 while (addr < end) {
5291 free_page(addr);
5292 addr += PAGE_SIZE;
5295 EXPORT_SYMBOL(free_pages_exact);
5298 * nr_free_zone_pages - count number of pages beyond high watermark
5299 * @offset: The zone index of the highest zone
5301 * nr_free_zone_pages() counts the number of pages which are beyond the
5302 * high watermark within all zones at or below a given zone index. For each
5303 * zone, the number of pages is calculated as:
5305 * nr_free_zone_pages = managed_pages - high_pages
5307 * Return: number of pages beyond high watermark.
5309 static unsigned long nr_free_zone_pages(int offset)
5311 struct zoneref *z;
5312 struct zone *zone;
5314 /* Just pick one node, since fallback list is circular */
5315 unsigned long sum = 0;
5317 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5319 for_each_zone_zonelist(zone, z, zonelist, offset) {
5320 unsigned long size = zone_managed_pages(zone);
5321 unsigned long high = high_wmark_pages(zone);
5322 if (size > high)
5323 sum += size - high;
5326 return sum;
5330 * nr_free_buffer_pages - count number of pages beyond high watermark
5332 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5333 * watermark within ZONE_DMA and ZONE_NORMAL.
5335 * Return: number of pages beyond high watermark within ZONE_DMA and
5336 * ZONE_NORMAL.
5338 unsigned long nr_free_buffer_pages(void)
5340 return nr_free_zone_pages(gfp_zone(GFP_USER));
5342 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5344 static inline void show_node(struct zone *zone)
5346 if (IS_ENABLED(CONFIG_NUMA))
5347 printk("Node %d ", zone_to_nid(zone));
5350 long si_mem_available(void)
5352 long available;
5353 unsigned long pagecache;
5354 unsigned long wmark_low = 0;
5355 unsigned long pages[NR_LRU_LISTS];
5356 unsigned long reclaimable;
5357 struct zone *zone;
5358 int lru;
5360 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5361 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5363 for_each_zone(zone)
5364 wmark_low += low_wmark_pages(zone);
5367 * Estimate the amount of memory available for userspace allocations,
5368 * without causing swapping.
5370 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5373 * Not all the page cache can be freed, otherwise the system will
5374 * start swapping. Assume at least half of the page cache, or the
5375 * low watermark worth of cache, needs to stay.
5377 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5378 pagecache -= min(pagecache / 2, wmark_low);
5379 available += pagecache;
5382 * Part of the reclaimable slab and other kernel memory consists of
5383 * items that are in use, and cannot be freed. Cap this estimate at the
5384 * low watermark.
5386 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5387 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5388 available += reclaimable - min(reclaimable / 2, wmark_low);
5390 if (available < 0)
5391 available = 0;
5392 return available;
5394 EXPORT_SYMBOL_GPL(si_mem_available);
5396 void si_meminfo(struct sysinfo *val)
5398 val->totalram = totalram_pages();
5399 val->sharedram = global_node_page_state(NR_SHMEM);
5400 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5401 val->bufferram = nr_blockdev_pages();
5402 val->totalhigh = totalhigh_pages();
5403 val->freehigh = nr_free_highpages();
5404 val->mem_unit = PAGE_SIZE;
5407 EXPORT_SYMBOL(si_meminfo);
5409 #ifdef CONFIG_NUMA
5410 void si_meminfo_node(struct sysinfo *val, int nid)
5412 int zone_type; /* needs to be signed */
5413 unsigned long managed_pages = 0;
5414 unsigned long managed_highpages = 0;
5415 unsigned long free_highpages = 0;
5416 pg_data_t *pgdat = NODE_DATA(nid);
5418 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5419 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5420 val->totalram = managed_pages;
5421 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5422 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5423 #ifdef CONFIG_HIGHMEM
5424 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5425 struct zone *zone = &pgdat->node_zones[zone_type];
5427 if (is_highmem(zone)) {
5428 managed_highpages += zone_managed_pages(zone);
5429 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5432 val->totalhigh = managed_highpages;
5433 val->freehigh = free_highpages;
5434 #else
5435 val->totalhigh = managed_highpages;
5436 val->freehigh = free_highpages;
5437 #endif
5438 val->mem_unit = PAGE_SIZE;
5440 #endif
5443 * Determine whether the node should be displayed or not, depending on whether
5444 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5446 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5448 if (!(flags & SHOW_MEM_FILTER_NODES))
5449 return false;
5452 * no node mask - aka implicit memory numa policy. Do not bother with
5453 * the synchronization - read_mems_allowed_begin - because we do not
5454 * have to be precise here.
5456 if (!nodemask)
5457 nodemask = &cpuset_current_mems_allowed;
5459 return !node_isset(nid, *nodemask);
5462 #define K(x) ((x) << (PAGE_SHIFT-10))
5464 static void show_migration_types(unsigned char type)
5466 static const char types[MIGRATE_TYPES] = {
5467 [MIGRATE_UNMOVABLE] = 'U',
5468 [MIGRATE_MOVABLE] = 'M',
5469 [MIGRATE_RECLAIMABLE] = 'E',
5470 [MIGRATE_HIGHATOMIC] = 'H',
5471 #ifdef CONFIG_CMA
5472 [MIGRATE_CMA] = 'C',
5473 #endif
5474 #ifdef CONFIG_MEMORY_ISOLATION
5475 [MIGRATE_ISOLATE] = 'I',
5476 #endif
5478 char tmp[MIGRATE_TYPES + 1];
5479 char *p = tmp;
5480 int i;
5482 for (i = 0; i < MIGRATE_TYPES; i++) {
5483 if (type & (1 << i))
5484 *p++ = types[i];
5487 *p = '\0';
5488 printk(KERN_CONT "(%s) ", tmp);
5492 * Show free area list (used inside shift_scroll-lock stuff)
5493 * We also calculate the percentage fragmentation. We do this by counting the
5494 * memory on each free list with the exception of the first item on the list.
5496 * Bits in @filter:
5497 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5498 * cpuset.
5500 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5502 unsigned long free_pcp = 0;
5503 int cpu;
5504 struct zone *zone;
5505 pg_data_t *pgdat;
5507 for_each_populated_zone(zone) {
5508 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5509 continue;
5511 for_each_online_cpu(cpu)
5512 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5515 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5516 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5517 " unevictable:%lu dirty:%lu writeback:%lu\n"
5518 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5519 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5520 " free:%lu free_pcp:%lu free_cma:%lu\n",
5521 global_node_page_state(NR_ACTIVE_ANON),
5522 global_node_page_state(NR_INACTIVE_ANON),
5523 global_node_page_state(NR_ISOLATED_ANON),
5524 global_node_page_state(NR_ACTIVE_FILE),
5525 global_node_page_state(NR_INACTIVE_FILE),
5526 global_node_page_state(NR_ISOLATED_FILE),
5527 global_node_page_state(NR_UNEVICTABLE),
5528 global_node_page_state(NR_FILE_DIRTY),
5529 global_node_page_state(NR_WRITEBACK),
5530 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5531 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5532 global_node_page_state(NR_FILE_MAPPED),
5533 global_node_page_state(NR_SHMEM),
5534 global_node_page_state(NR_PAGETABLE),
5535 global_zone_page_state(NR_BOUNCE),
5536 global_zone_page_state(NR_FREE_PAGES),
5537 free_pcp,
5538 global_zone_page_state(NR_FREE_CMA_PAGES));
5540 for_each_online_pgdat(pgdat) {
5541 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5542 continue;
5544 printk("Node %d"
5545 " active_anon:%lukB"
5546 " inactive_anon:%lukB"
5547 " active_file:%lukB"
5548 " inactive_file:%lukB"
5549 " unevictable:%lukB"
5550 " isolated(anon):%lukB"
5551 " isolated(file):%lukB"
5552 " mapped:%lukB"
5553 " dirty:%lukB"
5554 " writeback:%lukB"
5555 " shmem:%lukB"
5556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5557 " shmem_thp: %lukB"
5558 " shmem_pmdmapped: %lukB"
5559 " anon_thp: %lukB"
5560 #endif
5561 " writeback_tmp:%lukB"
5562 " kernel_stack:%lukB"
5563 #ifdef CONFIG_SHADOW_CALL_STACK
5564 " shadow_call_stack:%lukB"
5565 #endif
5566 " pagetables:%lukB"
5567 " all_unreclaimable? %s"
5568 "\n",
5569 pgdat->node_id,
5570 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5571 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5572 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5573 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5574 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5575 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5576 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5577 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5578 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5579 K(node_page_state(pgdat, NR_WRITEBACK)),
5580 K(node_page_state(pgdat, NR_SHMEM)),
5581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5582 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5583 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5584 * HPAGE_PMD_NR),
5585 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5586 #endif
5587 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5588 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5589 #ifdef CONFIG_SHADOW_CALL_STACK
5590 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5591 #endif
5592 K(node_page_state(pgdat, NR_PAGETABLE)),
5593 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5594 "yes" : "no");
5597 for_each_populated_zone(zone) {
5598 int i;
5600 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5601 continue;
5603 free_pcp = 0;
5604 for_each_online_cpu(cpu)
5605 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5607 show_node(zone);
5608 printk(KERN_CONT
5609 "%s"
5610 " free:%lukB"
5611 " min:%lukB"
5612 " low:%lukB"
5613 " high:%lukB"
5614 " reserved_highatomic:%luKB"
5615 " active_anon:%lukB"
5616 " inactive_anon:%lukB"
5617 " active_file:%lukB"
5618 " inactive_file:%lukB"
5619 " unevictable:%lukB"
5620 " writepending:%lukB"
5621 " present:%lukB"
5622 " managed:%lukB"
5623 " mlocked:%lukB"
5624 " bounce:%lukB"
5625 " free_pcp:%lukB"
5626 " local_pcp:%ukB"
5627 " free_cma:%lukB"
5628 "\n",
5629 zone->name,
5630 K(zone_page_state(zone, NR_FREE_PAGES)),
5631 K(min_wmark_pages(zone)),
5632 K(low_wmark_pages(zone)),
5633 K(high_wmark_pages(zone)),
5634 K(zone->nr_reserved_highatomic),
5635 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5636 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5637 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5638 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5639 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5640 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5641 K(zone->present_pages),
5642 K(zone_managed_pages(zone)),
5643 K(zone_page_state(zone, NR_MLOCK)),
5644 K(zone_page_state(zone, NR_BOUNCE)),
5645 K(free_pcp),
5646 K(this_cpu_read(zone->pageset->pcp.count)),
5647 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5648 printk("lowmem_reserve[]:");
5649 for (i = 0; i < MAX_NR_ZONES; i++)
5650 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5651 printk(KERN_CONT "\n");
5654 for_each_populated_zone(zone) {
5655 unsigned int order;
5656 unsigned long nr[MAX_ORDER], flags, total = 0;
5657 unsigned char types[MAX_ORDER];
5659 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5660 continue;
5661 show_node(zone);
5662 printk(KERN_CONT "%s: ", zone->name);
5664 spin_lock_irqsave(&zone->lock, flags);
5665 for (order = 0; order < MAX_ORDER; order++) {
5666 struct free_area *area = &zone->free_area[order];
5667 int type;
5669 nr[order] = area->nr_free;
5670 total += nr[order] << order;
5672 types[order] = 0;
5673 for (type = 0; type < MIGRATE_TYPES; type++) {
5674 if (!free_area_empty(area, type))
5675 types[order] |= 1 << type;
5678 spin_unlock_irqrestore(&zone->lock, flags);
5679 for (order = 0; order < MAX_ORDER; order++) {
5680 printk(KERN_CONT "%lu*%lukB ",
5681 nr[order], K(1UL) << order);
5682 if (nr[order])
5683 show_migration_types(types[order]);
5685 printk(KERN_CONT "= %lukB\n", K(total));
5688 hugetlb_show_meminfo();
5690 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5692 show_swap_cache_info();
5695 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5697 zoneref->zone = zone;
5698 zoneref->zone_idx = zone_idx(zone);
5702 * Builds allocation fallback zone lists.
5704 * Add all populated zones of a node to the zonelist.
5706 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5708 struct zone *zone;
5709 enum zone_type zone_type = MAX_NR_ZONES;
5710 int nr_zones = 0;
5712 do {
5713 zone_type--;
5714 zone = pgdat->node_zones + zone_type;
5715 if (managed_zone(zone)) {
5716 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5717 check_highest_zone(zone_type);
5719 } while (zone_type);
5721 return nr_zones;
5724 #ifdef CONFIG_NUMA
5726 static int __parse_numa_zonelist_order(char *s)
5729 * We used to support different zonlists modes but they turned
5730 * out to be just not useful. Let's keep the warning in place
5731 * if somebody still use the cmd line parameter so that we do
5732 * not fail it silently
5734 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5735 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5736 return -EINVAL;
5738 return 0;
5741 char numa_zonelist_order[] = "Node";
5744 * sysctl handler for numa_zonelist_order
5746 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5747 void *buffer, size_t *length, loff_t *ppos)
5749 if (write)
5750 return __parse_numa_zonelist_order(buffer);
5751 return proc_dostring(table, write, buffer, length, ppos);
5755 #define MAX_NODE_LOAD (nr_online_nodes)
5756 static int node_load[MAX_NUMNODES];
5759 * find_next_best_node - find the next node that should appear in a given node's fallback list
5760 * @node: node whose fallback list we're appending
5761 * @used_node_mask: nodemask_t of already used nodes
5763 * We use a number of factors to determine which is the next node that should
5764 * appear on a given node's fallback list. The node should not have appeared
5765 * already in @node's fallback list, and it should be the next closest node
5766 * according to the distance array (which contains arbitrary distance values
5767 * from each node to each node in the system), and should also prefer nodes
5768 * with no CPUs, since presumably they'll have very little allocation pressure
5769 * on them otherwise.
5771 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5773 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5775 int n, val;
5776 int min_val = INT_MAX;
5777 int best_node = NUMA_NO_NODE;
5779 /* Use the local node if we haven't already */
5780 if (!node_isset(node, *used_node_mask)) {
5781 node_set(node, *used_node_mask);
5782 return node;
5785 for_each_node_state(n, N_MEMORY) {
5787 /* Don't want a node to appear more than once */
5788 if (node_isset(n, *used_node_mask))
5789 continue;
5791 /* Use the distance array to find the distance */
5792 val = node_distance(node, n);
5794 /* Penalize nodes under us ("prefer the next node") */
5795 val += (n < node);
5797 /* Give preference to headless and unused nodes */
5798 if (!cpumask_empty(cpumask_of_node(n)))
5799 val += PENALTY_FOR_NODE_WITH_CPUS;
5801 /* Slight preference for less loaded node */
5802 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5803 val += node_load[n];
5805 if (val < min_val) {
5806 min_val = val;
5807 best_node = n;
5811 if (best_node >= 0)
5812 node_set(best_node, *used_node_mask);
5814 return best_node;
5819 * Build zonelists ordered by node and zones within node.
5820 * This results in maximum locality--normal zone overflows into local
5821 * DMA zone, if any--but risks exhausting DMA zone.
5823 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5824 unsigned nr_nodes)
5826 struct zoneref *zonerefs;
5827 int i;
5829 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5831 for (i = 0; i < nr_nodes; i++) {
5832 int nr_zones;
5834 pg_data_t *node = NODE_DATA(node_order[i]);
5836 nr_zones = build_zonerefs_node(node, zonerefs);
5837 zonerefs += nr_zones;
5839 zonerefs->zone = NULL;
5840 zonerefs->zone_idx = 0;
5844 * Build gfp_thisnode zonelists
5846 static void build_thisnode_zonelists(pg_data_t *pgdat)
5848 struct zoneref *zonerefs;
5849 int nr_zones;
5851 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5852 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5853 zonerefs += nr_zones;
5854 zonerefs->zone = NULL;
5855 zonerefs->zone_idx = 0;
5859 * Build zonelists ordered by zone and nodes within zones.
5860 * This results in conserving DMA zone[s] until all Normal memory is
5861 * exhausted, but results in overflowing to remote node while memory
5862 * may still exist in local DMA zone.
5865 static void build_zonelists(pg_data_t *pgdat)
5867 static int node_order[MAX_NUMNODES];
5868 int node, load, nr_nodes = 0;
5869 nodemask_t used_mask = NODE_MASK_NONE;
5870 int local_node, prev_node;
5872 /* NUMA-aware ordering of nodes */
5873 local_node = pgdat->node_id;
5874 load = nr_online_nodes;
5875 prev_node = local_node;
5877 memset(node_order, 0, sizeof(node_order));
5878 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5880 * We don't want to pressure a particular node.
5881 * So adding penalty to the first node in same
5882 * distance group to make it round-robin.
5884 if (node_distance(local_node, node) !=
5885 node_distance(local_node, prev_node))
5886 node_load[node] = load;
5888 node_order[nr_nodes++] = node;
5889 prev_node = node;
5890 load--;
5893 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5894 build_thisnode_zonelists(pgdat);
5897 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5899 * Return node id of node used for "local" allocations.
5900 * I.e., first node id of first zone in arg node's generic zonelist.
5901 * Used for initializing percpu 'numa_mem', which is used primarily
5902 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5904 int local_memory_node(int node)
5906 struct zoneref *z;
5908 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5909 gfp_zone(GFP_KERNEL),
5910 NULL);
5911 return zone_to_nid(z->zone);
5913 #endif
5915 static void setup_min_unmapped_ratio(void);
5916 static void setup_min_slab_ratio(void);
5917 #else /* CONFIG_NUMA */
5919 static void build_zonelists(pg_data_t *pgdat)
5921 int node, local_node;
5922 struct zoneref *zonerefs;
5923 int nr_zones;
5925 local_node = pgdat->node_id;
5927 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5928 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5929 zonerefs += nr_zones;
5932 * Now we build the zonelist so that it contains the zones
5933 * of all the other nodes.
5934 * We don't want to pressure a particular node, so when
5935 * building the zones for node N, we make sure that the
5936 * zones coming right after the local ones are those from
5937 * node N+1 (modulo N)
5939 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5940 if (!node_online(node))
5941 continue;
5942 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5943 zonerefs += nr_zones;
5945 for (node = 0; node < local_node; node++) {
5946 if (!node_online(node))
5947 continue;
5948 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5949 zonerefs += nr_zones;
5952 zonerefs->zone = NULL;
5953 zonerefs->zone_idx = 0;
5956 #endif /* CONFIG_NUMA */
5959 * Boot pageset table. One per cpu which is going to be used for all
5960 * zones and all nodes. The parameters will be set in such a way
5961 * that an item put on a list will immediately be handed over to
5962 * the buddy list. This is safe since pageset manipulation is done
5963 * with interrupts disabled.
5965 * The boot_pagesets must be kept even after bootup is complete for
5966 * unused processors and/or zones. They do play a role for bootstrapping
5967 * hotplugged processors.
5969 * zoneinfo_show() and maybe other functions do
5970 * not check if the processor is online before following the pageset pointer.
5971 * Other parts of the kernel may not check if the zone is available.
5973 static void pageset_init(struct per_cpu_pageset *p);
5974 /* These effectively disable the pcplists in the boot pageset completely */
5975 #define BOOT_PAGESET_HIGH 0
5976 #define BOOT_PAGESET_BATCH 1
5977 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5978 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5980 static void __build_all_zonelists(void *data)
5982 int nid;
5983 int __maybe_unused cpu;
5984 pg_data_t *self = data;
5985 static DEFINE_SPINLOCK(lock);
5987 spin_lock(&lock);
5989 #ifdef CONFIG_NUMA
5990 memset(node_load, 0, sizeof(node_load));
5991 #endif
5994 * This node is hotadded and no memory is yet present. So just
5995 * building zonelists is fine - no need to touch other nodes.
5997 if (self && !node_online(self->node_id)) {
5998 build_zonelists(self);
5999 } else {
6000 for_each_online_node(nid) {
6001 pg_data_t *pgdat = NODE_DATA(nid);
6003 build_zonelists(pgdat);
6006 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6008 * We now know the "local memory node" for each node--
6009 * i.e., the node of the first zone in the generic zonelist.
6010 * Set up numa_mem percpu variable for on-line cpus. During
6011 * boot, only the boot cpu should be on-line; we'll init the
6012 * secondary cpus' numa_mem as they come on-line. During
6013 * node/memory hotplug, we'll fixup all on-line cpus.
6015 for_each_online_cpu(cpu)
6016 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6017 #endif
6020 spin_unlock(&lock);
6023 static noinline void __init
6024 build_all_zonelists_init(void)
6026 int cpu;
6028 __build_all_zonelists(NULL);
6031 * Initialize the boot_pagesets that are going to be used
6032 * for bootstrapping processors. The real pagesets for
6033 * each zone will be allocated later when the per cpu
6034 * allocator is available.
6036 * boot_pagesets are used also for bootstrapping offline
6037 * cpus if the system is already booted because the pagesets
6038 * are needed to initialize allocators on a specific cpu too.
6039 * F.e. the percpu allocator needs the page allocator which
6040 * needs the percpu allocator in order to allocate its pagesets
6041 * (a chicken-egg dilemma).
6043 for_each_possible_cpu(cpu)
6044 pageset_init(&per_cpu(boot_pageset, cpu));
6046 mminit_verify_zonelist();
6047 cpuset_init_current_mems_allowed();
6051 * unless system_state == SYSTEM_BOOTING.
6053 * __ref due to call of __init annotated helper build_all_zonelists_init
6054 * [protected by SYSTEM_BOOTING].
6056 void __ref build_all_zonelists(pg_data_t *pgdat)
6058 unsigned long vm_total_pages;
6060 if (system_state == SYSTEM_BOOTING) {
6061 build_all_zonelists_init();
6062 } else {
6063 __build_all_zonelists(pgdat);
6064 /* cpuset refresh routine should be here */
6066 /* Get the number of free pages beyond high watermark in all zones. */
6067 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6069 * Disable grouping by mobility if the number of pages in the
6070 * system is too low to allow the mechanism to work. It would be
6071 * more accurate, but expensive to check per-zone. This check is
6072 * made on memory-hotadd so a system can start with mobility
6073 * disabled and enable it later
6075 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6076 page_group_by_mobility_disabled = 1;
6077 else
6078 page_group_by_mobility_disabled = 0;
6080 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6081 nr_online_nodes,
6082 page_group_by_mobility_disabled ? "off" : "on",
6083 vm_total_pages);
6084 #ifdef CONFIG_NUMA
6085 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6086 #endif
6089 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6090 static bool __meminit
6091 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6093 static struct memblock_region *r;
6095 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6096 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6097 for_each_mem_region(r) {
6098 if (*pfn < memblock_region_memory_end_pfn(r))
6099 break;
6102 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6103 memblock_is_mirror(r)) {
6104 *pfn = memblock_region_memory_end_pfn(r);
6105 return true;
6108 return false;
6112 * Initially all pages are reserved - free ones are freed
6113 * up by memblock_free_all() once the early boot process is
6114 * done. Non-atomic initialization, single-pass.
6116 * All aligned pageblocks are initialized to the specified migratetype
6117 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6118 * zone stats (e.g., nr_isolate_pageblock) are touched.
6120 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6121 unsigned long start_pfn, unsigned long zone_end_pfn,
6122 enum meminit_context context,
6123 struct vmem_altmap *altmap, int migratetype)
6125 unsigned long pfn, end_pfn = start_pfn + size;
6126 struct page *page;
6128 if (highest_memmap_pfn < end_pfn - 1)
6129 highest_memmap_pfn = end_pfn - 1;
6131 #ifdef CONFIG_ZONE_DEVICE
6133 * Honor reservation requested by the driver for this ZONE_DEVICE
6134 * memory. We limit the total number of pages to initialize to just
6135 * those that might contain the memory mapping. We will defer the
6136 * ZONE_DEVICE page initialization until after we have released
6137 * the hotplug lock.
6139 if (zone == ZONE_DEVICE) {
6140 if (!altmap)
6141 return;
6143 if (start_pfn == altmap->base_pfn)
6144 start_pfn += altmap->reserve;
6145 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6147 #endif
6149 for (pfn = start_pfn; pfn < end_pfn; ) {
6151 * There can be holes in boot-time mem_map[]s handed to this
6152 * function. They do not exist on hotplugged memory.
6154 if (context == MEMINIT_EARLY) {
6155 if (overlap_memmap_init(zone, &pfn))
6156 continue;
6157 if (defer_init(nid, pfn, zone_end_pfn))
6158 break;
6161 page = pfn_to_page(pfn);
6162 __init_single_page(page, pfn, zone, nid);
6163 if (context == MEMINIT_HOTPLUG)
6164 __SetPageReserved(page);
6167 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6168 * such that unmovable allocations won't be scattered all
6169 * over the place during system boot.
6171 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6172 set_pageblock_migratetype(page, migratetype);
6173 cond_resched();
6175 pfn++;
6179 #ifdef CONFIG_ZONE_DEVICE
6180 void __ref memmap_init_zone_device(struct zone *zone,
6181 unsigned long start_pfn,
6182 unsigned long nr_pages,
6183 struct dev_pagemap *pgmap)
6185 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6186 struct pglist_data *pgdat = zone->zone_pgdat;
6187 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6188 unsigned long zone_idx = zone_idx(zone);
6189 unsigned long start = jiffies;
6190 int nid = pgdat->node_id;
6192 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6193 return;
6196 * The call to memmap_init_zone should have already taken care
6197 * of the pages reserved for the memmap, so we can just jump to
6198 * the end of that region and start processing the device pages.
6200 if (altmap) {
6201 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6202 nr_pages = end_pfn - start_pfn;
6205 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6206 struct page *page = pfn_to_page(pfn);
6208 __init_single_page(page, pfn, zone_idx, nid);
6211 * Mark page reserved as it will need to wait for onlining
6212 * phase for it to be fully associated with a zone.
6214 * We can use the non-atomic __set_bit operation for setting
6215 * the flag as we are still initializing the pages.
6217 __SetPageReserved(page);
6220 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6221 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6222 * ever freed or placed on a driver-private list.
6224 page->pgmap = pgmap;
6225 page->zone_device_data = NULL;
6228 * Mark the block movable so that blocks are reserved for
6229 * movable at startup. This will force kernel allocations
6230 * to reserve their blocks rather than leaking throughout
6231 * the address space during boot when many long-lived
6232 * kernel allocations are made.
6234 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6235 * because this is done early in section_activate()
6237 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6238 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6239 cond_resched();
6243 pr_info("%s initialised %lu pages in %ums\n", __func__,
6244 nr_pages, jiffies_to_msecs(jiffies - start));
6247 #endif
6248 static void __meminit zone_init_free_lists(struct zone *zone)
6250 unsigned int order, t;
6251 for_each_migratetype_order(order, t) {
6252 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6253 zone->free_area[order].nr_free = 0;
6257 void __meminit __weak memmap_init(unsigned long size, int nid,
6258 unsigned long zone,
6259 unsigned long range_start_pfn)
6261 unsigned long start_pfn, end_pfn;
6262 unsigned long range_end_pfn = range_start_pfn + size;
6263 int i;
6265 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6266 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6267 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6269 if (end_pfn > start_pfn) {
6270 size = end_pfn - start_pfn;
6271 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
6272 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6277 static int zone_batchsize(struct zone *zone)
6279 #ifdef CONFIG_MMU
6280 int batch;
6283 * The per-cpu-pages pools are set to around 1000th of the
6284 * size of the zone.
6286 batch = zone_managed_pages(zone) / 1024;
6287 /* But no more than a meg. */
6288 if (batch * PAGE_SIZE > 1024 * 1024)
6289 batch = (1024 * 1024) / PAGE_SIZE;
6290 batch /= 4; /* We effectively *= 4 below */
6291 if (batch < 1)
6292 batch = 1;
6295 * Clamp the batch to a 2^n - 1 value. Having a power
6296 * of 2 value was found to be more likely to have
6297 * suboptimal cache aliasing properties in some cases.
6299 * For example if 2 tasks are alternately allocating
6300 * batches of pages, one task can end up with a lot
6301 * of pages of one half of the possible page colors
6302 * and the other with pages of the other colors.
6304 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6306 return batch;
6308 #else
6309 /* The deferral and batching of frees should be suppressed under NOMMU
6310 * conditions.
6312 * The problem is that NOMMU needs to be able to allocate large chunks
6313 * of contiguous memory as there's no hardware page translation to
6314 * assemble apparent contiguous memory from discontiguous pages.
6316 * Queueing large contiguous runs of pages for batching, however,
6317 * causes the pages to actually be freed in smaller chunks. As there
6318 * can be a significant delay between the individual batches being
6319 * recycled, this leads to the once large chunks of space being
6320 * fragmented and becoming unavailable for high-order allocations.
6322 return 0;
6323 #endif
6327 * pcp->high and pcp->batch values are related and generally batch is lower
6328 * than high. They are also related to pcp->count such that count is lower
6329 * than high, and as soon as it reaches high, the pcplist is flushed.
6331 * However, guaranteeing these relations at all times would require e.g. write
6332 * barriers here but also careful usage of read barriers at the read side, and
6333 * thus be prone to error and bad for performance. Thus the update only prevents
6334 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6335 * can cope with those fields changing asynchronously, and fully trust only the
6336 * pcp->count field on the local CPU with interrupts disabled.
6338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6339 * outside of boot time (or some other assurance that no concurrent updaters
6340 * exist).
6342 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6343 unsigned long batch)
6345 WRITE_ONCE(pcp->batch, batch);
6346 WRITE_ONCE(pcp->high, high);
6349 static void pageset_init(struct per_cpu_pageset *p)
6351 struct per_cpu_pages *pcp;
6352 int migratetype;
6354 memset(p, 0, sizeof(*p));
6356 pcp = &p->pcp;
6357 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6358 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6361 * Set batch and high values safe for a boot pageset. A true percpu
6362 * pageset's initialization will update them subsequently. Here we don't
6363 * need to be as careful as pageset_update() as nobody can access the
6364 * pageset yet.
6366 pcp->high = BOOT_PAGESET_HIGH;
6367 pcp->batch = BOOT_PAGESET_BATCH;
6370 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6371 unsigned long batch)
6373 struct per_cpu_pageset *p;
6374 int cpu;
6376 for_each_possible_cpu(cpu) {
6377 p = per_cpu_ptr(zone->pageset, cpu);
6378 pageset_update(&p->pcp, high, batch);
6383 * Calculate and set new high and batch values for all per-cpu pagesets of a
6384 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6386 static void zone_set_pageset_high_and_batch(struct zone *zone)
6388 unsigned long new_high, new_batch;
6390 if (percpu_pagelist_fraction) {
6391 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6392 new_batch = max(1UL, new_high / 4);
6393 if ((new_high / 4) > (PAGE_SHIFT * 8))
6394 new_batch = PAGE_SHIFT * 8;
6395 } else {
6396 new_batch = zone_batchsize(zone);
6397 new_high = 6 * new_batch;
6398 new_batch = max(1UL, 1 * new_batch);
6401 if (zone->pageset_high == new_high &&
6402 zone->pageset_batch == new_batch)
6403 return;
6405 zone->pageset_high = new_high;
6406 zone->pageset_batch = new_batch;
6408 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6411 void __meminit setup_zone_pageset(struct zone *zone)
6413 struct per_cpu_pageset *p;
6414 int cpu;
6416 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6417 for_each_possible_cpu(cpu) {
6418 p = per_cpu_ptr(zone->pageset, cpu);
6419 pageset_init(p);
6422 zone_set_pageset_high_and_batch(zone);
6426 * Allocate per cpu pagesets and initialize them.
6427 * Before this call only boot pagesets were available.
6429 void __init setup_per_cpu_pageset(void)
6431 struct pglist_data *pgdat;
6432 struct zone *zone;
6433 int __maybe_unused cpu;
6435 for_each_populated_zone(zone)
6436 setup_zone_pageset(zone);
6438 #ifdef CONFIG_NUMA
6440 * Unpopulated zones continue using the boot pagesets.
6441 * The numa stats for these pagesets need to be reset.
6442 * Otherwise, they will end up skewing the stats of
6443 * the nodes these zones are associated with.
6445 for_each_possible_cpu(cpu) {
6446 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6447 memset(pcp->vm_numa_stat_diff, 0,
6448 sizeof(pcp->vm_numa_stat_diff));
6450 #endif
6452 for_each_online_pgdat(pgdat)
6453 pgdat->per_cpu_nodestats =
6454 alloc_percpu(struct per_cpu_nodestat);
6457 static __meminit void zone_pcp_init(struct zone *zone)
6460 * per cpu subsystem is not up at this point. The following code
6461 * relies on the ability of the linker to provide the
6462 * offset of a (static) per cpu variable into the per cpu area.
6464 zone->pageset = &boot_pageset;
6465 zone->pageset_high = BOOT_PAGESET_HIGH;
6466 zone->pageset_batch = BOOT_PAGESET_BATCH;
6468 if (populated_zone(zone))
6469 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6470 zone->name, zone->present_pages,
6471 zone_batchsize(zone));
6474 void __meminit init_currently_empty_zone(struct zone *zone,
6475 unsigned long zone_start_pfn,
6476 unsigned long size)
6478 struct pglist_data *pgdat = zone->zone_pgdat;
6479 int zone_idx = zone_idx(zone) + 1;
6481 if (zone_idx > pgdat->nr_zones)
6482 pgdat->nr_zones = zone_idx;
6484 zone->zone_start_pfn = zone_start_pfn;
6486 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6487 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6488 pgdat->node_id,
6489 (unsigned long)zone_idx(zone),
6490 zone_start_pfn, (zone_start_pfn + size));
6492 zone_init_free_lists(zone);
6493 zone->initialized = 1;
6497 * get_pfn_range_for_nid - Return the start and end page frames for a node
6498 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6499 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6500 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6502 * It returns the start and end page frame of a node based on information
6503 * provided by memblock_set_node(). If called for a node
6504 * with no available memory, a warning is printed and the start and end
6505 * PFNs will be 0.
6507 void __init get_pfn_range_for_nid(unsigned int nid,
6508 unsigned long *start_pfn, unsigned long *end_pfn)
6510 unsigned long this_start_pfn, this_end_pfn;
6511 int i;
6513 *start_pfn = -1UL;
6514 *end_pfn = 0;
6516 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6517 *start_pfn = min(*start_pfn, this_start_pfn);
6518 *end_pfn = max(*end_pfn, this_end_pfn);
6521 if (*start_pfn == -1UL)
6522 *start_pfn = 0;
6526 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6527 * assumption is made that zones within a node are ordered in monotonic
6528 * increasing memory addresses so that the "highest" populated zone is used
6530 static void __init find_usable_zone_for_movable(void)
6532 int zone_index;
6533 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6534 if (zone_index == ZONE_MOVABLE)
6535 continue;
6537 if (arch_zone_highest_possible_pfn[zone_index] >
6538 arch_zone_lowest_possible_pfn[zone_index])
6539 break;
6542 VM_BUG_ON(zone_index == -1);
6543 movable_zone = zone_index;
6547 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6548 * because it is sized independent of architecture. Unlike the other zones,
6549 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6550 * in each node depending on the size of each node and how evenly kernelcore
6551 * is distributed. This helper function adjusts the zone ranges
6552 * provided by the architecture for a given node by using the end of the
6553 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6554 * zones within a node are in order of monotonic increases memory addresses
6556 static void __init adjust_zone_range_for_zone_movable(int nid,
6557 unsigned long zone_type,
6558 unsigned long node_start_pfn,
6559 unsigned long node_end_pfn,
6560 unsigned long *zone_start_pfn,
6561 unsigned long *zone_end_pfn)
6563 /* Only adjust if ZONE_MOVABLE is on this node */
6564 if (zone_movable_pfn[nid]) {
6565 /* Size ZONE_MOVABLE */
6566 if (zone_type == ZONE_MOVABLE) {
6567 *zone_start_pfn = zone_movable_pfn[nid];
6568 *zone_end_pfn = min(node_end_pfn,
6569 arch_zone_highest_possible_pfn[movable_zone]);
6571 /* Adjust for ZONE_MOVABLE starting within this range */
6572 } else if (!mirrored_kernelcore &&
6573 *zone_start_pfn < zone_movable_pfn[nid] &&
6574 *zone_end_pfn > zone_movable_pfn[nid]) {
6575 *zone_end_pfn = zone_movable_pfn[nid];
6577 /* Check if this whole range is within ZONE_MOVABLE */
6578 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6579 *zone_start_pfn = *zone_end_pfn;
6584 * Return the number of pages a zone spans in a node, including holes
6585 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6587 static unsigned long __init zone_spanned_pages_in_node(int nid,
6588 unsigned long zone_type,
6589 unsigned long node_start_pfn,
6590 unsigned long node_end_pfn,
6591 unsigned long *zone_start_pfn,
6592 unsigned long *zone_end_pfn)
6594 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6595 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6596 /* When hotadd a new node from cpu_up(), the node should be empty */
6597 if (!node_start_pfn && !node_end_pfn)
6598 return 0;
6600 /* Get the start and end of the zone */
6601 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6602 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6603 adjust_zone_range_for_zone_movable(nid, zone_type,
6604 node_start_pfn, node_end_pfn,
6605 zone_start_pfn, zone_end_pfn);
6607 /* Check that this node has pages within the zone's required range */
6608 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6609 return 0;
6611 /* Move the zone boundaries inside the node if necessary */
6612 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6613 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6615 /* Return the spanned pages */
6616 return *zone_end_pfn - *zone_start_pfn;
6620 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6621 * then all holes in the requested range will be accounted for.
6623 unsigned long __init __absent_pages_in_range(int nid,
6624 unsigned long range_start_pfn,
6625 unsigned long range_end_pfn)
6627 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6628 unsigned long start_pfn, end_pfn;
6629 int i;
6631 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6632 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6633 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6634 nr_absent -= end_pfn - start_pfn;
6636 return nr_absent;
6640 * absent_pages_in_range - Return number of page frames in holes within a range
6641 * @start_pfn: The start PFN to start searching for holes
6642 * @end_pfn: The end PFN to stop searching for holes
6644 * Return: the number of pages frames in memory holes within a range.
6646 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6647 unsigned long end_pfn)
6649 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6652 /* Return the number of page frames in holes in a zone on a node */
6653 static unsigned long __init zone_absent_pages_in_node(int nid,
6654 unsigned long zone_type,
6655 unsigned long node_start_pfn,
6656 unsigned long node_end_pfn)
6658 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6659 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6660 unsigned long zone_start_pfn, zone_end_pfn;
6661 unsigned long nr_absent;
6663 /* When hotadd a new node from cpu_up(), the node should be empty */
6664 if (!node_start_pfn && !node_end_pfn)
6665 return 0;
6667 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6668 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6670 adjust_zone_range_for_zone_movable(nid, zone_type,
6671 node_start_pfn, node_end_pfn,
6672 &zone_start_pfn, &zone_end_pfn);
6673 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6676 * ZONE_MOVABLE handling.
6677 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6678 * and vice versa.
6680 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6681 unsigned long start_pfn, end_pfn;
6682 struct memblock_region *r;
6684 for_each_mem_region(r) {
6685 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6686 zone_start_pfn, zone_end_pfn);
6687 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6688 zone_start_pfn, zone_end_pfn);
6690 if (zone_type == ZONE_MOVABLE &&
6691 memblock_is_mirror(r))
6692 nr_absent += end_pfn - start_pfn;
6694 if (zone_type == ZONE_NORMAL &&
6695 !memblock_is_mirror(r))
6696 nr_absent += end_pfn - start_pfn;
6700 return nr_absent;
6703 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6704 unsigned long node_start_pfn,
6705 unsigned long node_end_pfn)
6707 unsigned long realtotalpages = 0, totalpages = 0;
6708 enum zone_type i;
6710 for (i = 0; i < MAX_NR_ZONES; i++) {
6711 struct zone *zone = pgdat->node_zones + i;
6712 unsigned long zone_start_pfn, zone_end_pfn;
6713 unsigned long spanned, absent;
6714 unsigned long size, real_size;
6716 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6717 node_start_pfn,
6718 node_end_pfn,
6719 &zone_start_pfn,
6720 &zone_end_pfn);
6721 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6722 node_start_pfn,
6723 node_end_pfn);
6725 size = spanned;
6726 real_size = size - absent;
6728 if (size)
6729 zone->zone_start_pfn = zone_start_pfn;
6730 else
6731 zone->zone_start_pfn = 0;
6732 zone->spanned_pages = size;
6733 zone->present_pages = real_size;
6735 totalpages += size;
6736 realtotalpages += real_size;
6739 pgdat->node_spanned_pages = totalpages;
6740 pgdat->node_present_pages = realtotalpages;
6741 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6742 realtotalpages);
6745 #ifndef CONFIG_SPARSEMEM
6747 * Calculate the size of the zone->blockflags rounded to an unsigned long
6748 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6749 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6750 * round what is now in bits to nearest long in bits, then return it in
6751 * bytes.
6753 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6755 unsigned long usemapsize;
6757 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6758 usemapsize = roundup(zonesize, pageblock_nr_pages);
6759 usemapsize = usemapsize >> pageblock_order;
6760 usemapsize *= NR_PAGEBLOCK_BITS;
6761 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6763 return usemapsize / 8;
6766 static void __ref setup_usemap(struct pglist_data *pgdat,
6767 struct zone *zone,
6768 unsigned long zone_start_pfn,
6769 unsigned long zonesize)
6771 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6772 zone->pageblock_flags = NULL;
6773 if (usemapsize) {
6774 zone->pageblock_flags =
6775 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6776 pgdat->node_id);
6777 if (!zone->pageblock_flags)
6778 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6779 usemapsize, zone->name, pgdat->node_id);
6782 #else
6783 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6784 unsigned long zone_start_pfn, unsigned long zonesize) {}
6785 #endif /* CONFIG_SPARSEMEM */
6787 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6789 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6790 void __init set_pageblock_order(void)
6792 unsigned int order;
6794 /* Check that pageblock_nr_pages has not already been setup */
6795 if (pageblock_order)
6796 return;
6798 if (HPAGE_SHIFT > PAGE_SHIFT)
6799 order = HUGETLB_PAGE_ORDER;
6800 else
6801 order = MAX_ORDER - 1;
6804 * Assume the largest contiguous order of interest is a huge page.
6805 * This value may be variable depending on boot parameters on IA64 and
6806 * powerpc.
6808 pageblock_order = order;
6810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6814 * is unused as pageblock_order is set at compile-time. See
6815 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6816 * the kernel config
6818 void __init set_pageblock_order(void)
6822 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6824 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6825 unsigned long present_pages)
6827 unsigned long pages = spanned_pages;
6830 * Provide a more accurate estimation if there are holes within
6831 * the zone and SPARSEMEM is in use. If there are holes within the
6832 * zone, each populated memory region may cost us one or two extra
6833 * memmap pages due to alignment because memmap pages for each
6834 * populated regions may not be naturally aligned on page boundary.
6835 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6837 if (spanned_pages > present_pages + (present_pages >> 4) &&
6838 IS_ENABLED(CONFIG_SPARSEMEM))
6839 pages = present_pages;
6841 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6845 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6847 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6849 spin_lock_init(&ds_queue->split_queue_lock);
6850 INIT_LIST_HEAD(&ds_queue->split_queue);
6851 ds_queue->split_queue_len = 0;
6853 #else
6854 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6855 #endif
6857 #ifdef CONFIG_COMPACTION
6858 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6860 init_waitqueue_head(&pgdat->kcompactd_wait);
6862 #else
6863 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6864 #endif
6866 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6868 pgdat_resize_init(pgdat);
6870 pgdat_init_split_queue(pgdat);
6871 pgdat_init_kcompactd(pgdat);
6873 init_waitqueue_head(&pgdat->kswapd_wait);
6874 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6876 pgdat_page_ext_init(pgdat);
6877 lruvec_init(&pgdat->__lruvec);
6880 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6881 unsigned long remaining_pages)
6883 atomic_long_set(&zone->managed_pages, remaining_pages);
6884 zone_set_nid(zone, nid);
6885 zone->name = zone_names[idx];
6886 zone->zone_pgdat = NODE_DATA(nid);
6887 spin_lock_init(&zone->lock);
6888 zone_seqlock_init(zone);
6889 zone_pcp_init(zone);
6893 * Set up the zone data structures
6894 * - init pgdat internals
6895 * - init all zones belonging to this node
6897 * NOTE: this function is only called during memory hotplug
6899 #ifdef CONFIG_MEMORY_HOTPLUG
6900 void __ref free_area_init_core_hotplug(int nid)
6902 enum zone_type z;
6903 pg_data_t *pgdat = NODE_DATA(nid);
6905 pgdat_init_internals(pgdat);
6906 for (z = 0; z < MAX_NR_ZONES; z++)
6907 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6909 #endif
6912 * Set up the zone data structures:
6913 * - mark all pages reserved
6914 * - mark all memory queues empty
6915 * - clear the memory bitmaps
6917 * NOTE: pgdat should get zeroed by caller.
6918 * NOTE: this function is only called during early init.
6920 static void __init free_area_init_core(struct pglist_data *pgdat)
6922 enum zone_type j;
6923 int nid = pgdat->node_id;
6925 pgdat_init_internals(pgdat);
6926 pgdat->per_cpu_nodestats = &boot_nodestats;
6928 for (j = 0; j < MAX_NR_ZONES; j++) {
6929 struct zone *zone = pgdat->node_zones + j;
6930 unsigned long size, freesize, memmap_pages;
6931 unsigned long zone_start_pfn = zone->zone_start_pfn;
6933 size = zone->spanned_pages;
6934 freesize = zone->present_pages;
6937 * Adjust freesize so that it accounts for how much memory
6938 * is used by this zone for memmap. This affects the watermark
6939 * and per-cpu initialisations
6941 memmap_pages = calc_memmap_size(size, freesize);
6942 if (!is_highmem_idx(j)) {
6943 if (freesize >= memmap_pages) {
6944 freesize -= memmap_pages;
6945 if (memmap_pages)
6946 printk(KERN_DEBUG
6947 " %s zone: %lu pages used for memmap\n",
6948 zone_names[j], memmap_pages);
6949 } else
6950 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6951 zone_names[j], memmap_pages, freesize);
6954 /* Account for reserved pages */
6955 if (j == 0 && freesize > dma_reserve) {
6956 freesize -= dma_reserve;
6957 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6958 zone_names[0], dma_reserve);
6961 if (!is_highmem_idx(j))
6962 nr_kernel_pages += freesize;
6963 /* Charge for highmem memmap if there are enough kernel pages */
6964 else if (nr_kernel_pages > memmap_pages * 2)
6965 nr_kernel_pages -= memmap_pages;
6966 nr_all_pages += freesize;
6969 * Set an approximate value for lowmem here, it will be adjusted
6970 * when the bootmem allocator frees pages into the buddy system.
6971 * And all highmem pages will be managed by the buddy system.
6973 zone_init_internals(zone, j, nid, freesize);
6975 if (!size)
6976 continue;
6978 set_pageblock_order();
6979 setup_usemap(pgdat, zone, zone_start_pfn, size);
6980 init_currently_empty_zone(zone, zone_start_pfn, size);
6981 memmap_init(size, nid, j, zone_start_pfn);
6985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6986 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6988 unsigned long __maybe_unused start = 0;
6989 unsigned long __maybe_unused offset = 0;
6991 /* Skip empty nodes */
6992 if (!pgdat->node_spanned_pages)
6993 return;
6995 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6996 offset = pgdat->node_start_pfn - start;
6997 /* ia64 gets its own node_mem_map, before this, without bootmem */
6998 if (!pgdat->node_mem_map) {
6999 unsigned long size, end;
7000 struct page *map;
7003 * The zone's endpoints aren't required to be MAX_ORDER
7004 * aligned but the node_mem_map endpoints must be in order
7005 * for the buddy allocator to function correctly.
7007 end = pgdat_end_pfn(pgdat);
7008 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7009 size = (end - start) * sizeof(struct page);
7010 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7011 pgdat->node_id);
7012 if (!map)
7013 panic("Failed to allocate %ld bytes for node %d memory map\n",
7014 size, pgdat->node_id);
7015 pgdat->node_mem_map = map + offset;
7017 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7018 __func__, pgdat->node_id, (unsigned long)pgdat,
7019 (unsigned long)pgdat->node_mem_map);
7020 #ifndef CONFIG_NEED_MULTIPLE_NODES
7022 * With no DISCONTIG, the global mem_map is just set as node 0's
7024 if (pgdat == NODE_DATA(0)) {
7025 mem_map = NODE_DATA(0)->node_mem_map;
7026 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7027 mem_map -= offset;
7029 #endif
7031 #else
7032 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7033 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7035 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7036 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7038 pgdat->first_deferred_pfn = ULONG_MAX;
7040 #else
7041 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7042 #endif
7044 static void __init free_area_init_node(int nid)
7046 pg_data_t *pgdat = NODE_DATA(nid);
7047 unsigned long start_pfn = 0;
7048 unsigned long end_pfn = 0;
7050 /* pg_data_t should be reset to zero when it's allocated */
7051 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7053 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7055 pgdat->node_id = nid;
7056 pgdat->node_start_pfn = start_pfn;
7057 pgdat->per_cpu_nodestats = NULL;
7059 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7060 (u64)start_pfn << PAGE_SHIFT,
7061 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7062 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7064 alloc_node_mem_map(pgdat);
7065 pgdat_set_deferred_range(pgdat);
7067 free_area_init_core(pgdat);
7070 void __init free_area_init_memoryless_node(int nid)
7072 free_area_init_node(nid);
7075 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7077 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7078 * PageReserved(). Return the number of struct pages that were initialized.
7080 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7082 unsigned long pfn;
7083 u64 pgcnt = 0;
7085 for (pfn = spfn; pfn < epfn; pfn++) {
7086 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7087 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7088 + pageblock_nr_pages - 1;
7089 continue;
7092 * Use a fake node/zone (0) for now. Some of these pages
7093 * (in memblock.reserved but not in memblock.memory) will
7094 * get re-initialized via reserve_bootmem_region() later.
7096 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7097 __SetPageReserved(pfn_to_page(pfn));
7098 pgcnt++;
7101 return pgcnt;
7105 * Only struct pages that are backed by physical memory are zeroed and
7106 * initialized by going through __init_single_page(). But, there are some
7107 * struct pages which are reserved in memblock allocator and their fields
7108 * may be accessed (for example page_to_pfn() on some configuration accesses
7109 * flags). We must explicitly initialize those struct pages.
7111 * This function also addresses a similar issue where struct pages are left
7112 * uninitialized because the physical address range is not covered by
7113 * memblock.memory or memblock.reserved. That could happen when memblock
7114 * layout is manually configured via memmap=, or when the highest physical
7115 * address (max_pfn) does not end on a section boundary.
7117 static void __init init_unavailable_mem(void)
7119 phys_addr_t start, end;
7120 u64 i, pgcnt;
7121 phys_addr_t next = 0;
7124 * Loop through unavailable ranges not covered by memblock.memory.
7126 pgcnt = 0;
7127 for_each_mem_range(i, &start, &end) {
7128 if (next < start)
7129 pgcnt += init_unavailable_range(PFN_DOWN(next),
7130 PFN_UP(start));
7131 next = end;
7135 * Early sections always have a fully populated memmap for the whole
7136 * section - see pfn_valid(). If the last section has holes at the
7137 * end and that section is marked "online", the memmap will be
7138 * considered initialized. Make sure that memmap has a well defined
7139 * state.
7141 pgcnt += init_unavailable_range(PFN_DOWN(next),
7142 round_up(max_pfn, PAGES_PER_SECTION));
7145 * Struct pages that do not have backing memory. This could be because
7146 * firmware is using some of this memory, or for some other reasons.
7148 if (pgcnt)
7149 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7151 #else
7152 static inline void __init init_unavailable_mem(void)
7155 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7157 #if MAX_NUMNODES > 1
7159 * Figure out the number of possible node ids.
7161 void __init setup_nr_node_ids(void)
7163 unsigned int highest;
7165 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7166 nr_node_ids = highest + 1;
7168 #endif
7171 * node_map_pfn_alignment - determine the maximum internode alignment
7173 * This function should be called after node map is populated and sorted.
7174 * It calculates the maximum power of two alignment which can distinguish
7175 * all the nodes.
7177 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7178 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7179 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7180 * shifted, 1GiB is enough and this function will indicate so.
7182 * This is used to test whether pfn -> nid mapping of the chosen memory
7183 * model has fine enough granularity to avoid incorrect mapping for the
7184 * populated node map.
7186 * Return: the determined alignment in pfn's. 0 if there is no alignment
7187 * requirement (single node).
7189 unsigned long __init node_map_pfn_alignment(void)
7191 unsigned long accl_mask = 0, last_end = 0;
7192 unsigned long start, end, mask;
7193 int last_nid = NUMA_NO_NODE;
7194 int i, nid;
7196 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7197 if (!start || last_nid < 0 || last_nid == nid) {
7198 last_nid = nid;
7199 last_end = end;
7200 continue;
7204 * Start with a mask granular enough to pin-point to the
7205 * start pfn and tick off bits one-by-one until it becomes
7206 * too coarse to separate the current node from the last.
7208 mask = ~((1 << __ffs(start)) - 1);
7209 while (mask && last_end <= (start & (mask << 1)))
7210 mask <<= 1;
7212 /* accumulate all internode masks */
7213 accl_mask |= mask;
7216 /* convert mask to number of pages */
7217 return ~accl_mask + 1;
7221 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7223 * Return: the minimum PFN based on information provided via
7224 * memblock_set_node().
7226 unsigned long __init find_min_pfn_with_active_regions(void)
7228 return PHYS_PFN(memblock_start_of_DRAM());
7232 * early_calculate_totalpages()
7233 * Sum pages in active regions for movable zone.
7234 * Populate N_MEMORY for calculating usable_nodes.
7236 static unsigned long __init early_calculate_totalpages(void)
7238 unsigned long totalpages = 0;
7239 unsigned long start_pfn, end_pfn;
7240 int i, nid;
7242 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7243 unsigned long pages = end_pfn - start_pfn;
7245 totalpages += pages;
7246 if (pages)
7247 node_set_state(nid, N_MEMORY);
7249 return totalpages;
7253 * Find the PFN the Movable zone begins in each node. Kernel memory
7254 * is spread evenly between nodes as long as the nodes have enough
7255 * memory. When they don't, some nodes will have more kernelcore than
7256 * others
7258 static void __init find_zone_movable_pfns_for_nodes(void)
7260 int i, nid;
7261 unsigned long usable_startpfn;
7262 unsigned long kernelcore_node, kernelcore_remaining;
7263 /* save the state before borrow the nodemask */
7264 nodemask_t saved_node_state = node_states[N_MEMORY];
7265 unsigned long totalpages = early_calculate_totalpages();
7266 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7267 struct memblock_region *r;
7269 /* Need to find movable_zone earlier when movable_node is specified. */
7270 find_usable_zone_for_movable();
7273 * If movable_node is specified, ignore kernelcore and movablecore
7274 * options.
7276 if (movable_node_is_enabled()) {
7277 for_each_mem_region(r) {
7278 if (!memblock_is_hotpluggable(r))
7279 continue;
7281 nid = memblock_get_region_node(r);
7283 usable_startpfn = PFN_DOWN(r->base);
7284 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7285 min(usable_startpfn, zone_movable_pfn[nid]) :
7286 usable_startpfn;
7289 goto out2;
7293 * If kernelcore=mirror is specified, ignore movablecore option
7295 if (mirrored_kernelcore) {
7296 bool mem_below_4gb_not_mirrored = false;
7298 for_each_mem_region(r) {
7299 if (memblock_is_mirror(r))
7300 continue;
7302 nid = memblock_get_region_node(r);
7304 usable_startpfn = memblock_region_memory_base_pfn(r);
7306 if (usable_startpfn < 0x100000) {
7307 mem_below_4gb_not_mirrored = true;
7308 continue;
7311 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7312 min(usable_startpfn, zone_movable_pfn[nid]) :
7313 usable_startpfn;
7316 if (mem_below_4gb_not_mirrored)
7317 pr_warn("This configuration results in unmirrored kernel memory.\n");
7319 goto out2;
7323 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7324 * amount of necessary memory.
7326 if (required_kernelcore_percent)
7327 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7328 10000UL;
7329 if (required_movablecore_percent)
7330 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7331 10000UL;
7334 * If movablecore= was specified, calculate what size of
7335 * kernelcore that corresponds so that memory usable for
7336 * any allocation type is evenly spread. If both kernelcore
7337 * and movablecore are specified, then the value of kernelcore
7338 * will be used for required_kernelcore if it's greater than
7339 * what movablecore would have allowed.
7341 if (required_movablecore) {
7342 unsigned long corepages;
7345 * Round-up so that ZONE_MOVABLE is at least as large as what
7346 * was requested by the user
7348 required_movablecore =
7349 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7350 required_movablecore = min(totalpages, required_movablecore);
7351 corepages = totalpages - required_movablecore;
7353 required_kernelcore = max(required_kernelcore, corepages);
7357 * If kernelcore was not specified or kernelcore size is larger
7358 * than totalpages, there is no ZONE_MOVABLE.
7360 if (!required_kernelcore || required_kernelcore >= totalpages)
7361 goto out;
7363 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7364 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7366 restart:
7367 /* Spread kernelcore memory as evenly as possible throughout nodes */
7368 kernelcore_node = required_kernelcore / usable_nodes;
7369 for_each_node_state(nid, N_MEMORY) {
7370 unsigned long start_pfn, end_pfn;
7373 * Recalculate kernelcore_node if the division per node
7374 * now exceeds what is necessary to satisfy the requested
7375 * amount of memory for the kernel
7377 if (required_kernelcore < kernelcore_node)
7378 kernelcore_node = required_kernelcore / usable_nodes;
7381 * As the map is walked, we track how much memory is usable
7382 * by the kernel using kernelcore_remaining. When it is
7383 * 0, the rest of the node is usable by ZONE_MOVABLE
7385 kernelcore_remaining = kernelcore_node;
7387 /* Go through each range of PFNs within this node */
7388 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7389 unsigned long size_pages;
7391 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7392 if (start_pfn >= end_pfn)
7393 continue;
7395 /* Account for what is only usable for kernelcore */
7396 if (start_pfn < usable_startpfn) {
7397 unsigned long kernel_pages;
7398 kernel_pages = min(end_pfn, usable_startpfn)
7399 - start_pfn;
7401 kernelcore_remaining -= min(kernel_pages,
7402 kernelcore_remaining);
7403 required_kernelcore -= min(kernel_pages,
7404 required_kernelcore);
7406 /* Continue if range is now fully accounted */
7407 if (end_pfn <= usable_startpfn) {
7410 * Push zone_movable_pfn to the end so
7411 * that if we have to rebalance
7412 * kernelcore across nodes, we will
7413 * not double account here
7415 zone_movable_pfn[nid] = end_pfn;
7416 continue;
7418 start_pfn = usable_startpfn;
7422 * The usable PFN range for ZONE_MOVABLE is from
7423 * start_pfn->end_pfn. Calculate size_pages as the
7424 * number of pages used as kernelcore
7426 size_pages = end_pfn - start_pfn;
7427 if (size_pages > kernelcore_remaining)
7428 size_pages = kernelcore_remaining;
7429 zone_movable_pfn[nid] = start_pfn + size_pages;
7432 * Some kernelcore has been met, update counts and
7433 * break if the kernelcore for this node has been
7434 * satisfied
7436 required_kernelcore -= min(required_kernelcore,
7437 size_pages);
7438 kernelcore_remaining -= size_pages;
7439 if (!kernelcore_remaining)
7440 break;
7445 * If there is still required_kernelcore, we do another pass with one
7446 * less node in the count. This will push zone_movable_pfn[nid] further
7447 * along on the nodes that still have memory until kernelcore is
7448 * satisfied
7450 usable_nodes--;
7451 if (usable_nodes && required_kernelcore > usable_nodes)
7452 goto restart;
7454 out2:
7455 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7456 for (nid = 0; nid < MAX_NUMNODES; nid++)
7457 zone_movable_pfn[nid] =
7458 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7460 out:
7461 /* restore the node_state */
7462 node_states[N_MEMORY] = saved_node_state;
7465 /* Any regular or high memory on that node ? */
7466 static void check_for_memory(pg_data_t *pgdat, int nid)
7468 enum zone_type zone_type;
7470 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7471 struct zone *zone = &pgdat->node_zones[zone_type];
7472 if (populated_zone(zone)) {
7473 if (IS_ENABLED(CONFIG_HIGHMEM))
7474 node_set_state(nid, N_HIGH_MEMORY);
7475 if (zone_type <= ZONE_NORMAL)
7476 node_set_state(nid, N_NORMAL_MEMORY);
7477 break;
7483 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7484 * such cases we allow max_zone_pfn sorted in the descending order
7486 bool __weak arch_has_descending_max_zone_pfns(void)
7488 return false;
7492 * free_area_init - Initialise all pg_data_t and zone data
7493 * @max_zone_pfn: an array of max PFNs for each zone
7495 * This will call free_area_init_node() for each active node in the system.
7496 * Using the page ranges provided by memblock_set_node(), the size of each
7497 * zone in each node and their holes is calculated. If the maximum PFN
7498 * between two adjacent zones match, it is assumed that the zone is empty.
7499 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7500 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7501 * starts where the previous one ended. For example, ZONE_DMA32 starts
7502 * at arch_max_dma_pfn.
7504 void __init free_area_init(unsigned long *max_zone_pfn)
7506 unsigned long start_pfn, end_pfn;
7507 int i, nid, zone;
7508 bool descending;
7510 /* Record where the zone boundaries are */
7511 memset(arch_zone_lowest_possible_pfn, 0,
7512 sizeof(arch_zone_lowest_possible_pfn));
7513 memset(arch_zone_highest_possible_pfn, 0,
7514 sizeof(arch_zone_highest_possible_pfn));
7516 start_pfn = find_min_pfn_with_active_regions();
7517 descending = arch_has_descending_max_zone_pfns();
7519 for (i = 0; i < MAX_NR_ZONES; i++) {
7520 if (descending)
7521 zone = MAX_NR_ZONES - i - 1;
7522 else
7523 zone = i;
7525 if (zone == ZONE_MOVABLE)
7526 continue;
7528 end_pfn = max(max_zone_pfn[zone], start_pfn);
7529 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7530 arch_zone_highest_possible_pfn[zone] = end_pfn;
7532 start_pfn = end_pfn;
7535 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7536 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7537 find_zone_movable_pfns_for_nodes();
7539 /* Print out the zone ranges */
7540 pr_info("Zone ranges:\n");
7541 for (i = 0; i < MAX_NR_ZONES; i++) {
7542 if (i == ZONE_MOVABLE)
7543 continue;
7544 pr_info(" %-8s ", zone_names[i]);
7545 if (arch_zone_lowest_possible_pfn[i] ==
7546 arch_zone_highest_possible_pfn[i])
7547 pr_cont("empty\n");
7548 else
7549 pr_cont("[mem %#018Lx-%#018Lx]\n",
7550 (u64)arch_zone_lowest_possible_pfn[i]
7551 << PAGE_SHIFT,
7552 ((u64)arch_zone_highest_possible_pfn[i]
7553 << PAGE_SHIFT) - 1);
7556 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7557 pr_info("Movable zone start for each node\n");
7558 for (i = 0; i < MAX_NUMNODES; i++) {
7559 if (zone_movable_pfn[i])
7560 pr_info(" Node %d: %#018Lx\n", i,
7561 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7565 * Print out the early node map, and initialize the
7566 * subsection-map relative to active online memory ranges to
7567 * enable future "sub-section" extensions of the memory map.
7569 pr_info("Early memory node ranges\n");
7570 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7571 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7572 (u64)start_pfn << PAGE_SHIFT,
7573 ((u64)end_pfn << PAGE_SHIFT) - 1);
7574 subsection_map_init(start_pfn, end_pfn - start_pfn);
7577 /* Initialise every node */
7578 mminit_verify_pageflags_layout();
7579 setup_nr_node_ids();
7580 init_unavailable_mem();
7581 for_each_online_node(nid) {
7582 pg_data_t *pgdat = NODE_DATA(nid);
7583 free_area_init_node(nid);
7585 /* Any memory on that node */
7586 if (pgdat->node_present_pages)
7587 node_set_state(nid, N_MEMORY);
7588 check_for_memory(pgdat, nid);
7592 static int __init cmdline_parse_core(char *p, unsigned long *core,
7593 unsigned long *percent)
7595 unsigned long long coremem;
7596 char *endptr;
7598 if (!p)
7599 return -EINVAL;
7601 /* Value may be a percentage of total memory, otherwise bytes */
7602 coremem = simple_strtoull(p, &endptr, 0);
7603 if (*endptr == '%') {
7604 /* Paranoid check for percent values greater than 100 */
7605 WARN_ON(coremem > 100);
7607 *percent = coremem;
7608 } else {
7609 coremem = memparse(p, &p);
7610 /* Paranoid check that UL is enough for the coremem value */
7611 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7613 *core = coremem >> PAGE_SHIFT;
7614 *percent = 0UL;
7616 return 0;
7620 * kernelcore=size sets the amount of memory for use for allocations that
7621 * cannot be reclaimed or migrated.
7623 static int __init cmdline_parse_kernelcore(char *p)
7625 /* parse kernelcore=mirror */
7626 if (parse_option_str(p, "mirror")) {
7627 mirrored_kernelcore = true;
7628 return 0;
7631 return cmdline_parse_core(p, &required_kernelcore,
7632 &required_kernelcore_percent);
7636 * movablecore=size sets the amount of memory for use for allocations that
7637 * can be reclaimed or migrated.
7639 static int __init cmdline_parse_movablecore(char *p)
7641 return cmdline_parse_core(p, &required_movablecore,
7642 &required_movablecore_percent);
7645 early_param("kernelcore", cmdline_parse_kernelcore);
7646 early_param("movablecore", cmdline_parse_movablecore);
7648 void adjust_managed_page_count(struct page *page, long count)
7650 atomic_long_add(count, &page_zone(page)->managed_pages);
7651 totalram_pages_add(count);
7652 #ifdef CONFIG_HIGHMEM
7653 if (PageHighMem(page))
7654 totalhigh_pages_add(count);
7655 #endif
7657 EXPORT_SYMBOL(adjust_managed_page_count);
7659 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7661 void *pos;
7662 unsigned long pages = 0;
7664 start = (void *)PAGE_ALIGN((unsigned long)start);
7665 end = (void *)((unsigned long)end & PAGE_MASK);
7666 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7667 struct page *page = virt_to_page(pos);
7668 void *direct_map_addr;
7671 * 'direct_map_addr' might be different from 'pos'
7672 * because some architectures' virt_to_page()
7673 * work with aliases. Getting the direct map
7674 * address ensures that we get a _writeable_
7675 * alias for the memset().
7677 direct_map_addr = page_address(page);
7679 * Perform a kasan-unchecked memset() since this memory
7680 * has not been initialized.
7682 direct_map_addr = kasan_reset_tag(direct_map_addr);
7683 if ((unsigned int)poison <= 0xFF)
7684 memset(direct_map_addr, poison, PAGE_SIZE);
7686 free_reserved_page(page);
7689 if (pages && s)
7690 pr_info("Freeing %s memory: %ldK\n",
7691 s, pages << (PAGE_SHIFT - 10));
7693 return pages;
7696 #ifdef CONFIG_HIGHMEM
7697 void free_highmem_page(struct page *page)
7699 __free_reserved_page(page);
7700 totalram_pages_inc();
7701 atomic_long_inc(&page_zone(page)->managed_pages);
7702 totalhigh_pages_inc();
7704 #endif
7707 void __init mem_init_print_info(const char *str)
7709 unsigned long physpages, codesize, datasize, rosize, bss_size;
7710 unsigned long init_code_size, init_data_size;
7712 physpages = get_num_physpages();
7713 codesize = _etext - _stext;
7714 datasize = _edata - _sdata;
7715 rosize = __end_rodata - __start_rodata;
7716 bss_size = __bss_stop - __bss_start;
7717 init_data_size = __init_end - __init_begin;
7718 init_code_size = _einittext - _sinittext;
7721 * Detect special cases and adjust section sizes accordingly:
7722 * 1) .init.* may be embedded into .data sections
7723 * 2) .init.text.* may be out of [__init_begin, __init_end],
7724 * please refer to arch/tile/kernel/vmlinux.lds.S.
7725 * 3) .rodata.* may be embedded into .text or .data sections.
7727 #define adj_init_size(start, end, size, pos, adj) \
7728 do { \
7729 if (start <= pos && pos < end && size > adj) \
7730 size -= adj; \
7731 } while (0)
7733 adj_init_size(__init_begin, __init_end, init_data_size,
7734 _sinittext, init_code_size);
7735 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7736 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7737 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7738 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7740 #undef adj_init_size
7742 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7743 #ifdef CONFIG_HIGHMEM
7744 ", %luK highmem"
7745 #endif
7746 "%s%s)\n",
7747 nr_free_pages() << (PAGE_SHIFT - 10),
7748 physpages << (PAGE_SHIFT - 10),
7749 codesize >> 10, datasize >> 10, rosize >> 10,
7750 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7751 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7752 totalcma_pages << (PAGE_SHIFT - 10),
7753 #ifdef CONFIG_HIGHMEM
7754 totalhigh_pages() << (PAGE_SHIFT - 10),
7755 #endif
7756 str ? ", " : "", str ? str : "");
7760 * set_dma_reserve - set the specified number of pages reserved in the first zone
7761 * @new_dma_reserve: The number of pages to mark reserved
7763 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7764 * In the DMA zone, a significant percentage may be consumed by kernel image
7765 * and other unfreeable allocations which can skew the watermarks badly. This
7766 * function may optionally be used to account for unfreeable pages in the
7767 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7768 * smaller per-cpu batchsize.
7770 void __init set_dma_reserve(unsigned long new_dma_reserve)
7772 dma_reserve = new_dma_reserve;
7775 static int page_alloc_cpu_dead(unsigned int cpu)
7778 lru_add_drain_cpu(cpu);
7779 drain_pages(cpu);
7782 * Spill the event counters of the dead processor
7783 * into the current processors event counters.
7784 * This artificially elevates the count of the current
7785 * processor.
7787 vm_events_fold_cpu(cpu);
7790 * Zero the differential counters of the dead processor
7791 * so that the vm statistics are consistent.
7793 * This is only okay since the processor is dead and cannot
7794 * race with what we are doing.
7796 cpu_vm_stats_fold(cpu);
7797 return 0;
7800 #ifdef CONFIG_NUMA
7801 int hashdist = HASHDIST_DEFAULT;
7803 static int __init set_hashdist(char *str)
7805 if (!str)
7806 return 0;
7807 hashdist = simple_strtoul(str, &str, 0);
7808 return 1;
7810 __setup("hashdist=", set_hashdist);
7811 #endif
7813 void __init page_alloc_init(void)
7815 int ret;
7817 #ifdef CONFIG_NUMA
7818 if (num_node_state(N_MEMORY) == 1)
7819 hashdist = 0;
7820 #endif
7822 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7823 "mm/page_alloc:dead", NULL,
7824 page_alloc_cpu_dead);
7825 WARN_ON(ret < 0);
7829 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7830 * or min_free_kbytes changes.
7832 static void calculate_totalreserve_pages(void)
7834 struct pglist_data *pgdat;
7835 unsigned long reserve_pages = 0;
7836 enum zone_type i, j;
7838 for_each_online_pgdat(pgdat) {
7840 pgdat->totalreserve_pages = 0;
7842 for (i = 0; i < MAX_NR_ZONES; i++) {
7843 struct zone *zone = pgdat->node_zones + i;
7844 long max = 0;
7845 unsigned long managed_pages = zone_managed_pages(zone);
7847 /* Find valid and maximum lowmem_reserve in the zone */
7848 for (j = i; j < MAX_NR_ZONES; j++) {
7849 if (zone->lowmem_reserve[j] > max)
7850 max = zone->lowmem_reserve[j];
7853 /* we treat the high watermark as reserved pages. */
7854 max += high_wmark_pages(zone);
7856 if (max > managed_pages)
7857 max = managed_pages;
7859 pgdat->totalreserve_pages += max;
7861 reserve_pages += max;
7864 totalreserve_pages = reserve_pages;
7868 * setup_per_zone_lowmem_reserve - called whenever
7869 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7870 * has a correct pages reserved value, so an adequate number of
7871 * pages are left in the zone after a successful __alloc_pages().
7873 static void setup_per_zone_lowmem_reserve(void)
7875 struct pglist_data *pgdat;
7876 enum zone_type i, j;
7878 for_each_online_pgdat(pgdat) {
7879 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7880 struct zone *zone = &pgdat->node_zones[i];
7881 int ratio = sysctl_lowmem_reserve_ratio[i];
7882 bool clear = !ratio || !zone_managed_pages(zone);
7883 unsigned long managed_pages = 0;
7885 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7886 if (clear) {
7887 zone->lowmem_reserve[j] = 0;
7888 } else {
7889 struct zone *upper_zone = &pgdat->node_zones[j];
7891 managed_pages += zone_managed_pages(upper_zone);
7892 zone->lowmem_reserve[j] = managed_pages / ratio;
7898 /* update totalreserve_pages */
7899 calculate_totalreserve_pages();
7902 static void __setup_per_zone_wmarks(void)
7904 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7905 unsigned long lowmem_pages = 0;
7906 struct zone *zone;
7907 unsigned long flags;
7909 /* Calculate total number of !ZONE_HIGHMEM pages */
7910 for_each_zone(zone) {
7911 if (!is_highmem(zone))
7912 lowmem_pages += zone_managed_pages(zone);
7915 for_each_zone(zone) {
7916 u64 tmp;
7918 spin_lock_irqsave(&zone->lock, flags);
7919 tmp = (u64)pages_min * zone_managed_pages(zone);
7920 do_div(tmp, lowmem_pages);
7921 if (is_highmem(zone)) {
7923 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7924 * need highmem pages, so cap pages_min to a small
7925 * value here.
7927 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7928 * deltas control async page reclaim, and so should
7929 * not be capped for highmem.
7931 unsigned long min_pages;
7933 min_pages = zone_managed_pages(zone) / 1024;
7934 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7935 zone->_watermark[WMARK_MIN] = min_pages;
7936 } else {
7938 * If it's a lowmem zone, reserve a number of pages
7939 * proportionate to the zone's size.
7941 zone->_watermark[WMARK_MIN] = tmp;
7945 * Set the kswapd watermarks distance according to the
7946 * scale factor in proportion to available memory, but
7947 * ensure a minimum size on small systems.
7949 tmp = max_t(u64, tmp >> 2,
7950 mult_frac(zone_managed_pages(zone),
7951 watermark_scale_factor, 10000));
7953 zone->watermark_boost = 0;
7954 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7955 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7957 spin_unlock_irqrestore(&zone->lock, flags);
7960 /* update totalreserve_pages */
7961 calculate_totalreserve_pages();
7965 * setup_per_zone_wmarks - called when min_free_kbytes changes
7966 * or when memory is hot-{added|removed}
7968 * Ensures that the watermark[min,low,high] values for each zone are set
7969 * correctly with respect to min_free_kbytes.
7971 void setup_per_zone_wmarks(void)
7973 static DEFINE_SPINLOCK(lock);
7975 spin_lock(&lock);
7976 __setup_per_zone_wmarks();
7977 spin_unlock(&lock);
7981 * Initialise min_free_kbytes.
7983 * For small machines we want it small (128k min). For large machines
7984 * we want it large (256MB max). But it is not linear, because network
7985 * bandwidth does not increase linearly with machine size. We use
7987 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7988 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7990 * which yields
7992 * 16MB: 512k
7993 * 32MB: 724k
7994 * 64MB: 1024k
7995 * 128MB: 1448k
7996 * 256MB: 2048k
7997 * 512MB: 2896k
7998 * 1024MB: 4096k
7999 * 2048MB: 5792k
8000 * 4096MB: 8192k
8001 * 8192MB: 11584k
8002 * 16384MB: 16384k
8004 int __meminit init_per_zone_wmark_min(void)
8006 unsigned long lowmem_kbytes;
8007 int new_min_free_kbytes;
8009 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8010 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8012 if (new_min_free_kbytes > user_min_free_kbytes) {
8013 min_free_kbytes = new_min_free_kbytes;
8014 if (min_free_kbytes < 128)
8015 min_free_kbytes = 128;
8016 if (min_free_kbytes > 262144)
8017 min_free_kbytes = 262144;
8018 } else {
8019 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8020 new_min_free_kbytes, user_min_free_kbytes);
8022 setup_per_zone_wmarks();
8023 refresh_zone_stat_thresholds();
8024 setup_per_zone_lowmem_reserve();
8026 #ifdef CONFIG_NUMA
8027 setup_min_unmapped_ratio();
8028 setup_min_slab_ratio();
8029 #endif
8031 khugepaged_min_free_kbytes_update();
8033 return 0;
8035 postcore_initcall(init_per_zone_wmark_min)
8038 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8039 * that we can call two helper functions whenever min_free_kbytes
8040 * changes.
8042 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8043 void *buffer, size_t *length, loff_t *ppos)
8045 int rc;
8047 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8048 if (rc)
8049 return rc;
8051 if (write) {
8052 user_min_free_kbytes = min_free_kbytes;
8053 setup_per_zone_wmarks();
8055 return 0;
8058 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8059 void *buffer, size_t *length, loff_t *ppos)
8061 int rc;
8063 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8064 if (rc)
8065 return rc;
8067 if (write)
8068 setup_per_zone_wmarks();
8070 return 0;
8073 #ifdef CONFIG_NUMA
8074 static void setup_min_unmapped_ratio(void)
8076 pg_data_t *pgdat;
8077 struct zone *zone;
8079 for_each_online_pgdat(pgdat)
8080 pgdat->min_unmapped_pages = 0;
8082 for_each_zone(zone)
8083 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8084 sysctl_min_unmapped_ratio) / 100;
8088 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8089 void *buffer, size_t *length, loff_t *ppos)
8091 int rc;
8093 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8094 if (rc)
8095 return rc;
8097 setup_min_unmapped_ratio();
8099 return 0;
8102 static void setup_min_slab_ratio(void)
8104 pg_data_t *pgdat;
8105 struct zone *zone;
8107 for_each_online_pgdat(pgdat)
8108 pgdat->min_slab_pages = 0;
8110 for_each_zone(zone)
8111 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8112 sysctl_min_slab_ratio) / 100;
8115 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8116 void *buffer, size_t *length, loff_t *ppos)
8118 int rc;
8120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8121 if (rc)
8122 return rc;
8124 setup_min_slab_ratio();
8126 return 0;
8128 #endif
8131 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8132 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8133 * whenever sysctl_lowmem_reserve_ratio changes.
8135 * The reserve ratio obviously has absolutely no relation with the
8136 * minimum watermarks. The lowmem reserve ratio can only make sense
8137 * if in function of the boot time zone sizes.
8139 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8140 void *buffer, size_t *length, loff_t *ppos)
8142 int i;
8144 proc_dointvec_minmax(table, write, buffer, length, ppos);
8146 for (i = 0; i < MAX_NR_ZONES; i++) {
8147 if (sysctl_lowmem_reserve_ratio[i] < 1)
8148 sysctl_lowmem_reserve_ratio[i] = 0;
8151 setup_per_zone_lowmem_reserve();
8152 return 0;
8156 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8157 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8158 * pagelist can have before it gets flushed back to buddy allocator.
8160 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8161 void *buffer, size_t *length, loff_t *ppos)
8163 struct zone *zone;
8164 int old_percpu_pagelist_fraction;
8165 int ret;
8167 mutex_lock(&pcp_batch_high_lock);
8168 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8170 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8171 if (!write || ret < 0)
8172 goto out;
8174 /* Sanity checking to avoid pcp imbalance */
8175 if (percpu_pagelist_fraction &&
8176 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8177 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8178 ret = -EINVAL;
8179 goto out;
8182 /* No change? */
8183 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8184 goto out;
8186 for_each_populated_zone(zone)
8187 zone_set_pageset_high_and_batch(zone);
8188 out:
8189 mutex_unlock(&pcp_batch_high_lock);
8190 return ret;
8193 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8195 * Returns the number of pages that arch has reserved but
8196 * is not known to alloc_large_system_hash().
8198 static unsigned long __init arch_reserved_kernel_pages(void)
8200 return 0;
8202 #endif
8205 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8206 * machines. As memory size is increased the scale is also increased but at
8207 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8208 * quadruples the scale is increased by one, which means the size of hash table
8209 * only doubles, instead of quadrupling as well.
8210 * Because 32-bit systems cannot have large physical memory, where this scaling
8211 * makes sense, it is disabled on such platforms.
8213 #if __BITS_PER_LONG > 32
8214 #define ADAPT_SCALE_BASE (64ul << 30)
8215 #define ADAPT_SCALE_SHIFT 2
8216 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8217 #endif
8220 * allocate a large system hash table from bootmem
8221 * - it is assumed that the hash table must contain an exact power-of-2
8222 * quantity of entries
8223 * - limit is the number of hash buckets, not the total allocation size
8225 void *__init alloc_large_system_hash(const char *tablename,
8226 unsigned long bucketsize,
8227 unsigned long numentries,
8228 int scale,
8229 int flags,
8230 unsigned int *_hash_shift,
8231 unsigned int *_hash_mask,
8232 unsigned long low_limit,
8233 unsigned long high_limit)
8235 unsigned long long max = high_limit;
8236 unsigned long log2qty, size;
8237 void *table = NULL;
8238 gfp_t gfp_flags;
8239 bool virt;
8241 /* allow the kernel cmdline to have a say */
8242 if (!numentries) {
8243 /* round applicable memory size up to nearest megabyte */
8244 numentries = nr_kernel_pages;
8245 numentries -= arch_reserved_kernel_pages();
8247 /* It isn't necessary when PAGE_SIZE >= 1MB */
8248 if (PAGE_SHIFT < 20)
8249 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8251 #if __BITS_PER_LONG > 32
8252 if (!high_limit) {
8253 unsigned long adapt;
8255 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8256 adapt <<= ADAPT_SCALE_SHIFT)
8257 scale++;
8259 #endif
8261 /* limit to 1 bucket per 2^scale bytes of low memory */
8262 if (scale > PAGE_SHIFT)
8263 numentries >>= (scale - PAGE_SHIFT);
8264 else
8265 numentries <<= (PAGE_SHIFT - scale);
8267 /* Make sure we've got at least a 0-order allocation.. */
8268 if (unlikely(flags & HASH_SMALL)) {
8269 /* Makes no sense without HASH_EARLY */
8270 WARN_ON(!(flags & HASH_EARLY));
8271 if (!(numentries >> *_hash_shift)) {
8272 numentries = 1UL << *_hash_shift;
8273 BUG_ON(!numentries);
8275 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8276 numentries = PAGE_SIZE / bucketsize;
8278 numentries = roundup_pow_of_two(numentries);
8280 /* limit allocation size to 1/16 total memory by default */
8281 if (max == 0) {
8282 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8283 do_div(max, bucketsize);
8285 max = min(max, 0x80000000ULL);
8287 if (numentries < low_limit)
8288 numentries = low_limit;
8289 if (numentries > max)
8290 numentries = max;
8292 log2qty = ilog2(numentries);
8294 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8295 do {
8296 virt = false;
8297 size = bucketsize << log2qty;
8298 if (flags & HASH_EARLY) {
8299 if (flags & HASH_ZERO)
8300 table = memblock_alloc(size, SMP_CACHE_BYTES);
8301 else
8302 table = memblock_alloc_raw(size,
8303 SMP_CACHE_BYTES);
8304 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8305 table = __vmalloc(size, gfp_flags);
8306 virt = true;
8307 } else {
8309 * If bucketsize is not a power-of-two, we may free
8310 * some pages at the end of hash table which
8311 * alloc_pages_exact() automatically does
8313 table = alloc_pages_exact(size, gfp_flags);
8314 kmemleak_alloc(table, size, 1, gfp_flags);
8316 } while (!table && size > PAGE_SIZE && --log2qty);
8318 if (!table)
8319 panic("Failed to allocate %s hash table\n", tablename);
8321 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8322 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8323 virt ? "vmalloc" : "linear");
8325 if (_hash_shift)
8326 *_hash_shift = log2qty;
8327 if (_hash_mask)
8328 *_hash_mask = (1 << log2qty) - 1;
8330 return table;
8334 * This function checks whether pageblock includes unmovable pages or not.
8336 * PageLRU check without isolation or lru_lock could race so that
8337 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8338 * check without lock_page also may miss some movable non-lru pages at
8339 * race condition. So you can't expect this function should be exact.
8341 * Returns a page without holding a reference. If the caller wants to
8342 * dereference that page (e.g., dumping), it has to make sure that it
8343 * cannot get removed (e.g., via memory unplug) concurrently.
8346 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8347 int migratetype, int flags)
8349 unsigned long iter = 0;
8350 unsigned long pfn = page_to_pfn(page);
8351 unsigned long offset = pfn % pageblock_nr_pages;
8353 if (is_migrate_cma_page(page)) {
8355 * CMA allocations (alloc_contig_range) really need to mark
8356 * isolate CMA pageblocks even when they are not movable in fact
8357 * so consider them movable here.
8359 if (is_migrate_cma(migratetype))
8360 return NULL;
8362 return page;
8365 for (; iter < pageblock_nr_pages - offset; iter++) {
8366 if (!pfn_valid_within(pfn + iter))
8367 continue;
8369 page = pfn_to_page(pfn + iter);
8372 * Both, bootmem allocations and memory holes are marked
8373 * PG_reserved and are unmovable. We can even have unmovable
8374 * allocations inside ZONE_MOVABLE, for example when
8375 * specifying "movablecore".
8377 if (PageReserved(page))
8378 return page;
8381 * If the zone is movable and we have ruled out all reserved
8382 * pages then it should be reasonably safe to assume the rest
8383 * is movable.
8385 if (zone_idx(zone) == ZONE_MOVABLE)
8386 continue;
8389 * Hugepages are not in LRU lists, but they're movable.
8390 * THPs are on the LRU, but need to be counted as #small pages.
8391 * We need not scan over tail pages because we don't
8392 * handle each tail page individually in migration.
8394 if (PageHuge(page) || PageTransCompound(page)) {
8395 struct page *head = compound_head(page);
8396 unsigned int skip_pages;
8398 if (PageHuge(page)) {
8399 if (!hugepage_migration_supported(page_hstate(head)))
8400 return page;
8401 } else if (!PageLRU(head) && !__PageMovable(head)) {
8402 return page;
8405 skip_pages = compound_nr(head) - (page - head);
8406 iter += skip_pages - 1;
8407 continue;
8411 * We can't use page_count without pin a page
8412 * because another CPU can free compound page.
8413 * This check already skips compound tails of THP
8414 * because their page->_refcount is zero at all time.
8416 if (!page_ref_count(page)) {
8417 if (PageBuddy(page))
8418 iter += (1 << buddy_order(page)) - 1;
8419 continue;
8423 * The HWPoisoned page may be not in buddy system, and
8424 * page_count() is not 0.
8426 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8427 continue;
8430 * We treat all PageOffline() pages as movable when offlining
8431 * to give drivers a chance to decrement their reference count
8432 * in MEM_GOING_OFFLINE in order to indicate that these pages
8433 * can be offlined as there are no direct references anymore.
8434 * For actually unmovable PageOffline() where the driver does
8435 * not support this, we will fail later when trying to actually
8436 * move these pages that still have a reference count > 0.
8437 * (false negatives in this function only)
8439 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8440 continue;
8442 if (__PageMovable(page) || PageLRU(page))
8443 continue;
8446 * If there are RECLAIMABLE pages, we need to check
8447 * it. But now, memory offline itself doesn't call
8448 * shrink_node_slabs() and it still to be fixed.
8450 return page;
8452 return NULL;
8455 #ifdef CONFIG_CONTIG_ALLOC
8456 static unsigned long pfn_max_align_down(unsigned long pfn)
8458 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8459 pageblock_nr_pages) - 1);
8462 static unsigned long pfn_max_align_up(unsigned long pfn)
8464 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8465 pageblock_nr_pages));
8468 /* [start, end) must belong to a single zone. */
8469 static int __alloc_contig_migrate_range(struct compact_control *cc,
8470 unsigned long start, unsigned long end)
8472 /* This function is based on compact_zone() from compaction.c. */
8473 unsigned int nr_reclaimed;
8474 unsigned long pfn = start;
8475 unsigned int tries = 0;
8476 int ret = 0;
8477 struct migration_target_control mtc = {
8478 .nid = zone_to_nid(cc->zone),
8479 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8482 migrate_prep();
8484 while (pfn < end || !list_empty(&cc->migratepages)) {
8485 if (fatal_signal_pending(current)) {
8486 ret = -EINTR;
8487 break;
8490 if (list_empty(&cc->migratepages)) {
8491 cc->nr_migratepages = 0;
8492 pfn = isolate_migratepages_range(cc, pfn, end);
8493 if (!pfn) {
8494 ret = -EINTR;
8495 break;
8497 tries = 0;
8498 } else if (++tries == 5) {
8499 ret = ret < 0 ? ret : -EBUSY;
8500 break;
8503 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8504 &cc->migratepages);
8505 cc->nr_migratepages -= nr_reclaimed;
8507 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8508 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8510 if (ret < 0) {
8511 putback_movable_pages(&cc->migratepages);
8512 return ret;
8514 return 0;
8518 * alloc_contig_range() -- tries to allocate given range of pages
8519 * @start: start PFN to allocate
8520 * @end: one-past-the-last PFN to allocate
8521 * @migratetype: migratetype of the underlaying pageblocks (either
8522 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8523 * in range must have the same migratetype and it must
8524 * be either of the two.
8525 * @gfp_mask: GFP mask to use during compaction
8527 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8528 * aligned. The PFN range must belong to a single zone.
8530 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8531 * pageblocks in the range. Once isolated, the pageblocks should not
8532 * be modified by others.
8534 * Return: zero on success or negative error code. On success all
8535 * pages which PFN is in [start, end) are allocated for the caller and
8536 * need to be freed with free_contig_range().
8538 int alloc_contig_range(unsigned long start, unsigned long end,
8539 unsigned migratetype, gfp_t gfp_mask)
8541 unsigned long outer_start, outer_end;
8542 unsigned int order;
8543 int ret = 0;
8545 struct compact_control cc = {
8546 .nr_migratepages = 0,
8547 .order = -1,
8548 .zone = page_zone(pfn_to_page(start)),
8549 .mode = MIGRATE_SYNC,
8550 .ignore_skip_hint = true,
8551 .no_set_skip_hint = true,
8552 .gfp_mask = current_gfp_context(gfp_mask),
8553 .alloc_contig = true,
8555 INIT_LIST_HEAD(&cc.migratepages);
8558 * What we do here is we mark all pageblocks in range as
8559 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8560 * have different sizes, and due to the way page allocator
8561 * work, we align the range to biggest of the two pages so
8562 * that page allocator won't try to merge buddies from
8563 * different pageblocks and change MIGRATE_ISOLATE to some
8564 * other migration type.
8566 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8567 * migrate the pages from an unaligned range (ie. pages that
8568 * we are interested in). This will put all the pages in
8569 * range back to page allocator as MIGRATE_ISOLATE.
8571 * When this is done, we take the pages in range from page
8572 * allocator removing them from the buddy system. This way
8573 * page allocator will never consider using them.
8575 * This lets us mark the pageblocks back as
8576 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8577 * aligned range but not in the unaligned, original range are
8578 * put back to page allocator so that buddy can use them.
8581 ret = start_isolate_page_range(pfn_max_align_down(start),
8582 pfn_max_align_up(end), migratetype, 0);
8583 if (ret)
8584 return ret;
8586 drain_all_pages(cc.zone);
8589 * In case of -EBUSY, we'd like to know which page causes problem.
8590 * So, just fall through. test_pages_isolated() has a tracepoint
8591 * which will report the busy page.
8593 * It is possible that busy pages could become available before
8594 * the call to test_pages_isolated, and the range will actually be
8595 * allocated. So, if we fall through be sure to clear ret so that
8596 * -EBUSY is not accidentally used or returned to caller.
8598 ret = __alloc_contig_migrate_range(&cc, start, end);
8599 if (ret && ret != -EBUSY)
8600 goto done;
8601 ret =0;
8604 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8605 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8606 * more, all pages in [start, end) are free in page allocator.
8607 * What we are going to do is to allocate all pages from
8608 * [start, end) (that is remove them from page allocator).
8610 * The only problem is that pages at the beginning and at the
8611 * end of interesting range may be not aligned with pages that
8612 * page allocator holds, ie. they can be part of higher order
8613 * pages. Because of this, we reserve the bigger range and
8614 * once this is done free the pages we are not interested in.
8616 * We don't have to hold zone->lock here because the pages are
8617 * isolated thus they won't get removed from buddy.
8620 lru_add_drain_all();
8622 order = 0;
8623 outer_start = start;
8624 while (!PageBuddy(pfn_to_page(outer_start))) {
8625 if (++order >= MAX_ORDER) {
8626 outer_start = start;
8627 break;
8629 outer_start &= ~0UL << order;
8632 if (outer_start != start) {
8633 order = buddy_order(pfn_to_page(outer_start));
8636 * outer_start page could be small order buddy page and
8637 * it doesn't include start page. Adjust outer_start
8638 * in this case to report failed page properly
8639 * on tracepoint in test_pages_isolated()
8641 if (outer_start + (1UL << order) <= start)
8642 outer_start = start;
8645 /* Make sure the range is really isolated. */
8646 if (test_pages_isolated(outer_start, end, 0)) {
8647 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8648 __func__, outer_start, end);
8649 ret = -EBUSY;
8650 goto done;
8653 /* Grab isolated pages from freelists. */
8654 outer_end = isolate_freepages_range(&cc, outer_start, end);
8655 if (!outer_end) {
8656 ret = -EBUSY;
8657 goto done;
8660 /* Free head and tail (if any) */
8661 if (start != outer_start)
8662 free_contig_range(outer_start, start - outer_start);
8663 if (end != outer_end)
8664 free_contig_range(end, outer_end - end);
8666 done:
8667 undo_isolate_page_range(pfn_max_align_down(start),
8668 pfn_max_align_up(end), migratetype);
8669 return ret;
8671 EXPORT_SYMBOL(alloc_contig_range);
8673 static int __alloc_contig_pages(unsigned long start_pfn,
8674 unsigned long nr_pages, gfp_t gfp_mask)
8676 unsigned long end_pfn = start_pfn + nr_pages;
8678 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8679 gfp_mask);
8682 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8683 unsigned long nr_pages)
8685 unsigned long i, end_pfn = start_pfn + nr_pages;
8686 struct page *page;
8688 for (i = start_pfn; i < end_pfn; i++) {
8689 page = pfn_to_online_page(i);
8690 if (!page)
8691 return false;
8693 if (page_zone(page) != z)
8694 return false;
8696 if (PageReserved(page))
8697 return false;
8699 if (page_count(page) > 0)
8700 return false;
8702 if (PageHuge(page))
8703 return false;
8705 return true;
8708 static bool zone_spans_last_pfn(const struct zone *zone,
8709 unsigned long start_pfn, unsigned long nr_pages)
8711 unsigned long last_pfn = start_pfn + nr_pages - 1;
8713 return zone_spans_pfn(zone, last_pfn);
8717 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8718 * @nr_pages: Number of contiguous pages to allocate
8719 * @gfp_mask: GFP mask to limit search and used during compaction
8720 * @nid: Target node
8721 * @nodemask: Mask for other possible nodes
8723 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8724 * on an applicable zonelist to find a contiguous pfn range which can then be
8725 * tried for allocation with alloc_contig_range(). This routine is intended
8726 * for allocation requests which can not be fulfilled with the buddy allocator.
8728 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8729 * power of two then the alignment is guaranteed to be to the given nr_pages
8730 * (e.g. 1GB request would be aligned to 1GB).
8732 * Allocated pages can be freed with free_contig_range() or by manually calling
8733 * __free_page() on each allocated page.
8735 * Return: pointer to contiguous pages on success, or NULL if not successful.
8737 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8738 int nid, nodemask_t *nodemask)
8740 unsigned long ret, pfn, flags;
8741 struct zonelist *zonelist;
8742 struct zone *zone;
8743 struct zoneref *z;
8745 zonelist = node_zonelist(nid, gfp_mask);
8746 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8747 gfp_zone(gfp_mask), nodemask) {
8748 spin_lock_irqsave(&zone->lock, flags);
8750 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8751 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8752 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8754 * We release the zone lock here because
8755 * alloc_contig_range() will also lock the zone
8756 * at some point. If there's an allocation
8757 * spinning on this lock, it may win the race
8758 * and cause alloc_contig_range() to fail...
8760 spin_unlock_irqrestore(&zone->lock, flags);
8761 ret = __alloc_contig_pages(pfn, nr_pages,
8762 gfp_mask);
8763 if (!ret)
8764 return pfn_to_page(pfn);
8765 spin_lock_irqsave(&zone->lock, flags);
8767 pfn += nr_pages;
8769 spin_unlock_irqrestore(&zone->lock, flags);
8771 return NULL;
8773 #endif /* CONFIG_CONTIG_ALLOC */
8775 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8777 unsigned int count = 0;
8779 for (; nr_pages--; pfn++) {
8780 struct page *page = pfn_to_page(pfn);
8782 count += page_count(page) != 1;
8783 __free_page(page);
8785 WARN(count != 0, "%d pages are still in use!\n", count);
8787 EXPORT_SYMBOL(free_contig_range);
8790 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8791 * page high values need to be recalulated.
8793 void __meminit zone_pcp_update(struct zone *zone)
8795 mutex_lock(&pcp_batch_high_lock);
8796 zone_set_pageset_high_and_batch(zone);
8797 mutex_unlock(&pcp_batch_high_lock);
8801 * Effectively disable pcplists for the zone by setting the high limit to 0
8802 * and draining all cpus. A concurrent page freeing on another CPU that's about
8803 * to put the page on pcplist will either finish before the drain and the page
8804 * will be drained, or observe the new high limit and skip the pcplist.
8806 * Must be paired with a call to zone_pcp_enable().
8808 void zone_pcp_disable(struct zone *zone)
8810 mutex_lock(&pcp_batch_high_lock);
8811 __zone_set_pageset_high_and_batch(zone, 0, 1);
8812 __drain_all_pages(zone, true);
8815 void zone_pcp_enable(struct zone *zone)
8817 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8818 mutex_unlock(&pcp_batch_high_lock);
8821 void zone_pcp_reset(struct zone *zone)
8823 unsigned long flags;
8824 int cpu;
8825 struct per_cpu_pageset *pset;
8827 /* avoid races with drain_pages() */
8828 local_irq_save(flags);
8829 if (zone->pageset != &boot_pageset) {
8830 for_each_online_cpu(cpu) {
8831 pset = per_cpu_ptr(zone->pageset, cpu);
8832 drain_zonestat(zone, pset);
8834 free_percpu(zone->pageset);
8835 zone->pageset = &boot_pageset;
8837 local_irq_restore(flags);
8840 #ifdef CONFIG_MEMORY_HOTREMOVE
8842 * All pages in the range must be in a single zone, must not contain holes,
8843 * must span full sections, and must be isolated before calling this function.
8845 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8847 unsigned long pfn = start_pfn;
8848 struct page *page;
8849 struct zone *zone;
8850 unsigned int order;
8851 unsigned long flags;
8853 offline_mem_sections(pfn, end_pfn);
8854 zone = page_zone(pfn_to_page(pfn));
8855 spin_lock_irqsave(&zone->lock, flags);
8856 while (pfn < end_pfn) {
8857 page = pfn_to_page(pfn);
8859 * The HWPoisoned page may be not in buddy system, and
8860 * page_count() is not 0.
8862 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8863 pfn++;
8864 continue;
8867 * At this point all remaining PageOffline() pages have a
8868 * reference count of 0 and can simply be skipped.
8870 if (PageOffline(page)) {
8871 BUG_ON(page_count(page));
8872 BUG_ON(PageBuddy(page));
8873 pfn++;
8874 continue;
8877 BUG_ON(page_count(page));
8878 BUG_ON(!PageBuddy(page));
8879 order = buddy_order(page);
8880 del_page_from_free_list(page, zone, order);
8881 pfn += (1 << order);
8883 spin_unlock_irqrestore(&zone->lock, flags);
8885 #endif
8887 bool is_free_buddy_page(struct page *page)
8889 struct zone *zone = page_zone(page);
8890 unsigned long pfn = page_to_pfn(page);
8891 unsigned long flags;
8892 unsigned int order;
8894 spin_lock_irqsave(&zone->lock, flags);
8895 for (order = 0; order < MAX_ORDER; order++) {
8896 struct page *page_head = page - (pfn & ((1 << order) - 1));
8898 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8899 break;
8901 spin_unlock_irqrestore(&zone->lock, flags);
8903 return order < MAX_ORDER;
8906 #ifdef CONFIG_MEMORY_FAILURE
8908 * Break down a higher-order page in sub-pages, and keep our target out of
8909 * buddy allocator.
8911 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8912 struct page *target, int low, int high,
8913 int migratetype)
8915 unsigned long size = 1 << high;
8916 struct page *current_buddy, *next_page;
8918 while (high > low) {
8919 high--;
8920 size >>= 1;
8922 if (target >= &page[size]) {
8923 next_page = page + size;
8924 current_buddy = page;
8925 } else {
8926 next_page = page;
8927 current_buddy = page + size;
8930 if (set_page_guard(zone, current_buddy, high, migratetype))
8931 continue;
8933 if (current_buddy != target) {
8934 add_to_free_list(current_buddy, zone, high, migratetype);
8935 set_buddy_order(current_buddy, high);
8936 page = next_page;
8942 * Take a page that will be marked as poisoned off the buddy allocator.
8944 bool take_page_off_buddy(struct page *page)
8946 struct zone *zone = page_zone(page);
8947 unsigned long pfn = page_to_pfn(page);
8948 unsigned long flags;
8949 unsigned int order;
8950 bool ret = false;
8952 spin_lock_irqsave(&zone->lock, flags);
8953 for (order = 0; order < MAX_ORDER; order++) {
8954 struct page *page_head = page - (pfn & ((1 << order) - 1));
8955 int page_order = buddy_order(page_head);
8957 if (PageBuddy(page_head) && page_order >= order) {
8958 unsigned long pfn_head = page_to_pfn(page_head);
8959 int migratetype = get_pfnblock_migratetype(page_head,
8960 pfn_head);
8962 del_page_from_free_list(page_head, zone, page_order);
8963 break_down_buddy_pages(zone, page_head, page, 0,
8964 page_order, migratetype);
8965 ret = true;
8966 break;
8968 if (page_count(page_head) > 0)
8969 break;
8971 spin_unlock_irqrestore(&zone->lock, flags);
8972 return ret;
8974 #endif