WIP FPC-III support
[linux/fpc-iii.git] / tools / testing / selftests / vm / protection_keys.c
blobfdbb602ecf325457c135dc6f0c18da877d9712fc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in pkey registers (the rights register)
8 * * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 * information from the siginfo
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
20 * Compile like this:
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/futex.h>
28 #include <time.h>
29 #include <sys/time.h>
30 #include <sys/syscall.h>
31 #include <string.h>
32 #include <stdio.h>
33 #include <stdint.h>
34 #include <stdbool.h>
35 #include <signal.h>
36 #include <assert.h>
37 #include <stdlib.h>
38 #include <ucontext.h>
39 #include <sys/mman.h>
40 #include <sys/types.h>
41 #include <sys/wait.h>
42 #include <sys/stat.h>
43 #include <fcntl.h>
44 #include <unistd.h>
45 #include <sys/ptrace.h>
46 #include <setjmp.h>
48 #include "pkey-helpers.h"
50 int iteration_nr = 1;
51 int test_nr;
53 u64 shadow_pkey_reg;
54 int dprint_in_signal;
55 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
57 void cat_into_file(char *str, char *file)
59 int fd = open(file, O_RDWR);
60 int ret;
62 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
64 * these need to be raw because they are called under
65 * pkey_assert()
67 if (fd < 0) {
68 fprintf(stderr, "error opening '%s'\n", str);
69 perror("error: ");
70 exit(__LINE__);
73 ret = write(fd, str, strlen(str));
74 if (ret != strlen(str)) {
75 perror("write to file failed");
76 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
77 exit(__LINE__);
79 close(fd);
82 #if CONTROL_TRACING > 0
83 static int warned_tracing;
84 int tracing_root_ok(void)
86 if (geteuid() != 0) {
87 if (!warned_tracing)
88 fprintf(stderr, "WARNING: not run as root, "
89 "can not do tracing control\n");
90 warned_tracing = 1;
91 return 0;
93 return 1;
95 #endif
97 void tracing_on(void)
99 #if CONTROL_TRACING > 0
100 #define TRACEDIR "/sys/kernel/debug/tracing"
101 char pidstr[32];
103 if (!tracing_root_ok())
104 return;
106 sprintf(pidstr, "%d", getpid());
107 cat_into_file("0", TRACEDIR "/tracing_on");
108 cat_into_file("\n", TRACEDIR "/trace");
109 if (1) {
110 cat_into_file("function_graph", TRACEDIR "/current_tracer");
111 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
112 } else {
113 cat_into_file("nop", TRACEDIR "/current_tracer");
115 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
116 cat_into_file("1", TRACEDIR "/tracing_on");
117 dprintf1("enabled tracing\n");
118 #endif
121 void tracing_off(void)
123 #if CONTROL_TRACING > 0
124 if (!tracing_root_ok())
125 return;
126 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
127 #endif
130 void abort_hooks(void)
132 fprintf(stderr, "running %s()...\n", __func__);
133 tracing_off();
134 #ifdef SLEEP_ON_ABORT
135 sleep(SLEEP_ON_ABORT);
136 #endif
140 * This attempts to have roughly a page of instructions followed by a few
141 * instructions that do a write, and another page of instructions. That
142 * way, we are pretty sure that the write is in the second page of
143 * instructions and has at least a page of padding behind it.
145 * *That* lets us be sure to madvise() away the write instruction, which
146 * will then fault, which makes sure that the fault code handles
147 * execute-only memory properly.
149 #ifdef __powerpc64__
150 /* This way, both 4K and 64K alignment are maintained */
151 __attribute__((__aligned__(65536)))
152 #else
153 __attribute__((__aligned__(PAGE_SIZE)))
154 #endif
155 void lots_o_noops_around_write(int *write_to_me)
157 dprintf3("running %s()\n", __func__);
158 __page_o_noops();
159 /* Assume this happens in the second page of instructions: */
160 *write_to_me = __LINE__;
161 /* pad out by another page: */
162 __page_o_noops();
163 dprintf3("%s() done\n", __func__);
166 void dump_mem(void *dumpme, int len_bytes)
168 char *c = (void *)dumpme;
169 int i;
171 for (i = 0; i < len_bytes; i += sizeof(u64)) {
172 u64 *ptr = (u64 *)(c + i);
173 dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
177 static u32 hw_pkey_get(int pkey, unsigned long flags)
179 u64 pkey_reg = __read_pkey_reg();
181 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
182 __func__, pkey, flags, 0, 0);
183 dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
185 return (u32) get_pkey_bits(pkey_reg, pkey);
188 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
190 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
191 u64 old_pkey_reg = __read_pkey_reg();
192 u64 new_pkey_reg;
194 /* make sure that 'rights' only contains the bits we expect: */
195 assert(!(rights & ~mask));
197 /* modify bits accordingly in old pkey_reg and assign it */
198 new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
200 __write_pkey_reg(new_pkey_reg);
202 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
203 " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
204 __func__, pkey, rights, flags, 0, __read_pkey_reg(),
205 old_pkey_reg);
206 return 0;
209 void pkey_disable_set(int pkey, int flags)
211 unsigned long syscall_flags = 0;
212 int ret;
213 int pkey_rights;
214 u64 orig_pkey_reg = read_pkey_reg();
216 dprintf1("START->%s(%d, 0x%x)\n", __func__,
217 pkey, flags);
218 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
220 pkey_rights = hw_pkey_get(pkey, syscall_flags);
222 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
223 pkey, pkey, pkey_rights);
225 pkey_assert(pkey_rights >= 0);
227 pkey_rights |= flags;
229 ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
230 assert(!ret);
231 /* pkey_reg and flags have the same format */
232 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
233 dprintf1("%s(%d) shadow: 0x%016llx\n",
234 __func__, pkey, shadow_pkey_reg);
236 pkey_assert(ret >= 0);
238 pkey_rights = hw_pkey_get(pkey, syscall_flags);
239 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
240 pkey, pkey, pkey_rights);
242 dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
243 __func__, pkey, read_pkey_reg());
244 if (flags)
245 pkey_assert(read_pkey_reg() >= orig_pkey_reg);
246 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
247 pkey, flags);
250 void pkey_disable_clear(int pkey, int flags)
252 unsigned long syscall_flags = 0;
253 int ret;
254 int pkey_rights = hw_pkey_get(pkey, syscall_flags);
255 u64 orig_pkey_reg = read_pkey_reg();
257 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
259 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
260 pkey, pkey, pkey_rights);
261 pkey_assert(pkey_rights >= 0);
263 pkey_rights &= ~flags;
265 ret = hw_pkey_set(pkey, pkey_rights, 0);
266 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
267 pkey_assert(ret >= 0);
269 pkey_rights = hw_pkey_get(pkey, syscall_flags);
270 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
271 pkey, pkey, pkey_rights);
273 dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
274 pkey, read_pkey_reg());
275 if (flags)
276 assert(read_pkey_reg() <= orig_pkey_reg);
279 void pkey_write_allow(int pkey)
281 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
283 void pkey_write_deny(int pkey)
285 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
287 void pkey_access_allow(int pkey)
289 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
291 void pkey_access_deny(int pkey)
293 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
296 /* Failed address bound checks: */
297 #ifndef SEGV_BNDERR
298 # define SEGV_BNDERR 3
299 #endif
301 #ifndef SEGV_PKUERR
302 # define SEGV_PKUERR 4
303 #endif
305 static char *si_code_str(int si_code)
307 if (si_code == SEGV_MAPERR)
308 return "SEGV_MAPERR";
309 if (si_code == SEGV_ACCERR)
310 return "SEGV_ACCERR";
311 if (si_code == SEGV_BNDERR)
312 return "SEGV_BNDERR";
313 if (si_code == SEGV_PKUERR)
314 return "SEGV_PKUERR";
315 return "UNKNOWN";
318 int pkey_faults;
319 int last_si_pkey = -1;
320 void signal_handler(int signum, siginfo_t *si, void *vucontext)
322 ucontext_t *uctxt = vucontext;
323 int trapno;
324 unsigned long ip;
325 char *fpregs;
326 #if defined(__i386__) || defined(__x86_64__) /* arch */
327 u32 *pkey_reg_ptr;
328 int pkey_reg_offset;
329 #endif /* arch */
330 u64 siginfo_pkey;
331 u32 *si_pkey_ptr;
333 dprint_in_signal = 1;
334 dprintf1(">>>>===============SIGSEGV============================\n");
335 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
336 __func__, __LINE__,
337 __read_pkey_reg(), shadow_pkey_reg);
339 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
340 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
341 fpregs = (char *) uctxt->uc_mcontext.fpregs;
343 dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
344 __func__, trapno, ip, si_code_str(si->si_code),
345 si->si_code);
347 #if defined(__i386__) || defined(__x86_64__) /* arch */
348 #ifdef __i386__
350 * 32-bit has some extra padding so that userspace can tell whether
351 * the XSTATE header is present in addition to the "legacy" FPU
352 * state. We just assume that it is here.
354 fpregs += 0x70;
355 #endif /* i386 */
356 pkey_reg_offset = pkey_reg_xstate_offset();
357 pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
360 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
361 * here.
363 dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
364 if (DEBUG_LEVEL > 4)
365 dump_mem(pkey_reg_ptr - 128, 256);
366 pkey_assert(*pkey_reg_ptr);
367 #endif /* arch */
369 dprintf1("siginfo: %p\n", si);
370 dprintf1(" fpregs: %p\n", fpregs);
372 if ((si->si_code == SEGV_MAPERR) ||
373 (si->si_code == SEGV_ACCERR) ||
374 (si->si_code == SEGV_BNDERR)) {
375 printf("non-PK si_code, exiting...\n");
376 exit(4);
379 si_pkey_ptr = siginfo_get_pkey_ptr(si);
380 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
381 dump_mem((u8 *)si_pkey_ptr - 8, 24);
382 siginfo_pkey = *si_pkey_ptr;
383 pkey_assert(siginfo_pkey < NR_PKEYS);
384 last_si_pkey = siginfo_pkey;
387 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
388 * checking
390 dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
391 __read_pkey_reg());
392 dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
393 #if defined(__i386__) || defined(__x86_64__) /* arch */
394 dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
395 *(u64 *)pkey_reg_ptr = 0x00000000;
396 dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
397 #elif defined(__powerpc64__) /* arch */
398 /* restore access and let the faulting instruction continue */
399 pkey_access_allow(siginfo_pkey);
400 #endif /* arch */
401 pkey_faults++;
402 dprintf1("<<<<==================================================\n");
403 dprint_in_signal = 0;
406 int wait_all_children(void)
408 int status;
409 return waitpid(-1, &status, 0);
412 void sig_chld(int x)
414 dprint_in_signal = 1;
415 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
416 dprint_in_signal = 0;
419 void setup_sigsegv_handler(void)
421 int r, rs;
422 struct sigaction newact;
423 struct sigaction oldact;
425 /* #PF is mapped to sigsegv */
426 int signum = SIGSEGV;
428 newact.sa_handler = 0;
429 newact.sa_sigaction = signal_handler;
431 /*sigset_t - signals to block while in the handler */
432 /* get the old signal mask. */
433 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
434 pkey_assert(rs == 0);
436 /* call sa_sigaction, not sa_handler*/
437 newact.sa_flags = SA_SIGINFO;
439 newact.sa_restorer = 0; /* void(*)(), obsolete */
440 r = sigaction(signum, &newact, &oldact);
441 r = sigaction(SIGALRM, &newact, &oldact);
442 pkey_assert(r == 0);
445 void setup_handlers(void)
447 signal(SIGCHLD, &sig_chld);
448 setup_sigsegv_handler();
451 pid_t fork_lazy_child(void)
453 pid_t forkret;
455 forkret = fork();
456 pkey_assert(forkret >= 0);
457 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
459 if (!forkret) {
460 /* in the child */
461 while (1) {
462 dprintf1("child sleeping...\n");
463 sleep(30);
466 return forkret;
469 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
470 unsigned long pkey)
472 int sret;
474 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
475 ptr, size, orig_prot, pkey);
477 errno = 0;
478 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
479 if (errno) {
480 dprintf2("SYS_mprotect_key sret: %d\n", sret);
481 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
482 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
483 if (DEBUG_LEVEL >= 2)
484 perror("SYS_mprotect_pkey");
486 return sret;
489 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
491 int ret = syscall(SYS_pkey_alloc, flags, init_val);
492 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
493 __func__, flags, init_val, ret, errno);
494 return ret;
497 int alloc_pkey(void)
499 int ret;
500 unsigned long init_val = 0x0;
502 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
503 __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
504 ret = sys_pkey_alloc(0, init_val);
506 * pkey_alloc() sets PKEY register, so we need to reflect it in
507 * shadow_pkey_reg:
509 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
510 " shadow: 0x%016llx\n",
511 __func__, __LINE__, ret, __read_pkey_reg(),
512 shadow_pkey_reg);
513 if (ret) {
514 /* clear both the bits: */
515 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
516 ~PKEY_MASK);
517 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
518 " shadow: 0x%016llx\n",
519 __func__,
520 __LINE__, ret, __read_pkey_reg(),
521 shadow_pkey_reg);
523 * move the new state in from init_val
524 * (remember, we cheated and init_val == pkey_reg format)
526 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
527 init_val);
529 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
530 " shadow: 0x%016llx\n",
531 __func__, __LINE__, ret, __read_pkey_reg(),
532 shadow_pkey_reg);
533 dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
534 /* for shadow checking: */
535 read_pkey_reg();
536 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
537 " shadow: 0x%016llx\n",
538 __func__, __LINE__, ret, __read_pkey_reg(),
539 shadow_pkey_reg);
540 return ret;
543 int sys_pkey_free(unsigned long pkey)
545 int ret = syscall(SYS_pkey_free, pkey);
546 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
547 return ret;
551 * I had a bug where pkey bits could be set by mprotect() but
552 * not cleared. This ensures we get lots of random bit sets
553 * and clears on the vma and pte pkey bits.
555 int alloc_random_pkey(void)
557 int max_nr_pkey_allocs;
558 int ret;
559 int i;
560 int alloced_pkeys[NR_PKEYS];
561 int nr_alloced = 0;
562 int random_index;
563 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
564 srand((unsigned int)time(NULL));
566 /* allocate every possible key and make a note of which ones we got */
567 max_nr_pkey_allocs = NR_PKEYS;
568 for (i = 0; i < max_nr_pkey_allocs; i++) {
569 int new_pkey = alloc_pkey();
570 if (new_pkey < 0)
571 break;
572 alloced_pkeys[nr_alloced++] = new_pkey;
575 pkey_assert(nr_alloced > 0);
576 /* select a random one out of the allocated ones */
577 random_index = rand() % nr_alloced;
578 ret = alloced_pkeys[random_index];
579 /* now zero it out so we don't free it next */
580 alloced_pkeys[random_index] = 0;
582 /* go through the allocated ones that we did not want and free them */
583 for (i = 0; i < nr_alloced; i++) {
584 int free_ret;
585 if (!alloced_pkeys[i])
586 continue;
587 free_ret = sys_pkey_free(alloced_pkeys[i]);
588 pkey_assert(!free_ret);
590 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
591 " shadow: 0x%016llx\n", __func__,
592 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
593 return ret;
596 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
597 unsigned long pkey)
599 int nr_iterations = random() % 100;
600 int ret;
602 while (0) {
603 int rpkey = alloc_random_pkey();
604 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
605 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
606 ptr, size, orig_prot, pkey, ret);
607 if (nr_iterations-- < 0)
608 break;
610 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
611 " shadow: 0x%016llx\n",
612 __func__, __LINE__, ret, __read_pkey_reg(),
613 shadow_pkey_reg);
614 sys_pkey_free(rpkey);
615 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
616 " shadow: 0x%016llx\n",
617 __func__, __LINE__, ret, __read_pkey_reg(),
618 shadow_pkey_reg);
620 pkey_assert(pkey < NR_PKEYS);
622 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
623 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
624 ptr, size, orig_prot, pkey, ret);
625 pkey_assert(!ret);
626 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
627 " shadow: 0x%016llx\n", __func__,
628 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
629 return ret;
632 struct pkey_malloc_record {
633 void *ptr;
634 long size;
635 int prot;
637 struct pkey_malloc_record *pkey_malloc_records;
638 struct pkey_malloc_record *pkey_last_malloc_record;
639 long nr_pkey_malloc_records;
640 void record_pkey_malloc(void *ptr, long size, int prot)
642 long i;
643 struct pkey_malloc_record *rec = NULL;
645 for (i = 0; i < nr_pkey_malloc_records; i++) {
646 rec = &pkey_malloc_records[i];
647 /* find a free record */
648 if (rec)
649 break;
651 if (!rec) {
652 /* every record is full */
653 size_t old_nr_records = nr_pkey_malloc_records;
654 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
655 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
656 dprintf2("new_nr_records: %zd\n", new_nr_records);
657 dprintf2("new_size: %zd\n", new_size);
658 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
659 pkey_assert(pkey_malloc_records != NULL);
660 rec = &pkey_malloc_records[nr_pkey_malloc_records];
662 * realloc() does not initialize memory, so zero it from
663 * the first new record all the way to the end.
665 for (i = 0; i < new_nr_records - old_nr_records; i++)
666 memset(rec + i, 0, sizeof(*rec));
668 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
669 (int)(rec - pkey_malloc_records), rec, ptr, size);
670 rec->ptr = ptr;
671 rec->size = size;
672 rec->prot = prot;
673 pkey_last_malloc_record = rec;
674 nr_pkey_malloc_records++;
677 void free_pkey_malloc(void *ptr)
679 long i;
680 int ret;
681 dprintf3("%s(%p)\n", __func__, ptr);
682 for (i = 0; i < nr_pkey_malloc_records; i++) {
683 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
684 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
685 ptr, i, rec, rec->ptr, rec->size);
686 if ((ptr < rec->ptr) ||
687 (ptr >= rec->ptr + rec->size))
688 continue;
690 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
691 ptr, i, rec, rec->ptr, rec->size);
692 nr_pkey_malloc_records--;
693 ret = munmap(rec->ptr, rec->size);
694 dprintf3("munmap ret: %d\n", ret);
695 pkey_assert(!ret);
696 dprintf3("clearing rec->ptr, rec: %p\n", rec);
697 rec->ptr = NULL;
698 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
699 return;
701 pkey_assert(false);
705 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
707 void *ptr;
708 int ret;
710 read_pkey_reg();
711 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
712 size, prot, pkey);
713 pkey_assert(pkey < NR_PKEYS);
714 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
715 pkey_assert(ptr != (void *)-1);
716 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
717 pkey_assert(!ret);
718 record_pkey_malloc(ptr, size, prot);
719 read_pkey_reg();
721 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
722 return ptr;
725 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
727 int ret;
728 void *ptr;
730 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
731 size, prot, pkey);
733 * Guarantee we can fit at least one huge page in the resulting
734 * allocation by allocating space for 2:
736 size = ALIGN_UP(size, HPAGE_SIZE * 2);
737 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
738 pkey_assert(ptr != (void *)-1);
739 record_pkey_malloc(ptr, size, prot);
740 mprotect_pkey(ptr, size, prot, pkey);
742 dprintf1("unaligned ptr: %p\n", ptr);
743 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
744 dprintf1(" aligned ptr: %p\n", ptr);
745 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
746 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
747 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
748 dprintf1("MADV_WILLNEED ret: %d\n", ret);
749 memset(ptr, 0, HPAGE_SIZE);
751 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
752 return ptr;
755 int hugetlb_setup_ok;
756 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
757 #define GET_NR_HUGE_PAGES 10
758 void setup_hugetlbfs(void)
760 int err;
761 int fd;
762 char buf[256];
763 long hpagesz_kb;
764 long hpagesz_mb;
766 if (geteuid() != 0) {
767 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
768 return;
771 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
774 * Now go make sure that we got the pages and that they
775 * are PMD-level pages. Someone might have made PUD-level
776 * pages the default.
778 hpagesz_kb = HPAGE_SIZE / 1024;
779 hpagesz_mb = hpagesz_kb / 1024;
780 sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
781 fd = open(buf, O_RDONLY);
782 if (fd < 0) {
783 fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
784 hpagesz_mb, strerror(errno));
785 return;
788 /* -1 to guarantee leaving the trailing \0 */
789 err = read(fd, buf, sizeof(buf)-1);
790 close(fd);
791 if (err <= 0) {
792 fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
793 hpagesz_mb, strerror(errno));
794 return;
797 if (atoi(buf) != GET_NR_HUGE_PAGES) {
798 fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
799 hpagesz_mb, buf, GET_NR_HUGE_PAGES);
800 return;
803 hugetlb_setup_ok = 1;
806 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
808 void *ptr;
809 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
811 if (!hugetlb_setup_ok)
812 return PTR_ERR_ENOTSUP;
814 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
815 size = ALIGN_UP(size, HPAGE_SIZE * 2);
816 pkey_assert(pkey < NR_PKEYS);
817 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
818 pkey_assert(ptr != (void *)-1);
819 mprotect_pkey(ptr, size, prot, pkey);
821 record_pkey_malloc(ptr, size, prot);
823 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
824 return ptr;
827 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
829 void *ptr;
830 int fd;
832 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
833 size, prot, pkey);
834 pkey_assert(pkey < NR_PKEYS);
835 fd = open("/dax/foo", O_RDWR);
836 pkey_assert(fd >= 0);
838 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
839 pkey_assert(ptr != (void *)-1);
841 mprotect_pkey(ptr, size, prot, pkey);
843 record_pkey_malloc(ptr, size, prot);
845 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
846 close(fd);
847 return ptr;
850 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
852 malloc_pkey_with_mprotect,
853 malloc_pkey_with_mprotect_subpage,
854 malloc_pkey_anon_huge,
855 malloc_pkey_hugetlb
856 /* can not do direct with the pkey_mprotect() API:
857 malloc_pkey_mmap_direct,
858 malloc_pkey_mmap_dax,
862 void *malloc_pkey(long size, int prot, u16 pkey)
864 void *ret;
865 static int malloc_type;
866 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
868 pkey_assert(pkey < NR_PKEYS);
870 while (1) {
871 pkey_assert(malloc_type < nr_malloc_types);
873 ret = pkey_malloc[malloc_type](size, prot, pkey);
874 pkey_assert(ret != (void *)-1);
876 malloc_type++;
877 if (malloc_type >= nr_malloc_types)
878 malloc_type = (random()%nr_malloc_types);
880 /* try again if the malloc_type we tried is unsupported */
881 if (ret == PTR_ERR_ENOTSUP)
882 continue;
884 break;
887 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
888 size, prot, pkey, ret);
889 return ret;
892 int last_pkey_faults;
893 #define UNKNOWN_PKEY -2
894 void expected_pkey_fault(int pkey)
896 dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
897 __func__, last_pkey_faults, pkey_faults);
898 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
899 pkey_assert(last_pkey_faults + 1 == pkey_faults);
902 * For exec-only memory, we do not know the pkey in
903 * advance, so skip this check.
905 if (pkey != UNKNOWN_PKEY)
906 pkey_assert(last_si_pkey == pkey);
908 #if defined(__i386__) || defined(__x86_64__) /* arch */
910 * The signal handler shold have cleared out PKEY register to let the
911 * test program continue. We now have to restore it.
913 if (__read_pkey_reg() != 0)
914 #else /* arch */
915 if (__read_pkey_reg() != shadow_pkey_reg)
916 #endif /* arch */
917 pkey_assert(0);
919 __write_pkey_reg(shadow_pkey_reg);
920 dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
921 "nuked it\n", __func__, shadow_pkey_reg);
922 last_pkey_faults = pkey_faults;
923 last_si_pkey = -1;
926 #define do_not_expect_pkey_fault(msg) do { \
927 if (last_pkey_faults != pkey_faults) \
928 dprintf0("unexpected PKey fault: %s\n", msg); \
929 pkey_assert(last_pkey_faults == pkey_faults); \
930 } while (0)
932 int test_fds[10] = { -1 };
933 int nr_test_fds;
934 void __save_test_fd(int fd)
936 pkey_assert(fd >= 0);
937 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
938 test_fds[nr_test_fds] = fd;
939 nr_test_fds++;
942 int get_test_read_fd(void)
944 int test_fd = open("/etc/passwd", O_RDONLY);
945 __save_test_fd(test_fd);
946 return test_fd;
949 void close_test_fds(void)
951 int i;
953 for (i = 0; i < nr_test_fds; i++) {
954 if (test_fds[i] < 0)
955 continue;
956 close(test_fds[i]);
957 test_fds[i] = -1;
959 nr_test_fds = 0;
962 #define barrier() __asm__ __volatile__("": : :"memory")
963 __attribute__((noinline)) int read_ptr(int *ptr)
966 * Keep GCC from optimizing this away somehow
968 barrier();
969 return *ptr;
972 void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
974 int i, err;
975 int max_nr_pkey_allocs;
976 int alloced_pkeys[NR_PKEYS];
977 int nr_alloced = 0;
978 long size;
980 pkey_assert(pkey_last_malloc_record);
981 size = pkey_last_malloc_record->size;
983 * This is a bit of a hack. But mprotect() requires
984 * huge-page-aligned sizes when operating on hugetlbfs.
985 * So, make sure that we use something that's a multiple
986 * of a huge page when we can.
988 if (size >= HPAGE_SIZE)
989 size = HPAGE_SIZE;
991 /* allocate every possible key and make sure key-0 never got allocated */
992 max_nr_pkey_allocs = NR_PKEYS;
993 for (i = 0; i < max_nr_pkey_allocs; i++) {
994 int new_pkey = alloc_pkey();
995 pkey_assert(new_pkey != 0);
997 if (new_pkey < 0)
998 break;
999 alloced_pkeys[nr_alloced++] = new_pkey;
1001 /* free all the allocated keys */
1002 for (i = 0; i < nr_alloced; i++) {
1003 int free_ret;
1005 if (!alloced_pkeys[i])
1006 continue;
1007 free_ret = sys_pkey_free(alloced_pkeys[i]);
1008 pkey_assert(!free_ret);
1011 /* attach key-0 in various modes */
1012 err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1013 pkey_assert(!err);
1014 err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1015 pkey_assert(!err);
1016 err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1017 pkey_assert(!err);
1018 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1019 pkey_assert(!err);
1020 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1021 pkey_assert(!err);
1024 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1026 int ptr_contents;
1028 dprintf1("disabling write access to PKEY[1], doing read\n");
1029 pkey_write_deny(pkey);
1030 ptr_contents = read_ptr(ptr);
1031 dprintf1("*ptr: %d\n", ptr_contents);
1032 dprintf1("\n");
1034 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1036 int ptr_contents;
1038 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1039 read_pkey_reg();
1040 pkey_access_deny(pkey);
1041 ptr_contents = read_ptr(ptr);
1042 dprintf1("*ptr: %d\n", ptr_contents);
1043 expected_pkey_fault(pkey);
1046 void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1047 u16 pkey)
1049 int ptr_contents;
1051 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1052 pkey, ptr);
1053 ptr_contents = read_ptr(ptr);
1054 dprintf1("reading ptr before disabling the read : %d\n",
1055 ptr_contents);
1056 read_pkey_reg();
1057 pkey_access_deny(pkey);
1058 ptr_contents = read_ptr(ptr);
1059 dprintf1("*ptr: %d\n", ptr_contents);
1060 expected_pkey_fault(pkey);
1063 void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1064 u16 pkey)
1066 *ptr = __LINE__;
1067 dprintf1("disabling write access; after accessing the page, "
1068 "to PKEY[%02d], doing write\n", pkey);
1069 pkey_write_deny(pkey);
1070 *ptr = __LINE__;
1071 expected_pkey_fault(pkey);
1074 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1076 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1077 pkey_write_deny(pkey);
1078 *ptr = __LINE__;
1079 expected_pkey_fault(pkey);
1081 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1083 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1084 pkey_access_deny(pkey);
1085 *ptr = __LINE__;
1086 expected_pkey_fault(pkey);
1089 void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1090 u16 pkey)
1092 *ptr = __LINE__;
1093 dprintf1("disabling access; after accessing the page, "
1094 " to PKEY[%02d], doing write\n", pkey);
1095 pkey_access_deny(pkey);
1096 *ptr = __LINE__;
1097 expected_pkey_fault(pkey);
1100 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1102 int ret;
1103 int test_fd = get_test_read_fd();
1105 dprintf1("disabling access to PKEY[%02d], "
1106 "having kernel read() to buffer\n", pkey);
1107 pkey_access_deny(pkey);
1108 ret = read(test_fd, ptr, 1);
1109 dprintf1("read ret: %d\n", ret);
1110 pkey_assert(ret);
1112 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1114 int ret;
1115 int test_fd = get_test_read_fd();
1117 pkey_write_deny(pkey);
1118 ret = read(test_fd, ptr, 100);
1119 dprintf1("read ret: %d\n", ret);
1120 if (ret < 0 && (DEBUG_LEVEL > 0))
1121 perror("verbose read result (OK for this to be bad)");
1122 pkey_assert(ret);
1125 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1127 int pipe_ret, vmsplice_ret;
1128 struct iovec iov;
1129 int pipe_fds[2];
1131 pipe_ret = pipe(pipe_fds);
1133 pkey_assert(pipe_ret == 0);
1134 dprintf1("disabling access to PKEY[%02d], "
1135 "having kernel vmsplice from buffer\n", pkey);
1136 pkey_access_deny(pkey);
1137 iov.iov_base = ptr;
1138 iov.iov_len = PAGE_SIZE;
1139 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1140 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1141 pkey_assert(vmsplice_ret == -1);
1143 close(pipe_fds[0]);
1144 close(pipe_fds[1]);
1147 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1149 int ignored = 0xdada;
1150 int futex_ret;
1151 int some_int = __LINE__;
1153 dprintf1("disabling write to PKEY[%02d], "
1154 "doing futex gunk in buffer\n", pkey);
1155 *ptr = some_int;
1156 pkey_write_deny(pkey);
1157 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1158 &ignored, ignored);
1159 if (DEBUG_LEVEL > 0)
1160 perror("futex");
1161 dprintf1("futex() ret: %d\n", futex_ret);
1164 /* Assumes that all pkeys other than 'pkey' are unallocated */
1165 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1167 int err;
1168 int i;
1170 /* Note: 0 is the default pkey, so don't mess with it */
1171 for (i = 1; i < NR_PKEYS; i++) {
1172 if (pkey == i)
1173 continue;
1175 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1176 err = sys_pkey_free(i);
1177 pkey_assert(err);
1179 err = sys_pkey_free(i);
1180 pkey_assert(err);
1182 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1183 pkey_assert(err);
1187 /* Assumes that all pkeys other than 'pkey' are unallocated */
1188 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1190 int err;
1191 int bad_pkey = NR_PKEYS+99;
1193 /* pass a known-invalid pkey in: */
1194 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1195 pkey_assert(err);
1198 void become_child(void)
1200 pid_t forkret;
1202 forkret = fork();
1203 pkey_assert(forkret >= 0);
1204 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1206 if (!forkret) {
1207 /* in the child */
1208 return;
1210 exit(0);
1213 /* Assumes that all pkeys other than 'pkey' are unallocated */
1214 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1216 int err;
1217 int allocated_pkeys[NR_PKEYS] = {0};
1218 int nr_allocated_pkeys = 0;
1219 int i;
1221 for (i = 0; i < NR_PKEYS*3; i++) {
1222 int new_pkey;
1223 dprintf1("%s() alloc loop: %d\n", __func__, i);
1224 new_pkey = alloc_pkey();
1225 dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1226 " shadow: 0x%016llx\n",
1227 __func__, __LINE__, err, __read_pkey_reg(),
1228 shadow_pkey_reg);
1229 read_pkey_reg(); /* for shadow checking */
1230 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1231 if ((new_pkey == -1) && (errno == ENOSPC)) {
1232 dprintf2("%s() failed to allocate pkey after %d tries\n",
1233 __func__, nr_allocated_pkeys);
1234 } else {
1236 * Ensure the number of successes never
1237 * exceeds the number of keys supported
1238 * in the hardware.
1240 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1241 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1245 * Make sure that allocation state is properly
1246 * preserved across fork().
1248 if (i == NR_PKEYS*2)
1249 become_child();
1252 dprintf3("%s()::%d\n", __func__, __LINE__);
1255 * On x86:
1256 * There are 16 pkeys supported in hardware. Three are
1257 * allocated by the time we get here:
1258 * 1. The default key (0)
1259 * 2. One possibly consumed by an execute-only mapping.
1260 * 3. One allocated by the test code and passed in via
1261 * 'pkey' to this function.
1262 * Ensure that we can allocate at least another 13 (16-3).
1264 * On powerpc:
1265 * There are either 5, 28, 29 or 32 pkeys supported in
1266 * hardware depending on the page size (4K or 64K) and
1267 * platform (powernv or powervm). Four are allocated by
1268 * the time we get here. These include pkey-0, pkey-1,
1269 * exec-only pkey and the one allocated by the test code.
1270 * Ensure that we can allocate the remaining.
1272 pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1274 for (i = 0; i < nr_allocated_pkeys; i++) {
1275 err = sys_pkey_free(allocated_pkeys[i]);
1276 pkey_assert(!err);
1277 read_pkey_reg(); /* for shadow checking */
1282 * pkey 0 is special. It is allocated by default, so you do not
1283 * have to call pkey_alloc() to use it first. Make sure that it
1284 * is usable.
1286 void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1288 long size;
1289 int prot;
1291 assert(pkey_last_malloc_record);
1292 size = pkey_last_malloc_record->size;
1294 * This is a bit of a hack. But mprotect() requires
1295 * huge-page-aligned sizes when operating on hugetlbfs.
1296 * So, make sure that we use something that's a multiple
1297 * of a huge page when we can.
1299 if (size >= HPAGE_SIZE)
1300 size = HPAGE_SIZE;
1301 prot = pkey_last_malloc_record->prot;
1303 /* Use pkey 0 */
1304 mprotect_pkey(ptr, size, prot, 0);
1306 /* Make sure that we can set it back to the original pkey. */
1307 mprotect_pkey(ptr, size, prot, pkey);
1310 void test_ptrace_of_child(int *ptr, u16 pkey)
1312 __attribute__((__unused__)) int peek_result;
1313 pid_t child_pid;
1314 void *ignored = 0;
1315 long ret;
1316 int status;
1318 * This is the "control" for our little expermient. Make sure
1319 * we can always access it when ptracing.
1321 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1322 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1325 * Fork a child which is an exact copy of this process, of course.
1326 * That means we can do all of our tests via ptrace() and then plain
1327 * memory access and ensure they work differently.
1329 child_pid = fork_lazy_child();
1330 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1332 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1333 if (ret)
1334 perror("attach");
1335 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1336 pkey_assert(ret != -1);
1337 ret = waitpid(child_pid, &status, WUNTRACED);
1338 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1339 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1340 ret, status);
1341 pkey_assert(0);
1343 dprintf2("waitpid ret: %ld\n", ret);
1344 dprintf2("waitpid status: %d\n", status);
1346 pkey_access_deny(pkey);
1347 pkey_write_deny(pkey);
1349 /* Write access, untested for now:
1350 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1351 pkey_assert(ret != -1);
1352 dprintf1("poke at %p: %ld\n", peek_at, ret);
1356 * Try to access the pkey-protected "ptr" via ptrace:
1358 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1359 /* expect it to work, without an error: */
1360 pkey_assert(ret != -1);
1361 /* Now access from the current task, and expect an exception: */
1362 peek_result = read_ptr(ptr);
1363 expected_pkey_fault(pkey);
1366 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1368 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1369 /* expect it to work, without an error: */
1370 pkey_assert(ret != -1);
1371 /* Now access from the current task, and expect NO exception: */
1372 peek_result = read_ptr(plain_ptr);
1373 do_not_expect_pkey_fault("read plain pointer after ptrace");
1375 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1376 pkey_assert(ret != -1);
1378 ret = kill(child_pid, SIGKILL);
1379 pkey_assert(ret != -1);
1381 wait(&status);
1383 free(plain_ptr_unaligned);
1386 void *get_pointer_to_instructions(void)
1388 void *p1;
1390 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1391 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1392 /* lots_o_noops_around_write should be page-aligned already */
1393 assert(p1 == &lots_o_noops_around_write);
1395 /* Point 'p1' at the *second* page of the function: */
1396 p1 += PAGE_SIZE;
1399 * Try to ensure we fault this in on next touch to ensure
1400 * we get an instruction fault as opposed to a data one
1402 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1404 return p1;
1407 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1409 void *p1;
1410 int scratch;
1411 int ptr_contents;
1412 int ret;
1414 p1 = get_pointer_to_instructions();
1415 lots_o_noops_around_write(&scratch);
1416 ptr_contents = read_ptr(p1);
1417 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1419 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1420 pkey_assert(!ret);
1421 pkey_access_deny(pkey);
1423 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1426 * Make sure this is an *instruction* fault
1428 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1429 lots_o_noops_around_write(&scratch);
1430 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1431 expect_fault_on_read_execonly_key(p1, pkey);
1434 void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1436 void *p1;
1437 int scratch;
1438 int ptr_contents;
1439 int ret;
1441 dprintf1("%s() start\n", __func__);
1443 p1 = get_pointer_to_instructions();
1444 lots_o_noops_around_write(&scratch);
1445 ptr_contents = read_ptr(p1);
1446 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1448 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1449 ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1450 pkey_assert(!ret);
1452 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1454 /* Make sure this is an *instruction* fault */
1455 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1456 lots_o_noops_around_write(&scratch);
1457 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1458 expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1461 * Put the memory back to non-PROT_EXEC. Should clear the
1462 * exec-only pkey off the VMA and allow it to be readable
1463 * again. Go to PROT_NONE first to check for a kernel bug
1464 * that did not clear the pkey when doing PROT_NONE.
1466 ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1467 pkey_assert(!ret);
1469 ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1470 pkey_assert(!ret);
1471 ptr_contents = read_ptr(p1);
1472 do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1475 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1477 int size = PAGE_SIZE;
1478 int sret;
1480 if (cpu_has_pkeys()) {
1481 dprintf1("SKIP: %s: no CPU support\n", __func__);
1482 return;
1485 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1486 pkey_assert(sret < 0);
1489 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1490 test_read_of_write_disabled_region,
1491 test_read_of_access_disabled_region,
1492 test_read_of_access_disabled_region_with_page_already_mapped,
1493 test_write_of_write_disabled_region,
1494 test_write_of_write_disabled_region_with_page_already_mapped,
1495 test_write_of_access_disabled_region,
1496 test_write_of_access_disabled_region_with_page_already_mapped,
1497 test_kernel_write_of_access_disabled_region,
1498 test_kernel_write_of_write_disabled_region,
1499 test_kernel_gup_of_access_disabled_region,
1500 test_kernel_gup_write_to_write_disabled_region,
1501 test_executing_on_unreadable_memory,
1502 test_implicit_mprotect_exec_only_memory,
1503 test_mprotect_with_pkey_0,
1504 test_ptrace_of_child,
1505 test_pkey_syscalls_on_non_allocated_pkey,
1506 test_pkey_syscalls_bad_args,
1507 test_pkey_alloc_exhaust,
1508 test_pkey_alloc_free_attach_pkey0,
1511 void run_tests_once(void)
1513 int *ptr;
1514 int prot = PROT_READ|PROT_WRITE;
1516 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1517 int pkey;
1518 int orig_pkey_faults = pkey_faults;
1520 dprintf1("======================\n");
1521 dprintf1("test %d preparing...\n", test_nr);
1523 tracing_on();
1524 pkey = alloc_random_pkey();
1525 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1526 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1527 dprintf1("test %d starting...\n", test_nr);
1528 pkey_tests[test_nr](ptr, pkey);
1529 dprintf1("freeing test memory: %p\n", ptr);
1530 free_pkey_malloc(ptr);
1531 sys_pkey_free(pkey);
1533 dprintf1("pkey_faults: %d\n", pkey_faults);
1534 dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1536 tracing_off();
1537 close_test_fds();
1539 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1540 dprintf1("======================\n\n");
1542 iteration_nr++;
1545 void pkey_setup_shadow(void)
1547 shadow_pkey_reg = __read_pkey_reg();
1550 int main(void)
1552 int nr_iterations = 22;
1553 int pkeys_supported = is_pkeys_supported();
1555 setup_handlers();
1557 printf("has pkeys: %d\n", pkeys_supported);
1559 if (!pkeys_supported) {
1560 int size = PAGE_SIZE;
1561 int *ptr;
1563 printf("running PKEY tests for unsupported CPU/OS\n");
1565 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1566 assert(ptr != (void *)-1);
1567 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1568 exit(0);
1571 pkey_setup_shadow();
1572 printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1573 setup_hugetlbfs();
1575 while (nr_iterations-- > 0)
1576 run_tests_once();
1578 printf("done (all tests OK)\n");
1579 return 0;