WIP FPC-III support
[linux/fpc-iii.git] / tools / testing / selftests / kvm / lib / kvm_util.c
blobfa5a90e6c6f075e276991b5415bca95239f88c4d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
5 * Copyright (C) 2018, Google LLC.
6 */
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
21 #define KVM_UTIL_PGS_PER_HUGEPG 512
22 #define KVM_UTIL_MIN_PFN 2
24 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
25 static void *align(void *x, size_t size)
27 size_t mask = size - 1;
28 TEST_ASSERT(size != 0 && !(size & (size - 1)),
29 "size not a power of 2: %lu", size);
30 return (void *) (((size_t) x + mask) & ~mask);
34 * Capability
36 * Input Args:
37 * cap - Capability
39 * Output Args: None
41 * Return:
42 * On success, the Value corresponding to the capability (KVM_CAP_*)
43 * specified by the value of cap. On failure a TEST_ASSERT failure
44 * is produced.
46 * Looks up and returns the value corresponding to the capability
47 * (KVM_CAP_*) given by cap.
49 int kvm_check_cap(long cap)
51 int ret;
52 int kvm_fd;
54 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
55 if (kvm_fd < 0)
56 exit(KSFT_SKIP);
58 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
59 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
60 " rc: %i errno: %i", ret, errno);
62 close(kvm_fd);
64 return ret;
67 /* VM Enable Capability
69 * Input Args:
70 * vm - Virtual Machine
71 * cap - Capability
73 * Output Args: None
75 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
77 * Enables a capability (KVM_CAP_*) on the VM.
79 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
81 int ret;
83 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
84 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
85 " rc: %i errno: %i", ret, errno);
87 return ret;
90 /* VCPU Enable Capability
92 * Input Args:
93 * vm - Virtual Machine
94 * vcpu_id - VCPU
95 * cap - Capability
97 * Output Args: None
99 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
101 * Enables a capability (KVM_CAP_*) on the VCPU.
103 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
104 struct kvm_enable_cap *cap)
106 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
107 int r;
109 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
111 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
112 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
113 " rc: %i, errno: %i", r, errno);
115 return r;
118 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
120 struct kvm_enable_cap cap = { 0 };
122 cap.cap = KVM_CAP_DIRTY_LOG_RING;
123 cap.args[0] = ring_size;
124 vm_enable_cap(vm, &cap);
125 vm->dirty_ring_size = ring_size;
128 static void vm_open(struct kvm_vm *vm, int perm)
130 vm->kvm_fd = open(KVM_DEV_PATH, perm);
131 if (vm->kvm_fd < 0)
132 exit(KSFT_SKIP);
134 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
135 print_skip("immediate_exit not available");
136 exit(KSFT_SKIP);
139 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
140 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
141 "rc: %i errno: %i", vm->fd, errno);
144 const char * const vm_guest_mode_string[] = {
145 "PA-bits:52, VA-bits:48, 4K pages",
146 "PA-bits:52, VA-bits:48, 64K pages",
147 "PA-bits:48, VA-bits:48, 4K pages",
148 "PA-bits:48, VA-bits:48, 64K pages",
149 "PA-bits:40, VA-bits:48, 4K pages",
150 "PA-bits:40, VA-bits:48, 64K pages",
151 "PA-bits:ANY, VA-bits:48, 4K pages",
153 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
154 "Missing new mode strings?");
156 const struct vm_guest_mode_params vm_guest_mode_params[] = {
157 { 52, 48, 0x1000, 12 },
158 { 52, 48, 0x10000, 16 },
159 { 48, 48, 0x1000, 12 },
160 { 48, 48, 0x10000, 16 },
161 { 40, 48, 0x1000, 12 },
162 { 40, 48, 0x10000, 16 },
163 { 0, 0, 0x1000, 12 },
165 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
166 "Missing new mode params?");
169 * VM Create
171 * Input Args:
172 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
173 * phy_pages - Physical memory pages
174 * perm - permission
176 * Output Args: None
178 * Return:
179 * Pointer to opaque structure that describes the created VM.
181 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
182 * When phy_pages is non-zero, a memory region of phy_pages physical pages
183 * is created and mapped starting at guest physical address 0. The file
184 * descriptor to control the created VM is created with the permissions
185 * given by perm (e.g. O_RDWR).
187 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
189 struct kvm_vm *vm;
191 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
192 vm_guest_mode_string(mode), phy_pages, perm);
194 vm = calloc(1, sizeof(*vm));
195 TEST_ASSERT(vm != NULL, "Insufficient Memory");
197 INIT_LIST_HEAD(&vm->vcpus);
198 INIT_LIST_HEAD(&vm->userspace_mem_regions);
200 vm->mode = mode;
201 vm->type = 0;
203 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
204 vm->va_bits = vm_guest_mode_params[mode].va_bits;
205 vm->page_size = vm_guest_mode_params[mode].page_size;
206 vm->page_shift = vm_guest_mode_params[mode].page_shift;
208 /* Setup mode specific traits. */
209 switch (vm->mode) {
210 case VM_MODE_P52V48_4K:
211 vm->pgtable_levels = 4;
212 break;
213 case VM_MODE_P52V48_64K:
214 vm->pgtable_levels = 3;
215 break;
216 case VM_MODE_P48V48_4K:
217 vm->pgtable_levels = 4;
218 break;
219 case VM_MODE_P48V48_64K:
220 vm->pgtable_levels = 3;
221 break;
222 case VM_MODE_P40V48_4K:
223 vm->pgtable_levels = 4;
224 break;
225 case VM_MODE_P40V48_64K:
226 vm->pgtable_levels = 3;
227 break;
228 case VM_MODE_PXXV48_4K:
229 #ifdef __x86_64__
230 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
232 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
233 * it doesn't take effect unless a CR4.LA57 is set, which it
234 * isn't for this VM_MODE.
236 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
237 "Linear address width (%d bits) not supported",
238 vm->va_bits);
239 pr_debug("Guest physical address width detected: %d\n",
240 vm->pa_bits);
241 vm->pgtable_levels = 4;
242 vm->va_bits = 48;
243 #else
244 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
245 #endif
246 break;
247 default:
248 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
251 #ifdef __aarch64__
252 if (vm->pa_bits != 40)
253 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
254 #endif
256 vm_open(vm, perm);
258 /* Limit to VA-bit canonical virtual addresses. */
259 vm->vpages_valid = sparsebit_alloc();
260 sparsebit_set_num(vm->vpages_valid,
261 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
262 sparsebit_set_num(vm->vpages_valid,
263 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
264 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266 /* Limit physical addresses to PA-bits. */
267 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
269 /* Allocate and setup memory for guest. */
270 vm->vpages_mapped = sparsebit_alloc();
271 if (phy_pages != 0)
272 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
273 0, 0, phy_pages, 0);
275 return vm;
278 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
279 uint64_t extra_mem_pages, uint32_t num_percpu_pages,
280 void *guest_code, uint32_t vcpuids[])
282 /* The maximum page table size for a memory region will be when the
283 * smallest pages are used. Considering each page contains x page
284 * table descriptors, the total extra size for page tables (for extra
285 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
286 * than N/x*2.
288 uint64_t vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
289 uint64_t extra_pg_pages = (extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
290 uint64_t pages = DEFAULT_GUEST_PHY_PAGES + vcpu_pages + extra_pg_pages;
291 struct kvm_vm *vm;
292 int i;
294 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
295 "nr_vcpus = %d too large for host, max-vcpus = %d",
296 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
298 pages = vm_adjust_num_guest_pages(mode, pages);
299 vm = vm_create(mode, pages, O_RDWR);
301 kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
303 #ifdef __x86_64__
304 vm_create_irqchip(vm);
305 #endif
307 for (i = 0; i < nr_vcpus; ++i) {
308 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
310 vm_vcpu_add_default(vm, vcpuid, guest_code);
312 #ifdef __x86_64__
313 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
314 #endif
317 return vm;
320 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
321 uint32_t num_percpu_pages, void *guest_code,
322 uint32_t vcpuids[])
324 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, extra_mem_pages,
325 num_percpu_pages, guest_code, vcpuids);
328 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
329 void *guest_code)
331 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
332 (uint32_t []){ vcpuid });
336 * VM Restart
338 * Input Args:
339 * vm - VM that has been released before
340 * perm - permission
342 * Output Args: None
344 * Reopens the file descriptors associated to the VM and reinstates the
345 * global state, such as the irqchip and the memory regions that are mapped
346 * into the guest.
348 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
350 struct userspace_mem_region *region;
352 vm_open(vmp, perm);
353 if (vmp->has_irqchip)
354 vm_create_irqchip(vmp);
356 list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
357 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
358 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
359 " rc: %i errno: %i\n"
360 " slot: %u flags: 0x%x\n"
361 " guest_phys_addr: 0x%llx size: 0x%llx",
362 ret, errno, region->region.slot,
363 region->region.flags,
364 region->region.guest_phys_addr,
365 region->region.memory_size);
369 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
371 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
372 int ret;
374 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
375 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
376 __func__, strerror(-ret));
379 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
380 uint64_t first_page, uint32_t num_pages)
382 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
383 .first_page = first_page,
384 .num_pages = num_pages };
385 int ret;
387 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
388 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
389 __func__, strerror(-ret));
392 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
394 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
398 * Userspace Memory Region Find
400 * Input Args:
401 * vm - Virtual Machine
402 * start - Starting VM physical address
403 * end - Ending VM physical address, inclusive.
405 * Output Args: None
407 * Return:
408 * Pointer to overlapping region, NULL if no such region.
410 * Searches for a region with any physical memory that overlaps with
411 * any portion of the guest physical addresses from start to end
412 * inclusive. If multiple overlapping regions exist, a pointer to any
413 * of the regions is returned. Null is returned only when no overlapping
414 * region exists.
416 static struct userspace_mem_region *
417 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
419 struct userspace_mem_region *region;
421 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
422 uint64_t existing_start = region->region.guest_phys_addr;
423 uint64_t existing_end = region->region.guest_phys_addr
424 + region->region.memory_size - 1;
425 if (start <= existing_end && end >= existing_start)
426 return region;
429 return NULL;
433 * KVM Userspace Memory Region Find
435 * Input Args:
436 * vm - Virtual Machine
437 * start - Starting VM physical address
438 * end - Ending VM physical address, inclusive.
440 * Output Args: None
442 * Return:
443 * Pointer to overlapping region, NULL if no such region.
445 * Public interface to userspace_mem_region_find. Allows tests to look up
446 * the memslot datastructure for a given range of guest physical memory.
448 struct kvm_userspace_memory_region *
449 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
450 uint64_t end)
452 struct userspace_mem_region *region;
454 region = userspace_mem_region_find(vm, start, end);
455 if (!region)
456 return NULL;
458 return &region->region;
462 * VCPU Find
464 * Input Args:
465 * vm - Virtual Machine
466 * vcpuid - VCPU ID
468 * Output Args: None
470 * Return:
471 * Pointer to VCPU structure
473 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
474 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
475 * for the specified vcpuid.
477 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
479 struct vcpu *vcpu;
481 list_for_each_entry(vcpu, &vm->vcpus, list) {
482 if (vcpu->id == vcpuid)
483 return vcpu;
486 return NULL;
490 * VM VCPU Remove
492 * Input Args:
493 * vcpu - VCPU to remove
495 * Output Args: None
497 * Return: None, TEST_ASSERT failures for all error conditions
499 * Removes a vCPU from a VM and frees its resources.
501 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
503 int ret;
505 if (vcpu->dirty_gfns) {
506 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
507 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
508 "rc: %i errno: %i", ret, errno);
509 vcpu->dirty_gfns = NULL;
512 ret = munmap(vcpu->state, sizeof(*vcpu->state));
513 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
514 "errno: %i", ret, errno);
515 close(vcpu->fd);
516 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
517 "errno: %i", ret, errno);
519 list_del(&vcpu->list);
520 free(vcpu);
523 void kvm_vm_release(struct kvm_vm *vmp)
525 struct vcpu *vcpu, *tmp;
526 int ret;
528 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
529 vm_vcpu_rm(vmp, vcpu);
531 ret = close(vmp->fd);
532 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
533 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
535 close(vmp->kvm_fd);
536 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
537 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
540 static void __vm_mem_region_delete(struct kvm_vm *vm,
541 struct userspace_mem_region *region)
543 int ret;
545 list_del(&region->list);
547 region->region.memory_size = 0;
548 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
549 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
550 "rc: %i errno: %i", ret, errno);
552 sparsebit_free(&region->unused_phy_pages);
553 ret = munmap(region->mmap_start, region->mmap_size);
554 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
556 free(region);
560 * Destroys and frees the VM pointed to by vmp.
562 void kvm_vm_free(struct kvm_vm *vmp)
564 struct userspace_mem_region *region, *tmp;
566 if (vmp == NULL)
567 return;
569 /* Free userspace_mem_regions. */
570 list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
571 __vm_mem_region_delete(vmp, region);
573 /* Free sparsebit arrays. */
574 sparsebit_free(&vmp->vpages_valid);
575 sparsebit_free(&vmp->vpages_mapped);
577 kvm_vm_release(vmp);
579 /* Free the structure describing the VM. */
580 free(vmp);
584 * Memory Compare, host virtual to guest virtual
586 * Input Args:
587 * hva - Starting host virtual address
588 * vm - Virtual Machine
589 * gva - Starting guest virtual address
590 * len - number of bytes to compare
592 * Output Args: None
594 * Input/Output Args: None
596 * Return:
597 * Returns 0 if the bytes starting at hva for a length of len
598 * are equal the guest virtual bytes starting at gva. Returns
599 * a value < 0, if bytes at hva are less than those at gva.
600 * Otherwise a value > 0 is returned.
602 * Compares the bytes starting at the host virtual address hva, for
603 * a length of len, to the guest bytes starting at the guest virtual
604 * address given by gva.
606 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
608 size_t amt;
611 * Compare a batch of bytes until either a match is found
612 * or all the bytes have been compared.
614 for (uintptr_t offset = 0; offset < len; offset += amt) {
615 uintptr_t ptr1 = (uintptr_t)hva + offset;
618 * Determine host address for guest virtual address
619 * at offset.
621 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
624 * Determine amount to compare on this pass.
625 * Don't allow the comparsion to cross a page boundary.
627 amt = len - offset;
628 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
629 amt = vm->page_size - (ptr1 % vm->page_size);
630 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
631 amt = vm->page_size - (ptr2 % vm->page_size);
633 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
634 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
637 * Perform the comparison. If there is a difference
638 * return that result to the caller, otherwise need
639 * to continue on looking for a mismatch.
641 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
642 if (ret != 0)
643 return ret;
647 * No mismatch found. Let the caller know the two memory
648 * areas are equal.
650 return 0;
654 * VM Userspace Memory Region Add
656 * Input Args:
657 * vm - Virtual Machine
658 * backing_src - Storage source for this region.
659 * NULL to use anonymous memory.
660 * guest_paddr - Starting guest physical address
661 * slot - KVM region slot
662 * npages - Number of physical pages
663 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
665 * Output Args: None
667 * Return: None
669 * Allocates a memory area of the number of pages specified by npages
670 * and maps it to the VM specified by vm, at a starting physical address
671 * given by guest_paddr. The region is created with a KVM region slot
672 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
673 * region is created with the flags given by flags.
675 void vm_userspace_mem_region_add(struct kvm_vm *vm,
676 enum vm_mem_backing_src_type src_type,
677 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
678 uint32_t flags)
680 int ret;
681 struct userspace_mem_region *region;
682 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
683 size_t alignment;
685 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
686 "Number of guest pages is not compatible with the host. "
687 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
689 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
690 "address not on a page boundary.\n"
691 " guest_paddr: 0x%lx vm->page_size: 0x%x",
692 guest_paddr, vm->page_size);
693 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
694 <= vm->max_gfn, "Physical range beyond maximum "
695 "supported physical address,\n"
696 " guest_paddr: 0x%lx npages: 0x%lx\n"
697 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
698 guest_paddr, npages, vm->max_gfn, vm->page_size);
701 * Confirm a mem region with an overlapping address doesn't
702 * already exist.
704 region = (struct userspace_mem_region *) userspace_mem_region_find(
705 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
706 if (region != NULL)
707 TEST_FAIL("overlapping userspace_mem_region already "
708 "exists\n"
709 " requested guest_paddr: 0x%lx npages: 0x%lx "
710 "page_size: 0x%x\n"
711 " existing guest_paddr: 0x%lx size: 0x%lx",
712 guest_paddr, npages, vm->page_size,
713 (uint64_t) region->region.guest_phys_addr,
714 (uint64_t) region->region.memory_size);
716 /* Confirm no region with the requested slot already exists. */
717 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
718 if (region->region.slot != slot)
719 continue;
721 TEST_FAIL("A mem region with the requested slot "
722 "already exists.\n"
723 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
724 " existing slot: %u paddr: 0x%lx size: 0x%lx",
725 slot, guest_paddr, npages,
726 region->region.slot,
727 (uint64_t) region->region.guest_phys_addr,
728 (uint64_t) region->region.memory_size);
731 /* Allocate and initialize new mem region structure. */
732 region = calloc(1, sizeof(*region));
733 TEST_ASSERT(region != NULL, "Insufficient Memory");
734 region->mmap_size = npages * vm->page_size;
736 #ifdef __s390x__
737 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
738 alignment = 0x100000;
739 #else
740 alignment = 1;
741 #endif
743 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
744 alignment = max(huge_page_size, alignment);
746 /* Add enough memory to align up if necessary */
747 if (alignment > 1)
748 region->mmap_size += alignment;
750 region->mmap_start = mmap(NULL, region->mmap_size,
751 PROT_READ | PROT_WRITE,
752 MAP_PRIVATE | MAP_ANONYMOUS
753 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
754 -1, 0);
755 TEST_ASSERT(region->mmap_start != MAP_FAILED,
756 "test_malloc failed, mmap_start: %p errno: %i",
757 region->mmap_start, errno);
759 /* Align host address */
760 region->host_mem = align(region->mmap_start, alignment);
762 /* As needed perform madvise */
763 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
764 struct stat statbuf;
766 ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
767 TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
768 "stat /sys/kernel/mm/transparent_hugepage");
770 TEST_ASSERT(ret == 0 || src_type != VM_MEM_SRC_ANONYMOUS_THP,
771 "VM_MEM_SRC_ANONYMOUS_THP requires THP to be configured in the host kernel");
773 if (ret == 0) {
774 ret = madvise(region->host_mem, npages * vm->page_size,
775 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
776 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %x",
777 region->host_mem, npages * vm->page_size, src_type);
781 region->unused_phy_pages = sparsebit_alloc();
782 sparsebit_set_num(region->unused_phy_pages,
783 guest_paddr >> vm->page_shift, npages);
784 region->region.slot = slot;
785 region->region.flags = flags;
786 region->region.guest_phys_addr = guest_paddr;
787 region->region.memory_size = npages * vm->page_size;
788 region->region.userspace_addr = (uintptr_t) region->host_mem;
789 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
790 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
791 " rc: %i errno: %i\n"
792 " slot: %u flags: 0x%x\n"
793 " guest_phys_addr: 0x%lx size: 0x%lx",
794 ret, errno, slot, flags,
795 guest_paddr, (uint64_t) region->region.memory_size);
797 /* Add to linked-list of memory regions. */
798 list_add(&region->list, &vm->userspace_mem_regions);
802 * Memslot to region
804 * Input Args:
805 * vm - Virtual Machine
806 * memslot - KVM memory slot ID
808 * Output Args: None
810 * Return:
811 * Pointer to memory region structure that describe memory region
812 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
813 * on error (e.g. currently no memory region using memslot as a KVM
814 * memory slot ID).
816 struct userspace_mem_region *
817 memslot2region(struct kvm_vm *vm, uint32_t memslot)
819 struct userspace_mem_region *region;
821 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
822 if (region->region.slot == memslot)
823 return region;
826 fprintf(stderr, "No mem region with the requested slot found,\n"
827 " requested slot: %u\n", memslot);
828 fputs("---- vm dump ----\n", stderr);
829 vm_dump(stderr, vm, 2);
830 TEST_FAIL("Mem region not found");
831 return NULL;
835 * VM Memory Region Flags Set
837 * Input Args:
838 * vm - Virtual Machine
839 * flags - Starting guest physical address
841 * Output Args: None
843 * Return: None
845 * Sets the flags of the memory region specified by the value of slot,
846 * to the values given by flags.
848 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
850 int ret;
851 struct userspace_mem_region *region;
853 region = memslot2region(vm, slot);
855 region->region.flags = flags;
857 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
859 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
860 " rc: %i errno: %i slot: %u flags: 0x%x",
861 ret, errno, slot, flags);
865 * VM Memory Region Move
867 * Input Args:
868 * vm - Virtual Machine
869 * slot - Slot of the memory region to move
870 * new_gpa - Starting guest physical address
872 * Output Args: None
874 * Return: None
876 * Change the gpa of a memory region.
878 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
880 struct userspace_mem_region *region;
881 int ret;
883 region = memslot2region(vm, slot);
885 region->region.guest_phys_addr = new_gpa;
887 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
889 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
890 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
891 ret, errno, slot, new_gpa);
895 * VM Memory Region Delete
897 * Input Args:
898 * vm - Virtual Machine
899 * slot - Slot of the memory region to delete
901 * Output Args: None
903 * Return: None
905 * Delete a memory region.
907 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
909 __vm_mem_region_delete(vm, memslot2region(vm, slot));
913 * VCPU mmap Size
915 * Input Args: None
917 * Output Args: None
919 * Return:
920 * Size of VCPU state
922 * Returns the size of the structure pointed to by the return value
923 * of vcpu_state().
925 static int vcpu_mmap_sz(void)
927 int dev_fd, ret;
929 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
930 if (dev_fd < 0)
931 exit(KSFT_SKIP);
933 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
934 TEST_ASSERT(ret >= sizeof(struct kvm_run),
935 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
936 __func__, ret, errno);
938 close(dev_fd);
940 return ret;
944 * VM VCPU Add
946 * Input Args:
947 * vm - Virtual Machine
948 * vcpuid - VCPU ID
950 * Output Args: None
952 * Return: None
954 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
955 * No additional VCPU setup is done.
957 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
959 struct vcpu *vcpu;
961 /* Confirm a vcpu with the specified id doesn't already exist. */
962 vcpu = vcpu_find(vm, vcpuid);
963 if (vcpu != NULL)
964 TEST_FAIL("vcpu with the specified id "
965 "already exists,\n"
966 " requested vcpuid: %u\n"
967 " existing vcpuid: %u state: %p",
968 vcpuid, vcpu->id, vcpu->state);
970 /* Allocate and initialize new vcpu structure. */
971 vcpu = calloc(1, sizeof(*vcpu));
972 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
973 vcpu->id = vcpuid;
974 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
975 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
976 vcpu->fd, errno);
978 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
979 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
980 vcpu_mmap_sz(), sizeof(*vcpu->state));
981 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
982 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
983 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
984 "vcpu id: %u errno: %i", vcpuid, errno);
986 /* Add to linked-list of VCPUs. */
987 list_add(&vcpu->list, &vm->vcpus);
991 * VM Virtual Address Unused Gap
993 * Input Args:
994 * vm - Virtual Machine
995 * sz - Size (bytes)
996 * vaddr_min - Minimum Virtual Address
998 * Output Args: None
1000 * Return:
1001 * Lowest virtual address at or below vaddr_min, with at least
1002 * sz unused bytes. TEST_ASSERT failure if no area of at least
1003 * size sz is available.
1005 * Within the VM specified by vm, locates the lowest starting virtual
1006 * address >= vaddr_min, that has at least sz unallocated bytes. A
1007 * TEST_ASSERT failure occurs for invalid input or no area of at least
1008 * sz unallocated bytes >= vaddr_min is available.
1010 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1011 vm_vaddr_t vaddr_min)
1013 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1015 /* Determine lowest permitted virtual page index. */
1016 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1017 if ((pgidx_start * vm->page_size) < vaddr_min)
1018 goto no_va_found;
1020 /* Loop over section with enough valid virtual page indexes. */
1021 if (!sparsebit_is_set_num(vm->vpages_valid,
1022 pgidx_start, pages))
1023 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1024 pgidx_start, pages);
1025 do {
1027 * Are there enough unused virtual pages available at
1028 * the currently proposed starting virtual page index.
1029 * If not, adjust proposed starting index to next
1030 * possible.
1032 if (sparsebit_is_clear_num(vm->vpages_mapped,
1033 pgidx_start, pages))
1034 goto va_found;
1035 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1036 pgidx_start, pages);
1037 if (pgidx_start == 0)
1038 goto no_va_found;
1041 * If needed, adjust proposed starting virtual address,
1042 * to next range of valid virtual addresses.
1044 if (!sparsebit_is_set_num(vm->vpages_valid,
1045 pgidx_start, pages)) {
1046 pgidx_start = sparsebit_next_set_num(
1047 vm->vpages_valid, pgidx_start, pages);
1048 if (pgidx_start == 0)
1049 goto no_va_found;
1051 } while (pgidx_start != 0);
1053 no_va_found:
1054 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1056 /* NOT REACHED */
1057 return -1;
1059 va_found:
1060 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1061 pgidx_start, pages),
1062 "Unexpected, invalid virtual page index range,\n"
1063 " pgidx_start: 0x%lx\n"
1064 " pages: 0x%lx",
1065 pgidx_start, pages);
1066 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1067 pgidx_start, pages),
1068 "Unexpected, pages already mapped,\n"
1069 " pgidx_start: 0x%lx\n"
1070 " pages: 0x%lx",
1071 pgidx_start, pages);
1073 return pgidx_start * vm->page_size;
1077 * VM Virtual Address Allocate
1079 * Input Args:
1080 * vm - Virtual Machine
1081 * sz - Size in bytes
1082 * vaddr_min - Minimum starting virtual address
1083 * data_memslot - Memory region slot for data pages
1084 * pgd_memslot - Memory region slot for new virtual translation tables
1086 * Output Args: None
1088 * Return:
1089 * Starting guest virtual address
1091 * Allocates at least sz bytes within the virtual address space of the vm
1092 * given by vm. The allocated bytes are mapped to a virtual address >=
1093 * the address given by vaddr_min. Note that each allocation uses a
1094 * a unique set of pages, with the minimum real allocation being at least
1095 * a page.
1097 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1098 uint32_t data_memslot, uint32_t pgd_memslot)
1100 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1102 virt_pgd_alloc(vm, pgd_memslot);
1105 * Find an unused range of virtual page addresses of at least
1106 * pages in length.
1108 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1110 /* Map the virtual pages. */
1111 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1112 pages--, vaddr += vm->page_size) {
1113 vm_paddr_t paddr;
1115 paddr = vm_phy_page_alloc(vm,
1116 KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
1118 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1120 sparsebit_set(vm->vpages_mapped,
1121 vaddr >> vm->page_shift);
1124 return vaddr_start;
1128 * Map a range of VM virtual address to the VM's physical address
1130 * Input Args:
1131 * vm - Virtual Machine
1132 * vaddr - Virtuall address to map
1133 * paddr - VM Physical Address
1134 * npages - The number of pages to map
1135 * pgd_memslot - Memory region slot for new virtual translation tables
1137 * Output Args: None
1139 * Return: None
1141 * Within the VM given by @vm, creates a virtual translation for
1142 * @npages starting at @vaddr to the page range starting at @paddr.
1144 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1145 unsigned int npages, uint32_t pgd_memslot)
1147 size_t page_size = vm->page_size;
1148 size_t size = npages * page_size;
1150 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1151 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1153 while (npages--) {
1154 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1155 vaddr += page_size;
1156 paddr += page_size;
1161 * Address VM Physical to Host Virtual
1163 * Input Args:
1164 * vm - Virtual Machine
1165 * gpa - VM physical address
1167 * Output Args: None
1169 * Return:
1170 * Equivalent host virtual address
1172 * Locates the memory region containing the VM physical address given
1173 * by gpa, within the VM given by vm. When found, the host virtual
1174 * address providing the memory to the vm physical address is returned.
1175 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1177 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1179 struct userspace_mem_region *region;
1181 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1182 if ((gpa >= region->region.guest_phys_addr)
1183 && (gpa <= (region->region.guest_phys_addr
1184 + region->region.memory_size - 1)))
1185 return (void *) ((uintptr_t) region->host_mem
1186 + (gpa - region->region.guest_phys_addr));
1189 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1190 return NULL;
1194 * Address Host Virtual to VM Physical
1196 * Input Args:
1197 * vm - Virtual Machine
1198 * hva - Host virtual address
1200 * Output Args: None
1202 * Return:
1203 * Equivalent VM physical address
1205 * Locates the memory region containing the host virtual address given
1206 * by hva, within the VM given by vm. When found, the equivalent
1207 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1208 * region containing hva exists.
1210 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1212 struct userspace_mem_region *region;
1214 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1215 if ((hva >= region->host_mem)
1216 && (hva <= (region->host_mem
1217 + region->region.memory_size - 1)))
1218 return (vm_paddr_t) ((uintptr_t)
1219 region->region.guest_phys_addr
1220 + (hva - (uintptr_t) region->host_mem));
1223 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1224 return -1;
1228 * VM Create IRQ Chip
1230 * Input Args:
1231 * vm - Virtual Machine
1233 * Output Args: None
1235 * Return: None
1237 * Creates an interrupt controller chip for the VM specified by vm.
1239 void vm_create_irqchip(struct kvm_vm *vm)
1241 int ret;
1243 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1244 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1245 "rc: %i errno: %i", ret, errno);
1247 vm->has_irqchip = true;
1251 * VM VCPU State
1253 * Input Args:
1254 * vm - Virtual Machine
1255 * vcpuid - VCPU ID
1257 * Output Args: None
1259 * Return:
1260 * Pointer to structure that describes the state of the VCPU.
1262 * Locates and returns a pointer to a structure that describes the
1263 * state of the VCPU with the given vcpuid.
1265 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1267 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1268 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1270 return vcpu->state;
1274 * VM VCPU Run
1276 * Input Args:
1277 * vm - Virtual Machine
1278 * vcpuid - VCPU ID
1280 * Output Args: None
1282 * Return: None
1284 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1285 * given by vm.
1287 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1289 int ret = _vcpu_run(vm, vcpuid);
1290 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1291 "rc: %i errno: %i", ret, errno);
1294 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1296 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1297 int rc;
1299 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1300 do {
1301 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1302 } while (rc == -1 && errno == EINTR);
1304 assert_on_unhandled_exception(vm, vcpuid);
1306 return rc;
1309 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1311 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1313 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1315 return vcpu->fd;
1318 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1320 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1321 int ret;
1323 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1325 vcpu->state->immediate_exit = 1;
1326 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1327 vcpu->state->immediate_exit = 0;
1329 TEST_ASSERT(ret == -1 && errno == EINTR,
1330 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1331 ret, errno);
1334 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1335 struct kvm_guest_debug *debug)
1337 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1338 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1340 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1344 * VM VCPU Set MP State
1346 * Input Args:
1347 * vm - Virtual Machine
1348 * vcpuid - VCPU ID
1349 * mp_state - mp_state to be set
1351 * Output Args: None
1353 * Return: None
1355 * Sets the MP state of the VCPU given by vcpuid, to the state given
1356 * by mp_state.
1358 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1359 struct kvm_mp_state *mp_state)
1361 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1362 int ret;
1364 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1366 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1367 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1368 "rc: %i errno: %i", ret, errno);
1372 * VM VCPU Get Reg List
1374 * Input Args:
1375 * vm - Virtual Machine
1376 * vcpuid - VCPU ID
1378 * Output Args:
1379 * None
1381 * Return:
1382 * A pointer to an allocated struct kvm_reg_list
1384 * Get the list of guest registers which are supported for
1385 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1387 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1389 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1390 int ret;
1392 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1393 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1394 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1395 reg_list->n = reg_list_n.n;
1396 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1397 return reg_list;
1401 * VM VCPU Regs Get
1403 * Input Args:
1404 * vm - Virtual Machine
1405 * vcpuid - VCPU ID
1407 * Output Args:
1408 * regs - current state of VCPU regs
1410 * Return: None
1412 * Obtains the current register state for the VCPU specified by vcpuid
1413 * and stores it at the location given by regs.
1415 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1417 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1418 int ret;
1420 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1422 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1423 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1424 ret, errno);
1428 * VM VCPU Regs Set
1430 * Input Args:
1431 * vm - Virtual Machine
1432 * vcpuid - VCPU ID
1433 * regs - Values to set VCPU regs to
1435 * Output Args: None
1437 * Return: None
1439 * Sets the regs of the VCPU specified by vcpuid to the values
1440 * given by regs.
1442 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1444 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1445 int ret;
1447 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1449 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1450 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1451 ret, errno);
1454 #ifdef __KVM_HAVE_VCPU_EVENTS
1455 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1456 struct kvm_vcpu_events *events)
1458 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1459 int ret;
1461 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1463 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1464 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1465 ret, errno);
1468 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1469 struct kvm_vcpu_events *events)
1471 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1472 int ret;
1474 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1476 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1477 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1478 ret, errno);
1480 #endif
1482 #ifdef __x86_64__
1483 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1484 struct kvm_nested_state *state)
1486 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1487 int ret;
1489 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1491 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1492 TEST_ASSERT(ret == 0,
1493 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1494 ret, errno);
1497 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1498 struct kvm_nested_state *state, bool ignore_error)
1500 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1501 int ret;
1503 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1505 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1506 if (!ignore_error) {
1507 TEST_ASSERT(ret == 0,
1508 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1509 ret, errno);
1512 return ret;
1514 #endif
1517 * VM VCPU System Regs Get
1519 * Input Args:
1520 * vm - Virtual Machine
1521 * vcpuid - VCPU ID
1523 * Output Args:
1524 * sregs - current state of VCPU system regs
1526 * Return: None
1528 * Obtains the current system register state for the VCPU specified by
1529 * vcpuid and stores it at the location given by sregs.
1531 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1533 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1534 int ret;
1536 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1538 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1539 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1540 ret, errno);
1544 * VM VCPU System Regs Set
1546 * Input Args:
1547 * vm - Virtual Machine
1548 * vcpuid - VCPU ID
1549 * sregs - Values to set VCPU system regs to
1551 * Output Args: None
1553 * Return: None
1555 * Sets the system regs of the VCPU specified by vcpuid to the values
1556 * given by sregs.
1558 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1560 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1561 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1562 "rc: %i errno: %i", ret, errno);
1565 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1567 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1569 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1571 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1574 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1576 int ret;
1578 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1579 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1580 ret, errno, strerror(errno));
1583 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1585 int ret;
1587 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1588 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1589 ret, errno, strerror(errno));
1592 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1594 int ret;
1596 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1597 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1598 ret, errno, strerror(errno));
1601 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1603 int ret;
1605 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1606 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1607 ret, errno, strerror(errno));
1611 * VCPU Ioctl
1613 * Input Args:
1614 * vm - Virtual Machine
1615 * vcpuid - VCPU ID
1616 * cmd - Ioctl number
1617 * arg - Argument to pass to the ioctl
1619 * Return: None
1621 * Issues an arbitrary ioctl on a VCPU fd.
1623 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1624 unsigned long cmd, void *arg)
1626 int ret;
1628 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1629 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1630 cmd, ret, errno, strerror(errno));
1633 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1634 unsigned long cmd, void *arg)
1636 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1637 int ret;
1639 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1641 ret = ioctl(vcpu->fd, cmd, arg);
1643 return ret;
1646 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1648 struct vcpu *vcpu;
1649 uint32_t size = vm->dirty_ring_size;
1651 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1653 vcpu = vcpu_find(vm, vcpuid);
1655 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1657 if (!vcpu->dirty_gfns) {
1658 void *addr;
1660 addr = mmap(NULL, size, PROT_READ,
1661 MAP_PRIVATE, vcpu->fd,
1662 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1663 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1665 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1666 MAP_PRIVATE, vcpu->fd,
1667 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1668 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1670 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1671 MAP_SHARED, vcpu->fd,
1672 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1673 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1675 vcpu->dirty_gfns = addr;
1676 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1679 return vcpu->dirty_gfns;
1683 * VM Ioctl
1685 * Input Args:
1686 * vm - Virtual Machine
1687 * cmd - Ioctl number
1688 * arg - Argument to pass to the ioctl
1690 * Return: None
1692 * Issues an arbitrary ioctl on a VM fd.
1694 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1696 int ret;
1698 ret = ioctl(vm->fd, cmd, arg);
1699 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1700 cmd, ret, errno, strerror(errno));
1704 * KVM system ioctl
1706 * Input Args:
1707 * vm - Virtual Machine
1708 * cmd - Ioctl number
1709 * arg - Argument to pass to the ioctl
1711 * Return: None
1713 * Issues an arbitrary ioctl on a KVM fd.
1715 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1717 int ret;
1719 ret = ioctl(vm->kvm_fd, cmd, arg);
1720 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1721 cmd, ret, errno, strerror(errno));
1724 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1726 return ioctl(vm->kvm_fd, cmd, arg);
1730 * VM Dump
1732 * Input Args:
1733 * vm - Virtual Machine
1734 * indent - Left margin indent amount
1736 * Output Args:
1737 * stream - Output FILE stream
1739 * Return: None
1741 * Dumps the current state of the VM given by vm, to the FILE stream
1742 * given by stream.
1744 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1746 struct userspace_mem_region *region;
1747 struct vcpu *vcpu;
1749 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1750 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1751 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1752 fprintf(stream, "%*sMem Regions:\n", indent, "");
1753 list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1754 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1755 "host_virt: %p\n", indent + 2, "",
1756 (uint64_t) region->region.guest_phys_addr,
1757 (uint64_t) region->region.memory_size,
1758 region->host_mem);
1759 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1760 sparsebit_dump(stream, region->unused_phy_pages, 0);
1762 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1763 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1764 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1765 vm->pgd_created);
1766 if (vm->pgd_created) {
1767 fprintf(stream, "%*sVirtual Translation Tables:\n",
1768 indent + 2, "");
1769 virt_dump(stream, vm, indent + 4);
1771 fprintf(stream, "%*sVCPUs:\n", indent, "");
1772 list_for_each_entry(vcpu, &vm->vcpus, list)
1773 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1776 /* Known KVM exit reasons */
1777 static struct exit_reason {
1778 unsigned int reason;
1779 const char *name;
1780 } exit_reasons_known[] = {
1781 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1782 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1783 {KVM_EXIT_IO, "IO"},
1784 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1785 {KVM_EXIT_DEBUG, "DEBUG"},
1786 {KVM_EXIT_HLT, "HLT"},
1787 {KVM_EXIT_MMIO, "MMIO"},
1788 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1789 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1790 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1791 {KVM_EXIT_INTR, "INTR"},
1792 {KVM_EXIT_SET_TPR, "SET_TPR"},
1793 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1794 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1795 {KVM_EXIT_S390_RESET, "S390_RESET"},
1796 {KVM_EXIT_DCR, "DCR"},
1797 {KVM_EXIT_NMI, "NMI"},
1798 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1799 {KVM_EXIT_OSI, "OSI"},
1800 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1801 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1802 {KVM_EXIT_X86_RDMSR, "RDMSR"},
1803 {KVM_EXIT_X86_WRMSR, "WRMSR"},
1804 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1805 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1806 #endif
1810 * Exit Reason String
1812 * Input Args:
1813 * exit_reason - Exit reason
1815 * Output Args: None
1817 * Return:
1818 * Constant string pointer describing the exit reason.
1820 * Locates and returns a constant string that describes the KVM exit
1821 * reason given by exit_reason. If no such string is found, a constant
1822 * string of "Unknown" is returned.
1824 const char *exit_reason_str(unsigned int exit_reason)
1826 unsigned int n1;
1828 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1829 if (exit_reason == exit_reasons_known[n1].reason)
1830 return exit_reasons_known[n1].name;
1833 return "Unknown";
1837 * Physical Contiguous Page Allocator
1839 * Input Args:
1840 * vm - Virtual Machine
1841 * num - number of pages
1842 * paddr_min - Physical address minimum
1843 * memslot - Memory region to allocate page from
1845 * Output Args: None
1847 * Return:
1848 * Starting physical address
1850 * Within the VM specified by vm, locates a range of available physical
1851 * pages at or above paddr_min. If found, the pages are marked as in use
1852 * and their base address is returned. A TEST_ASSERT failure occurs if
1853 * not enough pages are available at or above paddr_min.
1855 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1856 vm_paddr_t paddr_min, uint32_t memslot)
1858 struct userspace_mem_region *region;
1859 sparsebit_idx_t pg, base;
1861 TEST_ASSERT(num > 0, "Must allocate at least one page");
1863 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1864 "not divisible by page size.\n"
1865 " paddr_min: 0x%lx page_size: 0x%x",
1866 paddr_min, vm->page_size);
1868 region = memslot2region(vm, memslot);
1869 base = pg = paddr_min >> vm->page_shift;
1871 do {
1872 for (; pg < base + num; ++pg) {
1873 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1874 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1875 break;
1878 } while (pg && pg != base + num);
1880 if (pg == 0) {
1881 fprintf(stderr, "No guest physical page available, "
1882 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1883 paddr_min, vm->page_size, memslot);
1884 fputs("---- vm dump ----\n", stderr);
1885 vm_dump(stderr, vm, 2);
1886 abort();
1889 for (pg = base; pg < base + num; ++pg)
1890 sparsebit_clear(region->unused_phy_pages, pg);
1892 return base * vm->page_size;
1895 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1896 uint32_t memslot)
1898 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1902 * Address Guest Virtual to Host Virtual
1904 * Input Args:
1905 * vm - Virtual Machine
1906 * gva - VM virtual address
1908 * Output Args: None
1910 * Return:
1911 * Equivalent host virtual address
1913 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1915 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1919 * Is Unrestricted Guest
1921 * Input Args:
1922 * vm - Virtual Machine
1924 * Output Args: None
1926 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1928 * Check if the unrestricted guest flag is enabled.
1930 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1932 char val = 'N';
1933 size_t count;
1934 FILE *f;
1936 if (vm == NULL) {
1937 /* Ensure that the KVM vendor-specific module is loaded. */
1938 f = fopen(KVM_DEV_PATH, "r");
1939 TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1940 errno);
1941 fclose(f);
1944 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1945 if (f) {
1946 count = fread(&val, sizeof(char), 1, f);
1947 TEST_ASSERT(count == 1, "Unable to read from param file.");
1948 fclose(f);
1951 return val == 'Y';
1954 unsigned int vm_get_page_size(struct kvm_vm *vm)
1956 return vm->page_size;
1959 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1961 return vm->page_shift;
1964 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1966 return vm->max_gfn;
1969 int vm_get_fd(struct kvm_vm *vm)
1971 return vm->fd;
1974 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1975 unsigned int page_shift,
1976 unsigned int new_page_shift,
1977 bool ceil)
1979 unsigned int n = 1 << (new_page_shift - page_shift);
1981 if (page_shift >= new_page_shift)
1982 return num_pages * (1 << (page_shift - new_page_shift));
1984 return num_pages / n + !!(ceil && num_pages % n);
1987 static inline int getpageshift(void)
1989 return __builtin_ffs(getpagesize()) - 1;
1992 unsigned int
1993 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1995 return vm_calc_num_pages(num_guest_pages,
1996 vm_guest_mode_params[mode].page_shift,
1997 getpageshift(), true);
2000 unsigned int
2001 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2003 return vm_calc_num_pages(num_host_pages, getpageshift(),
2004 vm_guest_mode_params[mode].page_shift, false);
2007 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2009 unsigned int n;
2010 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2011 return vm_adjust_num_guest_pages(mode, n);