WIP FPC-III support
[linux/fpc-iii.git] / tools / testing / radix-tree / multiorder.c
blob9eae0fb5a67d1ef746e859958eb247df18a01f21
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * multiorder.c: Multi-order radix tree entry testing
4 * Copyright (c) 2016 Intel Corporation
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
7 */
8 #include <linux/radix-tree.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <pthread.h>
13 #include "test.h"
15 static int item_insert_order(struct xarray *xa, unsigned long index,
16 unsigned order)
18 XA_STATE_ORDER(xas, xa, index, order);
19 struct item *item = item_create(index, order);
21 do {
22 xas_lock(&xas);
23 xas_store(&xas, item);
24 xas_unlock(&xas);
25 } while (xas_nomem(&xas, GFP_KERNEL));
27 if (!xas_error(&xas))
28 return 0;
30 free(item);
31 return xas_error(&xas);
34 void multiorder_iteration(struct xarray *xa)
36 XA_STATE(xas, xa, 0);
37 struct item *item;
38 int i, j, err;
40 #define NUM_ENTRIES 11
41 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
42 int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
44 printv(1, "Multiorder iteration test\n");
46 for (i = 0; i < NUM_ENTRIES; i++) {
47 err = item_insert_order(xa, index[i], order[i]);
48 assert(!err);
51 for (j = 0; j < 256; j++) {
52 for (i = 0; i < NUM_ENTRIES; i++)
53 if (j <= (index[i] | ((1 << order[i]) - 1)))
54 break;
56 xas_set(&xas, j);
57 xas_for_each(&xas, item, ULONG_MAX) {
58 int height = order[i] / XA_CHUNK_SHIFT;
59 int shift = height * XA_CHUNK_SHIFT;
60 unsigned long mask = (1UL << order[i]) - 1;
62 assert((xas.xa_index | mask) == (index[i] | mask));
63 assert(xas.xa_node->shift == shift);
64 assert(!radix_tree_is_internal_node(item));
65 assert((item->index | mask) == (index[i] | mask));
66 assert(item->order == order[i]);
67 i++;
71 item_kill_tree(xa);
74 void multiorder_tagged_iteration(struct xarray *xa)
76 XA_STATE(xas, xa, 0);
77 struct item *item;
78 int i, j;
80 #define MT_NUM_ENTRIES 9
81 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
82 int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
84 #define TAG_ENTRIES 7
85 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
87 printv(1, "Multiorder tagged iteration test\n");
89 for (i = 0; i < MT_NUM_ENTRIES; i++)
90 assert(!item_insert_order(xa, index[i], order[i]));
92 assert(!xa_marked(xa, XA_MARK_1));
94 for (i = 0; i < TAG_ENTRIES; i++)
95 xa_set_mark(xa, tag_index[i], XA_MARK_1);
97 for (j = 0; j < 256; j++) {
98 int k;
100 for (i = 0; i < TAG_ENTRIES; i++) {
101 for (k = i; index[k] < tag_index[i]; k++)
103 if (j <= (index[k] | ((1 << order[k]) - 1)))
104 break;
107 xas_set(&xas, j);
108 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
109 unsigned long mask;
110 for (k = i; index[k] < tag_index[i]; k++)
112 mask = (1UL << order[k]) - 1;
114 assert((xas.xa_index | mask) == (tag_index[i] | mask));
115 assert(!xa_is_internal(item));
116 assert((item->index | mask) == (tag_index[i] | mask));
117 assert(item->order == order[k]);
118 i++;
122 assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
123 XA_MARK_2) == TAG_ENTRIES);
125 for (j = 0; j < 256; j++) {
126 int mask, k;
128 for (i = 0; i < TAG_ENTRIES; i++) {
129 for (k = i; index[k] < tag_index[i]; k++)
131 if (j <= (index[k] | ((1 << order[k]) - 1)))
132 break;
135 xas_set(&xas, j);
136 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
137 for (k = i; index[k] < tag_index[i]; k++)
139 mask = (1 << order[k]) - 1;
141 assert((xas.xa_index | mask) == (tag_index[i] | mask));
142 assert(!xa_is_internal(item));
143 assert((item->index | mask) == (tag_index[i] | mask));
144 assert(item->order == order[k]);
145 i++;
149 assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
150 XA_MARK_0) == TAG_ENTRIES);
151 i = 0;
152 xas_set(&xas, 0);
153 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
154 assert(xas.xa_index == tag_index[i]);
155 i++;
157 assert(i == TAG_ENTRIES);
159 item_kill_tree(xa);
162 bool stop_iteration = false;
164 static void *creator_func(void *ptr)
166 /* 'order' is set up to ensure we have sibling entries */
167 unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
168 struct radix_tree_root *tree = ptr;
169 int i;
171 for (i = 0; i < 10000; i++) {
172 item_insert_order(tree, 0, order);
173 item_delete_rcu(tree, 0);
176 stop_iteration = true;
177 return NULL;
180 static void *iterator_func(void *ptr)
182 XA_STATE(xas, ptr, 0);
183 struct item *item;
185 while (!stop_iteration) {
186 rcu_read_lock();
187 xas_for_each(&xas, item, ULONG_MAX) {
188 if (xas_retry(&xas, item))
189 continue;
191 item_sanity(item, xas.xa_index);
193 rcu_read_unlock();
195 return NULL;
198 static void multiorder_iteration_race(struct xarray *xa)
200 const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
201 pthread_t worker_thread[num_threads];
202 int i;
204 pthread_create(&worker_thread[0], NULL, &creator_func, xa);
205 for (i = 1; i < num_threads; i++)
206 pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
208 for (i = 0; i < num_threads; i++)
209 pthread_join(worker_thread[i], NULL);
211 item_kill_tree(xa);
214 static DEFINE_XARRAY(array);
216 void multiorder_checks(void)
218 multiorder_iteration(&array);
219 multiorder_tagged_iteration(&array);
220 multiorder_iteration_race(&array);
222 radix_tree_cpu_dead(0);
225 int __weak main(void)
227 radix_tree_init();
228 multiorder_checks();
229 return 0;