WIP FPC-III support
[linux/fpc-iii.git] / net / ipv4 / inet_fragment.c
blob05cd198d7a6ba89ab9d12caf55108aba36c11fa0
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * inet fragments management
5 * Authors: Pavel Emelyanov <xemul@openvz.org>
6 * Started as consolidation of ipv4/ip_fragment.c,
7 * ipv6/reassembly. and ipv6 nf conntrack reassembly
8 */
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28 * the end of the queue. Nodes in the rb-tree queue will
29 * contain "runs" of one or more adjacent fragments.
31 * Invariants:
32 * - next_frag is NULL at the tail of a "run";
33 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
35 struct ipfrag_skb_cb {
36 union {
37 struct inet_skb_parm h4;
38 struct inet6_skb_parm h6;
40 struct sk_buff *next_frag;
41 int frag_run_len;
44 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
46 static void fragcb_clear(struct sk_buff *skb)
48 RB_CLEAR_NODE(&skb->rbnode);
49 FRAG_CB(skb)->next_frag = NULL;
50 FRAG_CB(skb)->frag_run_len = skb->len;
53 /* Append skb to the last "run". */
54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55 struct sk_buff *skb)
57 fragcb_clear(skb);
59 FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60 FRAG_CB(q->fragments_tail)->next_frag = skb;
61 q->fragments_tail = skb;
64 /* Create a new "run" with the skb. */
65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
67 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68 fragcb_clear(skb);
70 if (q->last_run_head)
71 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72 &q->last_run_head->rbnode.rb_right);
73 else
74 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75 rb_insert_color(&skb->rbnode, &q->rb_fragments);
77 q->fragments_tail = skb;
78 q->last_run_head = skb;
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82 * Value : 0xff if frame should be dropped.
83 * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
85 const u8 ip_frag_ecn_table[16] = {
86 /* at least one fragment had CE, and others ECT_0 or ECT_1 */
87 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
88 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
89 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
91 /* invalid combinations : drop frame */
92 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
100 EXPORT_SYMBOL(ip_frag_ecn_table);
102 int inet_frags_init(struct inet_frags *f)
104 f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105 NULL);
106 if (!f->frags_cachep)
107 return -ENOMEM;
109 refcount_set(&f->refcnt, 1);
110 init_completion(&f->completion);
111 return 0;
113 EXPORT_SYMBOL(inet_frags_init);
115 void inet_frags_fini(struct inet_frags *f)
117 if (refcount_dec_and_test(&f->refcnt))
118 complete(&f->completion);
120 wait_for_completion(&f->completion);
122 kmem_cache_destroy(f->frags_cachep);
123 f->frags_cachep = NULL;
125 EXPORT_SYMBOL(inet_frags_fini);
127 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128 static void inet_frags_free_cb(void *ptr, void *arg)
130 struct inet_frag_queue *fq = ptr;
131 int count;
133 count = del_timer_sync(&fq->timer) ? 1 : 0;
135 spin_lock_bh(&fq->lock);
136 if (!(fq->flags & INET_FRAG_COMPLETE)) {
137 fq->flags |= INET_FRAG_COMPLETE;
138 count++;
139 } else if (fq->flags & INET_FRAG_HASH_DEAD) {
140 count++;
142 spin_unlock_bh(&fq->lock);
144 if (refcount_sub_and_test(count, &fq->refcnt))
145 inet_frag_destroy(fq);
148 static LLIST_HEAD(fqdir_free_list);
150 static void fqdir_free_fn(struct work_struct *work)
152 struct llist_node *kill_list;
153 struct fqdir *fqdir, *tmp;
154 struct inet_frags *f;
156 /* Atomically snapshot the list of fqdirs to free */
157 kill_list = llist_del_all(&fqdir_free_list);
159 /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
160 * have completed, since they need to dereference fqdir.
161 * Would it not be nice to have kfree_rcu_barrier() ? :)
163 rcu_barrier();
165 llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
166 f = fqdir->f;
167 if (refcount_dec_and_test(&f->refcnt))
168 complete(&f->completion);
170 kfree(fqdir);
174 static DECLARE_WORK(fqdir_free_work, fqdir_free_fn);
176 static void fqdir_work_fn(struct work_struct *work)
178 struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
180 rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
182 if (llist_add(&fqdir->free_list, &fqdir_free_list))
183 queue_work(system_wq, &fqdir_free_work);
186 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
188 struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
189 int res;
191 if (!fqdir)
192 return -ENOMEM;
193 fqdir->f = f;
194 fqdir->net = net;
195 res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
196 if (res < 0) {
197 kfree(fqdir);
198 return res;
200 refcount_inc(&f->refcnt);
201 *fqdirp = fqdir;
202 return 0;
204 EXPORT_SYMBOL(fqdir_init);
206 static struct workqueue_struct *inet_frag_wq;
208 static int __init inet_frag_wq_init(void)
210 inet_frag_wq = create_workqueue("inet_frag_wq");
211 if (!inet_frag_wq)
212 panic("Could not create inet frag workq");
213 return 0;
216 pure_initcall(inet_frag_wq_init);
218 void fqdir_exit(struct fqdir *fqdir)
220 INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
221 queue_work(inet_frag_wq, &fqdir->destroy_work);
223 EXPORT_SYMBOL(fqdir_exit);
225 void inet_frag_kill(struct inet_frag_queue *fq)
227 if (del_timer(&fq->timer))
228 refcount_dec(&fq->refcnt);
230 if (!(fq->flags & INET_FRAG_COMPLETE)) {
231 struct fqdir *fqdir = fq->fqdir;
233 fq->flags |= INET_FRAG_COMPLETE;
234 rcu_read_lock();
235 /* The RCU read lock provides a memory barrier
236 * guaranteeing that if fqdir->dead is false then
237 * the hash table destruction will not start until
238 * after we unlock. Paired with inet_frags_exit_net().
240 if (!fqdir->dead) {
241 rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
242 fqdir->f->rhash_params);
243 refcount_dec(&fq->refcnt);
244 } else {
245 fq->flags |= INET_FRAG_HASH_DEAD;
247 rcu_read_unlock();
250 EXPORT_SYMBOL(inet_frag_kill);
252 static void inet_frag_destroy_rcu(struct rcu_head *head)
254 struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
255 rcu);
256 struct inet_frags *f = q->fqdir->f;
258 if (f->destructor)
259 f->destructor(q);
260 kmem_cache_free(f->frags_cachep, q);
263 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
265 struct rb_node *p = rb_first(root);
266 unsigned int sum = 0;
268 while (p) {
269 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
271 p = rb_next(p);
272 rb_erase(&skb->rbnode, root);
273 while (skb) {
274 struct sk_buff *next = FRAG_CB(skb)->next_frag;
276 sum += skb->truesize;
277 kfree_skb(skb);
278 skb = next;
281 return sum;
283 EXPORT_SYMBOL(inet_frag_rbtree_purge);
285 void inet_frag_destroy(struct inet_frag_queue *q)
287 struct fqdir *fqdir;
288 unsigned int sum, sum_truesize = 0;
289 struct inet_frags *f;
291 WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
292 WARN_ON(del_timer(&q->timer) != 0);
294 /* Release all fragment data. */
295 fqdir = q->fqdir;
296 f = fqdir->f;
297 sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
298 sum = sum_truesize + f->qsize;
300 call_rcu(&q->rcu, inet_frag_destroy_rcu);
302 sub_frag_mem_limit(fqdir, sum);
304 EXPORT_SYMBOL(inet_frag_destroy);
306 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
307 struct inet_frags *f,
308 void *arg)
310 struct inet_frag_queue *q;
312 q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
313 if (!q)
314 return NULL;
316 q->fqdir = fqdir;
317 f->constructor(q, arg);
318 add_frag_mem_limit(fqdir, f->qsize);
320 timer_setup(&q->timer, f->frag_expire, 0);
321 spin_lock_init(&q->lock);
322 refcount_set(&q->refcnt, 3);
324 return q;
327 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
328 void *arg,
329 struct inet_frag_queue **prev)
331 struct inet_frags *f = fqdir->f;
332 struct inet_frag_queue *q;
334 q = inet_frag_alloc(fqdir, f, arg);
335 if (!q) {
336 *prev = ERR_PTR(-ENOMEM);
337 return NULL;
339 mod_timer(&q->timer, jiffies + fqdir->timeout);
341 *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
342 &q->node, f->rhash_params);
343 if (*prev) {
344 q->flags |= INET_FRAG_COMPLETE;
345 inet_frag_kill(q);
346 inet_frag_destroy(q);
347 return NULL;
349 return q;
352 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
353 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
355 struct inet_frag_queue *fq = NULL, *prev;
357 if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
358 return NULL;
360 rcu_read_lock();
362 prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
363 if (!prev)
364 fq = inet_frag_create(fqdir, key, &prev);
365 if (!IS_ERR_OR_NULL(prev)) {
366 fq = prev;
367 if (!refcount_inc_not_zero(&fq->refcnt))
368 fq = NULL;
370 rcu_read_unlock();
371 return fq;
373 EXPORT_SYMBOL(inet_frag_find);
375 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
376 int offset, int end)
378 struct sk_buff *last = q->fragments_tail;
380 /* RFC5722, Section 4, amended by Errata ID : 3089
381 * When reassembling an IPv6 datagram, if
382 * one or more its constituent fragments is determined to be an
383 * overlapping fragment, the entire datagram (and any constituent
384 * fragments) MUST be silently discarded.
386 * Duplicates, however, should be ignored (i.e. skb dropped, but the
387 * queue/fragments kept for later reassembly).
389 if (!last)
390 fragrun_create(q, skb); /* First fragment. */
391 else if (last->ip_defrag_offset + last->len < end) {
392 /* This is the common case: skb goes to the end. */
393 /* Detect and discard overlaps. */
394 if (offset < last->ip_defrag_offset + last->len)
395 return IPFRAG_OVERLAP;
396 if (offset == last->ip_defrag_offset + last->len)
397 fragrun_append_to_last(q, skb);
398 else
399 fragrun_create(q, skb);
400 } else {
401 /* Binary search. Note that skb can become the first fragment,
402 * but not the last (covered above).
404 struct rb_node **rbn, *parent;
406 rbn = &q->rb_fragments.rb_node;
407 do {
408 struct sk_buff *curr;
409 int curr_run_end;
411 parent = *rbn;
412 curr = rb_to_skb(parent);
413 curr_run_end = curr->ip_defrag_offset +
414 FRAG_CB(curr)->frag_run_len;
415 if (end <= curr->ip_defrag_offset)
416 rbn = &parent->rb_left;
417 else if (offset >= curr_run_end)
418 rbn = &parent->rb_right;
419 else if (offset >= curr->ip_defrag_offset &&
420 end <= curr_run_end)
421 return IPFRAG_DUP;
422 else
423 return IPFRAG_OVERLAP;
424 } while (*rbn);
425 /* Here we have parent properly set, and rbn pointing to
426 * one of its NULL left/right children. Insert skb.
428 fragcb_clear(skb);
429 rb_link_node(&skb->rbnode, parent, rbn);
430 rb_insert_color(&skb->rbnode, &q->rb_fragments);
433 skb->ip_defrag_offset = offset;
435 return IPFRAG_OK;
437 EXPORT_SYMBOL(inet_frag_queue_insert);
439 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
440 struct sk_buff *parent)
442 struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
443 struct sk_buff **nextp;
444 int delta;
446 if (head != skb) {
447 fp = skb_clone(skb, GFP_ATOMIC);
448 if (!fp)
449 return NULL;
450 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
451 if (RB_EMPTY_NODE(&skb->rbnode))
452 FRAG_CB(parent)->next_frag = fp;
453 else
454 rb_replace_node(&skb->rbnode, &fp->rbnode,
455 &q->rb_fragments);
456 if (q->fragments_tail == skb)
457 q->fragments_tail = fp;
458 skb_morph(skb, head);
459 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
460 rb_replace_node(&head->rbnode, &skb->rbnode,
461 &q->rb_fragments);
462 consume_skb(head);
463 head = skb;
465 WARN_ON(head->ip_defrag_offset != 0);
467 delta = -head->truesize;
469 /* Head of list must not be cloned. */
470 if (skb_unclone(head, GFP_ATOMIC))
471 return NULL;
473 delta += head->truesize;
474 if (delta)
475 add_frag_mem_limit(q->fqdir, delta);
477 /* If the first fragment is fragmented itself, we split
478 * it to two chunks: the first with data and paged part
479 * and the second, holding only fragments.
481 if (skb_has_frag_list(head)) {
482 struct sk_buff *clone;
483 int i, plen = 0;
485 clone = alloc_skb(0, GFP_ATOMIC);
486 if (!clone)
487 return NULL;
488 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
489 skb_frag_list_init(head);
490 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
491 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
492 clone->data_len = head->data_len - plen;
493 clone->len = clone->data_len;
494 head->truesize += clone->truesize;
495 clone->csum = 0;
496 clone->ip_summed = head->ip_summed;
497 add_frag_mem_limit(q->fqdir, clone->truesize);
498 skb_shinfo(head)->frag_list = clone;
499 nextp = &clone->next;
500 } else {
501 nextp = &skb_shinfo(head)->frag_list;
504 return nextp;
506 EXPORT_SYMBOL(inet_frag_reasm_prepare);
508 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
509 void *reasm_data, bool try_coalesce)
511 struct sk_buff **nextp = (struct sk_buff **)reasm_data;
512 struct rb_node *rbn;
513 struct sk_buff *fp;
514 int sum_truesize;
516 skb_push(head, head->data - skb_network_header(head));
518 /* Traverse the tree in order, to build frag_list. */
519 fp = FRAG_CB(head)->next_frag;
520 rbn = rb_next(&head->rbnode);
521 rb_erase(&head->rbnode, &q->rb_fragments);
523 sum_truesize = head->truesize;
524 while (rbn || fp) {
525 /* fp points to the next sk_buff in the current run;
526 * rbn points to the next run.
528 /* Go through the current run. */
529 while (fp) {
530 struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
531 bool stolen;
532 int delta;
534 sum_truesize += fp->truesize;
535 if (head->ip_summed != fp->ip_summed)
536 head->ip_summed = CHECKSUM_NONE;
537 else if (head->ip_summed == CHECKSUM_COMPLETE)
538 head->csum = csum_add(head->csum, fp->csum);
540 if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
541 &delta)) {
542 kfree_skb_partial(fp, stolen);
543 } else {
544 fp->prev = NULL;
545 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
546 fp->sk = NULL;
548 head->data_len += fp->len;
549 head->len += fp->len;
550 head->truesize += fp->truesize;
552 *nextp = fp;
553 nextp = &fp->next;
556 fp = next_frag;
558 /* Move to the next run. */
559 if (rbn) {
560 struct rb_node *rbnext = rb_next(rbn);
562 fp = rb_to_skb(rbn);
563 rb_erase(rbn, &q->rb_fragments);
564 rbn = rbnext;
567 sub_frag_mem_limit(q->fqdir, sum_truesize);
569 *nextp = NULL;
570 skb_mark_not_on_list(head);
571 head->prev = NULL;
572 head->tstamp = q->stamp;
574 EXPORT_SYMBOL(inet_frag_reasm_finish);
576 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
578 struct sk_buff *head, *skb;
580 head = skb_rb_first(&q->rb_fragments);
581 if (!head)
582 return NULL;
583 skb = FRAG_CB(head)->next_frag;
584 if (skb)
585 rb_replace_node(&head->rbnode, &skb->rbnode,
586 &q->rb_fragments);
587 else
588 rb_erase(&head->rbnode, &q->rb_fragments);
589 memset(&head->rbnode, 0, sizeof(head->rbnode));
590 barrier();
592 if (head == q->fragments_tail)
593 q->fragments_tail = NULL;
595 sub_frag_mem_limit(q->fqdir, head->truesize);
597 return head;
599 EXPORT_SYMBOL(inet_frag_pull_head);