1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
4 * BTF-to-C type converter.
6 * Copyright (c) 2019 Facebook
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include <linux/kernel.h>
20 #include "libbpf_internal.h"
22 static const char PREFIXES
[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
23 static const size_t PREFIX_CNT
= sizeof(PREFIXES
) - 1;
25 static const char *pfx(int lvl
)
27 return lvl
>= PREFIX_CNT
? PREFIXES
: &PREFIXES
[PREFIX_CNT
- lvl
];
30 enum btf_dump_type_order_state
{
36 enum btf_dump_type_emit_state
{
42 /* per-type auxiliary state */
43 struct btf_dump_type_aux_state
{
44 /* topological sorting state */
45 enum btf_dump_type_order_state order_state
: 2;
46 /* emitting state used to determine the need for forward declaration */
47 enum btf_dump_type_emit_state emit_state
: 2;
48 /* whether forward declaration was already emitted */
50 /* whether unique non-duplicate name was already assigned */
51 __u8 name_resolved
: 1;
52 /* whether type is referenced from any other type */
57 const struct btf
*btf
;
58 const struct btf_ext
*btf_ext
;
59 btf_dump_printf_fn_t printf_fn
;
60 struct btf_dump_opts opts
;
65 /* per-type auxiliary state */
66 struct btf_dump_type_aux_state
*type_states
;
67 size_t type_states_cap
;
68 /* per-type optional cached unique name, must be freed, if present */
69 const char **cached_names
;
70 size_t cached_names_cap
;
72 /* topo-sorted list of dependent type definitions */
78 * stack of type declarations (e.g., chain of modifiers, arrays,
85 /* maps struct/union/enum name to a number of name occurrences */
86 struct hashmap
*type_names
;
88 * maps typedef identifiers and enum value names to a number of such
91 struct hashmap
*ident_names
;
94 static size_t str_hash_fn(const void *key
, void *ctx
)
99 static bool str_equal_fn(const void *a
, const void *b
, void *ctx
)
101 return strcmp(a
, b
) == 0;
104 static const char *btf_name_of(const struct btf_dump
*d
, __u32 name_off
)
106 return btf__name_by_offset(d
->btf
, name_off
);
109 static void btf_dump_printf(const struct btf_dump
*d
, const char *fmt
, ...)
114 d
->printf_fn(d
->opts
.ctx
, fmt
, args
);
118 static int btf_dump_mark_referenced(struct btf_dump
*d
);
119 static int btf_dump_resize(struct btf_dump
*d
);
121 struct btf_dump
*btf_dump__new(const struct btf
*btf
,
122 const struct btf_ext
*btf_ext
,
123 const struct btf_dump_opts
*opts
,
124 btf_dump_printf_fn_t printf_fn
)
129 d
= calloc(1, sizeof(struct btf_dump
));
131 return ERR_PTR(-ENOMEM
);
134 d
->btf_ext
= btf_ext
;
135 d
->printf_fn
= printf_fn
;
136 d
->opts
.ctx
= opts
? opts
->ctx
: NULL
;
137 d
->ptr_sz
= btf__pointer_size(btf
) ? : sizeof(void *);
139 d
->type_names
= hashmap__new(str_hash_fn
, str_equal_fn
, NULL
);
140 if (IS_ERR(d
->type_names
)) {
141 err
= PTR_ERR(d
->type_names
);
142 d
->type_names
= NULL
;
145 d
->ident_names
= hashmap__new(str_hash_fn
, str_equal_fn
, NULL
);
146 if (IS_ERR(d
->ident_names
)) {
147 err
= PTR_ERR(d
->ident_names
);
148 d
->ident_names
= NULL
;
152 err
= btf_dump_resize(d
);
162 static int btf_dump_resize(struct btf_dump
*d
)
164 int err
, last_id
= btf__get_nr_types(d
->btf
);
166 if (last_id
<= d
->last_id
)
169 if (btf_ensure_mem((void **)&d
->type_states
, &d
->type_states_cap
,
170 sizeof(*d
->type_states
), last_id
+ 1))
172 if (btf_ensure_mem((void **)&d
->cached_names
, &d
->cached_names_cap
,
173 sizeof(*d
->cached_names
), last_id
+ 1))
176 if (d
->last_id
== 0) {
177 /* VOID is special */
178 d
->type_states
[0].order_state
= ORDERED
;
179 d
->type_states
[0].emit_state
= EMITTED
;
182 /* eagerly determine referenced types for anon enums */
183 err
= btf_dump_mark_referenced(d
);
187 d
->last_id
= last_id
;
191 void btf_dump__free(struct btf_dump
*d
)
195 if (IS_ERR_OR_NULL(d
))
198 free(d
->type_states
);
199 if (d
->cached_names
) {
200 /* any set cached name is owned by us and should be freed */
201 for (i
= 0; i
<= d
->last_id
; i
++) {
202 if (d
->cached_names
[i
])
203 free((void *)d
->cached_names
[i
]);
206 free(d
->cached_names
);
209 hashmap__free(d
->type_names
);
210 hashmap__free(d
->ident_names
);
215 static int btf_dump_order_type(struct btf_dump
*d
, __u32 id
, bool through_ptr
);
216 static void btf_dump_emit_type(struct btf_dump
*d
, __u32 id
, __u32 cont_id
);
219 * Dump BTF type in a compilable C syntax, including all the necessary
220 * dependent types, necessary for compilation. If some of the dependent types
221 * were already emitted as part of previous btf_dump__dump_type() invocation
222 * for another type, they won't be emitted again. This API allows callers to
223 * filter out BTF types according to user-defined criterias and emitted only
224 * minimal subset of types, necessary to compile everything. Full struct/union
225 * definitions will still be emitted, even if the only usage is through
226 * pointer and could be satisfied with just a forward declaration.
228 * Dumping is done in two high-level passes:
229 * 1. Topologically sort type definitions to satisfy C rules of compilation.
230 * 2. Emit type definitions in C syntax.
232 * Returns 0 on success; <0, otherwise.
234 int btf_dump__dump_type(struct btf_dump
*d
, __u32 id
)
238 if (id
> btf__get_nr_types(d
->btf
))
241 err
= btf_dump_resize(d
);
245 d
->emit_queue_cnt
= 0;
246 err
= btf_dump_order_type(d
, id
, false);
250 for (i
= 0; i
< d
->emit_queue_cnt
; i
++)
251 btf_dump_emit_type(d
, d
->emit_queue
[i
], 0 /*top-level*/);
257 * Mark all types that are referenced from any other type. This is used to
258 * determine top-level anonymous enums that need to be emitted as an
259 * independent type declarations.
260 * Anonymous enums come in two flavors: either embedded in a struct's field
261 * definition, in which case they have to be declared inline as part of field
262 * type declaration; or as a top-level anonymous enum, typically used for
263 * declaring global constants. It's impossible to distinguish between two
264 * without knowning whether given enum type was referenced from other type:
265 * top-level anonymous enum won't be referenced by anything, while embedded
268 static int btf_dump_mark_referenced(struct btf_dump
*d
)
270 int i
, j
, n
= btf__get_nr_types(d
->btf
);
271 const struct btf_type
*t
;
274 for (i
= d
->last_id
+ 1; i
<= n
; i
++) {
275 t
= btf__type_by_id(d
->btf
, i
);
278 switch (btf_kind(t
)) {
284 case BTF_KIND_VOLATILE
:
286 case BTF_KIND_RESTRICT
:
288 case BTF_KIND_TYPEDEF
:
291 d
->type_states
[t
->type
].referenced
= 1;
294 case BTF_KIND_ARRAY
: {
295 const struct btf_array
*a
= btf_array(t
);
297 d
->type_states
[a
->index_type
].referenced
= 1;
298 d
->type_states
[a
->type
].referenced
= 1;
301 case BTF_KIND_STRUCT
:
302 case BTF_KIND_UNION
: {
303 const struct btf_member
*m
= btf_members(t
);
305 for (j
= 0; j
< vlen
; j
++, m
++)
306 d
->type_states
[m
->type
].referenced
= 1;
309 case BTF_KIND_FUNC_PROTO
: {
310 const struct btf_param
*p
= btf_params(t
);
312 for (j
= 0; j
< vlen
; j
++, p
++)
313 d
->type_states
[p
->type
].referenced
= 1;
316 case BTF_KIND_DATASEC
: {
317 const struct btf_var_secinfo
*v
= btf_var_secinfos(t
);
319 for (j
= 0; j
< vlen
; j
++, v
++)
320 d
->type_states
[v
->type
].referenced
= 1;
330 static int btf_dump_add_emit_queue_id(struct btf_dump
*d
, __u32 id
)
335 if (d
->emit_queue_cnt
>= d
->emit_queue_cap
) {
336 new_cap
= max(16, d
->emit_queue_cap
* 3 / 2);
337 new_queue
= libbpf_reallocarray(d
->emit_queue
, new_cap
, sizeof(new_queue
[0]));
340 d
->emit_queue
= new_queue
;
341 d
->emit_queue_cap
= new_cap
;
344 d
->emit_queue
[d
->emit_queue_cnt
++] = id
;
349 * Determine order of emitting dependent types and specified type to satisfy
350 * C compilation rules. This is done through topological sorting with an
351 * additional complication which comes from C rules. The main idea for C is
352 * that if some type is "embedded" into a struct/union, it's size needs to be
353 * known at the time of definition of containing type. E.g., for:
356 * struct B { struct A x; }
358 * struct A *HAS* to be defined before struct B, because it's "embedded",
359 * i.e., it is part of struct B layout. But in the following case:
362 * struct B { struct A *x; }
365 * it's enough to just have a forward declaration of struct A at the time of
366 * struct B definition, as struct B has a pointer to struct A, so the size of
367 * field x is known without knowing struct A size: it's sizeof(void *).
369 * Unfortunately, there are some trickier cases we need to handle, e.g.:
371 * struct A {}; // if this was forward-declaration: compilation error
373 * struct { // anonymous struct
378 * In this case, struct B's field x is a pointer, so it's size is known
379 * regardless of the size of (anonymous) struct it points to. But because this
380 * struct is anonymous and thus defined inline inside struct B, *and* it
381 * embeds struct A, compiler requires full definition of struct A to be known
382 * before struct B can be defined. This creates a transitive dependency
383 * between struct A and struct B. If struct A was forward-declared before
384 * struct B definition and fully defined after struct B definition, that would
385 * trigger compilation error.
387 * All this means that while we are doing topological sorting on BTF type
388 * graph, we need to determine relationships between different types (graph
390 * - weak link (relationship) between X and Y, if Y *CAN* be
391 * forward-declared at the point of X definition;
392 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
394 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
395 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
396 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
397 * Weak/strong relationship is determined recursively during DFS traversal and
398 * is returned as a result from btf_dump_order_type().
400 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
401 * but it is not guaranteeing that no extraneous forward declarations will be
404 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
405 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
406 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
407 * entire graph path, so depending where from one came to that BTF type, it
408 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
409 * once they are processed, there is no need to do it again, so they are
410 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
411 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
412 * in any case, once those are processed, no need to do it again, as the
413 * result won't change.
416 * - 1, if type is part of strong link (so there is strong topological
417 * ordering requirements);
418 * - 0, if type is part of weak link (so can be satisfied through forward
420 * - <0, on error (e.g., unsatisfiable type loop detected).
422 static int btf_dump_order_type(struct btf_dump
*d
, __u32 id
, bool through_ptr
)
425 * Order state is used to detect strong link cycles, but only for BTF
426 * kinds that are or could be an independent definition (i.e.,
427 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
428 * func_protos, modifiers are just means to get to these definitions.
429 * Int/void don't need definitions, they are assumed to be always
430 * properly defined. We also ignore datasec, var, and funcs for now.
431 * So for all non-defining kinds, we never even set ordering state,
432 * for defining kinds we set ORDERING and subsequently ORDERED if it
433 * forms a strong link.
435 struct btf_dump_type_aux_state
*tstate
= &d
->type_states
[id
];
436 const struct btf_type
*t
;
440 /* return true, letting typedefs know that it's ok to be emitted */
441 if (tstate
->order_state
== ORDERED
)
444 t
= btf__type_by_id(d
->btf
, id
);
446 if (tstate
->order_state
== ORDERING
) {
447 /* type loop, but resolvable through fwd declaration */
448 if (btf_is_composite(t
) && through_ptr
&& t
->name_off
!= 0)
450 pr_warn("unsatisfiable type cycle, id:[%u]\n", id
);
454 switch (btf_kind(t
)) {
456 tstate
->order_state
= ORDERED
;
460 err
= btf_dump_order_type(d
, t
->type
, true);
461 tstate
->order_state
= ORDERED
;
465 return btf_dump_order_type(d
, btf_array(t
)->type
, through_ptr
);
467 case BTF_KIND_STRUCT
:
468 case BTF_KIND_UNION
: {
469 const struct btf_member
*m
= btf_members(t
);
471 * struct/union is part of strong link, only if it's embedded
472 * (so no ptr in a path) or it's anonymous (so has to be
473 * defined inline, even if declared through ptr)
475 if (through_ptr
&& t
->name_off
!= 0)
478 tstate
->order_state
= ORDERING
;
481 for (i
= 0; i
< vlen
; i
++, m
++) {
482 err
= btf_dump_order_type(d
, m
->type
, false);
487 if (t
->name_off
!= 0) {
488 err
= btf_dump_add_emit_queue_id(d
, id
);
493 tstate
->order_state
= ORDERED
;
499 * non-anonymous or non-referenced enums are top-level
500 * declarations and should be emitted. Same logic can be
501 * applied to FWDs, it won't hurt anyways.
503 if (t
->name_off
!= 0 || !tstate
->referenced
) {
504 err
= btf_dump_add_emit_queue_id(d
, id
);
508 tstate
->order_state
= ORDERED
;
511 case BTF_KIND_TYPEDEF
: {
514 is_strong
= btf_dump_order_type(d
, t
->type
, through_ptr
);
518 /* typedef is similar to struct/union w.r.t. fwd-decls */
519 if (through_ptr
&& !is_strong
)
522 /* typedef is always a named definition */
523 err
= btf_dump_add_emit_queue_id(d
, id
);
527 d
->type_states
[id
].order_state
= ORDERED
;
530 case BTF_KIND_VOLATILE
:
532 case BTF_KIND_RESTRICT
:
533 return btf_dump_order_type(d
, t
->type
, through_ptr
);
535 case BTF_KIND_FUNC_PROTO
: {
536 const struct btf_param
*p
= btf_params(t
);
539 err
= btf_dump_order_type(d
, t
->type
, through_ptr
);
545 for (i
= 0; i
< vlen
; i
++, p
++) {
546 err
= btf_dump_order_type(d
, p
->type
, through_ptr
);
556 case BTF_KIND_DATASEC
:
557 d
->type_states
[id
].order_state
= ORDERED
;
565 static void btf_dump_emit_missing_aliases(struct btf_dump
*d
, __u32 id
,
566 const struct btf_type
*t
);
568 static void btf_dump_emit_struct_fwd(struct btf_dump
*d
, __u32 id
,
569 const struct btf_type
*t
);
570 static void btf_dump_emit_struct_def(struct btf_dump
*d
, __u32 id
,
571 const struct btf_type
*t
, int lvl
);
573 static void btf_dump_emit_enum_fwd(struct btf_dump
*d
, __u32 id
,
574 const struct btf_type
*t
);
575 static void btf_dump_emit_enum_def(struct btf_dump
*d
, __u32 id
,
576 const struct btf_type
*t
, int lvl
);
578 static void btf_dump_emit_fwd_def(struct btf_dump
*d
, __u32 id
,
579 const struct btf_type
*t
);
581 static void btf_dump_emit_typedef_def(struct btf_dump
*d
, __u32 id
,
582 const struct btf_type
*t
, int lvl
);
584 /* a local view into a shared stack */
590 static void btf_dump_emit_type_decl(struct btf_dump
*d
, __u32 id
,
591 const char *fname
, int lvl
);
592 static void btf_dump_emit_type_chain(struct btf_dump
*d
,
593 struct id_stack
*decl_stack
,
594 const char *fname
, int lvl
);
596 static const char *btf_dump_type_name(struct btf_dump
*d
, __u32 id
);
597 static const char *btf_dump_ident_name(struct btf_dump
*d
, __u32 id
);
598 static size_t btf_dump_name_dups(struct btf_dump
*d
, struct hashmap
*name_map
,
599 const char *orig_name
);
601 static bool btf_dump_is_blacklisted(struct btf_dump
*d
, __u32 id
)
603 const struct btf_type
*t
= btf__type_by_id(d
->btf
, id
);
605 /* __builtin_va_list is a compiler built-in, which causes compilation
606 * errors, when compiling w/ different compiler, then used to compile
607 * original code (e.g., GCC to compile kernel, Clang to use generated
608 * C header from BTF). As it is built-in, it should be already defined
609 * properly internally in compiler.
611 if (t
->name_off
== 0)
613 return strcmp(btf_name_of(d
, t
->name_off
), "__builtin_va_list") == 0;
617 * Emit C-syntax definitions of types from chains of BTF types.
619 * High-level handling of determining necessary forward declarations are handled
620 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
621 * declarations/definitions in C syntax are handled by a combo of
622 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
623 * corresponding btf_dump_emit_*_{def,fwd}() functions.
625 * We also keep track of "containing struct/union type ID" to determine when
626 * we reference it from inside and thus can avoid emitting unnecessary forward
629 * This algorithm is designed in such a way, that even if some error occurs
630 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
631 * that doesn't comply to C rules completely), algorithm will try to proceed
632 * and produce as much meaningful output as possible.
634 static void btf_dump_emit_type(struct btf_dump
*d
, __u32 id
, __u32 cont_id
)
636 struct btf_dump_type_aux_state
*tstate
= &d
->type_states
[id
];
637 bool top_level_def
= cont_id
== 0;
638 const struct btf_type
*t
;
641 if (tstate
->emit_state
== EMITTED
)
644 t
= btf__type_by_id(d
->btf
, id
);
647 if (tstate
->emit_state
== EMITTING
) {
648 if (tstate
->fwd_emitted
)
652 case BTF_KIND_STRUCT
:
655 * if we are referencing a struct/union that we are
656 * part of - then no need for fwd declaration
660 if (t
->name_off
== 0) {
661 pr_warn("anonymous struct/union loop, id:[%u]\n",
665 btf_dump_emit_struct_fwd(d
, id
, t
);
666 btf_dump_printf(d
, ";\n\n");
667 tstate
->fwd_emitted
= 1;
669 case BTF_KIND_TYPEDEF
:
671 * for typedef fwd_emitted means typedef definition
672 * was emitted, but it can be used only for "weak"
673 * references through pointer only, not for embedding
675 if (!btf_dump_is_blacklisted(d
, id
)) {
676 btf_dump_emit_typedef_def(d
, id
, t
, 0);
677 btf_dump_printf(d
, ";\n\n");
679 tstate
->fwd_emitted
= 1;
690 /* Emit type alias definitions if necessary */
691 btf_dump_emit_missing_aliases(d
, id
, t
);
693 tstate
->emit_state
= EMITTED
;
697 btf_dump_emit_enum_def(d
, id
, t
, 0);
698 btf_dump_printf(d
, ";\n\n");
700 tstate
->emit_state
= EMITTED
;
703 case BTF_KIND_VOLATILE
:
705 case BTF_KIND_RESTRICT
:
706 btf_dump_emit_type(d
, t
->type
, cont_id
);
709 btf_dump_emit_type(d
, btf_array(t
)->type
, cont_id
);
712 btf_dump_emit_fwd_def(d
, id
, t
);
713 btf_dump_printf(d
, ";\n\n");
714 tstate
->emit_state
= EMITTED
;
716 case BTF_KIND_TYPEDEF
:
717 tstate
->emit_state
= EMITTING
;
718 btf_dump_emit_type(d
, t
->type
, id
);
720 * typedef can server as both definition and forward
721 * declaration; at this stage someone depends on
722 * typedef as a forward declaration (refers to it
723 * through pointer), so unless we already did it,
724 * emit typedef as a forward declaration
726 if (!tstate
->fwd_emitted
&& !btf_dump_is_blacklisted(d
, id
)) {
727 btf_dump_emit_typedef_def(d
, id
, t
, 0);
728 btf_dump_printf(d
, ";\n\n");
730 tstate
->emit_state
= EMITTED
;
732 case BTF_KIND_STRUCT
:
734 tstate
->emit_state
= EMITTING
;
735 /* if it's a top-level struct/union definition or struct/union
736 * is anonymous, then in C we'll be emitting all fields and
737 * their types (as opposed to just `struct X`), so we need to
738 * make sure that all types, referenced from struct/union
739 * members have necessary forward-declarations, where
742 if (top_level_def
|| t
->name_off
== 0) {
743 const struct btf_member
*m
= btf_members(t
);
744 __u16 vlen
= btf_vlen(t
);
747 new_cont_id
= t
->name_off
== 0 ? cont_id
: id
;
748 for (i
= 0; i
< vlen
; i
++, m
++)
749 btf_dump_emit_type(d
, m
->type
, new_cont_id
);
750 } else if (!tstate
->fwd_emitted
&& id
!= cont_id
) {
751 btf_dump_emit_struct_fwd(d
, id
, t
);
752 btf_dump_printf(d
, ";\n\n");
753 tstate
->fwd_emitted
= 1;
757 btf_dump_emit_struct_def(d
, id
, t
, 0);
758 btf_dump_printf(d
, ";\n\n");
759 tstate
->emit_state
= EMITTED
;
761 tstate
->emit_state
= NOT_EMITTED
;
764 case BTF_KIND_FUNC_PROTO
: {
765 const struct btf_param
*p
= btf_params(t
);
766 __u16 vlen
= btf_vlen(t
);
769 btf_dump_emit_type(d
, t
->type
, cont_id
);
770 for (i
= 0; i
< vlen
; i
++, p
++)
771 btf_dump_emit_type(d
, p
->type
, cont_id
);
780 static bool btf_is_struct_packed(const struct btf
*btf
, __u32 id
,
781 const struct btf_type
*t
)
783 const struct btf_member
*m
;
784 int align
, i
, bit_sz
;
787 align
= btf__align_of(btf
, id
);
788 /* size of a non-packed struct has to be a multiple of its alignment*/
789 if (align
&& t
->size
% align
)
794 /* all non-bitfield fields have to be naturally aligned */
795 for (i
= 0; i
< vlen
; i
++, m
++) {
796 align
= btf__align_of(btf
, m
->type
);
797 bit_sz
= btf_member_bitfield_size(t
, i
);
798 if (align
&& bit_sz
== 0 && m
->offset
% (8 * align
) != 0)
803 * if original struct was marked as packed, but its layout is
804 * naturally aligned, we'll detect that it's not packed
809 static int chip_away_bits(int total
, int at_most
)
811 return total
% at_most
? : at_most
;
814 static void btf_dump_emit_bit_padding(const struct btf_dump
*d
,
815 int cur_off
, int m_off
, int m_bit_sz
,
818 int off_diff
= m_off
- cur_off
;
819 int ptr_bits
= d
->ptr_sz
* 8;
824 if (m_bit_sz
== 0 && off_diff
< align
* 8)
825 /* natural padding will take care of a gap */
828 while (off_diff
> 0) {
829 const char *pad_type
;
832 if (ptr_bits
> 32 && off_diff
> 32) {
834 pad_bits
= chip_away_bits(off_diff
, ptr_bits
);
835 } else if (off_diff
> 16) {
837 pad_bits
= chip_away_bits(off_diff
, 32);
838 } else if (off_diff
> 8) {
840 pad_bits
= chip_away_bits(off_diff
, 16);
843 pad_bits
= chip_away_bits(off_diff
, 8);
845 btf_dump_printf(d
, "\n%s%s: %d;", pfx(lvl
), pad_type
, pad_bits
);
846 off_diff
-= pad_bits
;
850 static void btf_dump_emit_struct_fwd(struct btf_dump
*d
, __u32 id
,
851 const struct btf_type
*t
)
853 btf_dump_printf(d
, "%s %s",
854 btf_is_struct(t
) ? "struct" : "union",
855 btf_dump_type_name(d
, id
));
858 static void btf_dump_emit_struct_def(struct btf_dump
*d
,
860 const struct btf_type
*t
,
863 const struct btf_member
*m
= btf_members(t
);
864 bool is_struct
= btf_is_struct(t
);
865 int align
, i
, packed
, off
= 0;
866 __u16 vlen
= btf_vlen(t
);
868 packed
= is_struct
? btf_is_struct_packed(d
->btf
, id
, t
) : 0;
870 btf_dump_printf(d
, "%s%s%s {",
871 is_struct
? "struct" : "union",
872 t
->name_off
? " " : "",
873 btf_dump_type_name(d
, id
));
875 for (i
= 0; i
< vlen
; i
++, m
++) {
879 fname
= btf_name_of(d
, m
->name_off
);
880 m_sz
= btf_member_bitfield_size(t
, i
);
881 m_off
= btf_member_bit_offset(t
, i
);
882 align
= packed
? 1 : btf__align_of(d
->btf
, m
->type
);
884 btf_dump_emit_bit_padding(d
, off
, m_off
, m_sz
, align
, lvl
+ 1);
885 btf_dump_printf(d
, "\n%s", pfx(lvl
+ 1));
886 btf_dump_emit_type_decl(d
, m
->type
, fname
, lvl
+ 1);
889 btf_dump_printf(d
, ": %d", m_sz
);
892 m_sz
= max((__s64
)0, btf__resolve_size(d
->btf
, m
->type
));
893 off
= m_off
+ m_sz
* 8;
895 btf_dump_printf(d
, ";");
898 /* pad at the end, if necessary */
900 align
= packed
? 1 : btf__align_of(d
->btf
, id
);
901 btf_dump_emit_bit_padding(d
, off
, t
->size
* 8, 0, align
,
906 btf_dump_printf(d
, "\n");
907 btf_dump_printf(d
, "%s}", pfx(lvl
));
909 btf_dump_printf(d
, " __attribute__((packed))");
912 static const char *missing_base_types
[][2] = {
914 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
915 * SIMD intrinsics. Alias them to standard base types.
917 { "__Poly8_t", "unsigned char" },
918 { "__Poly16_t", "unsigned short" },
919 { "__Poly64_t", "unsigned long long" },
920 { "__Poly128_t", "unsigned __int128" },
923 static void btf_dump_emit_missing_aliases(struct btf_dump
*d
, __u32 id
,
924 const struct btf_type
*t
)
926 const char *name
= btf_dump_type_name(d
, id
);
929 for (i
= 0; i
< ARRAY_SIZE(missing_base_types
); i
++) {
930 if (strcmp(name
, missing_base_types
[i
][0]) == 0) {
931 btf_dump_printf(d
, "typedef %s %s;\n\n",
932 missing_base_types
[i
][1], name
);
938 static void btf_dump_emit_enum_fwd(struct btf_dump
*d
, __u32 id
,
939 const struct btf_type
*t
)
941 btf_dump_printf(d
, "enum %s", btf_dump_type_name(d
, id
));
944 static void btf_dump_emit_enum_def(struct btf_dump
*d
, __u32 id
,
945 const struct btf_type
*t
,
948 const struct btf_enum
*v
= btf_enum(t
);
949 __u16 vlen
= btf_vlen(t
);
954 btf_dump_printf(d
, "enum%s%s",
955 t
->name_off
? " " : "",
956 btf_dump_type_name(d
, id
));
959 btf_dump_printf(d
, " {");
960 for (i
= 0; i
< vlen
; i
++, v
++) {
961 name
= btf_name_of(d
, v
->name_off
);
962 /* enumerators share namespace with typedef idents */
963 dup_cnt
= btf_dump_name_dups(d
, d
->ident_names
, name
);
965 btf_dump_printf(d
, "\n%s%s___%zu = %u,",
966 pfx(lvl
+ 1), name
, dup_cnt
,
969 btf_dump_printf(d
, "\n%s%s = %u,",
974 btf_dump_printf(d
, "\n%s}", pfx(lvl
));
978 static void btf_dump_emit_fwd_def(struct btf_dump
*d
, __u32 id
,
979 const struct btf_type
*t
)
981 const char *name
= btf_dump_type_name(d
, id
);
984 btf_dump_printf(d
, "union %s", name
);
986 btf_dump_printf(d
, "struct %s", name
);
989 static void btf_dump_emit_typedef_def(struct btf_dump
*d
, __u32 id
,
990 const struct btf_type
*t
, int lvl
)
992 const char *name
= btf_dump_ident_name(d
, id
);
995 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
996 * pointing to VOID. This generates warnings from btf_dump() and
997 * results in uncompilable header file, so we are fixing it up here
998 * with valid typedef into __builtin_va_list.
1000 if (t
->type
== 0 && strcmp(name
, "__gnuc_va_list") == 0) {
1001 btf_dump_printf(d
, "typedef __builtin_va_list __gnuc_va_list");
1005 btf_dump_printf(d
, "typedef ");
1006 btf_dump_emit_type_decl(d
, t
->type
, name
, lvl
);
1009 static int btf_dump_push_decl_stack_id(struct btf_dump
*d
, __u32 id
)
1014 if (d
->decl_stack_cnt
>= d
->decl_stack_cap
) {
1015 new_cap
= max(16, d
->decl_stack_cap
* 3 / 2);
1016 new_stack
= libbpf_reallocarray(d
->decl_stack
, new_cap
, sizeof(new_stack
[0]));
1019 d
->decl_stack
= new_stack
;
1020 d
->decl_stack_cap
= new_cap
;
1023 d
->decl_stack
[d
->decl_stack_cnt
++] = id
;
1029 * Emit type declaration (e.g., field type declaration in a struct or argument
1030 * declaration in function prototype) in correct C syntax.
1032 * For most types it's trivial, but there are few quirky type declaration
1033 * cases worth mentioning:
1034 * - function prototypes (especially nesting of function prototypes);
1036 * - const/volatile/restrict for pointers vs other types.
1038 * For a good discussion of *PARSING* C syntax (as a human), see
1039 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1040 * Ch.3 "Unscrambling Declarations in C".
1042 * It won't help with BTF to C conversion much, though, as it's an opposite
1043 * problem. So we came up with this algorithm in reverse to van der Linden's
1044 * parsing algorithm. It goes from structured BTF representation of type
1045 * declaration to a valid compilable C syntax.
1047 * For instance, consider this C typedef:
1048 * typedef const int * const * arr[10] arr_t;
1049 * It will be represented in BTF with this chain of BTF types:
1050 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1052 * Notice how [const] modifier always goes before type it modifies in BTF type
1053 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1054 * the right of pointers, but to the left of other types. There are also other
1055 * quirks, like function pointers, arrays of them, functions returning other
1058 * We handle that by pushing all the types to a stack, until we hit "terminal"
1059 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1060 * top of a stack, modifiers are handled differently. Array/function pointers
1061 * have also wildly different syntax and how nesting of them are done. See
1062 * code for authoritative definition.
1064 * To avoid allocating new stack for each independent chain of BTF types, we
1065 * share one bigger stack, with each chain working only on its own local view
1066 * of a stack frame. Some care is required to "pop" stack frames after
1067 * processing type declaration chain.
1069 int btf_dump__emit_type_decl(struct btf_dump
*d
, __u32 id
,
1070 const struct btf_dump_emit_type_decl_opts
*opts
)
1075 if (!OPTS_VALID(opts
, btf_dump_emit_type_decl_opts
))
1078 err
= btf_dump_resize(d
);
1082 fname
= OPTS_GET(opts
, field_name
, "");
1083 lvl
= OPTS_GET(opts
, indent_level
, 0);
1084 d
->strip_mods
= OPTS_GET(opts
, strip_mods
, false);
1085 btf_dump_emit_type_decl(d
, id
, fname
, lvl
);
1086 d
->strip_mods
= false;
1090 static void btf_dump_emit_type_decl(struct btf_dump
*d
, __u32 id
,
1091 const char *fname
, int lvl
)
1093 struct id_stack decl_stack
;
1094 const struct btf_type
*t
;
1095 int err
, stack_start
;
1097 stack_start
= d
->decl_stack_cnt
;
1099 t
= btf__type_by_id(d
->btf
, id
);
1100 if (d
->strip_mods
&& btf_is_mod(t
))
1103 err
= btf_dump_push_decl_stack_id(d
, id
);
1106 * if we don't have enough memory for entire type decl
1107 * chain, restore stack, emit warning, and try to
1108 * proceed nevertheless
1110 pr_warn("not enough memory for decl stack:%d", err
);
1111 d
->decl_stack_cnt
= stack_start
;
1119 switch (btf_kind(t
)) {
1121 case BTF_KIND_VOLATILE
:
1122 case BTF_KIND_CONST
:
1123 case BTF_KIND_RESTRICT
:
1124 case BTF_KIND_FUNC_PROTO
:
1127 case BTF_KIND_ARRAY
:
1128 id
= btf_array(t
)->type
;
1133 case BTF_KIND_STRUCT
:
1134 case BTF_KIND_UNION
:
1135 case BTF_KIND_TYPEDEF
:
1138 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1145 * We might be inside a chain of declarations (e.g., array of function
1146 * pointers returning anonymous (so inlined) structs, having another
1147 * array field). Each of those needs its own "stack frame" to handle
1148 * emitting of declarations. Those stack frames are non-overlapping
1149 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1150 * handle this set of nested stacks, we create a view corresponding to
1151 * our own "stack frame" and work with it as an independent stack.
1152 * We'll need to clean up after emit_type_chain() returns, though.
1154 decl_stack
.ids
= d
->decl_stack
+ stack_start
;
1155 decl_stack
.cnt
= d
->decl_stack_cnt
- stack_start
;
1156 btf_dump_emit_type_chain(d
, &decl_stack
, fname
, lvl
);
1158 * emit_type_chain() guarantees that it will pop its entire decl_stack
1159 * frame before returning. But it works with a read-only view into
1160 * decl_stack, so it doesn't actually pop anything from the
1161 * perspective of shared btf_dump->decl_stack, per se. We need to
1162 * reset decl_stack state to how it was before us to avoid it growing
1165 d
->decl_stack_cnt
= stack_start
;
1168 static void btf_dump_emit_mods(struct btf_dump
*d
, struct id_stack
*decl_stack
)
1170 const struct btf_type
*t
;
1173 while (decl_stack
->cnt
) {
1174 id
= decl_stack
->ids
[decl_stack
->cnt
- 1];
1175 t
= btf__type_by_id(d
->btf
, id
);
1177 switch (btf_kind(t
)) {
1178 case BTF_KIND_VOLATILE
:
1179 btf_dump_printf(d
, "volatile ");
1181 case BTF_KIND_CONST
:
1182 btf_dump_printf(d
, "const ");
1184 case BTF_KIND_RESTRICT
:
1185 btf_dump_printf(d
, "restrict ");
1194 static void btf_dump_drop_mods(struct btf_dump
*d
, struct id_stack
*decl_stack
)
1196 const struct btf_type
*t
;
1199 while (decl_stack
->cnt
) {
1200 id
= decl_stack
->ids
[decl_stack
->cnt
- 1];
1201 t
= btf__type_by_id(d
->btf
, id
);
1208 static void btf_dump_emit_name(const struct btf_dump
*d
,
1209 const char *name
, bool last_was_ptr
)
1211 bool separate
= name
[0] && !last_was_ptr
;
1213 btf_dump_printf(d
, "%s%s", separate
? " " : "", name
);
1216 static void btf_dump_emit_type_chain(struct btf_dump
*d
,
1217 struct id_stack
*decls
,
1218 const char *fname
, int lvl
)
1221 * last_was_ptr is used to determine if we need to separate pointer
1222 * asterisk (*) from previous part of type signature with space, so
1223 * that we get `int ***`, instead of `int * * *`. We default to true
1224 * for cases where we have single pointer in a chain. E.g., in ptr ->
1225 * func_proto case. func_proto will start a new emit_type_chain call
1226 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1227 * don't want to prepend space for that last pointer.
1229 bool last_was_ptr
= true;
1230 const struct btf_type
*t
;
1235 while (decls
->cnt
) {
1236 id
= decls
->ids
[--decls
->cnt
];
1238 /* VOID is a special snowflake */
1239 btf_dump_emit_mods(d
, decls
);
1240 btf_dump_printf(d
, "void");
1241 last_was_ptr
= false;
1245 t
= btf__type_by_id(d
->btf
, id
);
1250 btf_dump_emit_mods(d
, decls
);
1251 name
= btf_name_of(d
, t
->name_off
);
1252 btf_dump_printf(d
, "%s", name
);
1254 case BTF_KIND_STRUCT
:
1255 case BTF_KIND_UNION
:
1256 btf_dump_emit_mods(d
, decls
);
1257 /* inline anonymous struct/union */
1258 if (t
->name_off
== 0)
1259 btf_dump_emit_struct_def(d
, id
, t
, lvl
);
1261 btf_dump_emit_struct_fwd(d
, id
, t
);
1264 btf_dump_emit_mods(d
, decls
);
1265 /* inline anonymous enum */
1266 if (t
->name_off
== 0)
1267 btf_dump_emit_enum_def(d
, id
, t
, lvl
);
1269 btf_dump_emit_enum_fwd(d
, id
, t
);
1272 btf_dump_emit_mods(d
, decls
);
1273 btf_dump_emit_fwd_def(d
, id
, t
);
1275 case BTF_KIND_TYPEDEF
:
1276 btf_dump_emit_mods(d
, decls
);
1277 btf_dump_printf(d
, "%s", btf_dump_ident_name(d
, id
));
1280 btf_dump_printf(d
, "%s", last_was_ptr
? "*" : " *");
1282 case BTF_KIND_VOLATILE
:
1283 btf_dump_printf(d
, " volatile");
1285 case BTF_KIND_CONST
:
1286 btf_dump_printf(d
, " const");
1288 case BTF_KIND_RESTRICT
:
1289 btf_dump_printf(d
, " restrict");
1291 case BTF_KIND_ARRAY
: {
1292 const struct btf_array
*a
= btf_array(t
);
1293 const struct btf_type
*next_t
;
1298 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1299 * which causes it to emit extra const/volatile
1300 * modifiers for an array, if array's element type has
1301 * const/volatile modifiers. Clang doesn't do that.
1302 * In general, it doesn't seem very meaningful to have
1303 * a const/volatile modifier for array, so we are
1304 * going to silently skip them here.
1306 btf_dump_drop_mods(d
, decls
);
1308 if (decls
->cnt
== 0) {
1309 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1310 btf_dump_printf(d
, "[%u]", a
->nelems
);
1314 next_id
= decls
->ids
[decls
->cnt
- 1];
1315 next_t
= btf__type_by_id(d
->btf
, next_id
);
1316 multidim
= btf_is_array(next_t
);
1317 /* we need space if we have named non-pointer */
1318 if (fname
[0] && !last_was_ptr
)
1319 btf_dump_printf(d
, " ");
1320 /* no parentheses for multi-dimensional array */
1322 btf_dump_printf(d
, "(");
1323 btf_dump_emit_type_chain(d
, decls
, fname
, lvl
);
1325 btf_dump_printf(d
, ")");
1326 btf_dump_printf(d
, "[%u]", a
->nelems
);
1329 case BTF_KIND_FUNC_PROTO
: {
1330 const struct btf_param
*p
= btf_params(t
);
1331 __u16 vlen
= btf_vlen(t
);
1335 * GCC emits extra volatile qualifier for
1336 * __attribute__((noreturn)) function pointers. Clang
1337 * doesn't do it. It's a GCC quirk for backwards
1338 * compatibility with code written for GCC <2.5. So,
1339 * similarly to extra qualifiers for array, just drop
1340 * them, instead of handling them.
1342 btf_dump_drop_mods(d
, decls
);
1344 btf_dump_printf(d
, " (");
1345 btf_dump_emit_type_chain(d
, decls
, fname
, lvl
);
1346 btf_dump_printf(d
, ")");
1348 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1350 btf_dump_printf(d
, "(");
1352 * Clang for BPF target generates func_proto with no
1353 * args as a func_proto with a single void arg (e.g.,
1354 * `int (*f)(void)` vs just `int (*f)()`). We are
1355 * going to pretend there are no args for such case.
1357 if (vlen
== 1 && p
->type
== 0) {
1358 btf_dump_printf(d
, ")");
1362 for (i
= 0; i
< vlen
; i
++, p
++) {
1364 btf_dump_printf(d
, ", ");
1366 /* last arg of type void is vararg */
1367 if (i
== vlen
- 1 && p
->type
== 0) {
1368 btf_dump_printf(d
, "...");
1372 name
= btf_name_of(d
, p
->name_off
);
1373 btf_dump_emit_type_decl(d
, p
->type
, name
, lvl
);
1376 btf_dump_printf(d
, ")");
1380 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1385 last_was_ptr
= kind
== BTF_KIND_PTR
;
1388 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1391 /* return number of duplicates (occurrences) of a given name */
1392 static size_t btf_dump_name_dups(struct btf_dump
*d
, struct hashmap
*name_map
,
1393 const char *orig_name
)
1397 hashmap__find(name_map
, orig_name
, (void **)&dup_cnt
);
1399 hashmap__set(name_map
, orig_name
, (void *)dup_cnt
, NULL
, NULL
);
1404 static const char *btf_dump_resolve_name(struct btf_dump
*d
, __u32 id
,
1405 struct hashmap
*name_map
)
1407 struct btf_dump_type_aux_state
*s
= &d
->type_states
[id
];
1408 const struct btf_type
*t
= btf__type_by_id(d
->btf
, id
);
1409 const char *orig_name
= btf_name_of(d
, t
->name_off
);
1410 const char **cached_name
= &d
->cached_names
[id
];
1413 if (t
->name_off
== 0)
1416 if (s
->name_resolved
)
1417 return *cached_name
? *cached_name
: orig_name
;
1419 dup_cnt
= btf_dump_name_dups(d
, name_map
, orig_name
);
1421 const size_t max_len
= 256;
1422 char new_name
[max_len
];
1424 snprintf(new_name
, max_len
, "%s___%zu", orig_name
, dup_cnt
);
1425 *cached_name
= strdup(new_name
);
1428 s
->name_resolved
= 1;
1429 return *cached_name
? *cached_name
: orig_name
;
1432 static const char *btf_dump_type_name(struct btf_dump
*d
, __u32 id
)
1434 return btf_dump_resolve_name(d
, id
, d
->type_names
);
1437 static const char *btf_dump_ident_name(struct btf_dump
*d
, __u32 id
)
1439 return btf_dump_resolve_name(d
, id
, d
->ident_names
);