1 // SPDX-License-Identifier: GPL-2.0-only
3 * intel_hdmi_audio.c - Intel HDMI audio driver
5 * Copyright (C) 2016 Intel Corp
6 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 * Ramesh Babu K V <ramesh.babu@intel.com>
8 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 * Jerome Anand <jerome.anand@intel.com>
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
36 #define for_each_pipe(card_ctx, pipe) \
37 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
38 #define for_each_port(card_ctx, port) \
39 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
41 /*standard module options for ALSA. This module supports only one card*/
42 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
43 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
44 static bool single_port
;
46 module_param_named(index
, hdmi_card_index
, int, 0444);
47 MODULE_PARM_DESC(index
,
48 "Index value for INTEL Intel HDMI Audio controller.");
49 module_param_named(id
, hdmi_card_id
, charp
, 0444);
51 "ID string for INTEL Intel HDMI Audio controller.");
52 module_param(single_port
, bool, 0444);
53 MODULE_PARM_DESC(single_port
,
54 "Single-port mode (for compatibility)");
57 * ELD SA bits in the CEA Speaker Allocation data block
59 static const int eld_speaker_allocation_bits
[] = {
67 /* the following are not defined in ELD yet */
72 * This is an ordered list!
74 * The preceding ones have better chances to be selected by
75 * hdmi_channel_allocation().
77 static struct cea_channel_speaker_allocation channel_allocations
[] = {
78 /* channel: 7 6 5 4 3 2 1 0 */
79 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
81 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
83 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
85 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
87 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
89 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
91 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
93 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
95 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
97 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
98 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
99 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
100 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
101 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
102 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
103 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
104 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
105 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
106 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
107 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
108 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
109 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
110 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
111 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
112 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
113 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
114 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
115 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
116 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
117 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
118 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
119 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
122 static const struct channel_map_table map_tables
[] = {
123 { SNDRV_CHMAP_FL
, 0x00, FL
},
124 { SNDRV_CHMAP_FR
, 0x01, FR
},
125 { SNDRV_CHMAP_RL
, 0x04, RL
},
126 { SNDRV_CHMAP_RR
, 0x05, RR
},
127 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
128 { SNDRV_CHMAP_FC
, 0x03, FC
},
129 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
130 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware
= {
136 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
137 SNDRV_PCM_INFO_MMAP
|
138 SNDRV_PCM_INFO_MMAP_VALID
|
139 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
140 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
141 SNDRV_PCM_FMTBIT_S24_LE
|
142 SNDRV_PCM_FMTBIT_S32_LE
),
143 .rates
= SNDRV_PCM_RATE_32000
|
144 SNDRV_PCM_RATE_44100
|
145 SNDRV_PCM_RATE_48000
|
146 SNDRV_PCM_RATE_88200
|
147 SNDRV_PCM_RATE_96000
|
148 SNDRV_PCM_RATE_176400
|
149 SNDRV_PCM_RATE_192000
,
150 .rate_min
= HAD_MIN_RATE
,
151 .rate_max
= HAD_MAX_RATE
,
152 .channels_min
= HAD_MIN_CHANNEL
,
153 .channels_max
= HAD_MAX_CHANNEL
,
154 .buffer_bytes_max
= HAD_MAX_BUFFER
,
155 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
156 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
157 .periods_min
= HAD_MIN_PERIODS
,
158 .periods_max
= HAD_MAX_PERIODS
,
159 .fifo_size
= HAD_FIFO_SIZE
,
162 /* Get the active PCM substream;
163 * Call had_substream_put() for unreferecing.
164 * Don't call this inside had_spinlock, as it takes by itself
166 static struct snd_pcm_substream
*
167 had_substream_get(struct snd_intelhad
*intelhaddata
)
169 struct snd_pcm_substream
*substream
;
172 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
173 substream
= intelhaddata
->stream_info
.substream
;
175 intelhaddata
->stream_info
.substream_refcount
++;
176 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
180 /* Unref the active PCM substream;
181 * Don't call this inside had_spinlock, as it takes by itself
183 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
187 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
188 intelhaddata
->stream_info
.substream_refcount
--;
189 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
192 static u32
had_config_offset(int pipe
)
197 return AUDIO_HDMI_CONFIG_A
;
199 return AUDIO_HDMI_CONFIG_B
;
201 return AUDIO_HDMI_CONFIG_C
;
205 /* Register access functions */
206 static u32
had_read_register_raw(struct snd_intelhad_card
*card_ctx
,
209 return ioread32(card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
212 static void had_write_register_raw(struct snd_intelhad_card
*card_ctx
,
213 int pipe
, u32 reg
, u32 val
)
215 iowrite32(val
, card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
218 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
223 *val
= had_read_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
);
226 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
229 had_write_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
, val
);
233 * enable / disable audio configuration
235 * The normal read/modify should not directly be used on VLV2 for
236 * updating AUD_CONFIG register.
238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
239 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
241 * register. This field should be 1xy binary for configuration with 6 or
242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
243 * causes the "channels" field to be updated as 0xy binary resulting in
244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
245 * appropriate value when doing read-modify of AUD_CONFIG register.
247 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
250 /* update the cached value */
251 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
252 had_write_register(intelhaddata
, AUD_CONFIG
,
253 intelhaddata
->aud_config
.regval
);
256 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
257 static void had_ack_irqs(struct snd_intelhad
*ctx
)
263 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
264 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
265 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
266 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
269 /* Reset buffer pointers */
270 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
272 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
273 AUD_HDMI_STATUSG_MASK_FUNCRST
);
274 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
278 * initialize audio channel status registers
279 * This function is called in the prepare callback
281 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
282 struct snd_intelhad
*intelhaddata
)
284 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
285 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
287 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
288 IEC958_AES0_NONAUDIO
) >> 1;
289 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
290 IEC958_AES3_CON_CLOCK
) >> 4;
292 switch (substream
->runtime
->rate
) {
293 case AUD_SAMPLE_RATE_32
:
294 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
297 case AUD_SAMPLE_RATE_44_1
:
298 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
300 case AUD_SAMPLE_RATE_48
:
301 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
303 case AUD_SAMPLE_RATE_88_2
:
304 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
306 case AUD_SAMPLE_RATE_96
:
307 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
309 case AUD_SAMPLE_RATE_176_4
:
310 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
312 case AUD_SAMPLE_RATE_192
:
313 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
317 /* control should never come here */
321 had_write_register(intelhaddata
,
322 AUD_CH_STATUS_0
, ch_stat0
.regval
);
324 switch (substream
->runtime
->format
) {
325 case SNDRV_PCM_FORMAT_S16_LE
:
326 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
327 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
329 case SNDRV_PCM_FORMAT_S24_LE
:
330 case SNDRV_PCM_FORMAT_S32_LE
:
331 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
332 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
338 had_write_register(intelhaddata
,
339 AUD_CH_STATUS_1
, ch_stat1
.regval
);
344 * function to initialize audio
345 * registers and buffer confgiuration registers
346 * This function is called in the prepare callback
348 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
349 struct snd_intelhad
*intelhaddata
)
351 union aud_cfg cfg_val
= {.regval
= 0};
352 union aud_buf_config buf_cfg
= {.regval
= 0};
355 had_prog_status_reg(substream
, intelhaddata
);
357 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
358 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
359 buf_cfg
.regx
.aud_delay
= 0;
360 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
362 channels
= substream
->runtime
->channels
;
363 cfg_val
.regx
.num_ch
= channels
- 2;
365 cfg_val
.regx
.layout
= LAYOUT0
;
367 cfg_val
.regx
.layout
= LAYOUT1
;
369 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
370 cfg_val
.regx
.packet_mode
= 1;
372 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
373 cfg_val
.regx
.left_align
= 1;
375 cfg_val
.regx
.val_bit
= 1;
377 /* fix up the DP bits */
378 if (intelhaddata
->dp_output
) {
379 cfg_val
.regx
.dp_modei
= 1;
380 cfg_val
.regx
.set
= 1;
383 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
384 intelhaddata
->aud_config
= cfg_val
;
389 * Compute derived values in channel_allocations[].
391 static void init_channel_allocations(void)
394 struct cea_channel_speaker_allocation
*p
;
396 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
397 p
= channel_allocations
+ i
;
400 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
401 if (p
->speakers
[j
]) {
403 p
->spk_mask
|= p
->speakers
[j
];
409 * The transformation takes two steps:
411 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
412 * spk_mask => (channel_allocations[]) => ai->CA
414 * TODO: it could select the wrong CA from multiple candidates.
416 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
424 * CA defaults to 0 for basic stereo audio
430 * expand ELD's speaker allocation mask
432 * ELD tells the speaker mask in a compact(paired) form,
433 * expand ELD's notions to match the ones used by Audio InfoFrame.
436 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
437 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
438 spk_mask
|= eld_speaker_allocation_bits
[i
];
441 /* search for the first working match in the CA table */
442 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
443 if (channels
== channel_allocations
[i
].channels
&&
444 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
445 channel_allocations
[i
].spk_mask
) {
446 ca
= channel_allocations
[i
].ca_index
;
451 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
456 /* from speaker bit mask to ALSA API channel position */
457 static int spk_to_chmap(int spk
)
459 const struct channel_map_table
*t
= map_tables
;
461 for (; t
->map
; t
++) {
462 if (t
->spk_mask
== spk
)
468 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
472 struct snd_pcm_chmap_elem
*chmap
;
473 u8 eld_high
, eld_high_mask
= 0xF0;
476 kfree(intelhaddata
->chmap
->chmap
);
477 intelhaddata
->chmap
->chmap
= NULL
;
479 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
483 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
484 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
486 /* WA: Fix the max channel supported to 8 */
489 * Sink may support more than 8 channels, if eld_high has more than
490 * one bit set. SOC supports max 8 channels.
491 * Refer eld_speaker_allocation_bits, for sink speaker allocation
494 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
495 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
496 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
497 /* eld_high & (eld_high-1): if more than 1 bit set */
498 /* 0x1F: 7 channels */
499 for (i
= 1; i
< 4; i
++) {
500 high_msb
= eld_high
& (0x80 >> i
);
502 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
509 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
510 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
511 spk_mask
|= eld_speaker_allocation_bits
[i
];
514 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
515 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
516 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
517 chmap
->map
[c
] = spk_to_chmap(
518 channel_allocations
[i
].speakers
[
519 (MAX_SPEAKERS
- 1) - c
]);
521 chmap
->channels
= channel_allocations
[i
].channels
;
522 intelhaddata
->chmap
->chmap
= chmap
;
526 if (i
>= ARRAY_SIZE(channel_allocations
))
531 * ALSA API channel-map control callbacks
533 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
534 struct snd_ctl_elem_info
*uinfo
)
536 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
537 uinfo
->count
= HAD_MAX_CHANNEL
;
538 uinfo
->value
.integer
.min
= 0;
539 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
543 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
544 struct snd_ctl_elem_value
*ucontrol
)
546 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
547 struct snd_intelhad
*intelhaddata
= info
->private_data
;
549 const struct snd_pcm_chmap_elem
*chmap
;
551 memset(ucontrol
->value
.integer
.value
, 0,
552 sizeof(long) * HAD_MAX_CHANNEL
);
553 mutex_lock(&intelhaddata
->mutex
);
554 if (!intelhaddata
->chmap
->chmap
) {
555 mutex_unlock(&intelhaddata
->mutex
);
559 chmap
= intelhaddata
->chmap
->chmap
;
560 for (i
= 0; i
< chmap
->channels
; i
++)
561 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
562 mutex_unlock(&intelhaddata
->mutex
);
567 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
572 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
573 NULL
, 0, (unsigned long)intelhaddata
,
574 &intelhaddata
->chmap
);
578 intelhaddata
->chmap
->private_data
= intelhaddata
;
579 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
580 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
581 intelhaddata
->chmap
->chmap
= NULL
;
586 * Initialize Data Island Packets registers
587 * This function is called in the prepare callback
589 static void had_prog_dip(struct snd_pcm_substream
*substream
,
590 struct snd_intelhad
*intelhaddata
)
593 union aud_ctrl_st ctrl_state
= {.regval
= 0};
594 union aud_info_frame2 frame2
= {.regval
= 0};
595 union aud_info_frame3 frame3
= {.regval
= 0};
601 channels
= substream
->runtime
->channels
;
603 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
605 ca
= had_channel_allocation(intelhaddata
, channels
);
606 if (intelhaddata
->dp_output
) {
607 info_frame
= DP_INFO_FRAME_WORD1
;
608 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
610 info_frame
= HDMI_INFO_FRAME_WORD1
;
611 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
612 frame3
.regx
.chnl_alloc
= ca
;
614 /* Calculte the byte wide checksum for all valid DIP words */
615 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
616 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
617 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
618 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
619 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
620 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
622 frame2
.regx
.chksum
= -(checksum
);
625 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
626 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
627 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
629 /* program remaining DIP words with zero */
630 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
631 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
633 ctrl_state
.regx
.dip_freq
= 1;
634 ctrl_state
.regx
.dip_en_sta
= 1;
635 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
638 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
642 /* Select maud according to DP 1.2 spec */
643 if (link_rate
== DP_2_7_GHZ
) {
644 switch (aud_samp_freq
) {
645 case AUD_SAMPLE_RATE_32
:
646 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
649 case AUD_SAMPLE_RATE_44_1
:
650 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
653 case AUD_SAMPLE_RATE_48
:
654 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
657 case AUD_SAMPLE_RATE_88_2
:
658 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
661 case AUD_SAMPLE_RATE_96
:
662 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
665 case AUD_SAMPLE_RATE_176_4
:
666 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
670 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
677 } else if (link_rate
== DP_1_62_GHZ
) {
678 switch (aud_samp_freq
) {
679 case AUD_SAMPLE_RATE_32
:
680 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
683 case AUD_SAMPLE_RATE_44_1
:
684 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
687 case AUD_SAMPLE_RATE_48
:
688 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
691 case AUD_SAMPLE_RATE_88_2
:
692 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
695 case AUD_SAMPLE_RATE_96
:
696 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
699 case AUD_SAMPLE_RATE_176_4
:
700 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
704 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
718 * Program HDMI audio CTS value
720 * @aud_samp_freq: sampling frequency of audio data
721 * @tmds: sampling frequency of the display data
722 * @link_rate: DP link rate
723 * @n_param: N value, depends on aud_samp_freq
724 * @intelhaddata: substream private data
726 * Program CTS register based on the audio and display sampling frequency
728 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
729 u32 n_param
, struct snd_intelhad
*intelhaddata
)
732 u64 dividend
, divisor
;
734 if (intelhaddata
->dp_output
) {
735 /* Substitute cts_val with Maud according to DP 1.2 spec*/
736 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
738 /* Calculate CTS according to HDMI 1.3a spec*/
739 dividend
= (u64
)tmds
* n_param
*1000;
740 divisor
= 128 * aud_samp_freq
;
741 cts_val
= div64_u64(dividend
, divisor
);
743 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
744 tmds
, n_param
, cts_val
);
745 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
748 static int had_calculate_n_value(u32 aud_samp_freq
)
752 /* Select N according to HDMI 1.3a spec*/
753 switch (aud_samp_freq
) {
754 case AUD_SAMPLE_RATE_32
:
758 case AUD_SAMPLE_RATE_44_1
:
762 case AUD_SAMPLE_RATE_48
:
766 case AUD_SAMPLE_RATE_88_2
:
770 case AUD_SAMPLE_RATE_96
:
774 case AUD_SAMPLE_RATE_176_4
:
790 * Program HDMI audio N value
792 * @aud_samp_freq: sampling frequency of audio data
793 * @n_param: N value, depends on aud_samp_freq
794 * @intelhaddata: substream private data
796 * This function is called in the prepare callback.
797 * It programs based on the audio and display sampling frequency
799 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
800 struct snd_intelhad
*intelhaddata
)
804 if (intelhaddata
->dp_output
) {
806 * According to DP specs, Maud and Naud values hold
807 * a relationship, which is stated as:
808 * Maud/Naud = 512 * fs / f_LS_Clk
809 * where, fs is the sampling frequency of the audio stream
810 * and Naud is 32768 for Async clock.
815 n_val
= had_calculate_n_value(aud_samp_freq
);
820 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
826 * PCM ring buffer handling
828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
829 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
830 * moves at each period elapsed. The below illustrates how it works:
833 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834 * BD | 0 | 1 | 2 | 3 |
836 * At time=1 (period elapsed)
837 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838 * BD | 1 | 2 | 3 | 0 |
840 * At time=2 (second period elapsed)
841 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842 * BD | 2 | 3 | 0 | 1 |
844 * The bd_head field points to the index of the BD to be read. It's also the
845 * position to be filled at next. The pcm_head and the pcm_filled fields
846 * point to the indices of the current position and of the next position to
847 * be filled, respectively. For PCM buffer there are both _head and _filled
848 * because they may be difference when nperiods > 4. For example, in the
849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
851 * pcm_head (=1) --v v-- pcm_filled (=5)
852 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853 * BD | 1 | 2 | 3 | 0 |
854 * bd_head (=1) --^ ^-- next to fill (= bd_head)
856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
857 * the hardware skips those BDs in the loop.
859 * An exceptional setup is the case with nperiods=1. Since we have to update
860 * BDs after finishing one BD processing, we'd need at least two BDs, where
861 * both BDs point to the same content, the same address, the same size of the
865 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
866 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
868 /* Set up a buffer descriptor at the "filled" position */
869 static void had_prog_bd(struct snd_pcm_substream
*substream
,
870 struct snd_intelhad
*intelhaddata
)
872 int idx
= intelhaddata
->bd_head
;
873 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
874 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
876 addr
|= AUD_BUF_VALID
;
877 if (!substream
->runtime
->no_period_wakeup
)
878 addr
|= AUD_BUF_INTR_EN
;
879 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
880 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
881 intelhaddata
->period_bytes
);
883 /* advance the indices to the next */
884 intelhaddata
->bd_head
++;
885 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
886 intelhaddata
->pcmbuf_filled
++;
887 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
890 /* invalidate a buffer descriptor with the given index */
891 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
894 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
895 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
898 /* Initial programming of ring buffer */
899 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
900 struct snd_intelhad
*intelhaddata
)
902 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
905 num_periods
= runtime
->periods
;
906 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
907 /* set the minimum 2 BDs for num_periods=1 */
908 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
909 intelhaddata
->period_bytes
=
910 frames_to_bytes(runtime
, runtime
->period_size
);
911 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
913 intelhaddata
->bd_head
= 0;
914 intelhaddata
->pcmbuf_head
= 0;
915 intelhaddata
->pcmbuf_filled
= 0;
917 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
918 if (i
< intelhaddata
->num_bds
)
919 had_prog_bd(substream
, intelhaddata
);
920 else /* invalidate the rest */
921 had_invalidate_bd(intelhaddata
, i
);
924 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
927 /* process a bd, advance to the next */
928 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
929 struct snd_intelhad
*intelhaddata
)
931 int num_periods
= substream
->runtime
->periods
;
933 /* reprogram the next buffer */
934 had_prog_bd(substream
, intelhaddata
);
936 /* proceed to next */
937 intelhaddata
->pcmbuf_head
++;
938 intelhaddata
->pcmbuf_head
%= num_periods
;
941 /* process the current BD(s);
942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
944 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
945 struct snd_intelhad
*intelhaddata
)
951 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
953 /* get the remaining bytes on the buffer */
954 had_read_register(intelhaddata
,
955 AUD_BUF_LEN(intelhaddata
->bd_head
),
957 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
958 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
964 if (len
> 0) /* OK, this is the current buffer */
967 /* len=0 => already empty, check the next buffer */
968 if (++processed
>= intelhaddata
->num_bds
) {
969 len
= -EPIPE
; /* all empty? - report underrun */
972 had_advance_ringbuf(substream
, intelhaddata
);
975 len
= intelhaddata
->period_bytes
- len
;
976 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
978 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
982 /* called from irq handler */
983 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
985 struct snd_pcm_substream
*substream
;
987 substream
= had_substream_get(intelhaddata
);
989 return; /* no stream? - bail out */
991 if (!intelhaddata
->connected
) {
992 snd_pcm_stop_xrun(substream
);
993 goto out
; /* disconnected? - bail out */
996 /* process or stop the stream */
997 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
998 snd_pcm_stop_xrun(substream
);
1000 snd_pcm_period_elapsed(substream
);
1003 had_substream_put(intelhaddata
);
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1010 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1015 for (i
= 0; i
< 100; i
++) {
1016 /* clear bit30, 31 AUD_HDMI_STATUS */
1017 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1018 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1022 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1024 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1027 /* Perform some reset procedure but only when need_reset is set;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1031 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1033 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1036 /* Reset buffer pointers */
1037 had_reset_audio(intelhaddata
);
1038 wait_clear_underrun_bit(intelhaddata
);
1039 intelhaddata
->need_reset
= false;
1042 /* called from irq handler */
1043 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1045 struct snd_pcm_substream
*substream
;
1047 /* Report UNDERRUN error to above layers */
1048 substream
= had_substream_get(intelhaddata
);
1050 snd_pcm_stop_xrun(substream
);
1051 had_substream_put(intelhaddata
);
1053 intelhaddata
->need_reset
= true;
1057 * ALSA PCM open callback
1059 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1061 struct snd_intelhad
*intelhaddata
;
1062 struct snd_pcm_runtime
*runtime
;
1065 intelhaddata
= snd_pcm_substream_chip(substream
);
1066 runtime
= substream
->runtime
;
1068 pm_runtime_get_sync(intelhaddata
->dev
);
1070 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1071 runtime
->hw
= had_pcm_hardware
;
1073 retval
= snd_pcm_hw_constraint_integer(runtime
,
1074 SNDRV_PCM_HW_PARAM_PERIODS
);
1078 /* Make sure, that the period size is always aligned
1081 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1082 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1086 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1090 /* expose PCM substream */
1091 spin_lock_irq(&intelhaddata
->had_spinlock
);
1092 intelhaddata
->stream_info
.substream
= substream
;
1093 intelhaddata
->stream_info
.substream_refcount
++;
1094 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1098 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1099 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1104 * ALSA PCM close callback
1106 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1108 struct snd_intelhad
*intelhaddata
;
1110 intelhaddata
= snd_pcm_substream_chip(substream
);
1112 /* unreference and sync with the pending PCM accesses */
1113 spin_lock_irq(&intelhaddata
->had_spinlock
);
1114 intelhaddata
->stream_info
.substream
= NULL
;
1115 intelhaddata
->stream_info
.substream_refcount
--;
1116 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1117 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1119 spin_lock_irq(&intelhaddata
->had_spinlock
);
1121 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1123 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1124 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1129 * ALSA PCM hw_params callback
1131 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1132 struct snd_pcm_hw_params
*hw_params
)
1134 struct snd_intelhad
*intelhaddata
;
1137 intelhaddata
= snd_pcm_substream_chip(substream
);
1138 buf_size
= params_buffer_bytes(hw_params
);
1139 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1140 __func__
, buf_size
);
1145 * ALSA PCM hw_free callback
1147 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1149 struct snd_intelhad
*intelhaddata
;
1151 intelhaddata
= snd_pcm_substream_chip(substream
);
1152 had_do_reset(intelhaddata
);
1158 * ALSA PCM trigger callback
1160 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1163 struct snd_intelhad
*intelhaddata
;
1165 intelhaddata
= snd_pcm_substream_chip(substream
);
1167 spin_lock(&intelhaddata
->had_spinlock
);
1169 case SNDRV_PCM_TRIGGER_START
:
1170 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1171 case SNDRV_PCM_TRIGGER_RESUME
:
1173 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1174 had_enable_audio(intelhaddata
, true);
1177 case SNDRV_PCM_TRIGGER_STOP
:
1178 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1180 had_enable_audio(intelhaddata
, false);
1181 intelhaddata
->need_reset
= true;
1187 spin_unlock(&intelhaddata
->had_spinlock
);
1192 * ALSA PCM prepare callback
1194 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1197 u32 disp_samp_freq
, n_param
;
1199 struct snd_intelhad
*intelhaddata
;
1200 struct snd_pcm_runtime
*runtime
;
1202 intelhaddata
= snd_pcm_substream_chip(substream
);
1203 runtime
= substream
->runtime
;
1205 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1206 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1207 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1208 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1209 (int)snd_pcm_lib_buffer_bytes(substream
));
1210 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1211 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1213 had_do_reset(intelhaddata
);
1215 /* Get N value in KHz */
1216 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1218 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1220 dev_err(intelhaddata
->dev
,
1221 "programming N value failed %#x\n", retval
);
1225 if (intelhaddata
->dp_output
)
1226 link_rate
= intelhaddata
->link_rate
;
1228 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1229 n_param
, intelhaddata
);
1231 had_prog_dip(substream
, intelhaddata
);
1233 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1235 /* Prog buffer address */
1236 had_init_ringbuf(substream
, intelhaddata
);
1239 * Program channel mapping in following order:
1240 * FL, FR, C, LFE, RL, RR
1243 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1250 * ALSA PCM pointer callback
1252 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1254 struct snd_intelhad
*intelhaddata
;
1257 intelhaddata
= snd_pcm_substream_chip(substream
);
1259 if (!intelhaddata
->connected
)
1260 return SNDRV_PCM_POS_XRUN
;
1262 len
= had_process_ringbuf(substream
, intelhaddata
);
1264 return SNDRV_PCM_POS_XRUN
;
1265 len
= bytes_to_frames(substream
->runtime
, len
);
1266 /* wrapping may happen when periods=1 */
1267 len
%= substream
->runtime
->buffer_size
;
1272 * ALSA PCM mmap callback
1274 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1275 struct vm_area_struct
*vma
)
1277 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1278 return remap_pfn_range(vma
, vma
->vm_start
,
1279 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1280 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1286 static const struct snd_pcm_ops had_pcm_ops
= {
1287 .open
= had_pcm_open
,
1288 .close
= had_pcm_close
,
1289 .hw_params
= had_pcm_hw_params
,
1290 .hw_free
= had_pcm_hw_free
,
1291 .prepare
= had_pcm_prepare
,
1292 .trigger
= had_pcm_trigger
,
1293 .pointer
= had_pcm_pointer
,
1294 .mmap
= had_pcm_mmap
,
1297 /* process mode change of the running stream; called in mutex */
1298 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1300 struct snd_pcm_substream
*substream
;
1302 u32 disp_samp_freq
, n_param
;
1305 substream
= had_substream_get(intelhaddata
);
1310 had_enable_audio(intelhaddata
, false);
1312 /* Update CTS value */
1313 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1315 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1317 dev_err(intelhaddata
->dev
,
1318 "programming N value failed %#x\n", retval
);
1322 if (intelhaddata
->dp_output
)
1323 link_rate
= intelhaddata
->link_rate
;
1325 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1326 n_param
, intelhaddata
);
1329 had_enable_audio(intelhaddata
, true);
1332 had_substream_put(intelhaddata
);
1336 /* process hot plug, called from wq with mutex locked */
1337 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1339 struct snd_pcm_substream
*substream
;
1341 spin_lock_irq(&intelhaddata
->had_spinlock
);
1342 if (intelhaddata
->connected
) {
1343 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1344 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1349 had_enable_audio(intelhaddata
, false);
1351 intelhaddata
->connected
= true;
1352 dev_dbg(intelhaddata
->dev
,
1353 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1354 __func__
, __LINE__
);
1355 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1357 had_build_channel_allocation_map(intelhaddata
);
1359 /* Report to above ALSA layer */
1360 substream
= had_substream_get(intelhaddata
);
1362 snd_pcm_stop_xrun(substream
);
1363 had_substream_put(intelhaddata
);
1366 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1369 /* process hot unplug, called from wq with mutex locked */
1370 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1372 struct snd_pcm_substream
*substream
;
1374 spin_lock_irq(&intelhaddata
->had_spinlock
);
1375 if (!intelhaddata
->connected
) {
1376 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1377 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1383 had_enable_audio(intelhaddata
, false);
1385 intelhaddata
->connected
= false;
1386 dev_dbg(intelhaddata
->dev
,
1387 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1388 __func__
, __LINE__
);
1389 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1391 kfree(intelhaddata
->chmap
->chmap
);
1392 intelhaddata
->chmap
->chmap
= NULL
;
1394 /* Report to above ALSA layer */
1395 substream
= had_substream_get(intelhaddata
);
1397 snd_pcm_stop_xrun(substream
);
1398 had_substream_put(intelhaddata
);
1401 snd_jack_report(intelhaddata
->jack
, 0);
1405 * ALSA iec958 and ELD controls
1408 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1409 struct snd_ctl_elem_info
*uinfo
)
1411 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1416 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1417 struct snd_ctl_elem_value
*ucontrol
)
1419 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1421 mutex_lock(&intelhaddata
->mutex
);
1422 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1423 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1424 ucontrol
->value
.iec958
.status
[2] =
1425 (intelhaddata
->aes_bits
>> 16) & 0xff;
1426 ucontrol
->value
.iec958
.status
[3] =
1427 (intelhaddata
->aes_bits
>> 24) & 0xff;
1428 mutex_unlock(&intelhaddata
->mutex
);
1432 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1433 struct snd_ctl_elem_value
*ucontrol
)
1435 ucontrol
->value
.iec958
.status
[0] = 0xff;
1436 ucontrol
->value
.iec958
.status
[1] = 0xff;
1437 ucontrol
->value
.iec958
.status
[2] = 0xff;
1438 ucontrol
->value
.iec958
.status
[3] = 0xff;
1442 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1443 struct snd_ctl_elem_value
*ucontrol
)
1446 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1449 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1450 (ucontrol
->value
.iec958
.status
[1] << 8) |
1451 (ucontrol
->value
.iec958
.status
[2] << 16) |
1452 (ucontrol
->value
.iec958
.status
[3] << 24);
1453 mutex_lock(&intelhaddata
->mutex
);
1454 if (intelhaddata
->aes_bits
!= val
) {
1455 intelhaddata
->aes_bits
= val
;
1458 mutex_unlock(&intelhaddata
->mutex
);
1462 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1463 struct snd_ctl_elem_info
*uinfo
)
1465 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1466 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1470 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1471 struct snd_ctl_elem_value
*ucontrol
)
1473 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1475 mutex_lock(&intelhaddata
->mutex
);
1476 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1477 HDMI_MAX_ELD_BYTES
);
1478 mutex_unlock(&intelhaddata
->mutex
);
1482 static const struct snd_kcontrol_new had_controls
[] = {
1484 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1485 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1486 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1487 .info
= had_iec958_info
, /* shared */
1488 .get
= had_iec958_mask_get
,
1491 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1492 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1493 .info
= had_iec958_info
,
1494 .get
= had_iec958_get
,
1495 .put
= had_iec958_put
,
1498 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1499 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1500 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1502 .info
= had_ctl_eld_info
,
1503 .get
= had_ctl_eld_get
,
1508 * audio interrupt handler
1510 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1512 struct snd_intelhad_card
*card_ctx
= dev_id
;
1513 u32 audio_stat
[3] = {};
1516 for_each_pipe(card_ctx
, pipe
) {
1517 /* use raw register access to ack IRQs even while disconnected */
1518 audio_stat
[pipe
] = had_read_register_raw(card_ctx
, pipe
,
1520 (HDMI_AUDIO_UNDERRUN
| HDMI_AUDIO_BUFFER_DONE
);
1522 if (audio_stat
[pipe
])
1523 had_write_register_raw(card_ctx
, pipe
,
1524 AUD_HDMI_STATUS
, audio_stat
[pipe
]);
1527 for_each_port(card_ctx
, port
) {
1528 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1529 int pipe
= ctx
->pipe
;
1534 if (audio_stat
[pipe
] & HDMI_AUDIO_BUFFER_DONE
)
1535 had_process_buffer_done(ctx
);
1536 if (audio_stat
[pipe
] & HDMI_AUDIO_UNDERRUN
)
1537 had_process_buffer_underrun(ctx
);
1544 * monitor plug/unplug notification from i915; just kick off the work
1546 static void notify_audio_lpe(struct platform_device
*pdev
, int port
)
1548 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1549 struct snd_intelhad
*ctx
;
1551 ctx
= &card_ctx
->pcm_ctx
[single_port
? 0 : port
];
1555 schedule_work(&ctx
->hdmi_audio_wq
);
1558 /* the work to handle monitor hot plug/unplug */
1559 static void had_audio_wq(struct work_struct
*work
)
1561 struct snd_intelhad
*ctx
=
1562 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1563 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1564 struct intel_hdmi_lpe_audio_port_pdata
*ppdata
= &pdata
->port
[ctx
->port
];
1566 pm_runtime_get_sync(ctx
->dev
);
1567 mutex_lock(&ctx
->mutex
);
1568 if (ppdata
->pipe
< 0) {
1569 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1570 __func__
, ctx
->port
);
1572 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1574 ctx
->dp_output
= false;
1575 ctx
->tmds_clock_speed
= 0;
1578 /* Shut down the stream */
1579 had_process_hot_unplug(ctx
);
1583 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1584 __func__
, ctx
->port
, ppdata
->ls_clock
);
1586 memcpy(ctx
->eld
, ppdata
->eld
, sizeof(ctx
->eld
));
1588 ctx
->dp_output
= ppdata
->dp_output
;
1589 if (ctx
->dp_output
) {
1590 ctx
->tmds_clock_speed
= 0;
1591 ctx
->link_rate
= ppdata
->ls_clock
;
1593 ctx
->tmds_clock_speed
= ppdata
->ls_clock
;
1598 * Shut down the stream before we change
1599 * the pipe assignment for this pcm device
1601 had_process_hot_plug(ctx
);
1603 ctx
->pipe
= ppdata
->pipe
;
1605 /* Restart the stream if necessary */
1606 had_process_mode_change(ctx
);
1609 mutex_unlock(&ctx
->mutex
);
1610 pm_runtime_mark_last_busy(ctx
->dev
);
1611 pm_runtime_put_autosuspend(ctx
->dev
);
1617 static int had_create_jack(struct snd_intelhad
*ctx
,
1618 struct snd_pcm
*pcm
)
1623 snprintf(hdmi_str
, sizeof(hdmi_str
),
1624 "HDMI/DP,pcm=%d", pcm
->device
);
1626 err
= snd_jack_new(ctx
->card_ctx
->card
, hdmi_str
,
1627 SND_JACK_AVOUT
, &ctx
->jack
,
1631 ctx
->jack
->private_data
= ctx
;
1639 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1641 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1643 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1648 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1650 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1652 pm_runtime_mark_last_busy(dev
);
1654 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D0
);
1659 /* release resources */
1660 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1662 struct snd_intelhad_card
*card_ctx
= card
->private_data
;
1663 struct intel_hdmi_lpe_audio_pdata
*pdata
= card_ctx
->dev
->platform_data
;
1666 spin_lock_irq(&pdata
->lpe_audio_slock
);
1667 pdata
->notify_audio_lpe
= NULL
;
1668 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1670 for_each_port(card_ctx
, port
) {
1671 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1673 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1676 if (card_ctx
->mmio_start
)
1677 iounmap(card_ctx
->mmio_start
);
1678 if (card_ctx
->irq
>= 0)
1679 free_irq(card_ctx
->irq
, card_ctx
);
1683 * hdmi_lpe_audio_probe - start bridge with i915
1685 * This function is called when the i915 driver creates the
1686 * hdmi-lpe-audio platform device.
1688 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1690 struct snd_card
*card
;
1691 struct snd_intelhad_card
*card_ctx
;
1692 struct snd_intelhad
*ctx
;
1693 struct snd_pcm
*pcm
;
1694 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1696 struct resource
*res_mmio
;
1699 pdata
= pdev
->dev
.platform_data
;
1701 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1706 irq
= platform_get_irq(pdev
, 0);
1710 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1712 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1716 /* create a card instance with ALSA framework */
1717 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1718 THIS_MODULE
, sizeof(*card_ctx
), &card
);
1722 card_ctx
= card
->private_data
;
1723 card_ctx
->dev
= &pdev
->dev
;
1724 card_ctx
->card
= card
;
1725 strcpy(card
->driver
, INTEL_HAD
);
1726 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1727 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1731 card
->private_free
= hdmi_lpe_audio_free
;
1733 platform_set_drvdata(pdev
, card_ctx
);
1735 card_ctx
->num_pipes
= pdata
->num_pipes
;
1736 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1738 for_each_port(card_ctx
, port
) {
1739 ctx
= &card_ctx
->pcm_ctx
[port
];
1740 ctx
->card_ctx
= card_ctx
;
1741 ctx
->dev
= card_ctx
->dev
;
1742 ctx
->port
= single_port
? -1 : port
;
1745 spin_lock_init(&ctx
->had_spinlock
);
1746 mutex_init(&ctx
->mutex
);
1747 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1750 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1751 __func__
, (unsigned int)res_mmio
->start
,
1752 (unsigned int)res_mmio
->end
);
1754 card_ctx
->mmio_start
= ioremap(res_mmio
->start
,
1755 (size_t)(resource_size(res_mmio
)));
1756 if (!card_ctx
->mmio_start
) {
1757 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1762 /* setup interrupt handler */
1763 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1764 pdev
->name
, card_ctx
);
1766 dev_err(&pdev
->dev
, "request_irq failed\n");
1770 card_ctx
->irq
= irq
;
1772 /* only 32bit addressable */
1773 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1774 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1776 init_channel_allocations();
1778 card_ctx
->num_pipes
= pdata
->num_pipes
;
1779 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1781 for_each_port(card_ctx
, port
) {
1784 ctx
= &card_ctx
->pcm_ctx
[port
];
1785 ret
= snd_pcm_new(card
, INTEL_HAD
, port
, MAX_PB_STREAMS
,
1786 MAX_CAP_STREAMS
, &pcm
);
1790 /* setup private data which can be retrieved when required */
1791 pcm
->private_data
= ctx
;
1792 pcm
->info_flags
= 0;
1793 strlcpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1794 /* setup the ops for playabck */
1795 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1797 /* allocate dma pages;
1798 * try to allocate 600k buffer as default which is large enough
1800 snd_pcm_set_managed_buffer_all(pcm
, SNDRV_DMA_TYPE_DEV_UC
,
1801 card
->dev
, HAD_DEFAULT_BUFFER
,
1804 /* create controls */
1805 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1806 struct snd_kcontrol
*kctl
;
1808 kctl
= snd_ctl_new1(&had_controls
[i
], ctx
);
1814 kctl
->id
.device
= pcm
->device
;
1816 ret
= snd_ctl_add(card
, kctl
);
1821 /* Register channel map controls */
1822 ret
= had_register_chmap_ctls(ctx
, pcm
);
1826 ret
= had_create_jack(ctx
, pcm
);
1831 ret
= snd_card_register(card
);
1835 spin_lock_irq(&pdata
->lpe_audio_slock
);
1836 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1837 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1839 pm_runtime_use_autosuspend(&pdev
->dev
);
1840 pm_runtime_mark_last_busy(&pdev
->dev
);
1842 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1843 for_each_port(card_ctx
, port
) {
1844 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1846 schedule_work(&ctx
->hdmi_audio_wq
);
1852 snd_card_free(card
);
1857 * hdmi_lpe_audio_remove - stop bridge with i915
1859 * This function is called when the platform device is destroyed.
1861 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1863 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1865 snd_card_free(card_ctx
->card
);
1869 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1870 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1873 static struct platform_driver hdmi_lpe_audio_driver
= {
1875 .name
= "hdmi-lpe-audio",
1876 .pm
= &hdmi_lpe_audio_pm
,
1878 .probe
= hdmi_lpe_audio_probe
,
1879 .remove
= hdmi_lpe_audio_remove
,
1882 module_platform_driver(hdmi_lpe_audio_driver
);
1883 MODULE_ALIAS("platform:hdmi_lpe_audio");
1885 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1886 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1887 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1888 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1889 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1890 MODULE_LICENSE("GPL v2");
1891 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");