WIP FPC-III support
[linux/fpc-iii.git] / tools / lib / bpf / bpf_core_read.h
blobbbcefb3ff5a572fa7ed5c0ff44b23d0e364bca2c
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_CORE_READ_H__
3 #define __BPF_CORE_READ_H__
5 /*
6 * enum bpf_field_info_kind is passed as a second argument into
7 * __builtin_preserve_field_info() built-in to get a specific aspect of
8 * a field, captured as a first argument. __builtin_preserve_field_info(field,
9 * info_kind) returns __u32 integer and produces BTF field relocation, which
10 * is understood and processed by libbpf during BPF object loading. See
11 * selftests/bpf for examples.
13 enum bpf_field_info_kind {
14 BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */
15 BPF_FIELD_BYTE_SIZE = 1,
16 BPF_FIELD_EXISTS = 2, /* field existence in target kernel */
17 BPF_FIELD_SIGNED = 3,
18 BPF_FIELD_LSHIFT_U64 = 4,
19 BPF_FIELD_RSHIFT_U64 = 5,
22 /* second argument to __builtin_btf_type_id() built-in */
23 enum bpf_type_id_kind {
24 BPF_TYPE_ID_LOCAL = 0, /* BTF type ID in local program */
25 BPF_TYPE_ID_TARGET = 1, /* BTF type ID in target kernel */
28 /* second argument to __builtin_preserve_type_info() built-in */
29 enum bpf_type_info_kind {
30 BPF_TYPE_EXISTS = 0, /* type existence in target kernel */
31 BPF_TYPE_SIZE = 1, /* type size in target kernel */
34 /* second argument to __builtin_preserve_enum_value() built-in */
35 enum bpf_enum_value_kind {
36 BPF_ENUMVAL_EXISTS = 0, /* enum value existence in kernel */
37 BPF_ENUMVAL_VALUE = 1, /* enum value value relocation */
40 #define __CORE_RELO(src, field, info) \
41 __builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
43 #if __BYTE_ORDER == __LITTLE_ENDIAN
44 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
45 bpf_probe_read_kernel( \
46 (void *)dst, \
47 __CORE_RELO(src, fld, BYTE_SIZE), \
48 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
49 #else
50 /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
51 * for big-endian we need to adjust destination pointer accordingly, based on
52 * field byte size
54 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
55 bpf_probe_read_kernel( \
56 (void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
57 __CORE_RELO(src, fld, BYTE_SIZE), \
58 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
59 #endif
62 * Extract bitfield, identified by s->field, and return its value as u64.
63 * All this is done in relocatable manner, so bitfield changes such as
64 * signedness, bit size, offset changes, this will be handled automatically.
65 * This version of macro is using bpf_probe_read_kernel() to read underlying
66 * integer storage. Macro functions as an expression and its return type is
67 * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
69 #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \
70 unsigned long long val = 0; \
72 __CORE_BITFIELD_PROBE_READ(&val, s, field); \
73 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
74 if (__CORE_RELO(s, field, SIGNED)) \
75 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
76 else \
77 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
78 val; \
82 * Extract bitfield, identified by s->field, and return its value as u64.
83 * This version of macro is using direct memory reads and should be used from
84 * BPF program types that support such functionality (e.g., typed raw
85 * tracepoints).
87 #define BPF_CORE_READ_BITFIELD(s, field) ({ \
88 const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
89 unsigned long long val; \
91 switch (__CORE_RELO(s, field, BYTE_SIZE)) { \
92 case 1: val = *(const unsigned char *)p; \
93 case 2: val = *(const unsigned short *)p; \
94 case 4: val = *(const unsigned int *)p; \
95 case 8: val = *(const unsigned long long *)p; \
96 } \
97 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
98 if (__CORE_RELO(s, field, SIGNED)) \
99 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
100 else \
101 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
102 val; \
106 * Convenience macro to check that field actually exists in target kernel's.
107 * Returns:
108 * 1, if matching field is present in target kernel;
109 * 0, if no matching field found.
111 #define bpf_core_field_exists(field) \
112 __builtin_preserve_field_info(field, BPF_FIELD_EXISTS)
115 * Convenience macro to get the byte size of a field. Works for integers,
116 * struct/unions, pointers, arrays, and enums.
118 #define bpf_core_field_size(field) \
119 __builtin_preserve_field_info(field, BPF_FIELD_BYTE_SIZE)
122 * Convenience macro to get BTF type ID of a specified type, using a local BTF
123 * information. Return 32-bit unsigned integer with type ID from program's own
124 * BTF. Always succeeds.
126 #define bpf_core_type_id_local(type) \
127 __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
130 * Convenience macro to get BTF type ID of a target kernel's type that matches
131 * specified local type.
132 * Returns:
133 * - valid 32-bit unsigned type ID in kernel BTF;
134 * - 0, if no matching type was found in a target kernel BTF.
136 #define bpf_core_type_id_kernel(type) \
137 __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
140 * Convenience macro to check that provided named type
141 * (struct/union/enum/typedef) exists in a target kernel.
142 * Returns:
143 * 1, if such type is present in target kernel's BTF;
144 * 0, if no matching type is found.
146 #define bpf_core_type_exists(type) \
147 __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
150 * Convenience macro to get the byte size of a provided named type
151 * (struct/union/enum/typedef) in a target kernel.
152 * Returns:
153 * >= 0 size (in bytes), if type is present in target kernel's BTF;
154 * 0, if no matching type is found.
156 #define bpf_core_type_size(type) \
157 __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
160 * Convenience macro to check that provided enumerator value is defined in
161 * a target kernel.
162 * Returns:
163 * 1, if specified enum type and its enumerator value are present in target
164 * kernel's BTF;
165 * 0, if no matching enum and/or enum value within that enum is found.
167 #define bpf_core_enum_value_exists(enum_type, enum_value) \
168 __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
171 * Convenience macro to get the integer value of an enumerator value in
172 * a target kernel.
173 * Returns:
174 * 64-bit value, if specified enum type and its enumerator value are
175 * present in target kernel's BTF;
176 * 0, if no matching enum and/or enum value within that enum is found.
178 #define bpf_core_enum_value(enum_type, enum_value) \
179 __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
182 * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
183 * offset relocation for source address using __builtin_preserve_access_index()
184 * built-in, provided by Clang.
186 * __builtin_preserve_access_index() takes as an argument an expression of
187 * taking an address of a field within struct/union. It makes compiler emit
188 * a relocation, which records BTF type ID describing root struct/union and an
189 * accessor string which describes exact embedded field that was used to take
190 * an address. See detailed description of this relocation format and
191 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
193 * This relocation allows libbpf to adjust BPF instruction to use correct
194 * actual field offset, based on target kernel BTF type that matches original
195 * (local) BTF, used to record relocation.
197 #define bpf_core_read(dst, sz, src) \
198 bpf_probe_read_kernel(dst, sz, \
199 (const void *)__builtin_preserve_access_index(src))
202 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
203 * additionally emitting BPF CO-RE field relocation for specified source
204 * argument.
206 #define bpf_core_read_str(dst, sz, src) \
207 bpf_probe_read_kernel_str(dst, sz, \
208 (const void *)__builtin_preserve_access_index(src))
210 #define ___concat(a, b) a ## b
211 #define ___apply(fn, n) ___concat(fn, n)
212 #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
215 * return number of provided arguments; used for switch-based variadic macro
216 * definitions (see ___last, ___arrow, etc below)
218 #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
220 * return 0 if no arguments are passed, N - otherwise; used for
221 * recursively-defined macros to specify termination (0) case, and generic
222 * (N) case (e.g., ___read_ptrs, ___core_read)
224 #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
226 #define ___last1(x) x
227 #define ___last2(a, x) x
228 #define ___last3(a, b, x) x
229 #define ___last4(a, b, c, x) x
230 #define ___last5(a, b, c, d, x) x
231 #define ___last6(a, b, c, d, e, x) x
232 #define ___last7(a, b, c, d, e, f, x) x
233 #define ___last8(a, b, c, d, e, f, g, x) x
234 #define ___last9(a, b, c, d, e, f, g, h, x) x
235 #define ___last10(a, b, c, d, e, f, g, h, i, x) x
236 #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
238 #define ___nolast2(a, _) a
239 #define ___nolast3(a, b, _) a, b
240 #define ___nolast4(a, b, c, _) a, b, c
241 #define ___nolast5(a, b, c, d, _) a, b, c, d
242 #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
243 #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
244 #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
245 #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
246 #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
247 #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
249 #define ___arrow1(a) a
250 #define ___arrow2(a, b) a->b
251 #define ___arrow3(a, b, c) a->b->c
252 #define ___arrow4(a, b, c, d) a->b->c->d
253 #define ___arrow5(a, b, c, d, e) a->b->c->d->e
254 #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
255 #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
256 #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
257 #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
258 #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
259 #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
261 #define ___type(...) typeof(___arrow(__VA_ARGS__))
263 #define ___read(read_fn, dst, src_type, src, accessor) \
264 read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
266 /* "recursively" read a sequence of inner pointers using local __t var */
267 #define ___rd_first(src, a) ___read(bpf_core_read, &__t, ___type(src), src, a);
268 #define ___rd_last(...) \
269 ___read(bpf_core_read, &__t, \
270 ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
271 #define ___rd_p1(...) const void *__t; ___rd_first(__VA_ARGS__)
272 #define ___rd_p2(...) ___rd_p1(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
273 #define ___rd_p3(...) ___rd_p2(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
274 #define ___rd_p4(...) ___rd_p3(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
275 #define ___rd_p5(...) ___rd_p4(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
276 #define ___rd_p6(...) ___rd_p5(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
277 #define ___rd_p7(...) ___rd_p6(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
278 #define ___rd_p8(...) ___rd_p7(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
279 #define ___rd_p9(...) ___rd_p8(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
280 #define ___read_ptrs(src, ...) \
281 ___apply(___rd_p, ___narg(__VA_ARGS__))(src, __VA_ARGS__)
283 #define ___core_read0(fn, dst, src, a) \
284 ___read(fn, dst, ___type(src), src, a);
285 #define ___core_readN(fn, dst, src, ...) \
286 ___read_ptrs(src, ___nolast(__VA_ARGS__)) \
287 ___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \
288 ___last(__VA_ARGS__));
289 #define ___core_read(fn, dst, src, a, ...) \
290 ___apply(___core_read, ___empty(__VA_ARGS__))(fn, dst, \
291 src, a, ##__VA_ARGS__)
294 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
295 * BPF_CORE_READ(), in which final field is read into user-provided storage.
296 * See BPF_CORE_READ() below for more details on general usage.
298 #define BPF_CORE_READ_INTO(dst, src, a, ...) \
299 ({ \
300 ___core_read(bpf_core_read, dst, (src), a, ##__VA_ARGS__) \
304 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
305 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
306 * corresponding error code) bpf_core_read_str() for final string read.
308 #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) \
309 ({ \
310 ___core_read(bpf_core_read_str, dst, (src), a, ##__VA_ARGS__)\
314 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
315 * when there are few pointer chasing steps.
316 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
317 * int x = s->a.b.c->d.e->f->g;
318 * can be succinctly achieved using BPF_CORE_READ as:
319 * int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
321 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
322 * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
323 * equivalent to:
324 * 1. const void *__t = s->a.b.c;
325 * 2. __t = __t->d.e;
326 * 3. __t = __t->f;
327 * 4. return __t->g;
329 * Equivalence is logical, because there is a heavy type casting/preservation
330 * involved, as well as all the reads are happening through
331 * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
332 * emit CO-RE relocations.
334 * N.B. Only up to 9 "field accessors" are supported, which should be more
335 * than enough for any practical purpose.
337 #define BPF_CORE_READ(src, a, ...) \
338 ({ \
339 ___type((src), a, ##__VA_ARGS__) __r; \
340 BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \
341 __r; \
344 #endif