1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
81 #include "page_reporting.h"
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t
;
86 /* No special request */
87 #define FPI_NONE ((__force fpi_t)0)
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock
);
113 #define MIN_PERCPU_PAGELIST_FRACTION (8)
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node
);
117 EXPORT_PER_CPU_SYMBOL(numa_node
);
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
129 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
133 /* work_structs for global per-cpu drains */
136 struct work_struct work
;
138 static DEFINE_MUTEX(pcpu_drain_mutex
);
139 static DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy
;
143 EXPORT_SYMBOL(latent_entropy
);
147 * Array of node states.
149 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
150 [N_POSSIBLE
] = NODE_MASK_ALL
,
151 [N_ONLINE
] = { { [0] = 1UL } },
153 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
157 [N_MEMORY
] = { { [0] = 1UL } },
158 [N_CPU
] = { { [0] = 1UL } },
161 EXPORT_SYMBOL(node_states
);
163 atomic_long_t _totalram_pages __read_mostly
;
164 EXPORT_SYMBOL(_totalram_pages
);
165 unsigned long totalreserve_pages __read_mostly
;
166 unsigned long totalcma_pages __read_mostly
;
168 int percpu_pagelist_fraction
;
169 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
171 EXPORT_SYMBOL(init_on_alloc
);
173 DEFINE_STATIC_KEY_FALSE(init_on_free
);
174 EXPORT_SYMBOL(init_on_free
);
176 static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON
);
178 static int __init
early_init_on_alloc(char *buf
)
181 return kstrtobool(buf
, &_init_on_alloc_enabled_early
);
183 early_param("init_on_alloc", early_init_on_alloc
);
185 static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON
);
187 static int __init
early_init_on_free(char *buf
)
189 return kstrtobool(buf
, &_init_on_free_enabled_early
);
191 early_param("init_on_free", early_init_on_free
);
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
201 static inline int get_pcppage_migratetype(struct page
*page
)
206 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
208 page
->index
= migratetype
;
211 #ifdef CONFIG_PM_SLEEP
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
222 static gfp_t saved_gfp_mask
;
224 void pm_restore_gfp_mask(void)
226 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
227 if (saved_gfp_mask
) {
228 gfp_allowed_mask
= saved_gfp_mask
;
233 void pm_restrict_gfp_mask(void)
235 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
236 WARN_ON(saved_gfp_mask
);
237 saved_gfp_mask
= gfp_allowed_mask
;
238 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
241 bool pm_suspended_storage(void)
243 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
247 #endif /* CONFIG_PM_SLEEP */
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly
;
253 static void __free_pages_ok(struct page
*page
, unsigned int order
,
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
267 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
268 #ifdef CONFIG_ZONE_DMA
271 #ifdef CONFIG_ZONE_DMA32
275 #ifdef CONFIG_HIGHMEM
281 static char * const zone_names
[MAX_NR_ZONES
] = {
282 #ifdef CONFIG_ZONE_DMA
285 #ifdef CONFIG_ZONE_DMA32
289 #ifdef CONFIG_HIGHMEM
293 #ifdef CONFIG_ZONE_DEVICE
298 const char * const migratetype_names
[MIGRATE_TYPES
] = {
306 #ifdef CONFIG_MEMORY_ISOLATION
311 compound_page_dtor
* const compound_page_dtors
[NR_COMPOUND_DTORS
] = {
312 [NULL_COMPOUND_DTOR
] = NULL
,
313 [COMPOUND_PAGE_DTOR
] = free_compound_page
,
314 #ifdef CONFIG_HUGETLB_PAGE
315 [HUGETLB_PAGE_DTOR
] = free_huge_page
,
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 [TRANSHUGE_PAGE_DTOR
] = free_transhuge_page
,
322 int min_free_kbytes
= 1024;
323 int user_min_free_kbytes
= -1;
324 #ifdef CONFIG_DISCONTIGMEM
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
334 int watermark_boost_factor __read_mostly
;
336 int watermark_boost_factor __read_mostly
= 15000;
338 int watermark_scale_factor
= 10;
340 static unsigned long nr_kernel_pages __initdata
;
341 static unsigned long nr_all_pages __initdata
;
342 static unsigned long dma_reserve __initdata
;
344 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
345 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
346 static unsigned long required_kernelcore __initdata
;
347 static unsigned long required_kernelcore_percent __initdata
;
348 static unsigned long required_movablecore __initdata
;
349 static unsigned long required_movablecore_percent __initdata
;
350 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
351 static bool mirrored_kernelcore __meminitdata
;
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
355 EXPORT_SYMBOL(movable_zone
);
358 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
359 unsigned int nr_online_nodes __read_mostly
= 1;
360 EXPORT_SYMBOL(nr_node_ids
);
361 EXPORT_SYMBOL(nr_online_nodes
);
364 int page_group_by_mobility_disabled __read_mostly
;
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
387 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
389 if (!static_branch_unlikely(&deferred_pages
))
390 kasan_free_pages(page
, order
);
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
396 int nid
= early_pfn_to_nid(pfn
);
398 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
405 * Returns true when the remaining initialisation should be deferred until
406 * later in the boot cycle when it can be parallelised.
408 static bool __meminit
409 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
411 static unsigned long prev_end_pfn
, nr_initialised
;
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
417 if (prev_end_pfn
!= end_pfn
) {
418 prev_end_pfn
= end_pfn
;
422 /* Always populate low zones for address-constrained allocations */
423 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
426 if (NODE_DATA(nid
)->first_deferred_pfn
!= ULONG_MAX
)
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
433 if ((nr_initialised
> PAGES_PER_SECTION
) &&
434 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
435 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
443 static inline bool early_page_uninitialised(unsigned long pfn
)
448 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
458 #ifdef CONFIG_SPARSEMEM
459 return section_to_usemap(__pfn_to_section(pfn
));
461 return page_zone(page
)->pageblock_flags
;
462 #endif /* CONFIG_SPARSEMEM */
465 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
467 #ifdef CONFIG_SPARSEMEM
468 pfn
&= (PAGES_PER_SECTION
-1);
470 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
471 #endif /* CONFIG_SPARSEMEM */
472 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page
*page
,
480 unsigned long *bitmap
;
481 unsigned long bitidx
, word_bitidx
;
484 bitmap
= get_pageblock_bitmap(page
, pfn
);
485 bitidx
= pfn_to_bitidx(page
, pfn
);
486 word_bitidx
= bitidx
/ BITS_PER_LONG
;
487 bitidx
&= (BITS_PER_LONG
-1);
489 word
= bitmap
[word_bitidx
];
490 return (word
>> bitidx
) & mask
;
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
499 * Return: pageblock_bits flags
501 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
504 return __get_pfnblock_flags_mask(page
, pfn
, mask
);
507 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
509 return __get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
517 * @mask: mask of bits that the caller is interested in
519 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
540 word
= READ_ONCE(bitmap
[word_bitidx
]);
542 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
543 if (word
== old_word
)
549 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
551 if (unlikely(page_group_by_mobility_disabled
&&
552 migratetype
< MIGRATE_PCPTYPES
))
553 migratetype
= MIGRATE_UNMOVABLE
;
555 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
556 page_to_pfn(page
), MIGRATETYPE_MASK
);
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
564 unsigned long pfn
= page_to_pfn(page
);
565 unsigned long sp
, start_pfn
;
568 seq
= zone_span_seqbegin(zone
);
569 start_pfn
= zone
->zone_start_pfn
;
570 sp
= zone
->spanned_pages
;
571 if (!zone_spans_pfn(zone
, pfn
))
573 } while (zone_span_seqretry(zone
, seq
));
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn
, zone_to_nid(zone
), zone
->name
,
578 start_pfn
, start_pfn
+ sp
);
583 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
585 if (!pfn_valid_within(page_to_pfn(page
)))
587 if (zone
!= page_zone(page
))
593 * Temporary debugging check for pages not lying within a given zone.
595 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
597 if (page_outside_zone_boundaries(zone
, page
))
599 if (!page_is_consistent(zone
, page
))
605 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
611 static void bad_page(struct page
*page
, const char *reason
)
613 static unsigned long resume
;
614 static unsigned long nr_shown
;
615 static unsigned long nr_unshown
;
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
621 if (nr_shown
== 60) {
622 if (time_before(jiffies
, resume
)) {
628 "BUG: Bad page state: %lu messages suppressed\n",
635 resume
= jiffies
+ 60 * HZ
;
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current
->comm
, page_to_pfn(page
));
639 __dump_page(page
, reason
);
640 dump_page_owner(page
);
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page
); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
651 * Higher-order pages are called "compound pages". They are structured thusly:
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
665 void free_compound_page(struct page
*page
)
667 mem_cgroup_uncharge(page
);
668 __free_pages_ok(page
, compound_order(page
), FPI_NONE
);
671 void prep_compound_page(struct page
*page
, unsigned int order
)
674 int nr_pages
= 1 << order
;
677 for (i
= 1; i
< nr_pages
; i
++) {
678 struct page
*p
= page
+ i
;
679 set_page_count(p
, 0);
680 p
->mapping
= TAIL_MAPPING
;
681 set_compound_head(p
, page
);
684 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
685 set_compound_order(page
, order
);
686 atomic_set(compound_mapcount_ptr(page
), -1);
687 if (hpage_pincount_available(page
))
688 atomic_set(compound_pincount_ptr(page
), 0);
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder
;
694 bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
702 static int __init
early_debug_pagealloc(char *buf
)
704 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
706 early_param("debug_pagealloc", early_debug_pagealloc
);
708 static int __init
debug_guardpage_minorder_setup(char *buf
)
712 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
713 pr_err("Bad debug_guardpage_minorder value\n");
716 _debug_guardpage_minorder
= res
;
717 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
722 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
723 unsigned int order
, int migratetype
)
725 if (!debug_guardpage_enabled())
728 if (order
>= debug_guardpage_minorder())
731 __SetPageGuard(page
);
732 INIT_LIST_HEAD(&page
->lru
);
733 set_page_private(page
, order
);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
740 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
741 unsigned int order
, int migratetype
)
743 if (!debug_guardpage_enabled())
746 __ClearPageGuard(page
);
748 set_page_private(page
, 0);
749 if (!is_migrate_isolate(migratetype
))
750 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
753 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
754 unsigned int order
, int migratetype
) { return false; }
755 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
756 unsigned int order
, int migratetype
) {}
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
765 void init_mem_debugging_and_hardening(void)
767 if (_init_on_alloc_enabled_early
) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
772 static_branch_enable(&init_on_alloc
);
774 if (_init_on_free_enabled_early
) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
779 static_branch_enable(&init_on_free
);
782 #ifdef CONFIG_PAGE_POISONING
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC
) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled
);
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
797 static_branch_enable(&_debug_pagealloc_enabled
);
799 if (!debug_guardpage_minorder())
802 static_branch_enable(&_debug_guardpage_enabled
);
806 static inline void set_buddy_order(struct page
*page
, unsigned int order
)
808 set_page_private(page
, order
);
809 __SetPageBuddy(page
);
813 * This function checks whether a page is free && is the buddy
814 * we can coalesce a page and its buddy if
815 * (a) the buddy is not in a hole (check before calling!) &&
816 * (b) the buddy is in the buddy system &&
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
823 * For recording page's order, we use page_private(page).
825 static inline bool page_is_buddy(struct page
*page
, struct page
*buddy
,
828 if (!page_is_guard(buddy
) && !PageBuddy(buddy
))
831 if (buddy_order(buddy
) != order
)
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
838 if (page_zone_id(page
) != page_zone_id(buddy
))
841 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control
*task_capc(struct zone
*zone
)
849 struct capture_control
*capc
= current
->capture_control
;
851 return unlikely(capc
) &&
852 !(current
->flags
& PF_KTHREAD
) &&
854 capc
->cc
->zone
== zone
? capc
: NULL
;
858 compaction_capture(struct capture_control
*capc
, struct page
*page
,
859 int order
, int migratetype
)
861 if (!capc
|| order
!= capc
->cc
->order
)
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype
) ||
866 is_migrate_isolate(migratetype
))
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
875 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
883 static inline struct capture_control
*task_capc(struct zone
*zone
)
889 compaction_capture(struct capture_control
*capc
, struct page
*page
,
890 int order
, int migratetype
)
894 #endif /* CONFIG_COMPACTION */
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
898 unsigned int order
, int migratetype
)
900 struct free_area
*area
= &zone
->free_area
[order
];
902 list_add(&page
->lru
, &area
->free_list
[migratetype
]);
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page
*page
, struct zone
*zone
,
908 unsigned int order
, int migratetype
)
910 struct free_area
*area
= &zone
->free_area
[order
];
912 list_add_tail(&page
->lru
, &area
->free_list
[migratetype
]);
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
921 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
922 unsigned int order
, int migratetype
)
924 struct free_area
*area
= &zone
->free_area
[order
];
926 list_move_tail(&page
->lru
, &area
->free_list
[migratetype
]);
929 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
932 /* clear reported state and update reported page count */
933 if (page_reported(page
))
934 __ClearPageReported(page
);
936 list_del(&page
->lru
);
937 __ClearPageBuddy(page
);
938 set_page_private(page
, 0);
939 zone
->free_area
[order
].nr_free
--;
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
951 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
952 struct page
*page
, unsigned int order
)
954 struct page
*higher_page
, *higher_buddy
;
955 unsigned long combined_pfn
;
957 if (order
>= MAX_ORDER
- 2)
960 if (!pfn_valid_within(buddy_pfn
))
963 combined_pfn
= buddy_pfn
& pfn
;
964 higher_page
= page
+ (combined_pfn
- pfn
);
965 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
966 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
968 return pfn_valid_within(buddy_pfn
) &&
969 page_is_buddy(higher_page
, higher_buddy
, order
+ 1);
973 * Freeing function for a buddy system allocator.
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
987 * So when we are allocating or freeing one, we can derive the state of the
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
990 * If a block is freed, and its buddy is also free, then this
991 * triggers coalescing into a block of larger size.
996 static inline void __free_one_page(struct page
*page
,
998 struct zone
*zone
, unsigned int order
,
999 int migratetype
, fpi_t fpi_flags
)
1001 struct capture_control
*capc
= task_capc(zone
);
1002 unsigned long buddy_pfn
;
1003 unsigned long combined_pfn
;
1004 unsigned int max_order
;
1008 max_order
= min_t(unsigned int, MAX_ORDER
- 1, pageblock_order
);
1010 VM_BUG_ON(!zone_is_initialized(zone
));
1011 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
1013 VM_BUG_ON(migratetype
== -1);
1014 if (likely(!is_migrate_isolate(migratetype
)))
1015 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
1017 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
1018 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1021 while (order
< max_order
) {
1022 if (compaction_capture(capc
, page
, order
, migratetype
)) {
1023 __mod_zone_freepage_state(zone
, -(1 << order
),
1027 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1028 buddy
= page
+ (buddy_pfn
- pfn
);
1030 if (!pfn_valid_within(buddy_pfn
))
1032 if (!page_is_buddy(page
, buddy
, order
))
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1038 if (page_is_guard(buddy
))
1039 clear_page_guard(zone
, buddy
, order
, migratetype
);
1041 del_page_from_free_list(buddy
, zone
, order
);
1042 combined_pfn
= buddy_pfn
& pfn
;
1043 page
= page
+ (combined_pfn
- pfn
);
1047 if (order
< MAX_ORDER
- 1) {
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1056 if (unlikely(has_isolate_pageblock(zone
))) {
1059 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1060 buddy
= page
+ (buddy_pfn
- pfn
);
1061 buddy_mt
= get_pageblock_migratetype(buddy
);
1063 if (migratetype
!= buddy_mt
1064 && (is_migrate_isolate(migratetype
) ||
1065 is_migrate_isolate(buddy_mt
)))
1068 max_order
= order
+ 1;
1069 goto continue_merging
;
1073 set_buddy_order(page
, order
);
1075 if (fpi_flags
& FPI_TO_TAIL
)
1077 else if (is_shuffle_order(order
))
1078 to_tail
= shuffle_pick_tail();
1080 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
1083 add_to_free_list_tail(page
, zone
, order
, migratetype
);
1085 add_to_free_list(page
, zone
, order
, migratetype
);
1087 /* Notify page reporting subsystem of freed page */
1088 if (!(fpi_flags
& FPI_SKIP_REPORT_NOTIFY
))
1089 page_reporting_notify_free(order
);
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1097 static inline bool page_expected_state(struct page
*page
,
1098 unsigned long check_flags
)
1100 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1103 if (unlikely((unsigned long)page
->mapping
|
1104 page_ref_count(page
) |
1106 (unsigned long)page_memcg(page
) |
1108 (page
->flags
& check_flags
)))
1114 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
1116 const char *bad_reason
= NULL
;
1118 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1119 bad_reason
= "nonzero mapcount";
1120 if (unlikely(page
->mapping
!= NULL
))
1121 bad_reason
= "non-NULL mapping";
1122 if (unlikely(page_ref_count(page
) != 0))
1123 bad_reason
= "nonzero _refcount";
1124 if (unlikely(page
->flags
& flags
)) {
1125 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
1126 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1128 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1131 if (unlikely(page_memcg(page
)))
1132 bad_reason
= "page still charged to cgroup";
1137 static void check_free_page_bad(struct page
*page
)
1140 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
1143 static inline int check_free_page(struct page
*page
)
1145 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1148 /* Something has gone sideways, find it */
1149 check_free_page_bad(page
);
1153 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1167 switch (page
- head_page
) {
1169 /* the first tail page: ->mapping may be compound_mapcount() */
1170 if (unlikely(compound_mapcount(page
))) {
1171 bad_page(page
, "nonzero compound_mapcount");
1177 * the second tail page: ->mapping is
1178 * deferred_list.next -- ignore value.
1182 if (page
->mapping
!= TAIL_MAPPING
) {
1183 bad_page(page
, "corrupted mapping in tail page");
1188 if (unlikely(!PageTail(page
))) {
1189 bad_page(page
, "PageTail not set");
1192 if (unlikely(compound_head(page
) != head_page
)) {
1193 bad_page(page
, "compound_head not consistent");
1198 page
->mapping
= NULL
;
1199 clear_compound_head(page
);
1203 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
1209 for (i
= 0; i
< numpages
; i
++) {
1210 page_kasan_tag_reset(page
+ i
);
1211 clear_highpage(page
+ i
);
1213 kasan_enable_current();
1216 static __always_inline
bool free_pages_prepare(struct page
*page
,
1217 unsigned int order
, bool check_free
)
1221 VM_BUG_ON_PAGE(PageTail(page
), page
);
1223 trace_mm_page_free(page
, order
);
1225 if (unlikely(PageHWPoison(page
)) && !order
) {
1227 * Do not let hwpoison pages hit pcplists/buddy
1228 * Untie memcg state and reset page's owner
1230 if (memcg_kmem_enabled() && PageMemcgKmem(page
))
1231 __memcg_kmem_uncharge_page(page
, order
);
1232 reset_page_owner(page
, order
);
1237 * Check tail pages before head page information is cleared to
1238 * avoid checking PageCompound for order-0 pages.
1240 if (unlikely(order
)) {
1241 bool compound
= PageCompound(page
);
1244 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1247 ClearPageDoubleMap(page
);
1248 for (i
= 1; i
< (1 << order
); i
++) {
1250 bad
+= free_tail_pages_check(page
, page
+ i
);
1251 if (unlikely(check_free_page(page
+ i
))) {
1255 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1258 if (PageMappingFlags(page
))
1259 page
->mapping
= NULL
;
1260 if (memcg_kmem_enabled() && PageMemcgKmem(page
))
1261 __memcg_kmem_uncharge_page(page
, order
);
1263 bad
+= check_free_page(page
);
1267 page_cpupid_reset_last(page
);
1268 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1269 reset_page_owner(page
, order
);
1271 if (!PageHighMem(page
)) {
1272 debug_check_no_locks_freed(page_address(page
),
1273 PAGE_SIZE
<< order
);
1274 debug_check_no_obj_freed(page_address(page
),
1275 PAGE_SIZE
<< order
);
1277 if (want_init_on_free())
1278 kernel_init_free_pages(page
, 1 << order
);
1280 kernel_poison_pages(page
, 1 << order
);
1283 * arch_free_page() can make the page's contents inaccessible. s390
1284 * does this. So nothing which can access the page's contents should
1285 * happen after this.
1287 arch_free_page(page
, order
);
1289 debug_pagealloc_unmap_pages(page
, 1 << order
);
1291 kasan_free_nondeferred_pages(page
, order
);
1296 #ifdef CONFIG_DEBUG_VM
1298 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1299 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1300 * moved from pcp lists to free lists.
1302 static bool free_pcp_prepare(struct page
*page
)
1304 return free_pages_prepare(page
, 0, true);
1307 static bool bulkfree_pcp_prepare(struct page
*page
)
1309 if (debug_pagealloc_enabled_static())
1310 return check_free_page(page
);
1316 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1317 * moving from pcp lists to free list in order to reduce overhead. With
1318 * debug_pagealloc enabled, they are checked also immediately when being freed
1321 static bool free_pcp_prepare(struct page
*page
)
1323 if (debug_pagealloc_enabled_static())
1324 return free_pages_prepare(page
, 0, true);
1326 return free_pages_prepare(page
, 0, false);
1329 static bool bulkfree_pcp_prepare(struct page
*page
)
1331 return check_free_page(page
);
1333 #endif /* CONFIG_DEBUG_VM */
1335 static inline void prefetch_buddy(struct page
*page
)
1337 unsigned long pfn
= page_to_pfn(page
);
1338 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1339 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1345 * Frees a number of pages from the PCP lists
1346 * Assumes all pages on list are in same zone, and of same order.
1347 * count is the number of pages to free.
1349 * If the zone was previously in an "all pages pinned" state then look to
1350 * see if this freeing clears that state.
1352 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1353 * pinned" detection logic.
1355 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1356 struct per_cpu_pages
*pcp
)
1358 int migratetype
= 0;
1360 int prefetch_nr
= READ_ONCE(pcp
->batch
);
1361 bool isolated_pageblocks
;
1362 struct page
*page
, *tmp
;
1366 * Ensure proper count is passed which otherwise would stuck in the
1367 * below while (list_empty(list)) loop.
1369 count
= min(pcp
->count
, count
);
1371 struct list_head
*list
;
1374 * Remove pages from lists in a round-robin fashion. A
1375 * batch_free count is maintained that is incremented when an
1376 * empty list is encountered. This is so more pages are freed
1377 * off fuller lists instead of spinning excessively around empty
1382 if (++migratetype
== MIGRATE_PCPTYPES
)
1384 list
= &pcp
->lists
[migratetype
];
1385 } while (list_empty(list
));
1387 /* This is the only non-empty list. Free them all. */
1388 if (batch_free
== MIGRATE_PCPTYPES
)
1392 page
= list_last_entry(list
, struct page
, lru
);
1393 /* must delete to avoid corrupting pcp list */
1394 list_del(&page
->lru
);
1397 if (bulkfree_pcp_prepare(page
))
1400 list_add_tail(&page
->lru
, &head
);
1403 * We are going to put the page back to the global
1404 * pool, prefetch its buddy to speed up later access
1405 * under zone->lock. It is believed the overhead of
1406 * an additional test and calculating buddy_pfn here
1407 * can be offset by reduced memory latency later. To
1408 * avoid excessive prefetching due to large count, only
1409 * prefetch buddy for the first pcp->batch nr of pages.
1412 prefetch_buddy(page
);
1415 } while (--count
&& --batch_free
&& !list_empty(list
));
1418 spin_lock(&zone
->lock
);
1419 isolated_pageblocks
= has_isolate_pageblock(zone
);
1422 * Use safe version since after __free_one_page(),
1423 * page->lru.next will not point to original list.
1425 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1426 int mt
= get_pcppage_migratetype(page
);
1427 /* MIGRATE_ISOLATE page should not go to pcplists */
1428 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1429 /* Pageblock could have been isolated meanwhile */
1430 if (unlikely(isolated_pageblocks
))
1431 mt
= get_pageblock_migratetype(page
);
1433 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
, FPI_NONE
);
1434 trace_mm_page_pcpu_drain(page
, 0, mt
);
1436 spin_unlock(&zone
->lock
);
1439 static void free_one_page(struct zone
*zone
,
1440 struct page
*page
, unsigned long pfn
,
1442 int migratetype
, fpi_t fpi_flags
)
1444 spin_lock(&zone
->lock
);
1445 if (unlikely(has_isolate_pageblock(zone
) ||
1446 is_migrate_isolate(migratetype
))) {
1447 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1449 __free_one_page(page
, pfn
, zone
, order
, migratetype
, fpi_flags
);
1450 spin_unlock(&zone
->lock
);
1453 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1454 unsigned long zone
, int nid
)
1456 mm_zero_struct_page(page
);
1457 set_page_links(page
, zone
, nid
, pfn
);
1458 init_page_count(page
);
1459 page_mapcount_reset(page
);
1460 page_cpupid_reset_last(page
);
1461 page_kasan_tag_reset(page
);
1463 INIT_LIST_HEAD(&page
->lru
);
1464 #ifdef WANT_PAGE_VIRTUAL
1465 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1466 if (!is_highmem_idx(zone
))
1467 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1472 static void __meminit
init_reserved_page(unsigned long pfn
)
1477 if (!early_page_uninitialised(pfn
))
1480 nid
= early_pfn_to_nid(pfn
);
1481 pgdat
= NODE_DATA(nid
);
1483 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1484 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1486 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1489 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1492 static inline void init_reserved_page(unsigned long pfn
)
1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498 * Initialised pages do not have PageReserved set. This function is
1499 * called for each range allocated by the bootmem allocator and
1500 * marks the pages PageReserved. The remaining valid pages are later
1501 * sent to the buddy page allocator.
1503 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1505 unsigned long start_pfn
= PFN_DOWN(start
);
1506 unsigned long end_pfn
= PFN_UP(end
);
1508 for (; start_pfn
< end_pfn
; start_pfn
++) {
1509 if (pfn_valid(start_pfn
)) {
1510 struct page
*page
= pfn_to_page(start_pfn
);
1512 init_reserved_page(start_pfn
);
1514 /* Avoid false-positive PageTail() */
1515 INIT_LIST_HEAD(&page
->lru
);
1518 * no need for atomic set_bit because the struct
1519 * page is not visible yet so nobody should
1522 __SetPageReserved(page
);
1527 static void __free_pages_ok(struct page
*page
, unsigned int order
,
1530 unsigned long flags
;
1532 unsigned long pfn
= page_to_pfn(page
);
1534 if (!free_pages_prepare(page
, order
, true))
1537 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1538 local_irq_save(flags
);
1539 __count_vm_events(PGFREE
, 1 << order
);
1540 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
,
1542 local_irq_restore(flags
);
1545 void __free_pages_core(struct page
*page
, unsigned int order
)
1547 unsigned int nr_pages
= 1 << order
;
1548 struct page
*p
= page
;
1552 * When initializing the memmap, __init_single_page() sets the refcount
1553 * of all pages to 1 ("allocated"/"not free"). We have to set the
1554 * refcount of all involved pages to 0.
1557 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1559 __ClearPageReserved(p
);
1560 set_page_count(p
, 0);
1562 __ClearPageReserved(p
);
1563 set_page_count(p
, 0);
1565 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1568 * Bypass PCP and place fresh pages right to the tail, primarily
1569 * relevant for memory onlining.
1571 __free_pages_ok(page
, order
, FPI_TO_TAIL
);
1574 #ifdef CONFIG_NEED_MULTIPLE_NODES
1577 * During memory init memblocks map pfns to nids. The search is expensive and
1578 * this caches recent lookups. The implementation of __early_pfn_to_nid
1579 * treats start/end as pfns.
1581 struct mminit_pfnnid_cache
{
1582 unsigned long last_start
;
1583 unsigned long last_end
;
1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1592 static int __meminit
__early_pfn_to_nid(unsigned long pfn
,
1593 struct mminit_pfnnid_cache
*state
)
1595 unsigned long start_pfn
, end_pfn
;
1598 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
1599 return state
->last_nid
;
1601 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
1602 if (nid
!= NUMA_NO_NODE
) {
1603 state
->last_start
= start_pfn
;
1604 state
->last_end
= end_pfn
;
1605 state
->last_nid
= nid
;
1611 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1613 static DEFINE_SPINLOCK(early_pfn_lock
);
1616 spin_lock(&early_pfn_lock
);
1617 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1619 nid
= first_online_node
;
1620 spin_unlock(&early_pfn_lock
);
1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1626 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1629 if (early_page_uninitialised(pfn
))
1631 __free_pages_core(page
, order
);
1635 * Check that the whole (or subset of) a pageblock given by the interval of
1636 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1637 * with the migration of free compaction scanner. The scanners then need to
1638 * use only pfn_valid_within() check for arches that allow holes within
1641 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1643 * It's possible on some configurations to have a setup like node0 node1 node0
1644 * i.e. it's possible that all pages within a zones range of pages do not
1645 * belong to a single zone. We assume that a border between node0 and node1
1646 * can occur within a single pageblock, but not a node0 node1 node0
1647 * interleaving within a single pageblock. It is therefore sufficient to check
1648 * the first and last page of a pageblock and avoid checking each individual
1649 * page in a pageblock.
1651 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1652 unsigned long end_pfn
, struct zone
*zone
)
1654 struct page
*start_page
;
1655 struct page
*end_page
;
1657 /* end_pfn is one past the range we are checking */
1660 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1663 start_page
= pfn_to_online_page(start_pfn
);
1667 if (page_zone(start_page
) != zone
)
1670 end_page
= pfn_to_page(end_pfn
);
1672 /* This gives a shorter code than deriving page_zone(end_page) */
1673 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1679 void set_zone_contiguous(struct zone
*zone
)
1681 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1682 unsigned long block_end_pfn
;
1684 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1685 for (; block_start_pfn
< zone_end_pfn(zone
);
1686 block_start_pfn
= block_end_pfn
,
1687 block_end_pfn
+= pageblock_nr_pages
) {
1689 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1691 if (!__pageblock_pfn_to_page(block_start_pfn
,
1692 block_end_pfn
, zone
))
1697 /* We confirm that there is no hole */
1698 zone
->contiguous
= true;
1701 void clear_zone_contiguous(struct zone
*zone
)
1703 zone
->contiguous
= false;
1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1707 static void __init
deferred_free_range(unsigned long pfn
,
1708 unsigned long nr_pages
)
1716 page
= pfn_to_page(pfn
);
1718 /* Free a large naturally-aligned chunk if possible */
1719 if (nr_pages
== pageblock_nr_pages
&&
1720 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1721 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1722 __free_pages_core(page
, pageblock_order
);
1726 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1727 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1728 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1729 __free_pages_core(page
, 0);
1733 /* Completion tracking for deferred_init_memmap() threads */
1734 static atomic_t pgdat_init_n_undone __initdata
;
1735 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1737 static inline void __init
pgdat_init_report_one_done(void)
1739 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1740 complete(&pgdat_init_all_done_comp
);
1744 * Returns true if page needs to be initialized or freed to buddy allocator.
1746 * First we check if pfn is valid on architectures where it is possible to have
1747 * holes within pageblock_nr_pages. On systems where it is not possible, this
1748 * function is optimized out.
1750 * Then, we check if a current large page is valid by only checking the validity
1753 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1755 if (!pfn_valid_within(pfn
))
1757 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1763 * Free pages to buddy allocator. Try to free aligned pages in
1764 * pageblock_nr_pages sizes.
1766 static void __init
deferred_free_pages(unsigned long pfn
,
1767 unsigned long end_pfn
)
1769 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1770 unsigned long nr_free
= 0;
1772 for (; pfn
< end_pfn
; pfn
++) {
1773 if (!deferred_pfn_valid(pfn
)) {
1774 deferred_free_range(pfn
- nr_free
, nr_free
);
1776 } else if (!(pfn
& nr_pgmask
)) {
1777 deferred_free_range(pfn
- nr_free
, nr_free
);
1783 /* Free the last block of pages to allocator */
1784 deferred_free_range(pfn
- nr_free
, nr_free
);
1788 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1789 * by performing it only once every pageblock_nr_pages.
1790 * Return number of pages initialized.
1792 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1794 unsigned long end_pfn
)
1796 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1797 int nid
= zone_to_nid(zone
);
1798 unsigned long nr_pages
= 0;
1799 int zid
= zone_idx(zone
);
1800 struct page
*page
= NULL
;
1802 for (; pfn
< end_pfn
; pfn
++) {
1803 if (!deferred_pfn_valid(pfn
)) {
1806 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1807 page
= pfn_to_page(pfn
);
1811 __init_single_page(page
, pfn
, zid
, nid
);
1818 * This function is meant to pre-load the iterator for the zone init.
1819 * Specifically it walks through the ranges until we are caught up to the
1820 * first_init_pfn value and exits there. If we never encounter the value we
1821 * return false indicating there are no valid ranges left.
1824 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1825 unsigned long *spfn
, unsigned long *epfn
,
1826 unsigned long first_init_pfn
)
1831 * Start out by walking through the ranges in this zone that have
1832 * already been initialized. We don't need to do anything with them
1833 * so we just need to flush them out of the system.
1835 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1836 if (*epfn
<= first_init_pfn
)
1838 if (*spfn
< first_init_pfn
)
1839 *spfn
= first_init_pfn
;
1848 * Initialize and free pages. We do it in two loops: first we initialize
1849 * struct page, then free to buddy allocator, because while we are
1850 * freeing pages we can access pages that are ahead (computing buddy
1851 * page in __free_one_page()).
1853 * In order to try and keep some memory in the cache we have the loop
1854 * broken along max page order boundaries. This way we will not cause
1855 * any issues with the buddy page computation.
1857 static unsigned long __init
1858 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1859 unsigned long *end_pfn
)
1861 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1862 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1863 unsigned long nr_pages
= 0;
1866 /* First we loop through and initialize the page values */
1867 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1870 if (mo_pfn
<= *start_pfn
)
1873 t
= min(mo_pfn
, *end_pfn
);
1874 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1876 if (mo_pfn
< *end_pfn
) {
1877 *start_pfn
= mo_pfn
;
1882 /* Reset values and now loop through freeing pages as needed */
1885 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1891 t
= min(mo_pfn
, epfn
);
1892 deferred_free_pages(spfn
, t
);
1902 deferred_init_memmap_chunk(unsigned long start_pfn
, unsigned long end_pfn
,
1905 unsigned long spfn
, epfn
;
1906 struct zone
*zone
= arg
;
1909 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
, start_pfn
);
1912 * Initialize and free pages in MAX_ORDER sized increments so that we
1913 * can avoid introducing any issues with the buddy allocator.
1915 while (spfn
< end_pfn
) {
1916 deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1921 /* An arch may override for more concurrency. */
1923 deferred_page_init_max_threads(const struct cpumask
*node_cpumask
)
1928 /* Initialise remaining memory on a node */
1929 static int __init
deferred_init_memmap(void *data
)
1931 pg_data_t
*pgdat
= data
;
1932 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1933 unsigned long spfn
= 0, epfn
= 0;
1934 unsigned long first_init_pfn
, flags
;
1935 unsigned long start
= jiffies
;
1937 int zid
, max_threads
;
1940 /* Bind memory initialisation thread to a local node if possible */
1941 if (!cpumask_empty(cpumask
))
1942 set_cpus_allowed_ptr(current
, cpumask
);
1944 pgdat_resize_lock(pgdat
, &flags
);
1945 first_init_pfn
= pgdat
->first_deferred_pfn
;
1946 if (first_init_pfn
== ULONG_MAX
) {
1947 pgdat_resize_unlock(pgdat
, &flags
);
1948 pgdat_init_report_one_done();
1952 /* Sanity check boundaries */
1953 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1954 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1955 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1958 * Once we unlock here, the zone cannot be grown anymore, thus if an
1959 * interrupt thread must allocate this early in boot, zone must be
1960 * pre-grown prior to start of deferred page initialization.
1962 pgdat_resize_unlock(pgdat
, &flags
);
1964 /* Only the highest zone is deferred so find it */
1965 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1966 zone
= pgdat
->node_zones
+ zid
;
1967 if (first_init_pfn
< zone_end_pfn(zone
))
1971 /* If the zone is empty somebody else may have cleared out the zone */
1972 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1976 max_threads
= deferred_page_init_max_threads(cpumask
);
1978 while (spfn
< epfn
) {
1979 unsigned long epfn_align
= ALIGN(epfn
, PAGES_PER_SECTION
);
1980 struct padata_mt_job job
= {
1981 .thread_fn
= deferred_init_memmap_chunk
,
1984 .size
= epfn_align
- spfn
,
1985 .align
= PAGES_PER_SECTION
,
1986 .min_chunk
= PAGES_PER_SECTION
,
1987 .max_threads
= max_threads
,
1990 padata_do_multithreaded(&job
);
1991 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1995 /* Sanity check that the next zone really is unpopulated */
1996 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1998 pr_info("node %d deferred pages initialised in %ums\n",
1999 pgdat
->node_id
, jiffies_to_msecs(jiffies
- start
));
2001 pgdat_init_report_one_done();
2006 * If this zone has deferred pages, try to grow it by initializing enough
2007 * deferred pages to satisfy the allocation specified by order, rounded up to
2008 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2009 * of SECTION_SIZE bytes by initializing struct pages in increments of
2010 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2012 * Return true when zone was grown, otherwise return false. We return true even
2013 * when we grow less than requested, to let the caller decide if there are
2014 * enough pages to satisfy the allocation.
2016 * Note: We use noinline because this function is needed only during boot, and
2017 * it is called from a __ref function _deferred_grow_zone. This way we are
2018 * making sure that it is not inlined into permanent text section.
2020 static noinline
bool __init
2021 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
2023 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
2024 pg_data_t
*pgdat
= zone
->zone_pgdat
;
2025 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
2026 unsigned long spfn
, epfn
, flags
;
2027 unsigned long nr_pages
= 0;
2030 /* Only the last zone may have deferred pages */
2031 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
2034 pgdat_resize_lock(pgdat
, &flags
);
2037 * If someone grew this zone while we were waiting for spinlock, return
2038 * true, as there might be enough pages already.
2040 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
2041 pgdat_resize_unlock(pgdat
, &flags
);
2045 /* If the zone is empty somebody else may have cleared out the zone */
2046 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
2047 first_deferred_pfn
)) {
2048 pgdat
->first_deferred_pfn
= ULONG_MAX
;
2049 pgdat_resize_unlock(pgdat
, &flags
);
2050 /* Retry only once. */
2051 return first_deferred_pfn
!= ULONG_MAX
;
2055 * Initialize and free pages in MAX_ORDER sized increments so
2056 * that we can avoid introducing any issues with the buddy
2059 while (spfn
< epfn
) {
2060 /* update our first deferred PFN for this section */
2061 first_deferred_pfn
= spfn
;
2063 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
2064 touch_nmi_watchdog();
2066 /* We should only stop along section boundaries */
2067 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
2070 /* If our quota has been met we can stop here */
2071 if (nr_pages
>= nr_pages_needed
)
2075 pgdat
->first_deferred_pfn
= spfn
;
2076 pgdat_resize_unlock(pgdat
, &flags
);
2078 return nr_pages
> 0;
2082 * deferred_grow_zone() is __init, but it is called from
2083 * get_page_from_freelist() during early boot until deferred_pages permanently
2084 * disables this call. This is why we have refdata wrapper to avoid warning,
2085 * and to ensure that the function body gets unloaded.
2088 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
2090 return deferred_grow_zone(zone
, order
);
2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2095 void __init
page_alloc_init_late(void)
2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2102 /* There will be num_node_state(N_MEMORY) threads */
2103 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
2104 for_each_node_state(nid
, N_MEMORY
) {
2105 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
2108 /* Block until all are initialised */
2109 wait_for_completion(&pgdat_init_all_done_comp
);
2112 * The number of managed pages has changed due to the initialisation
2113 * so the pcpu batch and high limits needs to be updated or the limits
2114 * will be artificially small.
2116 for_each_populated_zone(zone
)
2117 zone_pcp_update(zone
);
2120 * We initialized the rest of the deferred pages. Permanently disable
2121 * on-demand struct page initialization.
2123 static_branch_disable(&deferred_pages
);
2125 /* Reinit limits that are based on free pages after the kernel is up */
2126 files_maxfiles_init();
2131 /* Discard memblock private memory */
2134 for_each_node_state(nid
, N_MEMORY
)
2135 shuffle_free_memory(NODE_DATA(nid
));
2137 for_each_populated_zone(zone
)
2138 set_zone_contiguous(zone
);
2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2143 void __init
init_cma_reserved_pageblock(struct page
*page
)
2145 unsigned i
= pageblock_nr_pages
;
2146 struct page
*p
= page
;
2149 __ClearPageReserved(p
);
2150 set_page_count(p
, 0);
2153 set_pageblock_migratetype(page
, MIGRATE_CMA
);
2155 if (pageblock_order
>= MAX_ORDER
) {
2156 i
= pageblock_nr_pages
;
2159 set_page_refcounted(p
);
2160 __free_pages(p
, MAX_ORDER
- 1);
2161 p
+= MAX_ORDER_NR_PAGES
;
2162 } while (i
-= MAX_ORDER_NR_PAGES
);
2164 set_page_refcounted(page
);
2165 __free_pages(page
, pageblock_order
);
2168 adjust_managed_page_count(page
, pageblock_nr_pages
);
2173 * The order of subdivision here is critical for the IO subsystem.
2174 * Please do not alter this order without good reasons and regression
2175 * testing. Specifically, as large blocks of memory are subdivided,
2176 * the order in which smaller blocks are delivered depends on the order
2177 * they're subdivided in this function. This is the primary factor
2178 * influencing the order in which pages are delivered to the IO
2179 * subsystem according to empirical testing, and this is also justified
2180 * by considering the behavior of a buddy system containing a single
2181 * large block of memory acted on by a series of small allocations.
2182 * This behavior is a critical factor in sglist merging's success.
2186 static inline void expand(struct zone
*zone
, struct page
*page
,
2187 int low
, int high
, int migratetype
)
2189 unsigned long size
= 1 << high
;
2191 while (high
> low
) {
2194 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2197 * Mark as guard pages (or page), that will allow to
2198 * merge back to allocator when buddy will be freed.
2199 * Corresponding page table entries will not be touched,
2200 * pages will stay not present in virtual address space
2202 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2205 add_to_free_list(&page
[size
], zone
, high
, migratetype
);
2206 set_buddy_order(&page
[size
], high
);
2210 static void check_new_page_bad(struct page
*page
)
2212 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2213 /* Don't complain about hwpoisoned pages */
2214 page_mapcount_reset(page
); /* remove PageBuddy */
2219 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
2223 * This page is about to be returned from the page allocator
2225 static inline int check_new_page(struct page
*page
)
2227 if (likely(page_expected_state(page
,
2228 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2231 check_new_page_bad(page
);
2235 #ifdef CONFIG_DEBUG_VM
2237 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2238 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2239 * also checked when pcp lists are refilled from the free lists.
2241 static inline bool check_pcp_refill(struct page
*page
)
2243 if (debug_pagealloc_enabled_static())
2244 return check_new_page(page
);
2249 static inline bool check_new_pcp(struct page
*page
)
2251 return check_new_page(page
);
2255 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2256 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2257 * enabled, they are also checked when being allocated from the pcp lists.
2259 static inline bool check_pcp_refill(struct page
*page
)
2261 return check_new_page(page
);
2263 static inline bool check_new_pcp(struct page
*page
)
2265 if (debug_pagealloc_enabled_static())
2266 return check_new_page(page
);
2270 #endif /* CONFIG_DEBUG_VM */
2272 static bool check_new_pages(struct page
*page
, unsigned int order
)
2275 for (i
= 0; i
< (1 << order
); i
++) {
2276 struct page
*p
= page
+ i
;
2278 if (unlikely(check_new_page(p
)))
2285 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2288 set_page_private(page
, 0);
2289 set_page_refcounted(page
);
2291 arch_alloc_page(page
, order
);
2292 debug_pagealloc_map_pages(page
, 1 << order
);
2293 kasan_alloc_pages(page
, order
);
2294 kernel_unpoison_pages(page
, 1 << order
);
2295 set_page_owner(page
, order
, gfp_flags
);
2297 if (!want_init_on_free() && want_init_on_alloc(gfp_flags
))
2298 kernel_init_free_pages(page
, 1 << order
);
2301 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2302 unsigned int alloc_flags
)
2304 post_alloc_hook(page
, order
, gfp_flags
);
2306 if (order
&& (gfp_flags
& __GFP_COMP
))
2307 prep_compound_page(page
, order
);
2310 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2311 * allocate the page. The expectation is that the caller is taking
2312 * steps that will free more memory. The caller should avoid the page
2313 * being used for !PFMEMALLOC purposes.
2315 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2316 set_page_pfmemalloc(page
);
2318 clear_page_pfmemalloc(page
);
2322 * Go through the free lists for the given migratetype and remove
2323 * the smallest available page from the freelists
2325 static __always_inline
2326 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2329 unsigned int current_order
;
2330 struct free_area
*area
;
2333 /* Find a page of the appropriate size in the preferred list */
2334 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2335 area
= &(zone
->free_area
[current_order
]);
2336 page
= get_page_from_free_area(area
, migratetype
);
2339 del_page_from_free_list(page
, zone
, current_order
);
2340 expand(zone
, page
, order
, current_order
, migratetype
);
2341 set_pcppage_migratetype(page
, migratetype
);
2350 * This array describes the order lists are fallen back to when
2351 * the free lists for the desirable migrate type are depleted
2353 static int fallbacks
[MIGRATE_TYPES
][3] = {
2354 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2355 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2356 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2358 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2360 #ifdef CONFIG_MEMORY_ISOLATION
2361 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2366 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2369 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2372 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2373 unsigned int order
) { return NULL
; }
2377 * Move the free pages in a range to the freelist tail of the requested type.
2378 * Note that start_page and end_pages are not aligned on a pageblock
2379 * boundary. If alignment is required, use move_freepages_block()
2381 static int move_freepages(struct zone
*zone
,
2382 struct page
*start_page
, struct page
*end_page
,
2383 int migratetype
, int *num_movable
)
2387 int pages_moved
= 0;
2389 for (page
= start_page
; page
<= end_page
;) {
2390 if (!pfn_valid_within(page_to_pfn(page
))) {
2395 if (!PageBuddy(page
)) {
2397 * We assume that pages that could be isolated for
2398 * migration are movable. But we don't actually try
2399 * isolating, as that would be expensive.
2402 (PageLRU(page
) || __PageMovable(page
)))
2409 /* Make sure we are not inadvertently changing nodes */
2410 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2411 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2413 order
= buddy_order(page
);
2414 move_to_free_list(page
, zone
, order
, migratetype
);
2416 pages_moved
+= 1 << order
;
2422 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2423 int migratetype
, int *num_movable
)
2425 unsigned long start_pfn
, end_pfn
;
2426 struct page
*start_page
, *end_page
;
2431 start_pfn
= page_to_pfn(page
);
2432 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2433 start_page
= pfn_to_page(start_pfn
);
2434 end_page
= start_page
+ pageblock_nr_pages
- 1;
2435 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2437 /* Do not cross zone boundaries */
2438 if (!zone_spans_pfn(zone
, start_pfn
))
2440 if (!zone_spans_pfn(zone
, end_pfn
))
2443 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2447 static void change_pageblock_range(struct page
*pageblock_page
,
2448 int start_order
, int migratetype
)
2450 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2452 while (nr_pageblocks
--) {
2453 set_pageblock_migratetype(pageblock_page
, migratetype
);
2454 pageblock_page
+= pageblock_nr_pages
;
2459 * When we are falling back to another migratetype during allocation, try to
2460 * steal extra free pages from the same pageblocks to satisfy further
2461 * allocations, instead of polluting multiple pageblocks.
2463 * If we are stealing a relatively large buddy page, it is likely there will
2464 * be more free pages in the pageblock, so try to steal them all. For
2465 * reclaimable and unmovable allocations, we steal regardless of page size,
2466 * as fragmentation caused by those allocations polluting movable pageblocks
2467 * is worse than movable allocations stealing from unmovable and reclaimable
2470 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2473 * Leaving this order check is intended, although there is
2474 * relaxed order check in next check. The reason is that
2475 * we can actually steal whole pageblock if this condition met,
2476 * but, below check doesn't guarantee it and that is just heuristic
2477 * so could be changed anytime.
2479 if (order
>= pageblock_order
)
2482 if (order
>= pageblock_order
/ 2 ||
2483 start_mt
== MIGRATE_RECLAIMABLE
||
2484 start_mt
== MIGRATE_UNMOVABLE
||
2485 page_group_by_mobility_disabled
)
2491 static inline bool boost_watermark(struct zone
*zone
)
2493 unsigned long max_boost
;
2495 if (!watermark_boost_factor
)
2498 * Don't bother in zones that are unlikely to produce results.
2499 * On small machines, including kdump capture kernels running
2500 * in a small area, boosting the watermark can cause an out of
2501 * memory situation immediately.
2503 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
2506 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2507 watermark_boost_factor
, 10000);
2510 * high watermark may be uninitialised if fragmentation occurs
2511 * very early in boot so do not boost. We do not fall
2512 * through and boost by pageblock_nr_pages as failing
2513 * allocations that early means that reclaim is not going
2514 * to help and it may even be impossible to reclaim the
2515 * boosted watermark resulting in a hang.
2520 max_boost
= max(pageblock_nr_pages
, max_boost
);
2522 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2529 * This function implements actual steal behaviour. If order is large enough,
2530 * we can steal whole pageblock. If not, we first move freepages in this
2531 * pageblock to our migratetype and determine how many already-allocated pages
2532 * are there in the pageblock with a compatible migratetype. If at least half
2533 * of pages are free or compatible, we can change migratetype of the pageblock
2534 * itself, so pages freed in the future will be put on the correct free list.
2536 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2537 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2539 unsigned int current_order
= buddy_order(page
);
2540 int free_pages
, movable_pages
, alike_pages
;
2543 old_block_type
= get_pageblock_migratetype(page
);
2546 * This can happen due to races and we want to prevent broken
2547 * highatomic accounting.
2549 if (is_migrate_highatomic(old_block_type
))
2552 /* Take ownership for orders >= pageblock_order */
2553 if (current_order
>= pageblock_order
) {
2554 change_pageblock_range(page
, current_order
, start_type
);
2559 * Boost watermarks to increase reclaim pressure to reduce the
2560 * likelihood of future fallbacks. Wake kswapd now as the node
2561 * may be balanced overall and kswapd will not wake naturally.
2563 if (boost_watermark(zone
) && (alloc_flags
& ALLOC_KSWAPD
))
2564 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2566 /* We are not allowed to try stealing from the whole block */
2570 free_pages
= move_freepages_block(zone
, page
, start_type
,
2573 * Determine how many pages are compatible with our allocation.
2574 * For movable allocation, it's the number of movable pages which
2575 * we just obtained. For other types it's a bit more tricky.
2577 if (start_type
== MIGRATE_MOVABLE
) {
2578 alike_pages
= movable_pages
;
2581 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2582 * to MOVABLE pageblock, consider all non-movable pages as
2583 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2584 * vice versa, be conservative since we can't distinguish the
2585 * exact migratetype of non-movable pages.
2587 if (old_block_type
== MIGRATE_MOVABLE
)
2588 alike_pages
= pageblock_nr_pages
2589 - (free_pages
+ movable_pages
);
2594 /* moving whole block can fail due to zone boundary conditions */
2599 * If a sufficient number of pages in the block are either free or of
2600 * comparable migratability as our allocation, claim the whole block.
2602 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2603 page_group_by_mobility_disabled
)
2604 set_pageblock_migratetype(page
, start_type
);
2609 move_to_free_list(page
, zone
, current_order
, start_type
);
2613 * Check whether there is a suitable fallback freepage with requested order.
2614 * If only_stealable is true, this function returns fallback_mt only if
2615 * we can steal other freepages all together. This would help to reduce
2616 * fragmentation due to mixed migratetype pages in one pageblock.
2618 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2619 int migratetype
, bool only_stealable
, bool *can_steal
)
2624 if (area
->nr_free
== 0)
2629 fallback_mt
= fallbacks
[migratetype
][i
];
2630 if (fallback_mt
== MIGRATE_TYPES
)
2633 if (free_area_empty(area
, fallback_mt
))
2636 if (can_steal_fallback(order
, migratetype
))
2639 if (!only_stealable
)
2650 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2651 * there are no empty page blocks that contain a page with a suitable order
2653 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2654 unsigned int alloc_order
)
2657 unsigned long max_managed
, flags
;
2660 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2661 * Check is race-prone but harmless.
2663 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2664 if (zone
->nr_reserved_highatomic
>= max_managed
)
2667 spin_lock_irqsave(&zone
->lock
, flags
);
2669 /* Recheck the nr_reserved_highatomic limit under the lock */
2670 if (zone
->nr_reserved_highatomic
>= max_managed
)
2674 mt
= get_pageblock_migratetype(page
);
2675 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2676 && !is_migrate_cma(mt
)) {
2677 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2678 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2679 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2683 spin_unlock_irqrestore(&zone
->lock
, flags
);
2687 * Used when an allocation is about to fail under memory pressure. This
2688 * potentially hurts the reliability of high-order allocations when under
2689 * intense memory pressure but failed atomic allocations should be easier
2690 * to recover from than an OOM.
2692 * If @force is true, try to unreserve a pageblock even though highatomic
2693 * pageblock is exhausted.
2695 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2698 struct zonelist
*zonelist
= ac
->zonelist
;
2699 unsigned long flags
;
2706 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2709 * Preserve at least one pageblock unless memory pressure
2712 if (!force
&& zone
->nr_reserved_highatomic
<=
2716 spin_lock_irqsave(&zone
->lock
, flags
);
2717 for (order
= 0; order
< MAX_ORDER
; order
++) {
2718 struct free_area
*area
= &(zone
->free_area
[order
]);
2720 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2725 * In page freeing path, migratetype change is racy so
2726 * we can counter several free pages in a pageblock
2727 * in this loop althoug we changed the pageblock type
2728 * from highatomic to ac->migratetype. So we should
2729 * adjust the count once.
2731 if (is_migrate_highatomic_page(page
)) {
2733 * It should never happen but changes to
2734 * locking could inadvertently allow a per-cpu
2735 * drain to add pages to MIGRATE_HIGHATOMIC
2736 * while unreserving so be safe and watch for
2739 zone
->nr_reserved_highatomic
-= min(
2741 zone
->nr_reserved_highatomic
);
2745 * Convert to ac->migratetype and avoid the normal
2746 * pageblock stealing heuristics. Minimally, the caller
2747 * is doing the work and needs the pages. More
2748 * importantly, if the block was always converted to
2749 * MIGRATE_UNMOVABLE or another type then the number
2750 * of pageblocks that cannot be completely freed
2753 set_pageblock_migratetype(page
, ac
->migratetype
);
2754 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2757 spin_unlock_irqrestore(&zone
->lock
, flags
);
2761 spin_unlock_irqrestore(&zone
->lock
, flags
);
2768 * Try finding a free buddy page on the fallback list and put it on the free
2769 * list of requested migratetype, possibly along with other pages from the same
2770 * block, depending on fragmentation avoidance heuristics. Returns true if
2771 * fallback was found so that __rmqueue_smallest() can grab it.
2773 * The use of signed ints for order and current_order is a deliberate
2774 * deviation from the rest of this file, to make the for loop
2775 * condition simpler.
2777 static __always_inline
bool
2778 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2779 unsigned int alloc_flags
)
2781 struct free_area
*area
;
2783 int min_order
= order
;
2789 * Do not steal pages from freelists belonging to other pageblocks
2790 * i.e. orders < pageblock_order. If there are no local zones free,
2791 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2793 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2794 min_order
= pageblock_order
;
2797 * Find the largest available free page in the other list. This roughly
2798 * approximates finding the pageblock with the most free pages, which
2799 * would be too costly to do exactly.
2801 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2803 area
= &(zone
->free_area
[current_order
]);
2804 fallback_mt
= find_suitable_fallback(area
, current_order
,
2805 start_migratetype
, false, &can_steal
);
2806 if (fallback_mt
== -1)
2810 * We cannot steal all free pages from the pageblock and the
2811 * requested migratetype is movable. In that case it's better to
2812 * steal and split the smallest available page instead of the
2813 * largest available page, because even if the next movable
2814 * allocation falls back into a different pageblock than this
2815 * one, it won't cause permanent fragmentation.
2817 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2818 && current_order
> order
)
2827 for (current_order
= order
; current_order
< MAX_ORDER
;
2829 area
= &(zone
->free_area
[current_order
]);
2830 fallback_mt
= find_suitable_fallback(area
, current_order
,
2831 start_migratetype
, false, &can_steal
);
2832 if (fallback_mt
!= -1)
2837 * This should not happen - we already found a suitable fallback
2838 * when looking for the largest page.
2840 VM_BUG_ON(current_order
== MAX_ORDER
);
2843 page
= get_page_from_free_area(area
, fallback_mt
);
2845 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2848 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2849 start_migratetype
, fallback_mt
);
2856 * Do the hard work of removing an element from the buddy allocator.
2857 * Call me with the zone->lock already held.
2859 static __always_inline
struct page
*
2860 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2861 unsigned int alloc_flags
)
2867 * Balance movable allocations between regular and CMA areas by
2868 * allocating from CMA when over half of the zone's free memory
2869 * is in the CMA area.
2871 if (alloc_flags
& ALLOC_CMA
&&
2872 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2873 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2874 page
= __rmqueue_cma_fallback(zone
, order
);
2880 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2881 if (unlikely(!page
)) {
2882 if (alloc_flags
& ALLOC_CMA
)
2883 page
= __rmqueue_cma_fallback(zone
, order
);
2885 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2890 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2895 * Obtain a specified number of elements from the buddy allocator, all under
2896 * a single hold of the lock, for efficiency. Add them to the supplied list.
2897 * Returns the number of new pages which were placed at *list.
2899 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2900 unsigned long count
, struct list_head
*list
,
2901 int migratetype
, unsigned int alloc_flags
)
2905 spin_lock(&zone
->lock
);
2906 for (i
= 0; i
< count
; ++i
) {
2907 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2909 if (unlikely(page
== NULL
))
2912 if (unlikely(check_pcp_refill(page
)))
2916 * Split buddy pages returned by expand() are received here in
2917 * physical page order. The page is added to the tail of
2918 * caller's list. From the callers perspective, the linked list
2919 * is ordered by page number under some conditions. This is
2920 * useful for IO devices that can forward direction from the
2921 * head, thus also in the physical page order. This is useful
2922 * for IO devices that can merge IO requests if the physical
2923 * pages are ordered properly.
2925 list_add_tail(&page
->lru
, list
);
2927 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2928 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2933 * i pages were removed from the buddy list even if some leak due
2934 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2935 * on i. Do not confuse with 'alloced' which is the number of
2936 * pages added to the pcp list.
2938 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2939 spin_unlock(&zone
->lock
);
2945 * Called from the vmstat counter updater to drain pagesets of this
2946 * currently executing processor on remote nodes after they have
2949 * Note that this function must be called with the thread pinned to
2950 * a single processor.
2952 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2954 unsigned long flags
;
2955 int to_drain
, batch
;
2957 local_irq_save(flags
);
2958 batch
= READ_ONCE(pcp
->batch
);
2959 to_drain
= min(pcp
->count
, batch
);
2961 free_pcppages_bulk(zone
, to_drain
, pcp
);
2962 local_irq_restore(flags
);
2967 * Drain pcplists of the indicated processor and zone.
2969 * The processor must either be the current processor and the
2970 * thread pinned to the current processor or a processor that
2973 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2975 unsigned long flags
;
2976 struct per_cpu_pageset
*pset
;
2977 struct per_cpu_pages
*pcp
;
2979 local_irq_save(flags
);
2980 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2984 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2985 local_irq_restore(flags
);
2989 * Drain pcplists of all zones on the indicated processor.
2991 * The processor must either be the current processor and the
2992 * thread pinned to the current processor or a processor that
2995 static void drain_pages(unsigned int cpu
)
2999 for_each_populated_zone(zone
) {
3000 drain_pages_zone(cpu
, zone
);
3005 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3007 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3008 * the single zone's pages.
3010 void drain_local_pages(struct zone
*zone
)
3012 int cpu
= smp_processor_id();
3015 drain_pages_zone(cpu
, zone
);
3020 static void drain_local_pages_wq(struct work_struct
*work
)
3022 struct pcpu_drain
*drain
;
3024 drain
= container_of(work
, struct pcpu_drain
, work
);
3027 * drain_all_pages doesn't use proper cpu hotplug protection so
3028 * we can race with cpu offline when the WQ can move this from
3029 * a cpu pinned worker to an unbound one. We can operate on a different
3030 * cpu which is allright but we also have to make sure to not move to
3034 drain_local_pages(drain
->zone
);
3039 * The implementation of drain_all_pages(), exposing an extra parameter to
3040 * drain on all cpus.
3042 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3043 * not empty. The check for non-emptiness can however race with a free to
3044 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3045 * that need the guarantee that every CPU has drained can disable the
3046 * optimizing racy check.
3048 static void __drain_all_pages(struct zone
*zone
, bool force_all_cpus
)
3053 * Allocate in the BSS so we wont require allocation in
3054 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3056 static cpumask_t cpus_with_pcps
;
3059 * Make sure nobody triggers this path before mm_percpu_wq is fully
3062 if (WARN_ON_ONCE(!mm_percpu_wq
))
3066 * Do not drain if one is already in progress unless it's specific to
3067 * a zone. Such callers are primarily CMA and memory hotplug and need
3068 * the drain to be complete when the call returns.
3070 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
3073 mutex_lock(&pcpu_drain_mutex
);
3077 * We don't care about racing with CPU hotplug event
3078 * as offline notification will cause the notified
3079 * cpu to drain that CPU pcps and on_each_cpu_mask
3080 * disables preemption as part of its processing
3082 for_each_online_cpu(cpu
) {
3083 struct per_cpu_pageset
*pcp
;
3085 bool has_pcps
= false;
3087 if (force_all_cpus
) {
3089 * The pcp.count check is racy, some callers need a
3090 * guarantee that no cpu is missed.
3094 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3098 for_each_populated_zone(z
) {
3099 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
3100 if (pcp
->pcp
.count
) {
3108 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
3110 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
3113 for_each_cpu(cpu
, &cpus_with_pcps
) {
3114 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
3117 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
3118 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
3120 for_each_cpu(cpu
, &cpus_with_pcps
)
3121 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
3123 mutex_unlock(&pcpu_drain_mutex
);
3127 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3129 * When zone parameter is non-NULL, spill just the single zone's pages.
3131 * Note that this can be extremely slow as the draining happens in a workqueue.
3133 void drain_all_pages(struct zone
*zone
)
3135 __drain_all_pages(zone
, false);
3138 #ifdef CONFIG_HIBERNATION
3141 * Touch the watchdog for every WD_PAGE_COUNT pages.
3143 #define WD_PAGE_COUNT (128*1024)
3145 void mark_free_pages(struct zone
*zone
)
3147 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
3148 unsigned long flags
;
3149 unsigned int order
, t
;
3152 if (zone_is_empty(zone
))
3155 spin_lock_irqsave(&zone
->lock
, flags
);
3157 max_zone_pfn
= zone_end_pfn(zone
);
3158 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
3159 if (pfn_valid(pfn
)) {
3160 page
= pfn_to_page(pfn
);
3162 if (!--page_count
) {
3163 touch_nmi_watchdog();
3164 page_count
= WD_PAGE_COUNT
;
3167 if (page_zone(page
) != zone
)
3170 if (!swsusp_page_is_forbidden(page
))
3171 swsusp_unset_page_free(page
);
3174 for_each_migratetype_order(order
, t
) {
3175 list_for_each_entry(page
,
3176 &zone
->free_area
[order
].free_list
[t
], lru
) {
3179 pfn
= page_to_pfn(page
);
3180 for (i
= 0; i
< (1UL << order
); i
++) {
3181 if (!--page_count
) {
3182 touch_nmi_watchdog();
3183 page_count
= WD_PAGE_COUNT
;
3185 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3189 spin_unlock_irqrestore(&zone
->lock
, flags
);
3191 #endif /* CONFIG_PM */
3193 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3197 if (!free_pcp_prepare(page
))
3200 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3201 set_pcppage_migratetype(page
, migratetype
);
3205 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3207 struct zone
*zone
= page_zone(page
);
3208 struct per_cpu_pages
*pcp
;
3211 migratetype
= get_pcppage_migratetype(page
);
3212 __count_vm_event(PGFREE
);
3215 * We only track unmovable, reclaimable and movable on pcp lists.
3216 * Free ISOLATE pages back to the allocator because they are being
3217 * offlined but treat HIGHATOMIC as movable pages so we can get those
3218 * areas back if necessary. Otherwise, we may have to free
3219 * excessively into the page allocator
3221 if (migratetype
>= MIGRATE_PCPTYPES
) {
3222 if (unlikely(is_migrate_isolate(migratetype
))) {
3223 free_one_page(zone
, page
, pfn
, 0, migratetype
,
3227 migratetype
= MIGRATE_MOVABLE
;
3230 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3231 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3233 if (pcp
->count
>= READ_ONCE(pcp
->high
))
3234 free_pcppages_bulk(zone
, READ_ONCE(pcp
->batch
), pcp
);
3238 * Free a 0-order page
3240 void free_unref_page(struct page
*page
)
3242 unsigned long flags
;
3243 unsigned long pfn
= page_to_pfn(page
);
3245 if (!free_unref_page_prepare(page
, pfn
))
3248 local_irq_save(flags
);
3249 free_unref_page_commit(page
, pfn
);
3250 local_irq_restore(flags
);
3254 * Free a list of 0-order pages
3256 void free_unref_page_list(struct list_head
*list
)
3258 struct page
*page
, *next
;
3259 unsigned long flags
, pfn
;
3260 int batch_count
= 0;
3262 /* Prepare pages for freeing */
3263 list_for_each_entry_safe(page
, next
, list
, lru
) {
3264 pfn
= page_to_pfn(page
);
3265 if (!free_unref_page_prepare(page
, pfn
))
3266 list_del(&page
->lru
);
3267 set_page_private(page
, pfn
);
3270 local_irq_save(flags
);
3271 list_for_each_entry_safe(page
, next
, list
, lru
) {
3272 unsigned long pfn
= page_private(page
);
3274 set_page_private(page
, 0);
3275 trace_mm_page_free_batched(page
);
3276 free_unref_page_commit(page
, pfn
);
3279 * Guard against excessive IRQ disabled times when we get
3280 * a large list of pages to free.
3282 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3283 local_irq_restore(flags
);
3285 local_irq_save(flags
);
3288 local_irq_restore(flags
);
3292 * split_page takes a non-compound higher-order page, and splits it into
3293 * n (1<<order) sub-pages: page[0..n]
3294 * Each sub-page must be freed individually.
3296 * Note: this is probably too low level an operation for use in drivers.
3297 * Please consult with lkml before using this in your driver.
3299 void split_page(struct page
*page
, unsigned int order
)
3303 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3304 VM_BUG_ON_PAGE(!page_count(page
), page
);
3306 for (i
= 1; i
< (1 << order
); i
++)
3307 set_page_refcounted(page
+ i
);
3308 split_page_owner(page
, 1 << order
);
3310 EXPORT_SYMBOL_GPL(split_page
);
3312 int __isolate_free_page(struct page
*page
, unsigned int order
)
3314 unsigned long watermark
;
3318 BUG_ON(!PageBuddy(page
));
3320 zone
= page_zone(page
);
3321 mt
= get_pageblock_migratetype(page
);
3323 if (!is_migrate_isolate(mt
)) {
3325 * Obey watermarks as if the page was being allocated. We can
3326 * emulate a high-order watermark check with a raised order-0
3327 * watermark, because we already know our high-order page
3330 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3331 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3334 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3337 /* Remove page from free list */
3339 del_page_from_free_list(page
, zone
, order
);
3342 * Set the pageblock if the isolated page is at least half of a
3345 if (order
>= pageblock_order
- 1) {
3346 struct page
*endpage
= page
+ (1 << order
) - 1;
3347 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3348 int mt
= get_pageblock_migratetype(page
);
3349 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3350 && !is_migrate_highatomic(mt
))
3351 set_pageblock_migratetype(page
,
3357 return 1UL << order
;
3361 * __putback_isolated_page - Return a now-isolated page back where we got it
3362 * @page: Page that was isolated
3363 * @order: Order of the isolated page
3364 * @mt: The page's pageblock's migratetype
3366 * This function is meant to return a page pulled from the free lists via
3367 * __isolate_free_page back to the free lists they were pulled from.
3369 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
3371 struct zone
*zone
= page_zone(page
);
3373 /* zone lock should be held when this function is called */
3374 lockdep_assert_held(&zone
->lock
);
3376 /* Return isolated page to tail of freelist. */
3377 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
,
3378 FPI_SKIP_REPORT_NOTIFY
| FPI_TO_TAIL
);
3382 * Update NUMA hit/miss statistics
3384 * Must be called with interrupts disabled.
3386 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3389 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3391 /* skip numa counters update if numa stats is disabled */
3392 if (!static_branch_likely(&vm_numa_stat_key
))
3395 if (zone_to_nid(z
) != numa_node_id())
3396 local_stat
= NUMA_OTHER
;
3398 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3399 __inc_numa_state(z
, NUMA_HIT
);
3401 __inc_numa_state(z
, NUMA_MISS
);
3402 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3404 __inc_numa_state(z
, local_stat
);
3408 /* Remove page from the per-cpu list, caller must protect the list */
3409 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3410 unsigned int alloc_flags
,
3411 struct per_cpu_pages
*pcp
,
3412 struct list_head
*list
)
3417 if (list_empty(list
)) {
3418 pcp
->count
+= rmqueue_bulk(zone
, 0,
3419 READ_ONCE(pcp
->batch
), list
,
3420 migratetype
, alloc_flags
);
3421 if (unlikely(list_empty(list
)))
3425 page
= list_first_entry(list
, struct page
, lru
);
3426 list_del(&page
->lru
);
3428 } while (check_new_pcp(page
));
3433 /* Lock and remove page from the per-cpu list */
3434 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3435 struct zone
*zone
, gfp_t gfp_flags
,
3436 int migratetype
, unsigned int alloc_flags
)
3438 struct per_cpu_pages
*pcp
;
3439 struct list_head
*list
;
3441 unsigned long flags
;
3443 local_irq_save(flags
);
3444 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3445 list
= &pcp
->lists
[migratetype
];
3446 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3448 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3449 zone_statistics(preferred_zone
, zone
);
3451 local_irq_restore(flags
);
3456 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3459 struct page
*rmqueue(struct zone
*preferred_zone
,
3460 struct zone
*zone
, unsigned int order
,
3461 gfp_t gfp_flags
, unsigned int alloc_flags
,
3464 unsigned long flags
;
3467 if (likely(order
== 0)) {
3469 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3470 * we need to skip it when CMA area isn't allowed.
3472 if (!IS_ENABLED(CONFIG_CMA
) || alloc_flags
& ALLOC_CMA
||
3473 migratetype
!= MIGRATE_MOVABLE
) {
3474 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3475 migratetype
, alloc_flags
);
3481 * We most definitely don't want callers attempting to
3482 * allocate greater than order-1 page units with __GFP_NOFAIL.
3484 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3485 spin_lock_irqsave(&zone
->lock
, flags
);
3490 * order-0 request can reach here when the pcplist is skipped
3491 * due to non-CMA allocation context. HIGHATOMIC area is
3492 * reserved for high-order atomic allocation, so order-0
3493 * request should skip it.
3495 if (order
> 0 && alloc_flags
& ALLOC_HARDER
) {
3496 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3498 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3501 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3502 } while (page
&& check_new_pages(page
, order
));
3503 spin_unlock(&zone
->lock
);
3506 __mod_zone_freepage_state(zone
, -(1 << order
),
3507 get_pcppage_migratetype(page
));
3509 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3510 zone_statistics(preferred_zone
, zone
);
3511 local_irq_restore(flags
);
3514 /* Separate test+clear to avoid unnecessary atomics */
3515 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3516 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3517 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3520 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3524 local_irq_restore(flags
);
3528 #ifdef CONFIG_FAIL_PAGE_ALLOC
3531 struct fault_attr attr
;
3533 bool ignore_gfp_highmem
;
3534 bool ignore_gfp_reclaim
;
3536 } fail_page_alloc
= {
3537 .attr
= FAULT_ATTR_INITIALIZER
,
3538 .ignore_gfp_reclaim
= true,
3539 .ignore_gfp_highmem
= true,
3543 static int __init
setup_fail_page_alloc(char *str
)
3545 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3547 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3549 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3551 if (order
< fail_page_alloc
.min_order
)
3553 if (gfp_mask
& __GFP_NOFAIL
)
3555 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3557 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3558 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3561 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3564 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3566 static int __init
fail_page_alloc_debugfs(void)
3568 umode_t mode
= S_IFREG
| 0600;
3571 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3572 &fail_page_alloc
.attr
);
3574 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3575 &fail_page_alloc
.ignore_gfp_reclaim
);
3576 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3577 &fail_page_alloc
.ignore_gfp_highmem
);
3578 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3583 late_initcall(fail_page_alloc_debugfs
);
3585 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3587 #else /* CONFIG_FAIL_PAGE_ALLOC */
3589 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3594 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3596 noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3598 return __should_fail_alloc_page(gfp_mask
, order
);
3600 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3602 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3603 unsigned int order
, unsigned int alloc_flags
)
3605 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3606 long unusable_free
= (1 << order
) - 1;
3609 * If the caller does not have rights to ALLOC_HARDER then subtract
3610 * the high-atomic reserves. This will over-estimate the size of the
3611 * atomic reserve but it avoids a search.
3613 if (likely(!alloc_harder
))
3614 unusable_free
+= z
->nr_reserved_highatomic
;
3617 /* If allocation can't use CMA areas don't use free CMA pages */
3618 if (!(alloc_flags
& ALLOC_CMA
))
3619 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3622 return unusable_free
;
3626 * Return true if free base pages are above 'mark'. For high-order checks it
3627 * will return true of the order-0 watermark is reached and there is at least
3628 * one free page of a suitable size. Checking now avoids taking the zone lock
3629 * to check in the allocation paths if no pages are free.
3631 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3632 int highest_zoneidx
, unsigned int alloc_flags
,
3637 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3639 /* free_pages may go negative - that's OK */
3640 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3642 if (alloc_flags
& ALLOC_HIGH
)
3645 if (unlikely(alloc_harder
)) {
3647 * OOM victims can try even harder than normal ALLOC_HARDER
3648 * users on the grounds that it's definitely going to be in
3649 * the exit path shortly and free memory. Any allocation it
3650 * makes during the free path will be small and short-lived.
3652 if (alloc_flags
& ALLOC_OOM
)
3659 * Check watermarks for an order-0 allocation request. If these
3660 * are not met, then a high-order request also cannot go ahead
3661 * even if a suitable page happened to be free.
3663 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3666 /* If this is an order-0 request then the watermark is fine */
3670 /* For a high-order request, check at least one suitable page is free */
3671 for (o
= order
; o
< MAX_ORDER
; o
++) {
3672 struct free_area
*area
= &z
->free_area
[o
];
3678 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3679 if (!free_area_empty(area
, mt
))
3684 if ((alloc_flags
& ALLOC_CMA
) &&
3685 !free_area_empty(area
, MIGRATE_CMA
)) {
3689 if (alloc_harder
&& !free_area_empty(area
, MIGRATE_HIGHATOMIC
))
3695 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3696 int highest_zoneidx
, unsigned int alloc_flags
)
3698 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3699 zone_page_state(z
, NR_FREE_PAGES
));
3702 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3703 unsigned long mark
, int highest_zoneidx
,
3704 unsigned int alloc_flags
, gfp_t gfp_mask
)
3708 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3711 * Fast check for order-0 only. If this fails then the reserves
3712 * need to be calculated.
3717 fast_free
= free_pages
;
3718 fast_free
-= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3719 if (fast_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3723 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3727 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3728 * when checking the min watermark. The min watermark is the
3729 * point where boosting is ignored so that kswapd is woken up
3730 * when below the low watermark.
3732 if (unlikely(!order
&& (gfp_mask
& __GFP_ATOMIC
) && z
->watermark_boost
3733 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3734 mark
= z
->_watermark
[WMARK_MIN
];
3735 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3736 alloc_flags
, free_pages
);
3742 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3743 unsigned long mark
, int highest_zoneidx
)
3745 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3747 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3748 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3750 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3755 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3757 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3758 node_reclaim_distance
;
3760 #else /* CONFIG_NUMA */
3761 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3765 #endif /* CONFIG_NUMA */
3768 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3769 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3770 * premature use of a lower zone may cause lowmem pressure problems that
3771 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3772 * probably too small. It only makes sense to spread allocations to avoid
3773 * fragmentation between the Normal and DMA32 zones.
3775 static inline unsigned int
3776 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3778 unsigned int alloc_flags
;
3781 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3784 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3786 #ifdef CONFIG_ZONE_DMA32
3790 if (zone_idx(zone
) != ZONE_NORMAL
)
3794 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3795 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3796 * on UMA that if Normal is populated then so is DMA32.
3798 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3799 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3802 alloc_flags
|= ALLOC_NOFRAGMENT
;
3803 #endif /* CONFIG_ZONE_DMA32 */
3807 static inline unsigned int current_alloc_flags(gfp_t gfp_mask
,
3808 unsigned int alloc_flags
)
3811 unsigned int pflags
= current
->flags
;
3813 if (!(pflags
& PF_MEMALLOC_NOCMA
) &&
3814 gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3815 alloc_flags
|= ALLOC_CMA
;
3822 * get_page_from_freelist goes through the zonelist trying to allocate
3825 static struct page
*
3826 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3827 const struct alloc_context
*ac
)
3831 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3836 * Scan zonelist, looking for a zone with enough free.
3837 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3839 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3840 z
= ac
->preferred_zoneref
;
3841 for_next_zone_zonelist_nodemask(zone
, z
, ac
->highest_zoneidx
,
3846 if (cpusets_enabled() &&
3847 (alloc_flags
& ALLOC_CPUSET
) &&
3848 !__cpuset_zone_allowed(zone
, gfp_mask
))
3851 * When allocating a page cache page for writing, we
3852 * want to get it from a node that is within its dirty
3853 * limit, such that no single node holds more than its
3854 * proportional share of globally allowed dirty pages.
3855 * The dirty limits take into account the node's
3856 * lowmem reserves and high watermark so that kswapd
3857 * should be able to balance it without having to
3858 * write pages from its LRU list.
3860 * XXX: For now, allow allocations to potentially
3861 * exceed the per-node dirty limit in the slowpath
3862 * (spread_dirty_pages unset) before going into reclaim,
3863 * which is important when on a NUMA setup the allowed
3864 * nodes are together not big enough to reach the
3865 * global limit. The proper fix for these situations
3866 * will require awareness of nodes in the
3867 * dirty-throttling and the flusher threads.
3869 if (ac
->spread_dirty_pages
) {
3870 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3873 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3874 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3879 if (no_fallback
&& nr_online_nodes
> 1 &&
3880 zone
!= ac
->preferred_zoneref
->zone
) {
3884 * If moving to a remote node, retry but allow
3885 * fragmenting fallbacks. Locality is more important
3886 * than fragmentation avoidance.
3888 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3889 if (zone_to_nid(zone
) != local_nid
) {
3890 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3895 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3896 if (!zone_watermark_fast(zone
, order
, mark
,
3897 ac
->highest_zoneidx
, alloc_flags
,
3901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3903 * Watermark failed for this zone, but see if we can
3904 * grow this zone if it contains deferred pages.
3906 if (static_branch_unlikely(&deferred_pages
)) {
3907 if (_deferred_grow_zone(zone
, order
))
3911 /* Checked here to keep the fast path fast */
3912 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3913 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3916 if (node_reclaim_mode
== 0 ||
3917 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3920 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3922 case NODE_RECLAIM_NOSCAN
:
3925 case NODE_RECLAIM_FULL
:
3926 /* scanned but unreclaimable */
3929 /* did we reclaim enough */
3930 if (zone_watermark_ok(zone
, order
, mark
,
3931 ac
->highest_zoneidx
, alloc_flags
))
3939 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3940 gfp_mask
, alloc_flags
, ac
->migratetype
);
3942 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3945 * If this is a high-order atomic allocation then check
3946 * if the pageblock should be reserved for the future
3948 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3949 reserve_highatomic_pageblock(page
, zone
, order
);
3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3954 /* Try again if zone has deferred pages */
3955 if (static_branch_unlikely(&deferred_pages
)) {
3956 if (_deferred_grow_zone(zone
, order
))
3964 * It's possible on a UMA machine to get through all zones that are
3965 * fragmented. If avoiding fragmentation, reset and try again.
3968 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3975 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3977 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3980 * This documents exceptions given to allocations in certain
3981 * contexts that are allowed to allocate outside current's set
3984 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3985 if (tsk_is_oom_victim(current
) ||
3986 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3987 filter
&= ~SHOW_MEM_FILTER_NODES
;
3988 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3989 filter
&= ~SHOW_MEM_FILTER_NODES
;
3991 show_mem(filter
, nodemask
);
3994 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3996 struct va_format vaf
;
3998 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
4000 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
4003 va_start(args
, fmt
);
4006 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4007 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
4008 nodemask_pr_args(nodemask
));
4011 cpuset_print_current_mems_allowed();
4014 warn_alloc_show_mem(gfp_mask
, nodemask
);
4017 static inline struct page
*
4018 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
4019 unsigned int alloc_flags
,
4020 const struct alloc_context
*ac
)
4024 page
= get_page_from_freelist(gfp_mask
, order
,
4025 alloc_flags
|ALLOC_CPUSET
, ac
);
4027 * fallback to ignore cpuset restriction if our nodes
4031 page
= get_page_from_freelist(gfp_mask
, order
,
4037 static inline struct page
*
4038 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
4039 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
4041 struct oom_control oc
= {
4042 .zonelist
= ac
->zonelist
,
4043 .nodemask
= ac
->nodemask
,
4045 .gfp_mask
= gfp_mask
,
4050 *did_some_progress
= 0;
4053 * Acquire the oom lock. If that fails, somebody else is
4054 * making progress for us.
4056 if (!mutex_trylock(&oom_lock
)) {
4057 *did_some_progress
= 1;
4058 schedule_timeout_uninterruptible(1);
4063 * Go through the zonelist yet one more time, keep very high watermark
4064 * here, this is only to catch a parallel oom killing, we must fail if
4065 * we're still under heavy pressure. But make sure that this reclaim
4066 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4067 * allocation which will never fail due to oom_lock already held.
4069 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
4070 ~__GFP_DIRECT_RECLAIM
, order
,
4071 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
4075 /* Coredumps can quickly deplete all memory reserves */
4076 if (current
->flags
& PF_DUMPCORE
)
4078 /* The OOM killer will not help higher order allocs */
4079 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4082 * We have already exhausted all our reclaim opportunities without any
4083 * success so it is time to admit defeat. We will skip the OOM killer
4084 * because it is very likely that the caller has a more reasonable
4085 * fallback than shooting a random task.
4087 * The OOM killer may not free memory on a specific node.
4089 if (gfp_mask
& (__GFP_RETRY_MAYFAIL
| __GFP_THISNODE
))
4091 /* The OOM killer does not needlessly kill tasks for lowmem */
4092 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
4094 if (pm_suspended_storage())
4097 * XXX: GFP_NOFS allocations should rather fail than rely on
4098 * other request to make a forward progress.
4099 * We are in an unfortunate situation where out_of_memory cannot
4100 * do much for this context but let's try it to at least get
4101 * access to memory reserved if the current task is killed (see
4102 * out_of_memory). Once filesystems are ready to handle allocation
4103 * failures more gracefully we should just bail out here.
4106 /* Exhausted what can be done so it's blame time */
4107 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
4108 *did_some_progress
= 1;
4111 * Help non-failing allocations by giving them access to memory
4114 if (gfp_mask
& __GFP_NOFAIL
)
4115 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
4116 ALLOC_NO_WATERMARKS
, ac
);
4119 mutex_unlock(&oom_lock
);
4124 * Maximum number of compaction retries wit a progress before OOM
4125 * killer is consider as the only way to move forward.
4127 #define MAX_COMPACT_RETRIES 16
4129 #ifdef CONFIG_COMPACTION
4130 /* Try memory compaction for high-order allocations before reclaim */
4131 static struct page
*
4132 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4133 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4134 enum compact_priority prio
, enum compact_result
*compact_result
)
4136 struct page
*page
= NULL
;
4137 unsigned long pflags
;
4138 unsigned int noreclaim_flag
;
4143 psi_memstall_enter(&pflags
);
4144 noreclaim_flag
= memalloc_noreclaim_save();
4146 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
4149 memalloc_noreclaim_restore(noreclaim_flag
);
4150 psi_memstall_leave(&pflags
);
4153 * At least in one zone compaction wasn't deferred or skipped, so let's
4154 * count a compaction stall
4156 count_vm_event(COMPACTSTALL
);
4158 /* Prep a captured page if available */
4160 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
4162 /* Try get a page from the freelist if available */
4164 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4167 struct zone
*zone
= page_zone(page
);
4169 zone
->compact_blockskip_flush
= false;
4170 compaction_defer_reset(zone
, order
, true);
4171 count_vm_event(COMPACTSUCCESS
);
4176 * It's bad if compaction run occurs and fails. The most likely reason
4177 * is that pages exist, but not enough to satisfy watermarks.
4179 count_vm_event(COMPACTFAIL
);
4187 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
4188 enum compact_result compact_result
,
4189 enum compact_priority
*compact_priority
,
4190 int *compaction_retries
)
4192 int max_retries
= MAX_COMPACT_RETRIES
;
4195 int retries
= *compaction_retries
;
4196 enum compact_priority priority
= *compact_priority
;
4201 if (compaction_made_progress(compact_result
))
4202 (*compaction_retries
)++;
4205 * compaction considers all the zone as desperately out of memory
4206 * so it doesn't really make much sense to retry except when the
4207 * failure could be caused by insufficient priority
4209 if (compaction_failed(compact_result
))
4210 goto check_priority
;
4213 * compaction was skipped because there are not enough order-0 pages
4214 * to work with, so we retry only if it looks like reclaim can help.
4216 if (compaction_needs_reclaim(compact_result
)) {
4217 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
4222 * make sure the compaction wasn't deferred or didn't bail out early
4223 * due to locks contention before we declare that we should give up.
4224 * But the next retry should use a higher priority if allowed, so
4225 * we don't just keep bailing out endlessly.
4227 if (compaction_withdrawn(compact_result
)) {
4228 goto check_priority
;
4232 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4233 * costly ones because they are de facto nofail and invoke OOM
4234 * killer to move on while costly can fail and users are ready
4235 * to cope with that. 1/4 retries is rather arbitrary but we
4236 * would need much more detailed feedback from compaction to
4237 * make a better decision.
4239 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4241 if (*compaction_retries
<= max_retries
) {
4247 * Make sure there are attempts at the highest priority if we exhausted
4248 * all retries or failed at the lower priorities.
4251 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4252 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4254 if (*compact_priority
> min_priority
) {
4255 (*compact_priority
)--;
4256 *compaction_retries
= 0;
4260 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4264 static inline struct page
*
4265 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4266 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4267 enum compact_priority prio
, enum compact_result
*compact_result
)
4269 *compact_result
= COMPACT_SKIPPED
;
4274 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4275 enum compact_result compact_result
,
4276 enum compact_priority
*compact_priority
,
4277 int *compaction_retries
)
4282 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4286 * There are setups with compaction disabled which would prefer to loop
4287 * inside the allocator rather than hit the oom killer prematurely.
4288 * Let's give them a good hope and keep retrying while the order-0
4289 * watermarks are OK.
4291 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4292 ac
->highest_zoneidx
, ac
->nodemask
) {
4293 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4294 ac
->highest_zoneidx
, alloc_flags
))
4299 #endif /* CONFIG_COMPACTION */
4301 #ifdef CONFIG_LOCKDEP
4302 static struct lockdep_map __fs_reclaim_map
=
4303 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4305 static bool __need_reclaim(gfp_t gfp_mask
)
4307 /* no reclaim without waiting on it */
4308 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4311 /* this guy won't enter reclaim */
4312 if (current
->flags
& PF_MEMALLOC
)
4315 if (gfp_mask
& __GFP_NOLOCKDEP
)
4321 void __fs_reclaim_acquire(void)
4323 lock_map_acquire(&__fs_reclaim_map
);
4326 void __fs_reclaim_release(void)
4328 lock_map_release(&__fs_reclaim_map
);
4331 void fs_reclaim_acquire(gfp_t gfp_mask
)
4333 gfp_mask
= current_gfp_context(gfp_mask
);
4335 if (__need_reclaim(gfp_mask
)) {
4336 if (gfp_mask
& __GFP_FS
)
4337 __fs_reclaim_acquire();
4339 #ifdef CONFIG_MMU_NOTIFIER
4340 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map
);
4341 lock_map_release(&__mmu_notifier_invalidate_range_start_map
);
4346 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4348 void fs_reclaim_release(gfp_t gfp_mask
)
4350 gfp_mask
= current_gfp_context(gfp_mask
);
4352 if (__need_reclaim(gfp_mask
)) {
4353 if (gfp_mask
& __GFP_FS
)
4354 __fs_reclaim_release();
4357 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4360 /* Perform direct synchronous page reclaim */
4361 static unsigned long
4362 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4363 const struct alloc_context
*ac
)
4365 unsigned int noreclaim_flag
;
4366 unsigned long pflags
, progress
;
4370 /* We now go into synchronous reclaim */
4371 cpuset_memory_pressure_bump();
4372 psi_memstall_enter(&pflags
);
4373 fs_reclaim_acquire(gfp_mask
);
4374 noreclaim_flag
= memalloc_noreclaim_save();
4376 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4379 memalloc_noreclaim_restore(noreclaim_flag
);
4380 fs_reclaim_release(gfp_mask
);
4381 psi_memstall_leave(&pflags
);
4388 /* The really slow allocator path where we enter direct reclaim */
4389 static inline struct page
*
4390 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4391 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4392 unsigned long *did_some_progress
)
4394 struct page
*page
= NULL
;
4395 bool drained
= false;
4397 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4398 if (unlikely(!(*did_some_progress
)))
4402 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4405 * If an allocation failed after direct reclaim, it could be because
4406 * pages are pinned on the per-cpu lists or in high alloc reserves.
4407 * Shrink them and try again
4409 if (!page
&& !drained
) {
4410 unreserve_highatomic_pageblock(ac
, false);
4411 drain_all_pages(NULL
);
4419 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4420 const struct alloc_context
*ac
)
4424 pg_data_t
*last_pgdat
= NULL
;
4425 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
4427 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
4429 if (last_pgdat
!= zone
->zone_pgdat
)
4430 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
4431 last_pgdat
= zone
->zone_pgdat
;
4435 static inline unsigned int
4436 gfp_to_alloc_flags(gfp_t gfp_mask
)
4438 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4441 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4442 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4443 * to save two branches.
4445 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4446 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4449 * The caller may dip into page reserves a bit more if the caller
4450 * cannot run direct reclaim, or if the caller has realtime scheduling
4451 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4452 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4454 alloc_flags
|= (__force
int)
4455 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4457 if (gfp_mask
& __GFP_ATOMIC
) {
4459 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4460 * if it can't schedule.
4462 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4463 alloc_flags
|= ALLOC_HARDER
;
4465 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4466 * comment for __cpuset_node_allowed().
4468 alloc_flags
&= ~ALLOC_CPUSET
;
4469 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4470 alloc_flags
|= ALLOC_HARDER
;
4472 alloc_flags
= current_alloc_flags(gfp_mask
, alloc_flags
);
4477 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4479 if (!tsk_is_oom_victim(tsk
))
4483 * !MMU doesn't have oom reaper so give access to memory reserves
4484 * only to the thread with TIF_MEMDIE set
4486 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4493 * Distinguish requests which really need access to full memory
4494 * reserves from oom victims which can live with a portion of it
4496 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4498 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4500 if (gfp_mask
& __GFP_MEMALLOC
)
4501 return ALLOC_NO_WATERMARKS
;
4502 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4503 return ALLOC_NO_WATERMARKS
;
4504 if (!in_interrupt()) {
4505 if (current
->flags
& PF_MEMALLOC
)
4506 return ALLOC_NO_WATERMARKS
;
4507 else if (oom_reserves_allowed(current
))
4514 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4516 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4520 * Checks whether it makes sense to retry the reclaim to make a forward progress
4521 * for the given allocation request.
4523 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4524 * without success, or when we couldn't even meet the watermark if we
4525 * reclaimed all remaining pages on the LRU lists.
4527 * Returns true if a retry is viable or false to enter the oom path.
4530 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4531 struct alloc_context
*ac
, int alloc_flags
,
4532 bool did_some_progress
, int *no_progress_loops
)
4539 * Costly allocations might have made a progress but this doesn't mean
4540 * their order will become available due to high fragmentation so
4541 * always increment the no progress counter for them
4543 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4544 *no_progress_loops
= 0;
4546 (*no_progress_loops
)++;
4549 * Make sure we converge to OOM if we cannot make any progress
4550 * several times in the row.
4552 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4553 /* Before OOM, exhaust highatomic_reserve */
4554 return unreserve_highatomic_pageblock(ac
, true);
4558 * Keep reclaiming pages while there is a chance this will lead
4559 * somewhere. If none of the target zones can satisfy our allocation
4560 * request even if all reclaimable pages are considered then we are
4561 * screwed and have to go OOM.
4563 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4564 ac
->highest_zoneidx
, ac
->nodemask
) {
4565 unsigned long available
;
4566 unsigned long reclaimable
;
4567 unsigned long min_wmark
= min_wmark_pages(zone
);
4570 available
= reclaimable
= zone_reclaimable_pages(zone
);
4571 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4574 * Would the allocation succeed if we reclaimed all
4575 * reclaimable pages?
4577 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4578 ac
->highest_zoneidx
, alloc_flags
, available
);
4579 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4580 available
, min_wmark
, *no_progress_loops
, wmark
);
4583 * If we didn't make any progress and have a lot of
4584 * dirty + writeback pages then we should wait for
4585 * an IO to complete to slow down the reclaim and
4586 * prevent from pre mature OOM
4588 if (!did_some_progress
) {
4589 unsigned long write_pending
;
4591 write_pending
= zone_page_state_snapshot(zone
,
4592 NR_ZONE_WRITE_PENDING
);
4594 if (2 * write_pending
> reclaimable
) {
4595 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4607 * Memory allocation/reclaim might be called from a WQ context and the
4608 * current implementation of the WQ concurrency control doesn't
4609 * recognize that a particular WQ is congested if the worker thread is
4610 * looping without ever sleeping. Therefore we have to do a short sleep
4611 * here rather than calling cond_resched().
4613 if (current
->flags
& PF_WQ_WORKER
)
4614 schedule_timeout_uninterruptible(1);
4621 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4624 * It's possible that cpuset's mems_allowed and the nodemask from
4625 * mempolicy don't intersect. This should be normally dealt with by
4626 * policy_nodemask(), but it's possible to race with cpuset update in
4627 * such a way the check therein was true, and then it became false
4628 * before we got our cpuset_mems_cookie here.
4629 * This assumes that for all allocations, ac->nodemask can come only
4630 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4631 * when it does not intersect with the cpuset restrictions) or the
4632 * caller can deal with a violated nodemask.
4634 if (cpusets_enabled() && ac
->nodemask
&&
4635 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4636 ac
->nodemask
= NULL
;
4641 * When updating a task's mems_allowed or mempolicy nodemask, it is
4642 * possible to race with parallel threads in such a way that our
4643 * allocation can fail while the mask is being updated. If we are about
4644 * to fail, check if the cpuset changed during allocation and if so,
4647 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4653 static inline struct page
*
4654 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4655 struct alloc_context
*ac
)
4657 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4658 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4659 struct page
*page
= NULL
;
4660 unsigned int alloc_flags
;
4661 unsigned long did_some_progress
;
4662 enum compact_priority compact_priority
;
4663 enum compact_result compact_result
;
4664 int compaction_retries
;
4665 int no_progress_loops
;
4666 unsigned int cpuset_mems_cookie
;
4670 * We also sanity check to catch abuse of atomic reserves being used by
4671 * callers that are not in atomic context.
4673 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4674 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4675 gfp_mask
&= ~__GFP_ATOMIC
;
4678 compaction_retries
= 0;
4679 no_progress_loops
= 0;
4680 compact_priority
= DEF_COMPACT_PRIORITY
;
4681 cpuset_mems_cookie
= read_mems_allowed_begin();
4684 * The fast path uses conservative alloc_flags to succeed only until
4685 * kswapd needs to be woken up, and to avoid the cost of setting up
4686 * alloc_flags precisely. So we do that now.
4688 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4691 * We need to recalculate the starting point for the zonelist iterator
4692 * because we might have used different nodemask in the fast path, or
4693 * there was a cpuset modification and we are retrying - otherwise we
4694 * could end up iterating over non-eligible zones endlessly.
4696 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4697 ac
->highest_zoneidx
, ac
->nodemask
);
4698 if (!ac
->preferred_zoneref
->zone
)
4701 if (alloc_flags
& ALLOC_KSWAPD
)
4702 wake_all_kswapds(order
, gfp_mask
, ac
);
4705 * The adjusted alloc_flags might result in immediate success, so try
4708 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4713 * For costly allocations, try direct compaction first, as it's likely
4714 * that we have enough base pages and don't need to reclaim. For non-
4715 * movable high-order allocations, do that as well, as compaction will
4716 * try prevent permanent fragmentation by migrating from blocks of the
4718 * Don't try this for allocations that are allowed to ignore
4719 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4721 if (can_direct_reclaim
&&
4723 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4724 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4725 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4727 INIT_COMPACT_PRIORITY
,
4733 * Checks for costly allocations with __GFP_NORETRY, which
4734 * includes some THP page fault allocations
4736 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4738 * If allocating entire pageblock(s) and compaction
4739 * failed because all zones are below low watermarks
4740 * or is prohibited because it recently failed at this
4741 * order, fail immediately unless the allocator has
4742 * requested compaction and reclaim retry.
4745 * - potentially very expensive because zones are far
4746 * below their low watermarks or this is part of very
4747 * bursty high order allocations,
4748 * - not guaranteed to help because isolate_freepages()
4749 * may not iterate over freed pages as part of its
4751 * - unlikely to make entire pageblocks free on its
4754 if (compact_result
== COMPACT_SKIPPED
||
4755 compact_result
== COMPACT_DEFERRED
)
4759 * Looks like reclaim/compaction is worth trying, but
4760 * sync compaction could be very expensive, so keep
4761 * using async compaction.
4763 compact_priority
= INIT_COMPACT_PRIORITY
;
4768 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4769 if (alloc_flags
& ALLOC_KSWAPD
)
4770 wake_all_kswapds(order
, gfp_mask
, ac
);
4772 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4774 alloc_flags
= current_alloc_flags(gfp_mask
, reserve_flags
);
4777 * Reset the nodemask and zonelist iterators if memory policies can be
4778 * ignored. These allocations are high priority and system rather than
4781 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4782 ac
->nodemask
= NULL
;
4783 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4784 ac
->highest_zoneidx
, ac
->nodemask
);
4787 /* Attempt with potentially adjusted zonelist and alloc_flags */
4788 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4792 /* Caller is not willing to reclaim, we can't balance anything */
4793 if (!can_direct_reclaim
)
4796 /* Avoid recursion of direct reclaim */
4797 if (current
->flags
& PF_MEMALLOC
)
4800 /* Try direct reclaim and then allocating */
4801 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4802 &did_some_progress
);
4806 /* Try direct compaction and then allocating */
4807 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4808 compact_priority
, &compact_result
);
4812 /* Do not loop if specifically requested */
4813 if (gfp_mask
& __GFP_NORETRY
)
4817 * Do not retry costly high order allocations unless they are
4818 * __GFP_RETRY_MAYFAIL
4820 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4823 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4824 did_some_progress
> 0, &no_progress_loops
))
4828 * It doesn't make any sense to retry for the compaction if the order-0
4829 * reclaim is not able to make any progress because the current
4830 * implementation of the compaction depends on the sufficient amount
4831 * of free memory (see __compaction_suitable)
4833 if (did_some_progress
> 0 &&
4834 should_compact_retry(ac
, order
, alloc_flags
,
4835 compact_result
, &compact_priority
,
4836 &compaction_retries
))
4840 /* Deal with possible cpuset update races before we start OOM killing */
4841 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4844 /* Reclaim has failed us, start killing things */
4845 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4849 /* Avoid allocations with no watermarks from looping endlessly */
4850 if (tsk_is_oom_victim(current
) &&
4851 (alloc_flags
& ALLOC_OOM
||
4852 (gfp_mask
& __GFP_NOMEMALLOC
)))
4855 /* Retry as long as the OOM killer is making progress */
4856 if (did_some_progress
) {
4857 no_progress_loops
= 0;
4862 /* Deal with possible cpuset update races before we fail */
4863 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4867 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4870 if (gfp_mask
& __GFP_NOFAIL
) {
4872 * All existing users of the __GFP_NOFAIL are blockable, so warn
4873 * of any new users that actually require GFP_NOWAIT
4875 if (WARN_ON_ONCE(!can_direct_reclaim
))
4879 * PF_MEMALLOC request from this context is rather bizarre
4880 * because we cannot reclaim anything and only can loop waiting
4881 * for somebody to do a work for us
4883 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4886 * non failing costly orders are a hard requirement which we
4887 * are not prepared for much so let's warn about these users
4888 * so that we can identify them and convert them to something
4891 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4894 * Help non-failing allocations by giving them access to memory
4895 * reserves but do not use ALLOC_NO_WATERMARKS because this
4896 * could deplete whole memory reserves which would just make
4897 * the situation worse
4899 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4907 warn_alloc(gfp_mask
, ac
->nodemask
,
4908 "page allocation failure: order:%u", order
);
4913 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4914 int preferred_nid
, nodemask_t
*nodemask
,
4915 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4916 unsigned int *alloc_flags
)
4918 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4919 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4920 ac
->nodemask
= nodemask
;
4921 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4923 if (cpusets_enabled()) {
4924 *alloc_mask
|= __GFP_HARDWALL
;
4926 * When we are in the interrupt context, it is irrelevant
4927 * to the current task context. It means that any node ok.
4929 if (!in_interrupt() && !ac
->nodemask
)
4930 ac
->nodemask
= &cpuset_current_mems_allowed
;
4932 *alloc_flags
|= ALLOC_CPUSET
;
4935 fs_reclaim_acquire(gfp_mask
);
4936 fs_reclaim_release(gfp_mask
);
4938 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4940 if (should_fail_alloc_page(gfp_mask
, order
))
4943 *alloc_flags
= current_alloc_flags(gfp_mask
, *alloc_flags
);
4945 /* Dirty zone balancing only done in the fast path */
4946 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4949 * The preferred zone is used for statistics but crucially it is
4950 * also used as the starting point for the zonelist iterator. It
4951 * may get reset for allocations that ignore memory policies.
4953 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4954 ac
->highest_zoneidx
, ac
->nodemask
);
4960 * This is the 'heart' of the zoned buddy allocator.
4963 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4964 nodemask_t
*nodemask
)
4967 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4968 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4969 struct alloc_context ac
= { };
4972 * There are several places where we assume that the order value is sane
4973 * so bail out early if the request is out of bound.
4975 if (unlikely(order
>= MAX_ORDER
)) {
4976 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4980 gfp_mask
&= gfp_allowed_mask
;
4981 alloc_mask
= gfp_mask
;
4982 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4986 * Forbid the first pass from falling back to types that fragment
4987 * memory until all local zones are considered.
4989 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4991 /* First allocation attempt */
4992 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4997 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4998 * resp. GFP_NOIO which has to be inherited for all allocation requests
4999 * from a particular context which has been marked by
5000 * memalloc_no{fs,io}_{save,restore}.
5002 alloc_mask
= current_gfp_context(gfp_mask
);
5003 ac
.spread_dirty_pages
= false;
5006 * Restore the original nodemask if it was potentially replaced with
5007 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5009 ac
.nodemask
= nodemask
;
5011 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
5014 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
5015 unlikely(__memcg_kmem_charge_page(page
, gfp_mask
, order
) != 0)) {
5016 __free_pages(page
, order
);
5020 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
5024 EXPORT_SYMBOL(__alloc_pages_nodemask
);
5027 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5028 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5029 * you need to access high mem.
5031 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
5035 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
5038 return (unsigned long) page_address(page
);
5040 EXPORT_SYMBOL(__get_free_pages
);
5042 unsigned long get_zeroed_page(gfp_t gfp_mask
)
5044 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
5046 EXPORT_SYMBOL(get_zeroed_page
);
5048 static inline void free_the_page(struct page
*page
, unsigned int order
)
5050 if (order
== 0) /* Via pcp? */
5051 free_unref_page(page
);
5053 __free_pages_ok(page
, order
, FPI_NONE
);
5057 * __free_pages - Free pages allocated with alloc_pages().
5058 * @page: The page pointer returned from alloc_pages().
5059 * @order: The order of the allocation.
5061 * This function can free multi-page allocations that are not compound
5062 * pages. It does not check that the @order passed in matches that of
5063 * the allocation, so it is easy to leak memory. Freeing more memory
5064 * than was allocated will probably emit a warning.
5066 * If the last reference to this page is speculative, it will be released
5067 * by put_page() which only frees the first page of a non-compound
5068 * allocation. To prevent the remaining pages from being leaked, we free
5069 * the subsequent pages here. If you want to use the page's reference
5070 * count to decide when to free the allocation, you should allocate a
5071 * compound page, and use put_page() instead of __free_pages().
5073 * Context: May be called in interrupt context or while holding a normal
5074 * spinlock, but not in NMI context or while holding a raw spinlock.
5076 void __free_pages(struct page
*page
, unsigned int order
)
5078 if (put_page_testzero(page
))
5079 free_the_page(page
, order
);
5080 else if (!PageHead(page
))
5082 free_the_page(page
+ (1 << order
), order
);
5084 EXPORT_SYMBOL(__free_pages
);
5086 void free_pages(unsigned long addr
, unsigned int order
)
5089 VM_BUG_ON(!virt_addr_valid((void *)addr
));
5090 __free_pages(virt_to_page((void *)addr
), order
);
5094 EXPORT_SYMBOL(free_pages
);
5098 * An arbitrary-length arbitrary-offset area of memory which resides
5099 * within a 0 or higher order page. Multiple fragments within that page
5100 * are individually refcounted, in the page's reference counter.
5102 * The page_frag functions below provide a simple allocation framework for
5103 * page fragments. This is used by the network stack and network device
5104 * drivers to provide a backing region of memory for use as either an
5105 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5107 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
5110 struct page
*page
= NULL
;
5111 gfp_t gfp
= gfp_mask
;
5113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5114 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
5116 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
5117 PAGE_FRAG_CACHE_MAX_ORDER
);
5118 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
5120 if (unlikely(!page
))
5121 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
5123 nc
->va
= page
? page_address(page
) : NULL
;
5128 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
5130 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
5132 if (page_ref_sub_and_test(page
, count
))
5133 free_the_page(page
, compound_order(page
));
5135 EXPORT_SYMBOL(__page_frag_cache_drain
);
5137 void *page_frag_alloc(struct page_frag_cache
*nc
,
5138 unsigned int fragsz
, gfp_t gfp_mask
)
5140 unsigned int size
= PAGE_SIZE
;
5144 if (unlikely(!nc
->va
)) {
5146 page
= __page_frag_cache_refill(nc
, gfp_mask
);
5150 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5151 /* if size can vary use size else just use PAGE_SIZE */
5154 /* Even if we own the page, we do not use atomic_set().
5155 * This would break get_page_unless_zero() users.
5157 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
5159 /* reset page count bias and offset to start of new frag */
5160 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
5161 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5165 offset
= nc
->offset
- fragsz
;
5166 if (unlikely(offset
< 0)) {
5167 page
= virt_to_page(nc
->va
);
5169 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
5172 if (unlikely(nc
->pfmemalloc
)) {
5173 free_the_page(page
, compound_order(page
));
5177 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5178 /* if size can vary use size else just use PAGE_SIZE */
5181 /* OK, page count is 0, we can safely set it */
5182 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
5184 /* reset page count bias and offset to start of new frag */
5185 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5186 offset
= size
- fragsz
;
5190 nc
->offset
= offset
;
5192 return nc
->va
+ offset
;
5194 EXPORT_SYMBOL(page_frag_alloc
);
5197 * Frees a page fragment allocated out of either a compound or order 0 page.
5199 void page_frag_free(void *addr
)
5201 struct page
*page
= virt_to_head_page(addr
);
5203 if (unlikely(put_page_testzero(page
)))
5204 free_the_page(page
, compound_order(page
));
5206 EXPORT_SYMBOL(page_frag_free
);
5208 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
5212 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
5213 unsigned long used
= addr
+ PAGE_ALIGN(size
);
5215 split_page(virt_to_page((void *)addr
), order
);
5216 while (used
< alloc_end
) {
5221 return (void *)addr
;
5225 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5226 * @size: the number of bytes to allocate
5227 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5229 * This function is similar to alloc_pages(), except that it allocates the
5230 * minimum number of pages to satisfy the request. alloc_pages() can only
5231 * allocate memory in power-of-two pages.
5233 * This function is also limited by MAX_ORDER.
5235 * Memory allocated by this function must be released by free_pages_exact().
5237 * Return: pointer to the allocated area or %NULL in case of error.
5239 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
5241 unsigned int order
= get_order(size
);
5244 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5245 gfp_mask
&= ~__GFP_COMP
;
5247 addr
= __get_free_pages(gfp_mask
, order
);
5248 return make_alloc_exact(addr
, order
, size
);
5250 EXPORT_SYMBOL(alloc_pages_exact
);
5253 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5255 * @nid: the preferred node ID where memory should be allocated
5256 * @size: the number of bytes to allocate
5257 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5259 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5262 * Return: pointer to the allocated area or %NULL in case of error.
5264 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5266 unsigned int order
= get_order(size
);
5269 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5270 gfp_mask
&= ~__GFP_COMP
;
5272 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5275 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5279 * free_pages_exact - release memory allocated via alloc_pages_exact()
5280 * @virt: the value returned by alloc_pages_exact.
5281 * @size: size of allocation, same value as passed to alloc_pages_exact().
5283 * Release the memory allocated by a previous call to alloc_pages_exact.
5285 void free_pages_exact(void *virt
, size_t size
)
5287 unsigned long addr
= (unsigned long)virt
;
5288 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5290 while (addr
< end
) {
5295 EXPORT_SYMBOL(free_pages_exact
);
5298 * nr_free_zone_pages - count number of pages beyond high watermark
5299 * @offset: The zone index of the highest zone
5301 * nr_free_zone_pages() counts the number of pages which are beyond the
5302 * high watermark within all zones at or below a given zone index. For each
5303 * zone, the number of pages is calculated as:
5305 * nr_free_zone_pages = managed_pages - high_pages
5307 * Return: number of pages beyond high watermark.
5309 static unsigned long nr_free_zone_pages(int offset
)
5314 /* Just pick one node, since fallback list is circular */
5315 unsigned long sum
= 0;
5317 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5319 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5320 unsigned long size
= zone_managed_pages(zone
);
5321 unsigned long high
= high_wmark_pages(zone
);
5330 * nr_free_buffer_pages - count number of pages beyond high watermark
5332 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5333 * watermark within ZONE_DMA and ZONE_NORMAL.
5335 * Return: number of pages beyond high watermark within ZONE_DMA and
5338 unsigned long nr_free_buffer_pages(void)
5340 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5342 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5344 static inline void show_node(struct zone
*zone
)
5346 if (IS_ENABLED(CONFIG_NUMA
))
5347 printk("Node %d ", zone_to_nid(zone
));
5350 long si_mem_available(void)
5353 unsigned long pagecache
;
5354 unsigned long wmark_low
= 0;
5355 unsigned long pages
[NR_LRU_LISTS
];
5356 unsigned long reclaimable
;
5360 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5361 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5364 wmark_low
+= low_wmark_pages(zone
);
5367 * Estimate the amount of memory available for userspace allocations,
5368 * without causing swapping.
5370 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5373 * Not all the page cache can be freed, otherwise the system will
5374 * start swapping. Assume at least half of the page cache, or the
5375 * low watermark worth of cache, needs to stay.
5377 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5378 pagecache
-= min(pagecache
/ 2, wmark_low
);
5379 available
+= pagecache
;
5382 * Part of the reclaimable slab and other kernel memory consists of
5383 * items that are in use, and cannot be freed. Cap this estimate at the
5386 reclaimable
= global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
) +
5387 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5388 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5394 EXPORT_SYMBOL_GPL(si_mem_available
);
5396 void si_meminfo(struct sysinfo
*val
)
5398 val
->totalram
= totalram_pages();
5399 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5400 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5401 val
->bufferram
= nr_blockdev_pages();
5402 val
->totalhigh
= totalhigh_pages();
5403 val
->freehigh
= nr_free_highpages();
5404 val
->mem_unit
= PAGE_SIZE
;
5407 EXPORT_SYMBOL(si_meminfo
);
5410 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5412 int zone_type
; /* needs to be signed */
5413 unsigned long managed_pages
= 0;
5414 unsigned long managed_highpages
= 0;
5415 unsigned long free_highpages
= 0;
5416 pg_data_t
*pgdat
= NODE_DATA(nid
);
5418 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5419 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5420 val
->totalram
= managed_pages
;
5421 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5422 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5423 #ifdef CONFIG_HIGHMEM
5424 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5425 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5427 if (is_highmem(zone
)) {
5428 managed_highpages
+= zone_managed_pages(zone
);
5429 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5432 val
->totalhigh
= managed_highpages
;
5433 val
->freehigh
= free_highpages
;
5435 val
->totalhigh
= managed_highpages
;
5436 val
->freehigh
= free_highpages
;
5438 val
->mem_unit
= PAGE_SIZE
;
5443 * Determine whether the node should be displayed or not, depending on whether
5444 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5446 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5448 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5452 * no node mask - aka implicit memory numa policy. Do not bother with
5453 * the synchronization - read_mems_allowed_begin - because we do not
5454 * have to be precise here.
5457 nodemask
= &cpuset_current_mems_allowed
;
5459 return !node_isset(nid
, *nodemask
);
5462 #define K(x) ((x) << (PAGE_SHIFT-10))
5464 static void show_migration_types(unsigned char type
)
5466 static const char types
[MIGRATE_TYPES
] = {
5467 [MIGRATE_UNMOVABLE
] = 'U',
5468 [MIGRATE_MOVABLE
] = 'M',
5469 [MIGRATE_RECLAIMABLE
] = 'E',
5470 [MIGRATE_HIGHATOMIC
] = 'H',
5472 [MIGRATE_CMA
] = 'C',
5474 #ifdef CONFIG_MEMORY_ISOLATION
5475 [MIGRATE_ISOLATE
] = 'I',
5478 char tmp
[MIGRATE_TYPES
+ 1];
5482 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5483 if (type
& (1 << i
))
5488 printk(KERN_CONT
"(%s) ", tmp
);
5492 * Show free area list (used inside shift_scroll-lock stuff)
5493 * We also calculate the percentage fragmentation. We do this by counting the
5494 * memory on each free list with the exception of the first item on the list.
5497 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5500 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5502 unsigned long free_pcp
= 0;
5507 for_each_populated_zone(zone
) {
5508 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5511 for_each_online_cpu(cpu
)
5512 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5515 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5516 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5517 " unevictable:%lu dirty:%lu writeback:%lu\n"
5518 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5519 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5520 " free:%lu free_pcp:%lu free_cma:%lu\n",
5521 global_node_page_state(NR_ACTIVE_ANON
),
5522 global_node_page_state(NR_INACTIVE_ANON
),
5523 global_node_page_state(NR_ISOLATED_ANON
),
5524 global_node_page_state(NR_ACTIVE_FILE
),
5525 global_node_page_state(NR_INACTIVE_FILE
),
5526 global_node_page_state(NR_ISOLATED_FILE
),
5527 global_node_page_state(NR_UNEVICTABLE
),
5528 global_node_page_state(NR_FILE_DIRTY
),
5529 global_node_page_state(NR_WRITEBACK
),
5530 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
),
5531 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B
),
5532 global_node_page_state(NR_FILE_MAPPED
),
5533 global_node_page_state(NR_SHMEM
),
5534 global_node_page_state(NR_PAGETABLE
),
5535 global_zone_page_state(NR_BOUNCE
),
5536 global_zone_page_state(NR_FREE_PAGES
),
5538 global_zone_page_state(NR_FREE_CMA_PAGES
));
5540 for_each_online_pgdat(pgdat
) {
5541 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5545 " active_anon:%lukB"
5546 " inactive_anon:%lukB"
5547 " active_file:%lukB"
5548 " inactive_file:%lukB"
5549 " unevictable:%lukB"
5550 " isolated(anon):%lukB"
5551 " isolated(file):%lukB"
5556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5558 " shmem_pmdmapped: %lukB"
5561 " writeback_tmp:%lukB"
5562 " kernel_stack:%lukB"
5563 #ifdef CONFIG_SHADOW_CALL_STACK
5564 " shadow_call_stack:%lukB"
5567 " all_unreclaimable? %s"
5570 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5571 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5572 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5573 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5574 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5575 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5576 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5577 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5578 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5579 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5580 K(node_page_state(pgdat
, NR_SHMEM
)),
5581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5582 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5583 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5585 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5587 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5588 node_page_state(pgdat
, NR_KERNEL_STACK_KB
),
5589 #ifdef CONFIG_SHADOW_CALL_STACK
5590 node_page_state(pgdat
, NR_KERNEL_SCS_KB
),
5592 K(node_page_state(pgdat
, NR_PAGETABLE
)),
5593 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5597 for_each_populated_zone(zone
) {
5600 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5604 for_each_online_cpu(cpu
)
5605 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5614 " reserved_highatomic:%luKB"
5615 " active_anon:%lukB"
5616 " inactive_anon:%lukB"
5617 " active_file:%lukB"
5618 " inactive_file:%lukB"
5619 " unevictable:%lukB"
5620 " writepending:%lukB"
5630 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5631 K(min_wmark_pages(zone
)),
5632 K(low_wmark_pages(zone
)),
5633 K(high_wmark_pages(zone
)),
5634 K(zone
->nr_reserved_highatomic
),
5635 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5636 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5637 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5638 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5639 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5640 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5641 K(zone
->present_pages
),
5642 K(zone_managed_pages(zone
)),
5643 K(zone_page_state(zone
, NR_MLOCK
)),
5644 K(zone_page_state(zone
, NR_BOUNCE
)),
5646 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5647 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5648 printk("lowmem_reserve[]:");
5649 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5650 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5651 printk(KERN_CONT
"\n");
5654 for_each_populated_zone(zone
) {
5656 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5657 unsigned char types
[MAX_ORDER
];
5659 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5662 printk(KERN_CONT
"%s: ", zone
->name
);
5664 spin_lock_irqsave(&zone
->lock
, flags
);
5665 for (order
= 0; order
< MAX_ORDER
; order
++) {
5666 struct free_area
*area
= &zone
->free_area
[order
];
5669 nr
[order
] = area
->nr_free
;
5670 total
+= nr
[order
] << order
;
5673 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5674 if (!free_area_empty(area
, type
))
5675 types
[order
] |= 1 << type
;
5678 spin_unlock_irqrestore(&zone
->lock
, flags
);
5679 for (order
= 0; order
< MAX_ORDER
; order
++) {
5680 printk(KERN_CONT
"%lu*%lukB ",
5681 nr
[order
], K(1UL) << order
);
5683 show_migration_types(types
[order
]);
5685 printk(KERN_CONT
"= %lukB\n", K(total
));
5688 hugetlb_show_meminfo();
5690 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5692 show_swap_cache_info();
5695 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5697 zoneref
->zone
= zone
;
5698 zoneref
->zone_idx
= zone_idx(zone
);
5702 * Builds allocation fallback zone lists.
5704 * Add all populated zones of a node to the zonelist.
5706 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5709 enum zone_type zone_type
= MAX_NR_ZONES
;
5714 zone
= pgdat
->node_zones
+ zone_type
;
5715 if (managed_zone(zone
)) {
5716 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5717 check_highest_zone(zone_type
);
5719 } while (zone_type
);
5726 static int __parse_numa_zonelist_order(char *s
)
5729 * We used to support different zonlists modes but they turned
5730 * out to be just not useful. Let's keep the warning in place
5731 * if somebody still use the cmd line parameter so that we do
5732 * not fail it silently
5734 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5735 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5741 char numa_zonelist_order
[] = "Node";
5744 * sysctl handler for numa_zonelist_order
5746 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5747 void *buffer
, size_t *length
, loff_t
*ppos
)
5750 return __parse_numa_zonelist_order(buffer
);
5751 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5755 #define MAX_NODE_LOAD (nr_online_nodes)
5756 static int node_load
[MAX_NUMNODES
];
5759 * find_next_best_node - find the next node that should appear in a given node's fallback list
5760 * @node: node whose fallback list we're appending
5761 * @used_node_mask: nodemask_t of already used nodes
5763 * We use a number of factors to determine which is the next node that should
5764 * appear on a given node's fallback list. The node should not have appeared
5765 * already in @node's fallback list, and it should be the next closest node
5766 * according to the distance array (which contains arbitrary distance values
5767 * from each node to each node in the system), and should also prefer nodes
5768 * with no CPUs, since presumably they'll have very little allocation pressure
5769 * on them otherwise.
5771 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5773 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5776 int min_val
= INT_MAX
;
5777 int best_node
= NUMA_NO_NODE
;
5779 /* Use the local node if we haven't already */
5780 if (!node_isset(node
, *used_node_mask
)) {
5781 node_set(node
, *used_node_mask
);
5785 for_each_node_state(n
, N_MEMORY
) {
5787 /* Don't want a node to appear more than once */
5788 if (node_isset(n
, *used_node_mask
))
5791 /* Use the distance array to find the distance */
5792 val
= node_distance(node
, n
);
5794 /* Penalize nodes under us ("prefer the next node") */
5797 /* Give preference to headless and unused nodes */
5798 if (!cpumask_empty(cpumask_of_node(n
)))
5799 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5801 /* Slight preference for less loaded node */
5802 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5803 val
+= node_load
[n
];
5805 if (val
< min_val
) {
5812 node_set(best_node
, *used_node_mask
);
5819 * Build zonelists ordered by node and zones within node.
5820 * This results in maximum locality--normal zone overflows into local
5821 * DMA zone, if any--but risks exhausting DMA zone.
5823 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5826 struct zoneref
*zonerefs
;
5829 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5831 for (i
= 0; i
< nr_nodes
; i
++) {
5834 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5836 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5837 zonerefs
+= nr_zones
;
5839 zonerefs
->zone
= NULL
;
5840 zonerefs
->zone_idx
= 0;
5844 * Build gfp_thisnode zonelists
5846 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5848 struct zoneref
*zonerefs
;
5851 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5852 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5853 zonerefs
+= nr_zones
;
5854 zonerefs
->zone
= NULL
;
5855 zonerefs
->zone_idx
= 0;
5859 * Build zonelists ordered by zone and nodes within zones.
5860 * This results in conserving DMA zone[s] until all Normal memory is
5861 * exhausted, but results in overflowing to remote node while memory
5862 * may still exist in local DMA zone.
5865 static void build_zonelists(pg_data_t
*pgdat
)
5867 static int node_order
[MAX_NUMNODES
];
5868 int node
, load
, nr_nodes
= 0;
5869 nodemask_t used_mask
= NODE_MASK_NONE
;
5870 int local_node
, prev_node
;
5872 /* NUMA-aware ordering of nodes */
5873 local_node
= pgdat
->node_id
;
5874 load
= nr_online_nodes
;
5875 prev_node
= local_node
;
5877 memset(node_order
, 0, sizeof(node_order
));
5878 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5880 * We don't want to pressure a particular node.
5881 * So adding penalty to the first node in same
5882 * distance group to make it round-robin.
5884 if (node_distance(local_node
, node
) !=
5885 node_distance(local_node
, prev_node
))
5886 node_load
[node
] = load
;
5888 node_order
[nr_nodes
++] = node
;
5893 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5894 build_thisnode_zonelists(pgdat
);
5897 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5899 * Return node id of node used for "local" allocations.
5900 * I.e., first node id of first zone in arg node's generic zonelist.
5901 * Used for initializing percpu 'numa_mem', which is used primarily
5902 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5904 int local_memory_node(int node
)
5908 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5909 gfp_zone(GFP_KERNEL
),
5911 return zone_to_nid(z
->zone
);
5915 static void setup_min_unmapped_ratio(void);
5916 static void setup_min_slab_ratio(void);
5917 #else /* CONFIG_NUMA */
5919 static void build_zonelists(pg_data_t
*pgdat
)
5921 int node
, local_node
;
5922 struct zoneref
*zonerefs
;
5925 local_node
= pgdat
->node_id
;
5927 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5928 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5929 zonerefs
+= nr_zones
;
5932 * Now we build the zonelist so that it contains the zones
5933 * of all the other nodes.
5934 * We don't want to pressure a particular node, so when
5935 * building the zones for node N, we make sure that the
5936 * zones coming right after the local ones are those from
5937 * node N+1 (modulo N)
5939 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5940 if (!node_online(node
))
5942 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5943 zonerefs
+= nr_zones
;
5945 for (node
= 0; node
< local_node
; node
++) {
5946 if (!node_online(node
))
5948 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5949 zonerefs
+= nr_zones
;
5952 zonerefs
->zone
= NULL
;
5953 zonerefs
->zone_idx
= 0;
5956 #endif /* CONFIG_NUMA */
5959 * Boot pageset table. One per cpu which is going to be used for all
5960 * zones and all nodes. The parameters will be set in such a way
5961 * that an item put on a list will immediately be handed over to
5962 * the buddy list. This is safe since pageset manipulation is done
5963 * with interrupts disabled.
5965 * The boot_pagesets must be kept even after bootup is complete for
5966 * unused processors and/or zones. They do play a role for bootstrapping
5967 * hotplugged processors.
5969 * zoneinfo_show() and maybe other functions do
5970 * not check if the processor is online before following the pageset pointer.
5971 * Other parts of the kernel may not check if the zone is available.
5973 static void pageset_init(struct per_cpu_pageset
*p
);
5974 /* These effectively disable the pcplists in the boot pageset completely */
5975 #define BOOT_PAGESET_HIGH 0
5976 #define BOOT_PAGESET_BATCH 1
5977 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5978 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5980 static void __build_all_zonelists(void *data
)
5983 int __maybe_unused cpu
;
5984 pg_data_t
*self
= data
;
5985 static DEFINE_SPINLOCK(lock
);
5990 memset(node_load
, 0, sizeof(node_load
));
5994 * This node is hotadded and no memory is yet present. So just
5995 * building zonelists is fine - no need to touch other nodes.
5997 if (self
&& !node_online(self
->node_id
)) {
5998 build_zonelists(self
);
6000 for_each_online_node(nid
) {
6001 pg_data_t
*pgdat
= NODE_DATA(nid
);
6003 build_zonelists(pgdat
);
6006 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6008 * We now know the "local memory node" for each node--
6009 * i.e., the node of the first zone in the generic zonelist.
6010 * Set up numa_mem percpu variable for on-line cpus. During
6011 * boot, only the boot cpu should be on-line; we'll init the
6012 * secondary cpus' numa_mem as they come on-line. During
6013 * node/memory hotplug, we'll fixup all on-line cpus.
6015 for_each_online_cpu(cpu
)
6016 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
6023 static noinline
void __init
6024 build_all_zonelists_init(void)
6028 __build_all_zonelists(NULL
);
6031 * Initialize the boot_pagesets that are going to be used
6032 * for bootstrapping processors. The real pagesets for
6033 * each zone will be allocated later when the per cpu
6034 * allocator is available.
6036 * boot_pagesets are used also for bootstrapping offline
6037 * cpus if the system is already booted because the pagesets
6038 * are needed to initialize allocators on a specific cpu too.
6039 * F.e. the percpu allocator needs the page allocator which
6040 * needs the percpu allocator in order to allocate its pagesets
6041 * (a chicken-egg dilemma).
6043 for_each_possible_cpu(cpu
)
6044 pageset_init(&per_cpu(boot_pageset
, cpu
));
6046 mminit_verify_zonelist();
6047 cpuset_init_current_mems_allowed();
6051 * unless system_state == SYSTEM_BOOTING.
6053 * __ref due to call of __init annotated helper build_all_zonelists_init
6054 * [protected by SYSTEM_BOOTING].
6056 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
6058 unsigned long vm_total_pages
;
6060 if (system_state
== SYSTEM_BOOTING
) {
6061 build_all_zonelists_init();
6063 __build_all_zonelists(pgdat
);
6064 /* cpuset refresh routine should be here */
6066 /* Get the number of free pages beyond high watermark in all zones. */
6067 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
6069 * Disable grouping by mobility if the number of pages in the
6070 * system is too low to allow the mechanism to work. It would be
6071 * more accurate, but expensive to check per-zone. This check is
6072 * made on memory-hotadd so a system can start with mobility
6073 * disabled and enable it later
6075 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
6076 page_group_by_mobility_disabled
= 1;
6078 page_group_by_mobility_disabled
= 0;
6080 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6082 page_group_by_mobility_disabled
? "off" : "on",
6085 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
6089 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6090 static bool __meminit
6091 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
6093 static struct memblock_region
*r
;
6095 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
6096 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
6097 for_each_mem_region(r
) {
6098 if (*pfn
< memblock_region_memory_end_pfn(r
))
6102 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
6103 memblock_is_mirror(r
)) {
6104 *pfn
= memblock_region_memory_end_pfn(r
);
6112 * Initially all pages are reserved - free ones are freed
6113 * up by memblock_free_all() once the early boot process is
6114 * done. Non-atomic initialization, single-pass.
6116 * All aligned pageblocks are initialized to the specified migratetype
6117 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6118 * zone stats (e.g., nr_isolate_pageblock) are touched.
6120 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
6121 unsigned long start_pfn
, unsigned long zone_end_pfn
,
6122 enum meminit_context context
,
6123 struct vmem_altmap
*altmap
, int migratetype
)
6125 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
6128 if (highest_memmap_pfn
< end_pfn
- 1)
6129 highest_memmap_pfn
= end_pfn
- 1;
6131 #ifdef CONFIG_ZONE_DEVICE
6133 * Honor reservation requested by the driver for this ZONE_DEVICE
6134 * memory. We limit the total number of pages to initialize to just
6135 * those that might contain the memory mapping. We will defer the
6136 * ZONE_DEVICE page initialization until after we have released
6139 if (zone
== ZONE_DEVICE
) {
6143 if (start_pfn
== altmap
->base_pfn
)
6144 start_pfn
+= altmap
->reserve
;
6145 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6149 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
6151 * There can be holes in boot-time mem_map[]s handed to this
6152 * function. They do not exist on hotplugged memory.
6154 if (context
== MEMINIT_EARLY
) {
6155 if (overlap_memmap_init(zone
, &pfn
))
6157 if (defer_init(nid
, pfn
, zone_end_pfn
))
6161 page
= pfn_to_page(pfn
);
6162 __init_single_page(page
, pfn
, zone
, nid
);
6163 if (context
== MEMINIT_HOTPLUG
)
6164 __SetPageReserved(page
);
6167 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6168 * such that unmovable allocations won't be scattered all
6169 * over the place during system boot.
6171 if (IS_ALIGNED(pfn
, pageblock_nr_pages
)) {
6172 set_pageblock_migratetype(page
, migratetype
);
6179 #ifdef CONFIG_ZONE_DEVICE
6180 void __ref
memmap_init_zone_device(struct zone
*zone
,
6181 unsigned long start_pfn
,
6182 unsigned long nr_pages
,
6183 struct dev_pagemap
*pgmap
)
6185 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
6186 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6187 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
6188 unsigned long zone_idx
= zone_idx(zone
);
6189 unsigned long start
= jiffies
;
6190 int nid
= pgdat
->node_id
;
6192 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
6196 * The call to memmap_init_zone should have already taken care
6197 * of the pages reserved for the memmap, so we can just jump to
6198 * the end of that region and start processing the device pages.
6201 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6202 nr_pages
= end_pfn
- start_pfn
;
6205 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
6206 struct page
*page
= pfn_to_page(pfn
);
6208 __init_single_page(page
, pfn
, zone_idx
, nid
);
6211 * Mark page reserved as it will need to wait for onlining
6212 * phase for it to be fully associated with a zone.
6214 * We can use the non-atomic __set_bit operation for setting
6215 * the flag as we are still initializing the pages.
6217 __SetPageReserved(page
);
6220 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6221 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6222 * ever freed or placed on a driver-private list.
6224 page
->pgmap
= pgmap
;
6225 page
->zone_device_data
= NULL
;
6228 * Mark the block movable so that blocks are reserved for
6229 * movable at startup. This will force kernel allocations
6230 * to reserve their blocks rather than leaking throughout
6231 * the address space during boot when many long-lived
6232 * kernel allocations are made.
6234 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6235 * because this is done early in section_activate()
6237 if (IS_ALIGNED(pfn
, pageblock_nr_pages
)) {
6238 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6243 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6244 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6248 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6250 unsigned int order
, t
;
6251 for_each_migratetype_order(order
, t
) {
6252 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6253 zone
->free_area
[order
].nr_free
= 0;
6257 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6259 unsigned long range_start_pfn
)
6261 unsigned long start_pfn
, end_pfn
;
6262 unsigned long range_end_pfn
= range_start_pfn
+ size
;
6265 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6266 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6267 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6269 if (end_pfn
> start_pfn
) {
6270 size
= end_pfn
- start_pfn
;
6271 memmap_init_zone(size
, nid
, zone
, start_pfn
, range_end_pfn
,
6272 MEMINIT_EARLY
, NULL
, MIGRATE_MOVABLE
);
6277 static int zone_batchsize(struct zone
*zone
)
6283 * The per-cpu-pages pools are set to around 1000th of the
6286 batch
= zone_managed_pages(zone
) / 1024;
6287 /* But no more than a meg. */
6288 if (batch
* PAGE_SIZE
> 1024 * 1024)
6289 batch
= (1024 * 1024) / PAGE_SIZE
;
6290 batch
/= 4; /* We effectively *= 4 below */
6295 * Clamp the batch to a 2^n - 1 value. Having a power
6296 * of 2 value was found to be more likely to have
6297 * suboptimal cache aliasing properties in some cases.
6299 * For example if 2 tasks are alternately allocating
6300 * batches of pages, one task can end up with a lot
6301 * of pages of one half of the possible page colors
6302 * and the other with pages of the other colors.
6304 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6309 /* The deferral and batching of frees should be suppressed under NOMMU
6312 * The problem is that NOMMU needs to be able to allocate large chunks
6313 * of contiguous memory as there's no hardware page translation to
6314 * assemble apparent contiguous memory from discontiguous pages.
6316 * Queueing large contiguous runs of pages for batching, however,
6317 * causes the pages to actually be freed in smaller chunks. As there
6318 * can be a significant delay between the individual batches being
6319 * recycled, this leads to the once large chunks of space being
6320 * fragmented and becoming unavailable for high-order allocations.
6327 * pcp->high and pcp->batch values are related and generally batch is lower
6328 * than high. They are also related to pcp->count such that count is lower
6329 * than high, and as soon as it reaches high, the pcplist is flushed.
6331 * However, guaranteeing these relations at all times would require e.g. write
6332 * barriers here but also careful usage of read barriers at the read side, and
6333 * thus be prone to error and bad for performance. Thus the update only prevents
6334 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6335 * can cope with those fields changing asynchronously, and fully trust only the
6336 * pcp->count field on the local CPU with interrupts disabled.
6338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6339 * outside of boot time (or some other assurance that no concurrent updaters
6342 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6343 unsigned long batch
)
6345 WRITE_ONCE(pcp
->batch
, batch
);
6346 WRITE_ONCE(pcp
->high
, high
);
6349 static void pageset_init(struct per_cpu_pageset
*p
)
6351 struct per_cpu_pages
*pcp
;
6354 memset(p
, 0, sizeof(*p
));
6357 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6358 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6361 * Set batch and high values safe for a boot pageset. A true percpu
6362 * pageset's initialization will update them subsequently. Here we don't
6363 * need to be as careful as pageset_update() as nobody can access the
6366 pcp
->high
= BOOT_PAGESET_HIGH
;
6367 pcp
->batch
= BOOT_PAGESET_BATCH
;
6370 static void __zone_set_pageset_high_and_batch(struct zone
*zone
, unsigned long high
,
6371 unsigned long batch
)
6373 struct per_cpu_pageset
*p
;
6376 for_each_possible_cpu(cpu
) {
6377 p
= per_cpu_ptr(zone
->pageset
, cpu
);
6378 pageset_update(&p
->pcp
, high
, batch
);
6383 * Calculate and set new high and batch values for all per-cpu pagesets of a
6384 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6386 static void zone_set_pageset_high_and_batch(struct zone
*zone
)
6388 unsigned long new_high
, new_batch
;
6390 if (percpu_pagelist_fraction
) {
6391 new_high
= zone_managed_pages(zone
) / percpu_pagelist_fraction
;
6392 new_batch
= max(1UL, new_high
/ 4);
6393 if ((new_high
/ 4) > (PAGE_SHIFT
* 8))
6394 new_batch
= PAGE_SHIFT
* 8;
6396 new_batch
= zone_batchsize(zone
);
6397 new_high
= 6 * new_batch
;
6398 new_batch
= max(1UL, 1 * new_batch
);
6401 if (zone
->pageset_high
== new_high
&&
6402 zone
->pageset_batch
== new_batch
)
6405 zone
->pageset_high
= new_high
;
6406 zone
->pageset_batch
= new_batch
;
6408 __zone_set_pageset_high_and_batch(zone
, new_high
, new_batch
);
6411 void __meminit
setup_zone_pageset(struct zone
*zone
)
6413 struct per_cpu_pageset
*p
;
6416 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6417 for_each_possible_cpu(cpu
) {
6418 p
= per_cpu_ptr(zone
->pageset
, cpu
);
6422 zone_set_pageset_high_and_batch(zone
);
6426 * Allocate per cpu pagesets and initialize them.
6427 * Before this call only boot pagesets were available.
6429 void __init
setup_per_cpu_pageset(void)
6431 struct pglist_data
*pgdat
;
6433 int __maybe_unused cpu
;
6435 for_each_populated_zone(zone
)
6436 setup_zone_pageset(zone
);
6440 * Unpopulated zones continue using the boot pagesets.
6441 * The numa stats for these pagesets need to be reset.
6442 * Otherwise, they will end up skewing the stats of
6443 * the nodes these zones are associated with.
6445 for_each_possible_cpu(cpu
) {
6446 struct per_cpu_pageset
*pcp
= &per_cpu(boot_pageset
, cpu
);
6447 memset(pcp
->vm_numa_stat_diff
, 0,
6448 sizeof(pcp
->vm_numa_stat_diff
));
6452 for_each_online_pgdat(pgdat
)
6453 pgdat
->per_cpu_nodestats
=
6454 alloc_percpu(struct per_cpu_nodestat
);
6457 static __meminit
void zone_pcp_init(struct zone
*zone
)
6460 * per cpu subsystem is not up at this point. The following code
6461 * relies on the ability of the linker to provide the
6462 * offset of a (static) per cpu variable into the per cpu area.
6464 zone
->pageset
= &boot_pageset
;
6465 zone
->pageset_high
= BOOT_PAGESET_HIGH
;
6466 zone
->pageset_batch
= BOOT_PAGESET_BATCH
;
6468 if (populated_zone(zone
))
6469 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6470 zone
->name
, zone
->present_pages
,
6471 zone_batchsize(zone
));
6474 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6475 unsigned long zone_start_pfn
,
6478 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6479 int zone_idx
= zone_idx(zone
) + 1;
6481 if (zone_idx
> pgdat
->nr_zones
)
6482 pgdat
->nr_zones
= zone_idx
;
6484 zone
->zone_start_pfn
= zone_start_pfn
;
6486 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6487 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6489 (unsigned long)zone_idx(zone
),
6490 zone_start_pfn
, (zone_start_pfn
+ size
));
6492 zone_init_free_lists(zone
);
6493 zone
->initialized
= 1;
6497 * get_pfn_range_for_nid - Return the start and end page frames for a node
6498 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6499 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6500 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6502 * It returns the start and end page frame of a node based on information
6503 * provided by memblock_set_node(). If called for a node
6504 * with no available memory, a warning is printed and the start and end
6507 void __init
get_pfn_range_for_nid(unsigned int nid
,
6508 unsigned long *start_pfn
, unsigned long *end_pfn
)
6510 unsigned long this_start_pfn
, this_end_pfn
;
6516 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6517 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6518 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6521 if (*start_pfn
== -1UL)
6526 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6527 * assumption is made that zones within a node are ordered in monotonic
6528 * increasing memory addresses so that the "highest" populated zone is used
6530 static void __init
find_usable_zone_for_movable(void)
6533 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6534 if (zone_index
== ZONE_MOVABLE
)
6537 if (arch_zone_highest_possible_pfn
[zone_index
] >
6538 arch_zone_lowest_possible_pfn
[zone_index
])
6542 VM_BUG_ON(zone_index
== -1);
6543 movable_zone
= zone_index
;
6547 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6548 * because it is sized independent of architecture. Unlike the other zones,
6549 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6550 * in each node depending on the size of each node and how evenly kernelcore
6551 * is distributed. This helper function adjusts the zone ranges
6552 * provided by the architecture for a given node by using the end of the
6553 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6554 * zones within a node are in order of monotonic increases memory addresses
6556 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6557 unsigned long zone_type
,
6558 unsigned long node_start_pfn
,
6559 unsigned long node_end_pfn
,
6560 unsigned long *zone_start_pfn
,
6561 unsigned long *zone_end_pfn
)
6563 /* Only adjust if ZONE_MOVABLE is on this node */
6564 if (zone_movable_pfn
[nid
]) {
6565 /* Size ZONE_MOVABLE */
6566 if (zone_type
== ZONE_MOVABLE
) {
6567 *zone_start_pfn
= zone_movable_pfn
[nid
];
6568 *zone_end_pfn
= min(node_end_pfn
,
6569 arch_zone_highest_possible_pfn
[movable_zone
]);
6571 /* Adjust for ZONE_MOVABLE starting within this range */
6572 } else if (!mirrored_kernelcore
&&
6573 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6574 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6575 *zone_end_pfn
= zone_movable_pfn
[nid
];
6577 /* Check if this whole range is within ZONE_MOVABLE */
6578 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6579 *zone_start_pfn
= *zone_end_pfn
;
6584 * Return the number of pages a zone spans in a node, including holes
6585 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6587 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6588 unsigned long zone_type
,
6589 unsigned long node_start_pfn
,
6590 unsigned long node_end_pfn
,
6591 unsigned long *zone_start_pfn
,
6592 unsigned long *zone_end_pfn
)
6594 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6595 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6596 /* When hotadd a new node from cpu_up(), the node should be empty */
6597 if (!node_start_pfn
&& !node_end_pfn
)
6600 /* Get the start and end of the zone */
6601 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6602 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6603 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6604 node_start_pfn
, node_end_pfn
,
6605 zone_start_pfn
, zone_end_pfn
);
6607 /* Check that this node has pages within the zone's required range */
6608 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6611 /* Move the zone boundaries inside the node if necessary */
6612 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6613 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6615 /* Return the spanned pages */
6616 return *zone_end_pfn
- *zone_start_pfn
;
6620 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6621 * then all holes in the requested range will be accounted for.
6623 unsigned long __init
__absent_pages_in_range(int nid
,
6624 unsigned long range_start_pfn
,
6625 unsigned long range_end_pfn
)
6627 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6628 unsigned long start_pfn
, end_pfn
;
6631 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6632 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6633 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6634 nr_absent
-= end_pfn
- start_pfn
;
6640 * absent_pages_in_range - Return number of page frames in holes within a range
6641 * @start_pfn: The start PFN to start searching for holes
6642 * @end_pfn: The end PFN to stop searching for holes
6644 * Return: the number of pages frames in memory holes within a range.
6646 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6647 unsigned long end_pfn
)
6649 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6652 /* Return the number of page frames in holes in a zone on a node */
6653 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6654 unsigned long zone_type
,
6655 unsigned long node_start_pfn
,
6656 unsigned long node_end_pfn
)
6658 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6659 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6660 unsigned long zone_start_pfn
, zone_end_pfn
;
6661 unsigned long nr_absent
;
6663 /* When hotadd a new node from cpu_up(), the node should be empty */
6664 if (!node_start_pfn
&& !node_end_pfn
)
6667 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6668 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6670 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6671 node_start_pfn
, node_end_pfn
,
6672 &zone_start_pfn
, &zone_end_pfn
);
6673 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6676 * ZONE_MOVABLE handling.
6677 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6680 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6681 unsigned long start_pfn
, end_pfn
;
6682 struct memblock_region
*r
;
6684 for_each_mem_region(r
) {
6685 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6686 zone_start_pfn
, zone_end_pfn
);
6687 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6688 zone_start_pfn
, zone_end_pfn
);
6690 if (zone_type
== ZONE_MOVABLE
&&
6691 memblock_is_mirror(r
))
6692 nr_absent
+= end_pfn
- start_pfn
;
6694 if (zone_type
== ZONE_NORMAL
&&
6695 !memblock_is_mirror(r
))
6696 nr_absent
+= end_pfn
- start_pfn
;
6703 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6704 unsigned long node_start_pfn
,
6705 unsigned long node_end_pfn
)
6707 unsigned long realtotalpages
= 0, totalpages
= 0;
6710 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6711 struct zone
*zone
= pgdat
->node_zones
+ i
;
6712 unsigned long zone_start_pfn
, zone_end_pfn
;
6713 unsigned long spanned
, absent
;
6714 unsigned long size
, real_size
;
6716 spanned
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6721 absent
= zone_absent_pages_in_node(pgdat
->node_id
, i
,
6726 real_size
= size
- absent
;
6729 zone
->zone_start_pfn
= zone_start_pfn
;
6731 zone
->zone_start_pfn
= 0;
6732 zone
->spanned_pages
= size
;
6733 zone
->present_pages
= real_size
;
6736 realtotalpages
+= real_size
;
6739 pgdat
->node_spanned_pages
= totalpages
;
6740 pgdat
->node_present_pages
= realtotalpages
;
6741 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6745 #ifndef CONFIG_SPARSEMEM
6747 * Calculate the size of the zone->blockflags rounded to an unsigned long
6748 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6749 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6750 * round what is now in bits to nearest long in bits, then return it in
6753 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6755 unsigned long usemapsize
;
6757 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6758 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6759 usemapsize
= usemapsize
>> pageblock_order
;
6760 usemapsize
*= NR_PAGEBLOCK_BITS
;
6761 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6763 return usemapsize
/ 8;
6766 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6768 unsigned long zone_start_pfn
,
6769 unsigned long zonesize
)
6771 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6772 zone
->pageblock_flags
= NULL
;
6774 zone
->pageblock_flags
=
6775 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6777 if (!zone
->pageblock_flags
)
6778 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6779 usemapsize
, zone
->name
, pgdat
->node_id
);
6783 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6784 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6785 #endif /* CONFIG_SPARSEMEM */
6787 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6789 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6790 void __init
set_pageblock_order(void)
6794 /* Check that pageblock_nr_pages has not already been setup */
6795 if (pageblock_order
)
6798 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6799 order
= HUGETLB_PAGE_ORDER
;
6801 order
= MAX_ORDER
- 1;
6804 * Assume the largest contiguous order of interest is a huge page.
6805 * This value may be variable depending on boot parameters on IA64 and
6808 pageblock_order
= order
;
6810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6814 * is unused as pageblock_order is set at compile-time. See
6815 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6818 void __init
set_pageblock_order(void)
6822 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6824 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6825 unsigned long present_pages
)
6827 unsigned long pages
= spanned_pages
;
6830 * Provide a more accurate estimation if there are holes within
6831 * the zone and SPARSEMEM is in use. If there are holes within the
6832 * zone, each populated memory region may cost us one or two extra
6833 * memmap pages due to alignment because memmap pages for each
6834 * populated regions may not be naturally aligned on page boundary.
6835 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6837 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6838 IS_ENABLED(CONFIG_SPARSEMEM
))
6839 pages
= present_pages
;
6841 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6845 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6847 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6849 spin_lock_init(&ds_queue
->split_queue_lock
);
6850 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6851 ds_queue
->split_queue_len
= 0;
6854 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6857 #ifdef CONFIG_COMPACTION
6858 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6860 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6863 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6866 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6868 pgdat_resize_init(pgdat
);
6870 pgdat_init_split_queue(pgdat
);
6871 pgdat_init_kcompactd(pgdat
);
6873 init_waitqueue_head(&pgdat
->kswapd_wait
);
6874 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6876 pgdat_page_ext_init(pgdat
);
6877 lruvec_init(&pgdat
->__lruvec
);
6880 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6881 unsigned long remaining_pages
)
6883 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6884 zone_set_nid(zone
, nid
);
6885 zone
->name
= zone_names
[idx
];
6886 zone
->zone_pgdat
= NODE_DATA(nid
);
6887 spin_lock_init(&zone
->lock
);
6888 zone_seqlock_init(zone
);
6889 zone_pcp_init(zone
);
6893 * Set up the zone data structures
6894 * - init pgdat internals
6895 * - init all zones belonging to this node
6897 * NOTE: this function is only called during memory hotplug
6899 #ifdef CONFIG_MEMORY_HOTPLUG
6900 void __ref
free_area_init_core_hotplug(int nid
)
6903 pg_data_t
*pgdat
= NODE_DATA(nid
);
6905 pgdat_init_internals(pgdat
);
6906 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6907 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6912 * Set up the zone data structures:
6913 * - mark all pages reserved
6914 * - mark all memory queues empty
6915 * - clear the memory bitmaps
6917 * NOTE: pgdat should get zeroed by caller.
6918 * NOTE: this function is only called during early init.
6920 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6923 int nid
= pgdat
->node_id
;
6925 pgdat_init_internals(pgdat
);
6926 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6928 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6929 struct zone
*zone
= pgdat
->node_zones
+ j
;
6930 unsigned long size
, freesize
, memmap_pages
;
6931 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6933 size
= zone
->spanned_pages
;
6934 freesize
= zone
->present_pages
;
6937 * Adjust freesize so that it accounts for how much memory
6938 * is used by this zone for memmap. This affects the watermark
6939 * and per-cpu initialisations
6941 memmap_pages
= calc_memmap_size(size
, freesize
);
6942 if (!is_highmem_idx(j
)) {
6943 if (freesize
>= memmap_pages
) {
6944 freesize
-= memmap_pages
;
6947 " %s zone: %lu pages used for memmap\n",
6948 zone_names
[j
], memmap_pages
);
6950 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6951 zone_names
[j
], memmap_pages
, freesize
);
6954 /* Account for reserved pages */
6955 if (j
== 0 && freesize
> dma_reserve
) {
6956 freesize
-= dma_reserve
;
6957 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6958 zone_names
[0], dma_reserve
);
6961 if (!is_highmem_idx(j
))
6962 nr_kernel_pages
+= freesize
;
6963 /* Charge for highmem memmap if there are enough kernel pages */
6964 else if (nr_kernel_pages
> memmap_pages
* 2)
6965 nr_kernel_pages
-= memmap_pages
;
6966 nr_all_pages
+= freesize
;
6969 * Set an approximate value for lowmem here, it will be adjusted
6970 * when the bootmem allocator frees pages into the buddy system.
6971 * And all highmem pages will be managed by the buddy system.
6973 zone_init_internals(zone
, j
, nid
, freesize
);
6978 set_pageblock_order();
6979 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6980 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6981 memmap_init(size
, nid
, j
, zone_start_pfn
);
6985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6986 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6988 unsigned long __maybe_unused start
= 0;
6989 unsigned long __maybe_unused offset
= 0;
6991 /* Skip empty nodes */
6992 if (!pgdat
->node_spanned_pages
)
6995 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6996 offset
= pgdat
->node_start_pfn
- start
;
6997 /* ia64 gets its own node_mem_map, before this, without bootmem */
6998 if (!pgdat
->node_mem_map
) {
6999 unsigned long size
, end
;
7003 * The zone's endpoints aren't required to be MAX_ORDER
7004 * aligned but the node_mem_map endpoints must be in order
7005 * for the buddy allocator to function correctly.
7007 end
= pgdat_end_pfn(pgdat
);
7008 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
7009 size
= (end
- start
) * sizeof(struct page
);
7010 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
7013 panic("Failed to allocate %ld bytes for node %d memory map\n",
7014 size
, pgdat
->node_id
);
7015 pgdat
->node_mem_map
= map
+ offset
;
7017 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7018 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
7019 (unsigned long)pgdat
->node_mem_map
);
7020 #ifndef CONFIG_NEED_MULTIPLE_NODES
7022 * With no DISCONTIG, the global mem_map is just set as node 0's
7024 if (pgdat
== NODE_DATA(0)) {
7025 mem_map
= NODE_DATA(0)->node_mem_map
;
7026 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
7032 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
7033 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7035 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7036 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
7038 pgdat
->first_deferred_pfn
= ULONG_MAX
;
7041 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
7044 static void __init
free_area_init_node(int nid
)
7046 pg_data_t
*pgdat
= NODE_DATA(nid
);
7047 unsigned long start_pfn
= 0;
7048 unsigned long end_pfn
= 0;
7050 /* pg_data_t should be reset to zero when it's allocated */
7051 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_highest_zoneidx
);
7053 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
7055 pgdat
->node_id
= nid
;
7056 pgdat
->node_start_pfn
= start_pfn
;
7057 pgdat
->per_cpu_nodestats
= NULL
;
7059 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
7060 (u64
)start_pfn
<< PAGE_SHIFT
,
7061 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
7062 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
);
7064 alloc_node_mem_map(pgdat
);
7065 pgdat_set_deferred_range(pgdat
);
7067 free_area_init_core(pgdat
);
7070 void __init
free_area_init_memoryless_node(int nid
)
7072 free_area_init_node(nid
);
7075 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7077 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7078 * PageReserved(). Return the number of struct pages that were initialized.
7080 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
7085 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
7086 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
7087 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
7088 + pageblock_nr_pages
- 1;
7092 * Use a fake node/zone (0) for now. Some of these pages
7093 * (in memblock.reserved but not in memblock.memory) will
7094 * get re-initialized via reserve_bootmem_region() later.
7096 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
7097 __SetPageReserved(pfn_to_page(pfn
));
7105 * Only struct pages that are backed by physical memory are zeroed and
7106 * initialized by going through __init_single_page(). But, there are some
7107 * struct pages which are reserved in memblock allocator and their fields
7108 * may be accessed (for example page_to_pfn() on some configuration accesses
7109 * flags). We must explicitly initialize those struct pages.
7111 * This function also addresses a similar issue where struct pages are left
7112 * uninitialized because the physical address range is not covered by
7113 * memblock.memory or memblock.reserved. That could happen when memblock
7114 * layout is manually configured via memmap=, or when the highest physical
7115 * address (max_pfn) does not end on a section boundary.
7117 static void __init
init_unavailable_mem(void)
7119 phys_addr_t start
, end
;
7121 phys_addr_t next
= 0;
7124 * Loop through unavailable ranges not covered by memblock.memory.
7127 for_each_mem_range(i
, &start
, &end
) {
7129 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7135 * Early sections always have a fully populated memmap for the whole
7136 * section - see pfn_valid(). If the last section has holes at the
7137 * end and that section is marked "online", the memmap will be
7138 * considered initialized. Make sure that memmap has a well defined
7141 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7142 round_up(max_pfn
, PAGES_PER_SECTION
));
7145 * Struct pages that do not have backing memory. This could be because
7146 * firmware is using some of this memory, or for some other reasons.
7149 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
7152 static inline void __init
init_unavailable_mem(void)
7155 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7157 #if MAX_NUMNODES > 1
7159 * Figure out the number of possible node ids.
7161 void __init
setup_nr_node_ids(void)
7163 unsigned int highest
;
7165 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7166 nr_node_ids
= highest
+ 1;
7171 * node_map_pfn_alignment - determine the maximum internode alignment
7173 * This function should be called after node map is populated and sorted.
7174 * It calculates the maximum power of two alignment which can distinguish
7177 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7178 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7179 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7180 * shifted, 1GiB is enough and this function will indicate so.
7182 * This is used to test whether pfn -> nid mapping of the chosen memory
7183 * model has fine enough granularity to avoid incorrect mapping for the
7184 * populated node map.
7186 * Return: the determined alignment in pfn's. 0 if there is no alignment
7187 * requirement (single node).
7189 unsigned long __init
node_map_pfn_alignment(void)
7191 unsigned long accl_mask
= 0, last_end
= 0;
7192 unsigned long start
, end
, mask
;
7193 int last_nid
= NUMA_NO_NODE
;
7196 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7197 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7204 * Start with a mask granular enough to pin-point to the
7205 * start pfn and tick off bits one-by-one until it becomes
7206 * too coarse to separate the current node from the last.
7208 mask
= ~((1 << __ffs(start
)) - 1);
7209 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7212 /* accumulate all internode masks */
7216 /* convert mask to number of pages */
7217 return ~accl_mask
+ 1;
7221 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7223 * Return: the minimum PFN based on information provided via
7224 * memblock_set_node().
7226 unsigned long __init
find_min_pfn_with_active_regions(void)
7228 return PHYS_PFN(memblock_start_of_DRAM());
7232 * early_calculate_totalpages()
7233 * Sum pages in active regions for movable zone.
7234 * Populate N_MEMORY for calculating usable_nodes.
7236 static unsigned long __init
early_calculate_totalpages(void)
7238 unsigned long totalpages
= 0;
7239 unsigned long start_pfn
, end_pfn
;
7242 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7243 unsigned long pages
= end_pfn
- start_pfn
;
7245 totalpages
+= pages
;
7247 node_set_state(nid
, N_MEMORY
);
7253 * Find the PFN the Movable zone begins in each node. Kernel memory
7254 * is spread evenly between nodes as long as the nodes have enough
7255 * memory. When they don't, some nodes will have more kernelcore than
7258 static void __init
find_zone_movable_pfns_for_nodes(void)
7261 unsigned long usable_startpfn
;
7262 unsigned long kernelcore_node
, kernelcore_remaining
;
7263 /* save the state before borrow the nodemask */
7264 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7265 unsigned long totalpages
= early_calculate_totalpages();
7266 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7267 struct memblock_region
*r
;
7269 /* Need to find movable_zone earlier when movable_node is specified. */
7270 find_usable_zone_for_movable();
7273 * If movable_node is specified, ignore kernelcore and movablecore
7276 if (movable_node_is_enabled()) {
7277 for_each_mem_region(r
) {
7278 if (!memblock_is_hotpluggable(r
))
7281 nid
= memblock_get_region_node(r
);
7283 usable_startpfn
= PFN_DOWN(r
->base
);
7284 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7285 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7293 * If kernelcore=mirror is specified, ignore movablecore option
7295 if (mirrored_kernelcore
) {
7296 bool mem_below_4gb_not_mirrored
= false;
7298 for_each_mem_region(r
) {
7299 if (memblock_is_mirror(r
))
7302 nid
= memblock_get_region_node(r
);
7304 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7306 if (usable_startpfn
< 0x100000) {
7307 mem_below_4gb_not_mirrored
= true;
7311 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7312 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7316 if (mem_below_4gb_not_mirrored
)
7317 pr_warn("This configuration results in unmirrored kernel memory.\n");
7323 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7324 * amount of necessary memory.
7326 if (required_kernelcore_percent
)
7327 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7329 if (required_movablecore_percent
)
7330 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7334 * If movablecore= was specified, calculate what size of
7335 * kernelcore that corresponds so that memory usable for
7336 * any allocation type is evenly spread. If both kernelcore
7337 * and movablecore are specified, then the value of kernelcore
7338 * will be used for required_kernelcore if it's greater than
7339 * what movablecore would have allowed.
7341 if (required_movablecore
) {
7342 unsigned long corepages
;
7345 * Round-up so that ZONE_MOVABLE is at least as large as what
7346 * was requested by the user
7348 required_movablecore
=
7349 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7350 required_movablecore
= min(totalpages
, required_movablecore
);
7351 corepages
= totalpages
- required_movablecore
;
7353 required_kernelcore
= max(required_kernelcore
, corepages
);
7357 * If kernelcore was not specified or kernelcore size is larger
7358 * than totalpages, there is no ZONE_MOVABLE.
7360 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7363 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7364 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7367 /* Spread kernelcore memory as evenly as possible throughout nodes */
7368 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7369 for_each_node_state(nid
, N_MEMORY
) {
7370 unsigned long start_pfn
, end_pfn
;
7373 * Recalculate kernelcore_node if the division per node
7374 * now exceeds what is necessary to satisfy the requested
7375 * amount of memory for the kernel
7377 if (required_kernelcore
< kernelcore_node
)
7378 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7381 * As the map is walked, we track how much memory is usable
7382 * by the kernel using kernelcore_remaining. When it is
7383 * 0, the rest of the node is usable by ZONE_MOVABLE
7385 kernelcore_remaining
= kernelcore_node
;
7387 /* Go through each range of PFNs within this node */
7388 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7389 unsigned long size_pages
;
7391 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7392 if (start_pfn
>= end_pfn
)
7395 /* Account for what is only usable for kernelcore */
7396 if (start_pfn
< usable_startpfn
) {
7397 unsigned long kernel_pages
;
7398 kernel_pages
= min(end_pfn
, usable_startpfn
)
7401 kernelcore_remaining
-= min(kernel_pages
,
7402 kernelcore_remaining
);
7403 required_kernelcore
-= min(kernel_pages
,
7404 required_kernelcore
);
7406 /* Continue if range is now fully accounted */
7407 if (end_pfn
<= usable_startpfn
) {
7410 * Push zone_movable_pfn to the end so
7411 * that if we have to rebalance
7412 * kernelcore across nodes, we will
7413 * not double account here
7415 zone_movable_pfn
[nid
] = end_pfn
;
7418 start_pfn
= usable_startpfn
;
7422 * The usable PFN range for ZONE_MOVABLE is from
7423 * start_pfn->end_pfn. Calculate size_pages as the
7424 * number of pages used as kernelcore
7426 size_pages
= end_pfn
- start_pfn
;
7427 if (size_pages
> kernelcore_remaining
)
7428 size_pages
= kernelcore_remaining
;
7429 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7432 * Some kernelcore has been met, update counts and
7433 * break if the kernelcore for this node has been
7436 required_kernelcore
-= min(required_kernelcore
,
7438 kernelcore_remaining
-= size_pages
;
7439 if (!kernelcore_remaining
)
7445 * If there is still required_kernelcore, we do another pass with one
7446 * less node in the count. This will push zone_movable_pfn[nid] further
7447 * along on the nodes that still have memory until kernelcore is
7451 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7455 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7456 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7457 zone_movable_pfn
[nid
] =
7458 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7461 /* restore the node_state */
7462 node_states
[N_MEMORY
] = saved_node_state
;
7465 /* Any regular or high memory on that node ? */
7466 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7468 enum zone_type zone_type
;
7470 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7471 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7472 if (populated_zone(zone
)) {
7473 if (IS_ENABLED(CONFIG_HIGHMEM
))
7474 node_set_state(nid
, N_HIGH_MEMORY
);
7475 if (zone_type
<= ZONE_NORMAL
)
7476 node_set_state(nid
, N_NORMAL_MEMORY
);
7483 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7484 * such cases we allow max_zone_pfn sorted in the descending order
7486 bool __weak
arch_has_descending_max_zone_pfns(void)
7492 * free_area_init - Initialise all pg_data_t and zone data
7493 * @max_zone_pfn: an array of max PFNs for each zone
7495 * This will call free_area_init_node() for each active node in the system.
7496 * Using the page ranges provided by memblock_set_node(), the size of each
7497 * zone in each node and their holes is calculated. If the maximum PFN
7498 * between two adjacent zones match, it is assumed that the zone is empty.
7499 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7500 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7501 * starts where the previous one ended. For example, ZONE_DMA32 starts
7502 * at arch_max_dma_pfn.
7504 void __init
free_area_init(unsigned long *max_zone_pfn
)
7506 unsigned long start_pfn
, end_pfn
;
7510 /* Record where the zone boundaries are */
7511 memset(arch_zone_lowest_possible_pfn
, 0,
7512 sizeof(arch_zone_lowest_possible_pfn
));
7513 memset(arch_zone_highest_possible_pfn
, 0,
7514 sizeof(arch_zone_highest_possible_pfn
));
7516 start_pfn
= find_min_pfn_with_active_regions();
7517 descending
= arch_has_descending_max_zone_pfns();
7519 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7521 zone
= MAX_NR_ZONES
- i
- 1;
7525 if (zone
== ZONE_MOVABLE
)
7528 end_pfn
= max(max_zone_pfn
[zone
], start_pfn
);
7529 arch_zone_lowest_possible_pfn
[zone
] = start_pfn
;
7530 arch_zone_highest_possible_pfn
[zone
] = end_pfn
;
7532 start_pfn
= end_pfn
;
7535 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7536 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7537 find_zone_movable_pfns_for_nodes();
7539 /* Print out the zone ranges */
7540 pr_info("Zone ranges:\n");
7541 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7542 if (i
== ZONE_MOVABLE
)
7544 pr_info(" %-8s ", zone_names
[i
]);
7545 if (arch_zone_lowest_possible_pfn
[i
] ==
7546 arch_zone_highest_possible_pfn
[i
])
7549 pr_cont("[mem %#018Lx-%#018Lx]\n",
7550 (u64
)arch_zone_lowest_possible_pfn
[i
]
7552 ((u64
)arch_zone_highest_possible_pfn
[i
]
7553 << PAGE_SHIFT
) - 1);
7556 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7557 pr_info("Movable zone start for each node\n");
7558 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7559 if (zone_movable_pfn
[i
])
7560 pr_info(" Node %d: %#018Lx\n", i
,
7561 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7565 * Print out the early node map, and initialize the
7566 * subsection-map relative to active online memory ranges to
7567 * enable future "sub-section" extensions of the memory map.
7569 pr_info("Early memory node ranges\n");
7570 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7571 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7572 (u64
)start_pfn
<< PAGE_SHIFT
,
7573 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7574 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7577 /* Initialise every node */
7578 mminit_verify_pageflags_layout();
7579 setup_nr_node_ids();
7580 init_unavailable_mem();
7581 for_each_online_node(nid
) {
7582 pg_data_t
*pgdat
= NODE_DATA(nid
);
7583 free_area_init_node(nid
);
7585 /* Any memory on that node */
7586 if (pgdat
->node_present_pages
)
7587 node_set_state(nid
, N_MEMORY
);
7588 check_for_memory(pgdat
, nid
);
7592 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7593 unsigned long *percent
)
7595 unsigned long long coremem
;
7601 /* Value may be a percentage of total memory, otherwise bytes */
7602 coremem
= simple_strtoull(p
, &endptr
, 0);
7603 if (*endptr
== '%') {
7604 /* Paranoid check for percent values greater than 100 */
7605 WARN_ON(coremem
> 100);
7609 coremem
= memparse(p
, &p
);
7610 /* Paranoid check that UL is enough for the coremem value */
7611 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7613 *core
= coremem
>> PAGE_SHIFT
;
7620 * kernelcore=size sets the amount of memory for use for allocations that
7621 * cannot be reclaimed or migrated.
7623 static int __init
cmdline_parse_kernelcore(char *p
)
7625 /* parse kernelcore=mirror */
7626 if (parse_option_str(p
, "mirror")) {
7627 mirrored_kernelcore
= true;
7631 return cmdline_parse_core(p
, &required_kernelcore
,
7632 &required_kernelcore_percent
);
7636 * movablecore=size sets the amount of memory for use for allocations that
7637 * can be reclaimed or migrated.
7639 static int __init
cmdline_parse_movablecore(char *p
)
7641 return cmdline_parse_core(p
, &required_movablecore
,
7642 &required_movablecore_percent
);
7645 early_param("kernelcore", cmdline_parse_kernelcore
);
7646 early_param("movablecore", cmdline_parse_movablecore
);
7648 void adjust_managed_page_count(struct page
*page
, long count
)
7650 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7651 totalram_pages_add(count
);
7652 #ifdef CONFIG_HIGHMEM
7653 if (PageHighMem(page
))
7654 totalhigh_pages_add(count
);
7657 EXPORT_SYMBOL(adjust_managed_page_count
);
7659 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7662 unsigned long pages
= 0;
7664 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7665 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7666 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7667 struct page
*page
= virt_to_page(pos
);
7668 void *direct_map_addr
;
7671 * 'direct_map_addr' might be different from 'pos'
7672 * because some architectures' virt_to_page()
7673 * work with aliases. Getting the direct map
7674 * address ensures that we get a _writeable_
7675 * alias for the memset().
7677 direct_map_addr
= page_address(page
);
7679 * Perform a kasan-unchecked memset() since this memory
7680 * has not been initialized.
7682 direct_map_addr
= kasan_reset_tag(direct_map_addr
);
7683 if ((unsigned int)poison
<= 0xFF)
7684 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7686 free_reserved_page(page
);
7690 pr_info("Freeing %s memory: %ldK\n",
7691 s
, pages
<< (PAGE_SHIFT
- 10));
7696 #ifdef CONFIG_HIGHMEM
7697 void free_highmem_page(struct page
*page
)
7699 __free_reserved_page(page
);
7700 totalram_pages_inc();
7701 atomic_long_inc(&page_zone(page
)->managed_pages
);
7702 totalhigh_pages_inc();
7707 void __init
mem_init_print_info(const char *str
)
7709 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7710 unsigned long init_code_size
, init_data_size
;
7712 physpages
= get_num_physpages();
7713 codesize
= _etext
- _stext
;
7714 datasize
= _edata
- _sdata
;
7715 rosize
= __end_rodata
- __start_rodata
;
7716 bss_size
= __bss_stop
- __bss_start
;
7717 init_data_size
= __init_end
- __init_begin
;
7718 init_code_size
= _einittext
- _sinittext
;
7721 * Detect special cases and adjust section sizes accordingly:
7722 * 1) .init.* may be embedded into .data sections
7723 * 2) .init.text.* may be out of [__init_begin, __init_end],
7724 * please refer to arch/tile/kernel/vmlinux.lds.S.
7725 * 3) .rodata.* may be embedded into .text or .data sections.
7727 #define adj_init_size(start, end, size, pos, adj) \
7729 if (start <= pos && pos < end && size > adj) \
7733 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7734 _sinittext
, init_code_size
);
7735 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7736 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7737 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7738 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7740 #undef adj_init_size
7742 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7743 #ifdef CONFIG_HIGHMEM
7747 nr_free_pages() << (PAGE_SHIFT
- 10),
7748 physpages
<< (PAGE_SHIFT
- 10),
7749 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7750 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7751 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7752 totalcma_pages
<< (PAGE_SHIFT
- 10),
7753 #ifdef CONFIG_HIGHMEM
7754 totalhigh_pages() << (PAGE_SHIFT
- 10),
7756 str
? ", " : "", str
? str
: "");
7760 * set_dma_reserve - set the specified number of pages reserved in the first zone
7761 * @new_dma_reserve: The number of pages to mark reserved
7763 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7764 * In the DMA zone, a significant percentage may be consumed by kernel image
7765 * and other unfreeable allocations which can skew the watermarks badly. This
7766 * function may optionally be used to account for unfreeable pages in the
7767 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7768 * smaller per-cpu batchsize.
7770 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7772 dma_reserve
= new_dma_reserve
;
7775 static int page_alloc_cpu_dead(unsigned int cpu
)
7778 lru_add_drain_cpu(cpu
);
7782 * Spill the event counters of the dead processor
7783 * into the current processors event counters.
7784 * This artificially elevates the count of the current
7787 vm_events_fold_cpu(cpu
);
7790 * Zero the differential counters of the dead processor
7791 * so that the vm statistics are consistent.
7793 * This is only okay since the processor is dead and cannot
7794 * race with what we are doing.
7796 cpu_vm_stats_fold(cpu
);
7801 int hashdist
= HASHDIST_DEFAULT
;
7803 static int __init
set_hashdist(char *str
)
7807 hashdist
= simple_strtoul(str
, &str
, 0);
7810 __setup("hashdist=", set_hashdist
);
7813 void __init
page_alloc_init(void)
7818 if (num_node_state(N_MEMORY
) == 1)
7822 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7823 "mm/page_alloc:dead", NULL
,
7824 page_alloc_cpu_dead
);
7829 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7830 * or min_free_kbytes changes.
7832 static void calculate_totalreserve_pages(void)
7834 struct pglist_data
*pgdat
;
7835 unsigned long reserve_pages
= 0;
7836 enum zone_type i
, j
;
7838 for_each_online_pgdat(pgdat
) {
7840 pgdat
->totalreserve_pages
= 0;
7842 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7843 struct zone
*zone
= pgdat
->node_zones
+ i
;
7845 unsigned long managed_pages
= zone_managed_pages(zone
);
7847 /* Find valid and maximum lowmem_reserve in the zone */
7848 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7849 if (zone
->lowmem_reserve
[j
] > max
)
7850 max
= zone
->lowmem_reserve
[j
];
7853 /* we treat the high watermark as reserved pages. */
7854 max
+= high_wmark_pages(zone
);
7856 if (max
> managed_pages
)
7857 max
= managed_pages
;
7859 pgdat
->totalreserve_pages
+= max
;
7861 reserve_pages
+= max
;
7864 totalreserve_pages
= reserve_pages
;
7868 * setup_per_zone_lowmem_reserve - called whenever
7869 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7870 * has a correct pages reserved value, so an adequate number of
7871 * pages are left in the zone after a successful __alloc_pages().
7873 static void setup_per_zone_lowmem_reserve(void)
7875 struct pglist_data
*pgdat
;
7876 enum zone_type i
, j
;
7878 for_each_online_pgdat(pgdat
) {
7879 for (i
= 0; i
< MAX_NR_ZONES
- 1; i
++) {
7880 struct zone
*zone
= &pgdat
->node_zones
[i
];
7881 int ratio
= sysctl_lowmem_reserve_ratio
[i
];
7882 bool clear
= !ratio
|| !zone_managed_pages(zone
);
7883 unsigned long managed_pages
= 0;
7885 for (j
= i
+ 1; j
< MAX_NR_ZONES
; j
++) {
7887 zone
->lowmem_reserve
[j
] = 0;
7889 struct zone
*upper_zone
= &pgdat
->node_zones
[j
];
7891 managed_pages
+= zone_managed_pages(upper_zone
);
7892 zone
->lowmem_reserve
[j
] = managed_pages
/ ratio
;
7898 /* update totalreserve_pages */
7899 calculate_totalreserve_pages();
7902 static void __setup_per_zone_wmarks(void)
7904 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7905 unsigned long lowmem_pages
= 0;
7907 unsigned long flags
;
7909 /* Calculate total number of !ZONE_HIGHMEM pages */
7910 for_each_zone(zone
) {
7911 if (!is_highmem(zone
))
7912 lowmem_pages
+= zone_managed_pages(zone
);
7915 for_each_zone(zone
) {
7918 spin_lock_irqsave(&zone
->lock
, flags
);
7919 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7920 do_div(tmp
, lowmem_pages
);
7921 if (is_highmem(zone
)) {
7923 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7924 * need highmem pages, so cap pages_min to a small
7927 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7928 * deltas control async page reclaim, and so should
7929 * not be capped for highmem.
7931 unsigned long min_pages
;
7933 min_pages
= zone_managed_pages(zone
) / 1024;
7934 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7935 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7938 * If it's a lowmem zone, reserve a number of pages
7939 * proportionate to the zone's size.
7941 zone
->_watermark
[WMARK_MIN
] = tmp
;
7945 * Set the kswapd watermarks distance according to the
7946 * scale factor in proportion to available memory, but
7947 * ensure a minimum size on small systems.
7949 tmp
= max_t(u64
, tmp
>> 2,
7950 mult_frac(zone_managed_pages(zone
),
7951 watermark_scale_factor
, 10000));
7953 zone
->watermark_boost
= 0;
7954 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7955 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7957 spin_unlock_irqrestore(&zone
->lock
, flags
);
7960 /* update totalreserve_pages */
7961 calculate_totalreserve_pages();
7965 * setup_per_zone_wmarks - called when min_free_kbytes changes
7966 * or when memory is hot-{added|removed}
7968 * Ensures that the watermark[min,low,high] values for each zone are set
7969 * correctly with respect to min_free_kbytes.
7971 void setup_per_zone_wmarks(void)
7973 static DEFINE_SPINLOCK(lock
);
7976 __setup_per_zone_wmarks();
7981 * Initialise min_free_kbytes.
7983 * For small machines we want it small (128k min). For large machines
7984 * we want it large (256MB max). But it is not linear, because network
7985 * bandwidth does not increase linearly with machine size. We use
7987 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7988 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8004 int __meminit
init_per_zone_wmark_min(void)
8006 unsigned long lowmem_kbytes
;
8007 int new_min_free_kbytes
;
8009 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
8010 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
8012 if (new_min_free_kbytes
> user_min_free_kbytes
) {
8013 min_free_kbytes
= new_min_free_kbytes
;
8014 if (min_free_kbytes
< 128)
8015 min_free_kbytes
= 128;
8016 if (min_free_kbytes
> 262144)
8017 min_free_kbytes
= 262144;
8019 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8020 new_min_free_kbytes
, user_min_free_kbytes
);
8022 setup_per_zone_wmarks();
8023 refresh_zone_stat_thresholds();
8024 setup_per_zone_lowmem_reserve();
8027 setup_min_unmapped_ratio();
8028 setup_min_slab_ratio();
8031 khugepaged_min_free_kbytes_update();
8035 postcore_initcall(init_per_zone_wmark_min
)
8038 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8039 * that we can call two helper functions whenever min_free_kbytes
8042 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
8043 void *buffer
, size_t *length
, loff_t
*ppos
)
8047 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8052 user_min_free_kbytes
= min_free_kbytes
;
8053 setup_per_zone_wmarks();
8058 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
8059 void *buffer
, size_t *length
, loff_t
*ppos
)
8063 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8068 setup_per_zone_wmarks();
8074 static void setup_min_unmapped_ratio(void)
8079 for_each_online_pgdat(pgdat
)
8080 pgdat
->min_unmapped_pages
= 0;
8083 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
8084 sysctl_min_unmapped_ratio
) / 100;
8088 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8089 void *buffer
, size_t *length
, loff_t
*ppos
)
8093 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8097 setup_min_unmapped_ratio();
8102 static void setup_min_slab_ratio(void)
8107 for_each_online_pgdat(pgdat
)
8108 pgdat
->min_slab_pages
= 0;
8111 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
8112 sysctl_min_slab_ratio
) / 100;
8115 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8116 void *buffer
, size_t *length
, loff_t
*ppos
)
8120 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8124 setup_min_slab_ratio();
8131 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8132 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8133 * whenever sysctl_lowmem_reserve_ratio changes.
8135 * The reserve ratio obviously has absolutely no relation with the
8136 * minimum watermarks. The lowmem reserve ratio can only make sense
8137 * if in function of the boot time zone sizes.
8139 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8140 void *buffer
, size_t *length
, loff_t
*ppos
)
8144 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8146 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
8147 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
8148 sysctl_lowmem_reserve_ratio
[i
] = 0;
8151 setup_per_zone_lowmem_reserve();
8156 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8157 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8158 * pagelist can have before it gets flushed back to buddy allocator.
8160 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8161 void *buffer
, size_t *length
, loff_t
*ppos
)
8164 int old_percpu_pagelist_fraction
;
8167 mutex_lock(&pcp_batch_high_lock
);
8168 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8170 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8171 if (!write
|| ret
< 0)
8174 /* Sanity checking to avoid pcp imbalance */
8175 if (percpu_pagelist_fraction
&&
8176 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8177 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8183 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8186 for_each_populated_zone(zone
)
8187 zone_set_pageset_high_and_batch(zone
);
8189 mutex_unlock(&pcp_batch_high_lock
);
8193 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8195 * Returns the number of pages that arch has reserved but
8196 * is not known to alloc_large_system_hash().
8198 static unsigned long __init
arch_reserved_kernel_pages(void)
8205 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8206 * machines. As memory size is increased the scale is also increased but at
8207 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8208 * quadruples the scale is increased by one, which means the size of hash table
8209 * only doubles, instead of quadrupling as well.
8210 * Because 32-bit systems cannot have large physical memory, where this scaling
8211 * makes sense, it is disabled on such platforms.
8213 #if __BITS_PER_LONG > 32
8214 #define ADAPT_SCALE_BASE (64ul << 30)
8215 #define ADAPT_SCALE_SHIFT 2
8216 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8220 * allocate a large system hash table from bootmem
8221 * - it is assumed that the hash table must contain an exact power-of-2
8222 * quantity of entries
8223 * - limit is the number of hash buckets, not the total allocation size
8225 void *__init
alloc_large_system_hash(const char *tablename
,
8226 unsigned long bucketsize
,
8227 unsigned long numentries
,
8230 unsigned int *_hash_shift
,
8231 unsigned int *_hash_mask
,
8232 unsigned long low_limit
,
8233 unsigned long high_limit
)
8235 unsigned long long max
= high_limit
;
8236 unsigned long log2qty
, size
;
8241 /* allow the kernel cmdline to have a say */
8243 /* round applicable memory size up to nearest megabyte */
8244 numentries
= nr_kernel_pages
;
8245 numentries
-= arch_reserved_kernel_pages();
8247 /* It isn't necessary when PAGE_SIZE >= 1MB */
8248 if (PAGE_SHIFT
< 20)
8249 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8251 #if __BITS_PER_LONG > 32
8253 unsigned long adapt
;
8255 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8256 adapt
<<= ADAPT_SCALE_SHIFT
)
8261 /* limit to 1 bucket per 2^scale bytes of low memory */
8262 if (scale
> PAGE_SHIFT
)
8263 numentries
>>= (scale
- PAGE_SHIFT
);
8265 numentries
<<= (PAGE_SHIFT
- scale
);
8267 /* Make sure we've got at least a 0-order allocation.. */
8268 if (unlikely(flags
& HASH_SMALL
)) {
8269 /* Makes no sense without HASH_EARLY */
8270 WARN_ON(!(flags
& HASH_EARLY
));
8271 if (!(numentries
>> *_hash_shift
)) {
8272 numentries
= 1UL << *_hash_shift
;
8273 BUG_ON(!numentries
);
8275 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8276 numentries
= PAGE_SIZE
/ bucketsize
;
8278 numentries
= roundup_pow_of_two(numentries
);
8280 /* limit allocation size to 1/16 total memory by default */
8282 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8283 do_div(max
, bucketsize
);
8285 max
= min(max
, 0x80000000ULL
);
8287 if (numentries
< low_limit
)
8288 numentries
= low_limit
;
8289 if (numentries
> max
)
8292 log2qty
= ilog2(numentries
);
8294 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8297 size
= bucketsize
<< log2qty
;
8298 if (flags
& HASH_EARLY
) {
8299 if (flags
& HASH_ZERO
)
8300 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8302 table
= memblock_alloc_raw(size
,
8304 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8305 table
= __vmalloc(size
, gfp_flags
);
8309 * If bucketsize is not a power-of-two, we may free
8310 * some pages at the end of hash table which
8311 * alloc_pages_exact() automatically does
8313 table
= alloc_pages_exact(size
, gfp_flags
);
8314 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8316 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8319 panic("Failed to allocate %s hash table\n", tablename
);
8321 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8322 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8323 virt
? "vmalloc" : "linear");
8326 *_hash_shift
= log2qty
;
8328 *_hash_mask
= (1 << log2qty
) - 1;
8334 * This function checks whether pageblock includes unmovable pages or not.
8336 * PageLRU check without isolation or lru_lock could race so that
8337 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8338 * check without lock_page also may miss some movable non-lru pages at
8339 * race condition. So you can't expect this function should be exact.
8341 * Returns a page without holding a reference. If the caller wants to
8342 * dereference that page (e.g., dumping), it has to make sure that it
8343 * cannot get removed (e.g., via memory unplug) concurrently.
8346 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8347 int migratetype
, int flags
)
8349 unsigned long iter
= 0;
8350 unsigned long pfn
= page_to_pfn(page
);
8351 unsigned long offset
= pfn
% pageblock_nr_pages
;
8353 if (is_migrate_cma_page(page
)) {
8355 * CMA allocations (alloc_contig_range) really need to mark
8356 * isolate CMA pageblocks even when they are not movable in fact
8357 * so consider them movable here.
8359 if (is_migrate_cma(migratetype
))
8365 for (; iter
< pageblock_nr_pages
- offset
; iter
++) {
8366 if (!pfn_valid_within(pfn
+ iter
))
8369 page
= pfn_to_page(pfn
+ iter
);
8372 * Both, bootmem allocations and memory holes are marked
8373 * PG_reserved and are unmovable. We can even have unmovable
8374 * allocations inside ZONE_MOVABLE, for example when
8375 * specifying "movablecore".
8377 if (PageReserved(page
))
8381 * If the zone is movable and we have ruled out all reserved
8382 * pages then it should be reasonably safe to assume the rest
8385 if (zone_idx(zone
) == ZONE_MOVABLE
)
8389 * Hugepages are not in LRU lists, but they're movable.
8390 * THPs are on the LRU, but need to be counted as #small pages.
8391 * We need not scan over tail pages because we don't
8392 * handle each tail page individually in migration.
8394 if (PageHuge(page
) || PageTransCompound(page
)) {
8395 struct page
*head
= compound_head(page
);
8396 unsigned int skip_pages
;
8398 if (PageHuge(page
)) {
8399 if (!hugepage_migration_supported(page_hstate(head
)))
8401 } else if (!PageLRU(head
) && !__PageMovable(head
)) {
8405 skip_pages
= compound_nr(head
) - (page
- head
);
8406 iter
+= skip_pages
- 1;
8411 * We can't use page_count without pin a page
8412 * because another CPU can free compound page.
8413 * This check already skips compound tails of THP
8414 * because their page->_refcount is zero at all time.
8416 if (!page_ref_count(page
)) {
8417 if (PageBuddy(page
))
8418 iter
+= (1 << buddy_order(page
)) - 1;
8423 * The HWPoisoned page may be not in buddy system, and
8424 * page_count() is not 0.
8426 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8430 * We treat all PageOffline() pages as movable when offlining
8431 * to give drivers a chance to decrement their reference count
8432 * in MEM_GOING_OFFLINE in order to indicate that these pages
8433 * can be offlined as there are no direct references anymore.
8434 * For actually unmovable PageOffline() where the driver does
8435 * not support this, we will fail later when trying to actually
8436 * move these pages that still have a reference count > 0.
8437 * (false negatives in this function only)
8439 if ((flags
& MEMORY_OFFLINE
) && PageOffline(page
))
8442 if (__PageMovable(page
) || PageLRU(page
))
8446 * If there are RECLAIMABLE pages, we need to check
8447 * it. But now, memory offline itself doesn't call
8448 * shrink_node_slabs() and it still to be fixed.
8455 #ifdef CONFIG_CONTIG_ALLOC
8456 static unsigned long pfn_max_align_down(unsigned long pfn
)
8458 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8459 pageblock_nr_pages
) - 1);
8462 static unsigned long pfn_max_align_up(unsigned long pfn
)
8464 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8465 pageblock_nr_pages
));
8468 /* [start, end) must belong to a single zone. */
8469 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8470 unsigned long start
, unsigned long end
)
8472 /* This function is based on compact_zone() from compaction.c. */
8473 unsigned int nr_reclaimed
;
8474 unsigned long pfn
= start
;
8475 unsigned int tries
= 0;
8477 struct migration_target_control mtc
= {
8478 .nid
= zone_to_nid(cc
->zone
),
8479 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
8484 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8485 if (fatal_signal_pending(current
)) {
8490 if (list_empty(&cc
->migratepages
)) {
8491 cc
->nr_migratepages
= 0;
8492 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8498 } else if (++tries
== 5) {
8499 ret
= ret
< 0 ? ret
: -EBUSY
;
8503 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8505 cc
->nr_migratepages
-= nr_reclaimed
;
8507 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
8508 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
);
8511 putback_movable_pages(&cc
->migratepages
);
8518 * alloc_contig_range() -- tries to allocate given range of pages
8519 * @start: start PFN to allocate
8520 * @end: one-past-the-last PFN to allocate
8521 * @migratetype: migratetype of the underlaying pageblocks (either
8522 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8523 * in range must have the same migratetype and it must
8524 * be either of the two.
8525 * @gfp_mask: GFP mask to use during compaction
8527 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8528 * aligned. The PFN range must belong to a single zone.
8530 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8531 * pageblocks in the range. Once isolated, the pageblocks should not
8532 * be modified by others.
8534 * Return: zero on success or negative error code. On success all
8535 * pages which PFN is in [start, end) are allocated for the caller and
8536 * need to be freed with free_contig_range().
8538 int alloc_contig_range(unsigned long start
, unsigned long end
,
8539 unsigned migratetype
, gfp_t gfp_mask
)
8541 unsigned long outer_start
, outer_end
;
8545 struct compact_control cc
= {
8546 .nr_migratepages
= 0,
8548 .zone
= page_zone(pfn_to_page(start
)),
8549 .mode
= MIGRATE_SYNC
,
8550 .ignore_skip_hint
= true,
8551 .no_set_skip_hint
= true,
8552 .gfp_mask
= current_gfp_context(gfp_mask
),
8553 .alloc_contig
= true,
8555 INIT_LIST_HEAD(&cc
.migratepages
);
8558 * What we do here is we mark all pageblocks in range as
8559 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8560 * have different sizes, and due to the way page allocator
8561 * work, we align the range to biggest of the two pages so
8562 * that page allocator won't try to merge buddies from
8563 * different pageblocks and change MIGRATE_ISOLATE to some
8564 * other migration type.
8566 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8567 * migrate the pages from an unaligned range (ie. pages that
8568 * we are interested in). This will put all the pages in
8569 * range back to page allocator as MIGRATE_ISOLATE.
8571 * When this is done, we take the pages in range from page
8572 * allocator removing them from the buddy system. This way
8573 * page allocator will never consider using them.
8575 * This lets us mark the pageblocks back as
8576 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8577 * aligned range but not in the unaligned, original range are
8578 * put back to page allocator so that buddy can use them.
8581 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8582 pfn_max_align_up(end
), migratetype
, 0);
8586 drain_all_pages(cc
.zone
);
8589 * In case of -EBUSY, we'd like to know which page causes problem.
8590 * So, just fall through. test_pages_isolated() has a tracepoint
8591 * which will report the busy page.
8593 * It is possible that busy pages could become available before
8594 * the call to test_pages_isolated, and the range will actually be
8595 * allocated. So, if we fall through be sure to clear ret so that
8596 * -EBUSY is not accidentally used or returned to caller.
8598 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8599 if (ret
&& ret
!= -EBUSY
)
8604 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8605 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8606 * more, all pages in [start, end) are free in page allocator.
8607 * What we are going to do is to allocate all pages from
8608 * [start, end) (that is remove them from page allocator).
8610 * The only problem is that pages at the beginning and at the
8611 * end of interesting range may be not aligned with pages that
8612 * page allocator holds, ie. they can be part of higher order
8613 * pages. Because of this, we reserve the bigger range and
8614 * once this is done free the pages we are not interested in.
8616 * We don't have to hold zone->lock here because the pages are
8617 * isolated thus they won't get removed from buddy.
8620 lru_add_drain_all();
8623 outer_start
= start
;
8624 while (!PageBuddy(pfn_to_page(outer_start
))) {
8625 if (++order
>= MAX_ORDER
) {
8626 outer_start
= start
;
8629 outer_start
&= ~0UL << order
;
8632 if (outer_start
!= start
) {
8633 order
= buddy_order(pfn_to_page(outer_start
));
8636 * outer_start page could be small order buddy page and
8637 * it doesn't include start page. Adjust outer_start
8638 * in this case to report failed page properly
8639 * on tracepoint in test_pages_isolated()
8641 if (outer_start
+ (1UL << order
) <= start
)
8642 outer_start
= start
;
8645 /* Make sure the range is really isolated. */
8646 if (test_pages_isolated(outer_start
, end
, 0)) {
8647 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8648 __func__
, outer_start
, end
);
8653 /* Grab isolated pages from freelists. */
8654 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8660 /* Free head and tail (if any) */
8661 if (start
!= outer_start
)
8662 free_contig_range(outer_start
, start
- outer_start
);
8663 if (end
!= outer_end
)
8664 free_contig_range(end
, outer_end
- end
);
8667 undo_isolate_page_range(pfn_max_align_down(start
),
8668 pfn_max_align_up(end
), migratetype
);
8671 EXPORT_SYMBOL(alloc_contig_range
);
8673 static int __alloc_contig_pages(unsigned long start_pfn
,
8674 unsigned long nr_pages
, gfp_t gfp_mask
)
8676 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8678 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8682 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8683 unsigned long nr_pages
)
8685 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8688 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8689 page
= pfn_to_online_page(i
);
8693 if (page_zone(page
) != z
)
8696 if (PageReserved(page
))
8699 if (page_count(page
) > 0)
8708 static bool zone_spans_last_pfn(const struct zone
*zone
,
8709 unsigned long start_pfn
, unsigned long nr_pages
)
8711 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8713 return zone_spans_pfn(zone
, last_pfn
);
8717 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8718 * @nr_pages: Number of contiguous pages to allocate
8719 * @gfp_mask: GFP mask to limit search and used during compaction
8721 * @nodemask: Mask for other possible nodes
8723 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8724 * on an applicable zonelist to find a contiguous pfn range which can then be
8725 * tried for allocation with alloc_contig_range(). This routine is intended
8726 * for allocation requests which can not be fulfilled with the buddy allocator.
8728 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8729 * power of two then the alignment is guaranteed to be to the given nr_pages
8730 * (e.g. 1GB request would be aligned to 1GB).
8732 * Allocated pages can be freed with free_contig_range() or by manually calling
8733 * __free_page() on each allocated page.
8735 * Return: pointer to contiguous pages on success, or NULL if not successful.
8737 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8738 int nid
, nodemask_t
*nodemask
)
8740 unsigned long ret
, pfn
, flags
;
8741 struct zonelist
*zonelist
;
8745 zonelist
= node_zonelist(nid
, gfp_mask
);
8746 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8747 gfp_zone(gfp_mask
), nodemask
) {
8748 spin_lock_irqsave(&zone
->lock
, flags
);
8750 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8751 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8752 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8754 * We release the zone lock here because
8755 * alloc_contig_range() will also lock the zone
8756 * at some point. If there's an allocation
8757 * spinning on this lock, it may win the race
8758 * and cause alloc_contig_range() to fail...
8760 spin_unlock_irqrestore(&zone
->lock
, flags
);
8761 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8764 return pfn_to_page(pfn
);
8765 spin_lock_irqsave(&zone
->lock
, flags
);
8769 spin_unlock_irqrestore(&zone
->lock
, flags
);
8773 #endif /* CONFIG_CONTIG_ALLOC */
8775 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8777 unsigned int count
= 0;
8779 for (; nr_pages
--; pfn
++) {
8780 struct page
*page
= pfn_to_page(pfn
);
8782 count
+= page_count(page
) != 1;
8785 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8787 EXPORT_SYMBOL(free_contig_range
);
8790 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8791 * page high values need to be recalulated.
8793 void __meminit
zone_pcp_update(struct zone
*zone
)
8795 mutex_lock(&pcp_batch_high_lock
);
8796 zone_set_pageset_high_and_batch(zone
);
8797 mutex_unlock(&pcp_batch_high_lock
);
8801 * Effectively disable pcplists for the zone by setting the high limit to 0
8802 * and draining all cpus. A concurrent page freeing on another CPU that's about
8803 * to put the page on pcplist will either finish before the drain and the page
8804 * will be drained, or observe the new high limit and skip the pcplist.
8806 * Must be paired with a call to zone_pcp_enable().
8808 void zone_pcp_disable(struct zone
*zone
)
8810 mutex_lock(&pcp_batch_high_lock
);
8811 __zone_set_pageset_high_and_batch(zone
, 0, 1);
8812 __drain_all_pages(zone
, true);
8815 void zone_pcp_enable(struct zone
*zone
)
8817 __zone_set_pageset_high_and_batch(zone
, zone
->pageset_high
, zone
->pageset_batch
);
8818 mutex_unlock(&pcp_batch_high_lock
);
8821 void zone_pcp_reset(struct zone
*zone
)
8823 unsigned long flags
;
8825 struct per_cpu_pageset
*pset
;
8827 /* avoid races with drain_pages() */
8828 local_irq_save(flags
);
8829 if (zone
->pageset
!= &boot_pageset
) {
8830 for_each_online_cpu(cpu
) {
8831 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8832 drain_zonestat(zone
, pset
);
8834 free_percpu(zone
->pageset
);
8835 zone
->pageset
= &boot_pageset
;
8837 local_irq_restore(flags
);
8840 #ifdef CONFIG_MEMORY_HOTREMOVE
8842 * All pages in the range must be in a single zone, must not contain holes,
8843 * must span full sections, and must be isolated before calling this function.
8845 void __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8847 unsigned long pfn
= start_pfn
;
8851 unsigned long flags
;
8853 offline_mem_sections(pfn
, end_pfn
);
8854 zone
= page_zone(pfn_to_page(pfn
));
8855 spin_lock_irqsave(&zone
->lock
, flags
);
8856 while (pfn
< end_pfn
) {
8857 page
= pfn_to_page(pfn
);
8859 * The HWPoisoned page may be not in buddy system, and
8860 * page_count() is not 0.
8862 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8867 * At this point all remaining PageOffline() pages have a
8868 * reference count of 0 and can simply be skipped.
8870 if (PageOffline(page
)) {
8871 BUG_ON(page_count(page
));
8872 BUG_ON(PageBuddy(page
));
8877 BUG_ON(page_count(page
));
8878 BUG_ON(!PageBuddy(page
));
8879 order
= buddy_order(page
);
8880 del_page_from_free_list(page
, zone
, order
);
8881 pfn
+= (1 << order
);
8883 spin_unlock_irqrestore(&zone
->lock
, flags
);
8887 bool is_free_buddy_page(struct page
*page
)
8889 struct zone
*zone
= page_zone(page
);
8890 unsigned long pfn
= page_to_pfn(page
);
8891 unsigned long flags
;
8894 spin_lock_irqsave(&zone
->lock
, flags
);
8895 for (order
= 0; order
< MAX_ORDER
; order
++) {
8896 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8898 if (PageBuddy(page_head
) && buddy_order(page_head
) >= order
)
8901 spin_unlock_irqrestore(&zone
->lock
, flags
);
8903 return order
< MAX_ORDER
;
8906 #ifdef CONFIG_MEMORY_FAILURE
8908 * Break down a higher-order page in sub-pages, and keep our target out of
8911 static void break_down_buddy_pages(struct zone
*zone
, struct page
*page
,
8912 struct page
*target
, int low
, int high
,
8915 unsigned long size
= 1 << high
;
8916 struct page
*current_buddy
, *next_page
;
8918 while (high
> low
) {
8922 if (target
>= &page
[size
]) {
8923 next_page
= page
+ size
;
8924 current_buddy
= page
;
8927 current_buddy
= page
+ size
;
8930 if (set_page_guard(zone
, current_buddy
, high
, migratetype
))
8933 if (current_buddy
!= target
) {
8934 add_to_free_list(current_buddy
, zone
, high
, migratetype
);
8935 set_buddy_order(current_buddy
, high
);
8942 * Take a page that will be marked as poisoned off the buddy allocator.
8944 bool take_page_off_buddy(struct page
*page
)
8946 struct zone
*zone
= page_zone(page
);
8947 unsigned long pfn
= page_to_pfn(page
);
8948 unsigned long flags
;
8952 spin_lock_irqsave(&zone
->lock
, flags
);
8953 for (order
= 0; order
< MAX_ORDER
; order
++) {
8954 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8955 int page_order
= buddy_order(page_head
);
8957 if (PageBuddy(page_head
) && page_order
>= order
) {
8958 unsigned long pfn_head
= page_to_pfn(page_head
);
8959 int migratetype
= get_pfnblock_migratetype(page_head
,
8962 del_page_from_free_list(page_head
, zone
, page_order
);
8963 break_down_buddy_pages(zone
, page_head
, page
, 0,
8964 page_order
, migratetype
);
8968 if (page_count(page_head
) > 0)
8971 spin_unlock_irqrestore(&zone
->lock
, flags
);