WIP FPC-III support
[linux/fpc-iii.git] / sound / firewire / digi00x / amdtp-dot.c
blobd613642a2ce352f8ef741c45fa4dcb98e0418ed8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
5 * Copyright (c) 2014-2015 Takashi Sakamoto
6 * Copyright (C) 2012 Robin Gareus <robin@gareus.org>
7 * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
8 */
10 #include <sound/pcm.h>
11 #include "digi00x.h"
13 #define CIP_FMT_AM 0x10
15 /* 'Clock-based rate control mode' is just supported. */
16 #define AMDTP_FDF_AM824 0x00
19 * Nominally 3125 bytes/second, but the MIDI port's clock might be
20 * 1% too slow, and the bus clock 100 ppm too fast.
22 #define MIDI_BYTES_PER_SECOND 3093
25 * Several devices look only at the first eight data blocks.
26 * In any case, this is more than enough for the MIDI data rate.
28 #define MAX_MIDI_RX_BLOCKS 8
30 /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */
31 #define MAX_MIDI_PORTS 3
34 * The double-oh-three algorithm was discovered by Robin Gareus and Damien
35 * Zammit in 2012, with reverse-engineering for Digi 003 Rack.
37 struct dot_state {
38 u8 carry;
39 u8 idx;
40 unsigned int off;
43 struct amdtp_dot {
44 unsigned int pcm_channels;
45 struct dot_state state;
47 struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS];
48 int midi_fifo_used[MAX_MIDI_PORTS];
49 int midi_fifo_limit;
53 * double-oh-three look up table
55 * @param idx index byte (audio-sample data) 0x00..0xff
56 * @param off channel offset shift
57 * @return salt to XOR with given data
59 #define BYTE_PER_SAMPLE (4)
60 #define MAGIC_DOT_BYTE (2)
61 #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
62 static u8 dot_scrt(const u8 idx, const unsigned int off)
65 * the length of the added pattern only depends on the lower nibble
66 * of the last non-zero data
68 static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
69 12, 10, 8, 6, 4, 2, 0};
72 * the lower nibble of the salt. Interleaved sequence.
73 * this is walked backwards according to len[]
75 static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
76 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
78 /* circular list for the salt's hi nibble. */
79 static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
80 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
83 * start offset for upper nibble mapping.
84 * note: 9 is /special/. In the case where the high nibble == 0x9,
85 * hir[] is not used and - coincidentally - the salt's hi nibble is
86 * 0x09 regardless of the offset.
88 static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
89 3, 0x00, 14, 13, 8, 9, 10, 2};
91 const u8 ln = idx & 0xf;
92 const u8 hn = (idx >> 4) & 0xf;
93 const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
95 if (len[ln] < off)
96 return 0x00;
98 return ((nib[14 + off - len[ln]]) | (hr << 4));
101 static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
103 u8 * const data = (u8 *) buffer;
105 if (data[MAGIC_DOT_BYTE] != 0x00) {
106 state->off = 0;
107 state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
109 data[MAGIC_DOT_BYTE] ^= state->carry;
110 state->carry = dot_scrt(state->idx, ++(state->off));
113 int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
114 unsigned int pcm_channels)
116 struct amdtp_dot *p = s->protocol;
117 int err;
119 if (amdtp_stream_running(s))
120 return -EBUSY;
123 * A first data channel is for MIDI messages, the rest is Multi Bit
124 * Linear Audio data channel.
126 err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
127 if (err < 0)
128 return err;
130 s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc;
132 p->pcm_channels = pcm_channels;
135 * We do not know the actual MIDI FIFO size of most devices. Just
136 * assume two bytes, i.e., one byte can be received over the bus while
137 * the previous one is transmitted over MIDI.
138 * (The value here is adjusted for midi_ratelimit_per_packet().)
140 p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
142 return 0;
145 static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
146 __be32 *buffer, unsigned int frames,
147 unsigned int pcm_frames)
149 struct amdtp_dot *p = s->protocol;
150 unsigned int channels = p->pcm_channels;
151 struct snd_pcm_runtime *runtime = pcm->runtime;
152 unsigned int pcm_buffer_pointer;
153 int remaining_frames;
154 const u32 *src;
155 int i, c;
157 pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames;
158 pcm_buffer_pointer %= runtime->buffer_size;
160 src = (void *)runtime->dma_area +
161 frames_to_bytes(runtime, pcm_buffer_pointer);
162 remaining_frames = runtime->buffer_size - pcm_buffer_pointer;
164 buffer++;
165 for (i = 0; i < frames; ++i) {
166 for (c = 0; c < channels; ++c) {
167 buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
168 dot_encode_step(&p->state, &buffer[c]);
169 src++;
171 buffer += s->data_block_quadlets;
172 if (--remaining_frames == 0)
173 src = (void *)runtime->dma_area;
177 static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
178 __be32 *buffer, unsigned int frames,
179 unsigned int pcm_frames)
181 struct amdtp_dot *p = s->protocol;
182 unsigned int channels = p->pcm_channels;
183 struct snd_pcm_runtime *runtime = pcm->runtime;
184 unsigned int pcm_buffer_pointer;
185 int remaining_frames;
186 u32 *dst;
187 int i, c;
189 pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames;
190 pcm_buffer_pointer %= runtime->buffer_size;
192 dst = (void *)runtime->dma_area +
193 frames_to_bytes(runtime, pcm_buffer_pointer);
194 remaining_frames = runtime->buffer_size - pcm_buffer_pointer;
196 buffer++;
197 for (i = 0; i < frames; ++i) {
198 for (c = 0; c < channels; ++c) {
199 *dst = be32_to_cpu(buffer[c]) << 8;
200 dst++;
202 buffer += s->data_block_quadlets;
203 if (--remaining_frames == 0)
204 dst = (void *)runtime->dma_area;
208 static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
209 unsigned int data_blocks)
211 struct amdtp_dot *p = s->protocol;
212 unsigned int channels, i, c;
214 channels = p->pcm_channels;
216 buffer++;
217 for (i = 0; i < data_blocks; ++i) {
218 for (c = 0; c < channels; ++c)
219 buffer[c] = cpu_to_be32(0x40000000);
220 buffer += s->data_block_quadlets;
224 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
226 struct amdtp_dot *p = s->protocol;
227 int used;
229 used = p->midi_fifo_used[port];
230 if (used == 0)
231 return true;
233 used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
234 used = max(used, 0);
235 p->midi_fifo_used[port] = used;
237 return used < p->midi_fifo_limit;
240 static inline void midi_use_bytes(struct amdtp_stream *s,
241 unsigned int port, unsigned int count)
243 struct amdtp_dot *p = s->protocol;
245 p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
248 static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
249 unsigned int data_blocks, unsigned int data_block_counter)
251 struct amdtp_dot *p = s->protocol;
252 unsigned int f, port;
253 int len;
254 u8 *b;
256 for (f = 0; f < data_blocks; f++) {
257 port = (data_block_counter + f) % 8;
258 b = (u8 *)&buffer[0];
260 len = 0;
261 if (port < MAX_MIDI_PORTS &&
262 midi_ratelimit_per_packet(s, port) &&
263 p->midi[port] != NULL)
264 len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
266 if (len > 0) {
268 * Upper 4 bits of LSB represent port number.
269 * - 0000b: physical MIDI port 1.
270 * - 0010b: physical MIDI port 2.
271 * - 1110b: console MIDI port.
273 if (port == 2)
274 b[3] = 0xe0;
275 else if (port == 1)
276 b[3] = 0x20;
277 else
278 b[3] = 0x00;
279 b[3] |= len;
280 midi_use_bytes(s, port, len);
281 } else {
282 b[1] = 0;
283 b[2] = 0;
284 b[3] = 0;
286 b[0] = 0x80;
288 buffer += s->data_block_quadlets;
292 static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
293 unsigned int data_blocks)
295 struct amdtp_dot *p = s->protocol;
296 unsigned int f, port, len;
297 u8 *b;
299 for (f = 0; f < data_blocks; f++) {
300 b = (u8 *)&buffer[0];
302 len = b[3] & 0x0f;
303 if (len > 0) {
305 * Upper 4 bits of LSB represent port number.
306 * - 0000b: physical MIDI port 1. Use port 0.
307 * - 1110b: console MIDI port. Use port 2.
309 if (b[3] >> 4 > 0)
310 port = 2;
311 else
312 port = 0;
314 if (port < MAX_MIDI_PORTS && p->midi[port])
315 snd_rawmidi_receive(p->midi[port], b + 1, len);
318 buffer += s->data_block_quadlets;
322 int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
323 struct snd_pcm_runtime *runtime)
325 int err;
327 /* This protocol delivers 24 bit data in 32bit data channel. */
328 err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
329 if (err < 0)
330 return err;
332 return amdtp_stream_add_pcm_hw_constraints(s, runtime);
335 void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
336 struct snd_rawmidi_substream *midi)
338 struct amdtp_dot *p = s->protocol;
340 if (port < MAX_MIDI_PORTS)
341 WRITE_ONCE(p->midi[port], midi);
344 static unsigned int process_ir_ctx_payloads(struct amdtp_stream *s,
345 const struct pkt_desc *descs,
346 unsigned int packets,
347 struct snd_pcm_substream *pcm)
349 unsigned int pcm_frames = 0;
350 int i;
352 for (i = 0; i < packets; ++i) {
353 const struct pkt_desc *desc = descs + i;
354 __be32 *buf = desc->ctx_payload;
355 unsigned int data_blocks = desc->data_blocks;
357 if (pcm) {
358 read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames);
359 pcm_frames += data_blocks;
362 read_midi_messages(s, buf, data_blocks);
365 return pcm_frames;
368 static unsigned int process_it_ctx_payloads(struct amdtp_stream *s,
369 const struct pkt_desc *descs,
370 unsigned int packets,
371 struct snd_pcm_substream *pcm)
373 unsigned int pcm_frames = 0;
374 int i;
376 for (i = 0; i < packets; ++i) {
377 const struct pkt_desc *desc = descs + i;
378 __be32 *buf = desc->ctx_payload;
379 unsigned int data_blocks = desc->data_blocks;
381 if (pcm) {
382 write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames);
383 pcm_frames += data_blocks;
384 } else {
385 write_pcm_silence(s, buf, data_blocks);
388 write_midi_messages(s, buf, data_blocks,
389 desc->data_block_counter);
392 return pcm_frames;
395 int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
396 enum amdtp_stream_direction dir)
398 amdtp_stream_process_ctx_payloads_t process_ctx_payloads;
399 enum cip_flags flags;
401 // Use different mode between incoming/outgoing.
402 if (dir == AMDTP_IN_STREAM) {
403 flags = CIP_NONBLOCKING;
404 process_ctx_payloads = process_ir_ctx_payloads;
405 } else {
406 flags = CIP_BLOCKING;
407 process_ctx_payloads = process_it_ctx_payloads;
410 return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
411 process_ctx_payloads, sizeof(struct amdtp_dot));
414 void amdtp_dot_reset(struct amdtp_stream *s)
416 struct amdtp_dot *p = s->protocol;
418 p->state.carry = 0x00;
419 p->state.idx = 0x00;
420 p->state.off = 0;