1 // SPDX-License-Identifier: GPL-2.0
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in pkey registers (the rights register)
8 * * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 * information from the siginfo
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
25 #define __SANE_USERSPACE_TYPES__
27 #include <linux/futex.h>
30 #include <sys/syscall.h>
40 #include <sys/types.h>
45 #include <sys/ptrace.h>
48 #include "pkey-helpers.h"
55 char dprint_in_signal_buffer
[DPRINT_IN_SIGNAL_BUF_SIZE
];
57 void cat_into_file(char *str
, char *file
)
59 int fd
= open(file
, O_RDWR
);
62 dprintf2("%s(): writing '%s' to '%s'\n", __func__
, str
, file
);
64 * these need to be raw because they are called under
68 fprintf(stderr
, "error opening '%s'\n", str
);
73 ret
= write(fd
, str
, strlen(str
));
74 if (ret
!= strlen(str
)) {
75 perror("write to file failed");
76 fprintf(stderr
, "filename: '%s' str: '%s'\n", file
, str
);
82 #if CONTROL_TRACING > 0
83 static int warned_tracing
;
84 int tracing_root_ok(void)
88 fprintf(stderr
, "WARNING: not run as root, "
89 "can not do tracing control\n");
99 #if CONTROL_TRACING > 0
100 #define TRACEDIR "/sys/kernel/debug/tracing"
103 if (!tracing_root_ok())
106 sprintf(pidstr
, "%d", getpid());
107 cat_into_file("0", TRACEDIR
"/tracing_on");
108 cat_into_file("\n", TRACEDIR
"/trace");
110 cat_into_file("function_graph", TRACEDIR
"/current_tracer");
111 cat_into_file("1", TRACEDIR
"/options/funcgraph-proc");
113 cat_into_file("nop", TRACEDIR
"/current_tracer");
115 cat_into_file(pidstr
, TRACEDIR
"/set_ftrace_pid");
116 cat_into_file("1", TRACEDIR
"/tracing_on");
117 dprintf1("enabled tracing\n");
121 void tracing_off(void)
123 #if CONTROL_TRACING > 0
124 if (!tracing_root_ok())
126 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
130 void abort_hooks(void)
132 fprintf(stderr
, "running %s()...\n", __func__
);
134 #ifdef SLEEP_ON_ABORT
135 sleep(SLEEP_ON_ABORT
);
140 * This attempts to have roughly a page of instructions followed by a few
141 * instructions that do a write, and another page of instructions. That
142 * way, we are pretty sure that the write is in the second page of
143 * instructions and has at least a page of padding behind it.
145 * *That* lets us be sure to madvise() away the write instruction, which
146 * will then fault, which makes sure that the fault code handles
147 * execute-only memory properly.
150 /* This way, both 4K and 64K alignment are maintained */
151 __attribute__((__aligned__(65536)))
153 __attribute__((__aligned__(PAGE_SIZE
)))
155 void lots_o_noops_around_write(int *write_to_me
)
157 dprintf3("running %s()\n", __func__
);
159 /* Assume this happens in the second page of instructions: */
160 *write_to_me
= __LINE__
;
161 /* pad out by another page: */
163 dprintf3("%s() done\n", __func__
);
166 void dump_mem(void *dumpme
, int len_bytes
)
168 char *c
= (void *)dumpme
;
171 for (i
= 0; i
< len_bytes
; i
+= sizeof(u64
)) {
172 u64
*ptr
= (u64
*)(c
+ i
);
173 dprintf1("dump[%03d][@%p]: %016llx\n", i
, ptr
, *ptr
);
177 static u32
hw_pkey_get(int pkey
, unsigned long flags
)
179 u64 pkey_reg
= __read_pkey_reg();
181 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
182 __func__
, pkey
, flags
, 0, 0);
183 dprintf2("%s() raw pkey_reg: %016llx\n", __func__
, pkey_reg
);
185 return (u32
) get_pkey_bits(pkey_reg
, pkey
);
188 static int hw_pkey_set(int pkey
, unsigned long rights
, unsigned long flags
)
190 u32 mask
= (PKEY_DISABLE_ACCESS
|PKEY_DISABLE_WRITE
);
191 u64 old_pkey_reg
= __read_pkey_reg();
194 /* make sure that 'rights' only contains the bits we expect: */
195 assert(!(rights
& ~mask
));
197 /* modify bits accordingly in old pkey_reg and assign it */
198 new_pkey_reg
= set_pkey_bits(old_pkey_reg
, pkey
, rights
);
200 __write_pkey_reg(new_pkey_reg
);
202 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
203 " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
204 __func__
, pkey
, rights
, flags
, 0, __read_pkey_reg(),
209 void pkey_disable_set(int pkey
, int flags
)
211 unsigned long syscall_flags
= 0;
214 u64 orig_pkey_reg
= read_pkey_reg();
216 dprintf1("START->%s(%d, 0x%x)\n", __func__
,
218 pkey_assert(flags
& (PKEY_DISABLE_ACCESS
| PKEY_DISABLE_WRITE
));
220 pkey_rights
= hw_pkey_get(pkey
, syscall_flags
);
222 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__
,
223 pkey
, pkey
, pkey_rights
);
225 pkey_assert(pkey_rights
>= 0);
227 pkey_rights
|= flags
;
229 ret
= hw_pkey_set(pkey
, pkey_rights
, syscall_flags
);
231 /* pkey_reg and flags have the same format */
232 shadow_pkey_reg
= set_pkey_bits(shadow_pkey_reg
, pkey
, pkey_rights
);
233 dprintf1("%s(%d) shadow: 0x%016llx\n",
234 __func__
, pkey
, shadow_pkey_reg
);
236 pkey_assert(ret
>= 0);
238 pkey_rights
= hw_pkey_get(pkey
, syscall_flags
);
239 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__
,
240 pkey
, pkey
, pkey_rights
);
242 dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
243 __func__
, pkey
, read_pkey_reg());
245 pkey_assert(read_pkey_reg() >= orig_pkey_reg
);
246 dprintf1("END<---%s(%d, 0x%x)\n", __func__
,
250 void pkey_disable_clear(int pkey
, int flags
)
252 unsigned long syscall_flags
= 0;
254 int pkey_rights
= hw_pkey_get(pkey
, syscall_flags
);
255 u64 orig_pkey_reg
= read_pkey_reg();
257 pkey_assert(flags
& (PKEY_DISABLE_ACCESS
| PKEY_DISABLE_WRITE
));
259 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__
,
260 pkey
, pkey
, pkey_rights
);
261 pkey_assert(pkey_rights
>= 0);
263 pkey_rights
&= ~flags
;
265 ret
= hw_pkey_set(pkey
, pkey_rights
, 0);
266 shadow_pkey_reg
= set_pkey_bits(shadow_pkey_reg
, pkey
, pkey_rights
);
267 pkey_assert(ret
>= 0);
269 pkey_rights
= hw_pkey_get(pkey
, syscall_flags
);
270 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__
,
271 pkey
, pkey
, pkey_rights
);
273 dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__
,
274 pkey
, read_pkey_reg());
276 assert(read_pkey_reg() <= orig_pkey_reg
);
279 void pkey_write_allow(int pkey
)
281 pkey_disable_clear(pkey
, PKEY_DISABLE_WRITE
);
283 void pkey_write_deny(int pkey
)
285 pkey_disable_set(pkey
, PKEY_DISABLE_WRITE
);
287 void pkey_access_allow(int pkey
)
289 pkey_disable_clear(pkey
, PKEY_DISABLE_ACCESS
);
291 void pkey_access_deny(int pkey
)
293 pkey_disable_set(pkey
, PKEY_DISABLE_ACCESS
);
296 /* Failed address bound checks: */
298 # define SEGV_BNDERR 3
302 # define SEGV_PKUERR 4
305 static char *si_code_str(int si_code
)
307 if (si_code
== SEGV_MAPERR
)
308 return "SEGV_MAPERR";
309 if (si_code
== SEGV_ACCERR
)
310 return "SEGV_ACCERR";
311 if (si_code
== SEGV_BNDERR
)
312 return "SEGV_BNDERR";
313 if (si_code
== SEGV_PKUERR
)
314 return "SEGV_PKUERR";
319 int last_si_pkey
= -1;
320 void signal_handler(int signum
, siginfo_t
*si
, void *vucontext
)
322 ucontext_t
*uctxt
= vucontext
;
326 #if defined(__i386__) || defined(__x86_64__) /* arch */
333 dprint_in_signal
= 1;
334 dprintf1(">>>>===============SIGSEGV============================\n");
335 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
337 __read_pkey_reg(), shadow_pkey_reg
);
339 trapno
= uctxt
->uc_mcontext
.gregs
[REG_TRAPNO
];
340 ip
= uctxt
->uc_mcontext
.gregs
[REG_IP_IDX
];
341 fpregs
= (char *) uctxt
->uc_mcontext
.fpregs
;
343 dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
344 __func__
, trapno
, ip
, si_code_str(si
->si_code
),
347 #if defined(__i386__) || defined(__x86_64__) /* arch */
350 * 32-bit has some extra padding so that userspace can tell whether
351 * the XSTATE header is present in addition to the "legacy" FPU
352 * state. We just assume that it is here.
356 pkey_reg_offset
= pkey_reg_xstate_offset();
357 pkey_reg_ptr
= (void *)(&fpregs
[pkey_reg_offset
]);
360 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
363 dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
365 dump_mem(pkey_reg_ptr
- 128, 256);
366 pkey_assert(*pkey_reg_ptr
);
369 dprintf1("siginfo: %p\n", si
);
370 dprintf1(" fpregs: %p\n", fpregs
);
372 if ((si
->si_code
== SEGV_MAPERR
) ||
373 (si
->si_code
== SEGV_ACCERR
) ||
374 (si
->si_code
== SEGV_BNDERR
)) {
375 printf("non-PK si_code, exiting...\n");
379 si_pkey_ptr
= siginfo_get_pkey_ptr(si
);
380 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr
);
381 dump_mem((u8
*)si_pkey_ptr
- 8, 24);
382 siginfo_pkey
= *si_pkey_ptr
;
383 pkey_assert(siginfo_pkey
< NR_PKEYS
);
384 last_si_pkey
= siginfo_pkey
;
387 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
390 dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
392 dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey
);
393 #if defined(__i386__) || defined(__x86_64__) /* arch */
394 dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr
);
395 *(u64
*)pkey_reg_ptr
= 0x00000000;
396 dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
397 #elif defined(__powerpc64__) /* arch */
398 /* restore access and let the faulting instruction continue */
399 pkey_access_allow(siginfo_pkey
);
402 dprintf1("<<<<==================================================\n");
403 dprint_in_signal
= 0;
406 int wait_all_children(void)
409 return waitpid(-1, &status
, 0);
414 dprint_in_signal
= 1;
415 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x
);
416 dprint_in_signal
= 0;
419 void setup_sigsegv_handler(void)
422 struct sigaction newact
;
423 struct sigaction oldact
;
425 /* #PF is mapped to sigsegv */
426 int signum
= SIGSEGV
;
428 newact
.sa_handler
= 0;
429 newact
.sa_sigaction
= signal_handler
;
431 /*sigset_t - signals to block while in the handler */
432 /* get the old signal mask. */
433 rs
= sigprocmask(SIG_SETMASK
, 0, &newact
.sa_mask
);
434 pkey_assert(rs
== 0);
436 /* call sa_sigaction, not sa_handler*/
437 newact
.sa_flags
= SA_SIGINFO
;
439 newact
.sa_restorer
= 0; /* void(*)(), obsolete */
440 r
= sigaction(signum
, &newact
, &oldact
);
441 r
= sigaction(SIGALRM
, &newact
, &oldact
);
445 void setup_handlers(void)
447 signal(SIGCHLD
, &sig_chld
);
448 setup_sigsegv_handler();
451 pid_t
fork_lazy_child(void)
456 pkey_assert(forkret
>= 0);
457 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret
);
462 dprintf1("child sleeping...\n");
469 int sys_mprotect_pkey(void *ptr
, size_t size
, unsigned long orig_prot
,
474 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__
,
475 ptr
, size
, orig_prot
, pkey
);
478 sret
= syscall(SYS_mprotect_key
, ptr
, size
, orig_prot
, pkey
);
480 dprintf2("SYS_mprotect_key sret: %d\n", sret
);
481 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot
);
482 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno
);
483 if (DEBUG_LEVEL
>= 2)
484 perror("SYS_mprotect_pkey");
489 int sys_pkey_alloc(unsigned long flags
, unsigned long init_val
)
491 int ret
= syscall(SYS_pkey_alloc
, flags
, init_val
);
492 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
493 __func__
, flags
, init_val
, ret
, errno
);
500 unsigned long init_val
= 0x0;
502 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
503 __func__
, __LINE__
, __read_pkey_reg(), shadow_pkey_reg
);
504 ret
= sys_pkey_alloc(0, init_val
);
506 * pkey_alloc() sets PKEY register, so we need to reflect it in
509 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
510 " shadow: 0x%016llx\n",
511 __func__
, __LINE__
, ret
, __read_pkey_reg(),
514 /* clear both the bits: */
515 shadow_pkey_reg
= set_pkey_bits(shadow_pkey_reg
, ret
,
517 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
518 " shadow: 0x%016llx\n",
520 __LINE__
, ret
, __read_pkey_reg(),
523 * move the new state in from init_val
524 * (remember, we cheated and init_val == pkey_reg format)
526 shadow_pkey_reg
= set_pkey_bits(shadow_pkey_reg
, ret
,
529 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
530 " shadow: 0x%016llx\n",
531 __func__
, __LINE__
, ret
, __read_pkey_reg(),
533 dprintf1("%s()::%d errno: %d\n", __func__
, __LINE__
, errno
);
534 /* for shadow checking: */
536 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
537 " shadow: 0x%016llx\n",
538 __func__
, __LINE__
, ret
, __read_pkey_reg(),
543 int sys_pkey_free(unsigned long pkey
)
545 int ret
= syscall(SYS_pkey_free
, pkey
);
546 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__
, pkey
, ret
);
551 * I had a bug where pkey bits could be set by mprotect() but
552 * not cleared. This ensures we get lots of random bit sets
553 * and clears on the vma and pte pkey bits.
555 int alloc_random_pkey(void)
557 int max_nr_pkey_allocs
;
560 int alloced_pkeys
[NR_PKEYS
];
563 memset(alloced_pkeys
, 0, sizeof(alloced_pkeys
));
564 srand((unsigned int)time(NULL
));
566 /* allocate every possible key and make a note of which ones we got */
567 max_nr_pkey_allocs
= NR_PKEYS
;
568 for (i
= 0; i
< max_nr_pkey_allocs
; i
++) {
569 int new_pkey
= alloc_pkey();
572 alloced_pkeys
[nr_alloced
++] = new_pkey
;
575 pkey_assert(nr_alloced
> 0);
576 /* select a random one out of the allocated ones */
577 random_index
= rand() % nr_alloced
;
578 ret
= alloced_pkeys
[random_index
];
579 /* now zero it out so we don't free it next */
580 alloced_pkeys
[random_index
] = 0;
582 /* go through the allocated ones that we did not want and free them */
583 for (i
= 0; i
< nr_alloced
; i
++) {
585 if (!alloced_pkeys
[i
])
587 free_ret
= sys_pkey_free(alloced_pkeys
[i
]);
588 pkey_assert(!free_ret
);
590 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
591 " shadow: 0x%016llx\n", __func__
,
592 __LINE__
, ret
, __read_pkey_reg(), shadow_pkey_reg
);
596 int mprotect_pkey(void *ptr
, size_t size
, unsigned long orig_prot
,
599 int nr_iterations
= random() % 100;
603 int rpkey
= alloc_random_pkey();
604 ret
= sys_mprotect_pkey(ptr
, size
, orig_prot
, pkey
);
605 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
606 ptr
, size
, orig_prot
, pkey
, ret
);
607 if (nr_iterations
-- < 0)
610 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
611 " shadow: 0x%016llx\n",
612 __func__
, __LINE__
, ret
, __read_pkey_reg(),
614 sys_pkey_free(rpkey
);
615 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
616 " shadow: 0x%016llx\n",
617 __func__
, __LINE__
, ret
, __read_pkey_reg(),
620 pkey_assert(pkey
< NR_PKEYS
);
622 ret
= sys_mprotect_pkey(ptr
, size
, orig_prot
, pkey
);
623 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
624 ptr
, size
, orig_prot
, pkey
, ret
);
626 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
627 " shadow: 0x%016llx\n", __func__
,
628 __LINE__
, ret
, __read_pkey_reg(), shadow_pkey_reg
);
632 struct pkey_malloc_record
{
637 struct pkey_malloc_record
*pkey_malloc_records
;
638 struct pkey_malloc_record
*pkey_last_malloc_record
;
639 long nr_pkey_malloc_records
;
640 void record_pkey_malloc(void *ptr
, long size
, int prot
)
643 struct pkey_malloc_record
*rec
= NULL
;
645 for (i
= 0; i
< nr_pkey_malloc_records
; i
++) {
646 rec
= &pkey_malloc_records
[i
];
647 /* find a free record */
652 /* every record is full */
653 size_t old_nr_records
= nr_pkey_malloc_records
;
654 size_t new_nr_records
= (nr_pkey_malloc_records
* 2 + 1);
655 size_t new_size
= new_nr_records
* sizeof(struct pkey_malloc_record
);
656 dprintf2("new_nr_records: %zd\n", new_nr_records
);
657 dprintf2("new_size: %zd\n", new_size
);
658 pkey_malloc_records
= realloc(pkey_malloc_records
, new_size
);
659 pkey_assert(pkey_malloc_records
!= NULL
);
660 rec
= &pkey_malloc_records
[nr_pkey_malloc_records
];
662 * realloc() does not initialize memory, so zero it from
663 * the first new record all the way to the end.
665 for (i
= 0; i
< new_nr_records
- old_nr_records
; i
++)
666 memset(rec
+ i
, 0, sizeof(*rec
));
668 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
669 (int)(rec
- pkey_malloc_records
), rec
, ptr
, size
);
673 pkey_last_malloc_record
= rec
;
674 nr_pkey_malloc_records
++;
677 void free_pkey_malloc(void *ptr
)
681 dprintf3("%s(%p)\n", __func__
, ptr
);
682 for (i
= 0; i
< nr_pkey_malloc_records
; i
++) {
683 struct pkey_malloc_record
*rec
= &pkey_malloc_records
[i
];
684 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
685 ptr
, i
, rec
, rec
->ptr
, rec
->size
);
686 if ((ptr
< rec
->ptr
) ||
687 (ptr
>= rec
->ptr
+ rec
->size
))
690 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
691 ptr
, i
, rec
, rec
->ptr
, rec
->size
);
692 nr_pkey_malloc_records
--;
693 ret
= munmap(rec
->ptr
, rec
->size
);
694 dprintf3("munmap ret: %d\n", ret
);
696 dprintf3("clearing rec->ptr, rec: %p\n", rec
);
698 dprintf3("done clearing rec->ptr, rec: %p\n", rec
);
705 void *malloc_pkey_with_mprotect(long size
, int prot
, u16 pkey
)
711 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__
,
713 pkey_assert(pkey
< NR_PKEYS
);
714 ptr
= mmap(NULL
, size
, prot
, MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
715 pkey_assert(ptr
!= (void *)-1);
716 ret
= mprotect_pkey((void *)ptr
, PAGE_SIZE
, prot
, pkey
);
718 record_pkey_malloc(ptr
, size
, prot
);
721 dprintf1("%s() for pkey %d @ %p\n", __func__
, pkey
, ptr
);
725 void *malloc_pkey_anon_huge(long size
, int prot
, u16 pkey
)
730 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__
,
733 * Guarantee we can fit at least one huge page in the resulting
734 * allocation by allocating space for 2:
736 size
= ALIGN_UP(size
, HPAGE_SIZE
* 2);
737 ptr
= mmap(NULL
, size
, PROT_NONE
, MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
738 pkey_assert(ptr
!= (void *)-1);
739 record_pkey_malloc(ptr
, size
, prot
);
740 mprotect_pkey(ptr
, size
, prot
, pkey
);
742 dprintf1("unaligned ptr: %p\n", ptr
);
743 ptr
= ALIGN_PTR_UP(ptr
, HPAGE_SIZE
);
744 dprintf1(" aligned ptr: %p\n", ptr
);
745 ret
= madvise(ptr
, HPAGE_SIZE
, MADV_HUGEPAGE
);
746 dprintf1("MADV_HUGEPAGE ret: %d\n", ret
);
747 ret
= madvise(ptr
, HPAGE_SIZE
, MADV_WILLNEED
);
748 dprintf1("MADV_WILLNEED ret: %d\n", ret
);
749 memset(ptr
, 0, HPAGE_SIZE
);
751 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey
, ptr
);
755 int hugetlb_setup_ok
;
756 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
757 #define GET_NR_HUGE_PAGES 10
758 void setup_hugetlbfs(void)
766 if (geteuid() != 0) {
767 fprintf(stderr
, "WARNING: not run as root, can not do hugetlb test\n");
771 cat_into_file(__stringify(GET_NR_HUGE_PAGES
), "/proc/sys/vm/nr_hugepages");
774 * Now go make sure that we got the pages and that they
775 * are PMD-level pages. Someone might have made PUD-level
778 hpagesz_kb
= HPAGE_SIZE
/ 1024;
779 hpagesz_mb
= hpagesz_kb
/ 1024;
780 sprintf(buf
, SYSFS_FMT_NR_HUGE_PAGES
, hpagesz_kb
);
781 fd
= open(buf
, O_RDONLY
);
783 fprintf(stderr
, "opening sysfs %ldM hugetlb config: %s\n",
784 hpagesz_mb
, strerror(errno
));
788 /* -1 to guarantee leaving the trailing \0 */
789 err
= read(fd
, buf
, sizeof(buf
)-1);
792 fprintf(stderr
, "reading sysfs %ldM hugetlb config: %s\n",
793 hpagesz_mb
, strerror(errno
));
797 if (atoi(buf
) != GET_NR_HUGE_PAGES
) {
798 fprintf(stderr
, "could not confirm %ldM pages, got: '%s' expected %d\n",
799 hpagesz_mb
, buf
, GET_NR_HUGE_PAGES
);
803 hugetlb_setup_ok
= 1;
806 void *malloc_pkey_hugetlb(long size
, int prot
, u16 pkey
)
809 int flags
= MAP_ANONYMOUS
|MAP_PRIVATE
|MAP_HUGETLB
;
811 if (!hugetlb_setup_ok
)
812 return PTR_ERR_ENOTSUP
;
814 dprintf1("doing %s(%ld, %x, %x)\n", __func__
, size
, prot
, pkey
);
815 size
= ALIGN_UP(size
, HPAGE_SIZE
* 2);
816 pkey_assert(pkey
< NR_PKEYS
);
817 ptr
= mmap(NULL
, size
, PROT_NONE
, flags
, -1, 0);
818 pkey_assert(ptr
!= (void *)-1);
819 mprotect_pkey(ptr
, size
, prot
, pkey
);
821 record_pkey_malloc(ptr
, size
, prot
);
823 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey
, ptr
);
827 void *malloc_pkey_mmap_dax(long size
, int prot
, u16 pkey
)
832 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__
,
834 pkey_assert(pkey
< NR_PKEYS
);
835 fd
= open("/dax/foo", O_RDWR
);
836 pkey_assert(fd
>= 0);
838 ptr
= mmap(0, size
, prot
, MAP_SHARED
, fd
, 0);
839 pkey_assert(ptr
!= (void *)-1);
841 mprotect_pkey(ptr
, size
, prot
, pkey
);
843 record_pkey_malloc(ptr
, size
, prot
);
845 dprintf1("mmap()'d for pkey %d @ %p\n", pkey
, ptr
);
850 void *(*pkey_malloc
[])(long size
, int prot
, u16 pkey
) = {
852 malloc_pkey_with_mprotect
,
853 malloc_pkey_with_mprotect_subpage
,
854 malloc_pkey_anon_huge
,
856 /* can not do direct with the pkey_mprotect() API:
857 malloc_pkey_mmap_direct,
858 malloc_pkey_mmap_dax,
862 void *malloc_pkey(long size
, int prot
, u16 pkey
)
865 static int malloc_type
;
866 int nr_malloc_types
= ARRAY_SIZE(pkey_malloc
);
868 pkey_assert(pkey
< NR_PKEYS
);
871 pkey_assert(malloc_type
< nr_malloc_types
);
873 ret
= pkey_malloc
[malloc_type
](size
, prot
, pkey
);
874 pkey_assert(ret
!= (void *)-1);
877 if (malloc_type
>= nr_malloc_types
)
878 malloc_type
= (random()%nr_malloc_types
);
880 /* try again if the malloc_type we tried is unsupported */
881 if (ret
== PTR_ERR_ENOTSUP
)
887 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__
,
888 size
, prot
, pkey
, ret
);
892 int last_pkey_faults
;
893 #define UNKNOWN_PKEY -2
894 void expected_pkey_fault(int pkey
)
896 dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
897 __func__
, last_pkey_faults
, pkey_faults
);
898 dprintf2("%s(%d): last_si_pkey: %d\n", __func__
, pkey
, last_si_pkey
);
899 pkey_assert(last_pkey_faults
+ 1 == pkey_faults
);
902 * For exec-only memory, we do not know the pkey in
903 * advance, so skip this check.
905 if (pkey
!= UNKNOWN_PKEY
)
906 pkey_assert(last_si_pkey
== pkey
);
908 #if defined(__i386__) || defined(__x86_64__) /* arch */
910 * The signal handler shold have cleared out PKEY register to let the
911 * test program continue. We now have to restore it.
913 if (__read_pkey_reg() != 0)
915 if (__read_pkey_reg() != shadow_pkey_reg
)
919 __write_pkey_reg(shadow_pkey_reg
);
920 dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
921 "nuked it\n", __func__
, shadow_pkey_reg
);
922 last_pkey_faults
= pkey_faults
;
926 #define do_not_expect_pkey_fault(msg) do { \
927 if (last_pkey_faults != pkey_faults) \
928 dprintf0("unexpected PKey fault: %s\n", msg); \
929 pkey_assert(last_pkey_faults == pkey_faults); \
932 int test_fds
[10] = { -1 };
934 void __save_test_fd(int fd
)
936 pkey_assert(fd
>= 0);
937 pkey_assert(nr_test_fds
< ARRAY_SIZE(test_fds
));
938 test_fds
[nr_test_fds
] = fd
;
942 int get_test_read_fd(void)
944 int test_fd
= open("/etc/passwd", O_RDONLY
);
945 __save_test_fd(test_fd
);
949 void close_test_fds(void)
953 for (i
= 0; i
< nr_test_fds
; i
++) {
962 #define barrier() __asm__ __volatile__("": : :"memory")
963 __attribute__((noinline
)) int read_ptr(int *ptr
)
966 * Keep GCC from optimizing this away somehow
972 void test_pkey_alloc_free_attach_pkey0(int *ptr
, u16 pkey
)
975 int max_nr_pkey_allocs
;
976 int alloced_pkeys
[NR_PKEYS
];
980 pkey_assert(pkey_last_malloc_record
);
981 size
= pkey_last_malloc_record
->size
;
983 * This is a bit of a hack. But mprotect() requires
984 * huge-page-aligned sizes when operating on hugetlbfs.
985 * So, make sure that we use something that's a multiple
986 * of a huge page when we can.
988 if (size
>= HPAGE_SIZE
)
991 /* allocate every possible key and make sure key-0 never got allocated */
992 max_nr_pkey_allocs
= NR_PKEYS
;
993 for (i
= 0; i
< max_nr_pkey_allocs
; i
++) {
994 int new_pkey
= alloc_pkey();
995 pkey_assert(new_pkey
!= 0);
999 alloced_pkeys
[nr_alloced
++] = new_pkey
;
1001 /* free all the allocated keys */
1002 for (i
= 0; i
< nr_alloced
; i
++) {
1005 if (!alloced_pkeys
[i
])
1007 free_ret
= sys_pkey_free(alloced_pkeys
[i
]);
1008 pkey_assert(!free_ret
);
1011 /* attach key-0 in various modes */
1012 err
= sys_mprotect_pkey(ptr
, size
, PROT_READ
, 0);
1014 err
= sys_mprotect_pkey(ptr
, size
, PROT_WRITE
, 0);
1016 err
= sys_mprotect_pkey(ptr
, size
, PROT_EXEC
, 0);
1018 err
= sys_mprotect_pkey(ptr
, size
, PROT_READ
|PROT_WRITE
, 0);
1020 err
= sys_mprotect_pkey(ptr
, size
, PROT_READ
|PROT_WRITE
|PROT_EXEC
, 0);
1024 void test_read_of_write_disabled_region(int *ptr
, u16 pkey
)
1028 dprintf1("disabling write access to PKEY[1], doing read\n");
1029 pkey_write_deny(pkey
);
1030 ptr_contents
= read_ptr(ptr
);
1031 dprintf1("*ptr: %d\n", ptr_contents
);
1034 void test_read_of_access_disabled_region(int *ptr
, u16 pkey
)
1038 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey
, ptr
);
1040 pkey_access_deny(pkey
);
1041 ptr_contents
= read_ptr(ptr
);
1042 dprintf1("*ptr: %d\n", ptr_contents
);
1043 expected_pkey_fault(pkey
);
1046 void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr
,
1051 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1053 ptr_contents
= read_ptr(ptr
);
1054 dprintf1("reading ptr before disabling the read : %d\n",
1057 pkey_access_deny(pkey
);
1058 ptr_contents
= read_ptr(ptr
);
1059 dprintf1("*ptr: %d\n", ptr_contents
);
1060 expected_pkey_fault(pkey
);
1063 void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr
,
1067 dprintf1("disabling write access; after accessing the page, "
1068 "to PKEY[%02d], doing write\n", pkey
);
1069 pkey_write_deny(pkey
);
1071 expected_pkey_fault(pkey
);
1074 void test_write_of_write_disabled_region(int *ptr
, u16 pkey
)
1076 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey
);
1077 pkey_write_deny(pkey
);
1079 expected_pkey_fault(pkey
);
1081 void test_write_of_access_disabled_region(int *ptr
, u16 pkey
)
1083 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey
);
1084 pkey_access_deny(pkey
);
1086 expected_pkey_fault(pkey
);
1089 void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr
,
1093 dprintf1("disabling access; after accessing the page, "
1094 " to PKEY[%02d], doing write\n", pkey
);
1095 pkey_access_deny(pkey
);
1097 expected_pkey_fault(pkey
);
1100 void test_kernel_write_of_access_disabled_region(int *ptr
, u16 pkey
)
1103 int test_fd
= get_test_read_fd();
1105 dprintf1("disabling access to PKEY[%02d], "
1106 "having kernel read() to buffer\n", pkey
);
1107 pkey_access_deny(pkey
);
1108 ret
= read(test_fd
, ptr
, 1);
1109 dprintf1("read ret: %d\n", ret
);
1112 void test_kernel_write_of_write_disabled_region(int *ptr
, u16 pkey
)
1115 int test_fd
= get_test_read_fd();
1117 pkey_write_deny(pkey
);
1118 ret
= read(test_fd
, ptr
, 100);
1119 dprintf1("read ret: %d\n", ret
);
1120 if (ret
< 0 && (DEBUG_LEVEL
> 0))
1121 perror("verbose read result (OK for this to be bad)");
1125 void test_kernel_gup_of_access_disabled_region(int *ptr
, u16 pkey
)
1127 int pipe_ret
, vmsplice_ret
;
1131 pipe_ret
= pipe(pipe_fds
);
1133 pkey_assert(pipe_ret
== 0);
1134 dprintf1("disabling access to PKEY[%02d], "
1135 "having kernel vmsplice from buffer\n", pkey
);
1136 pkey_access_deny(pkey
);
1138 iov
.iov_len
= PAGE_SIZE
;
1139 vmsplice_ret
= vmsplice(pipe_fds
[1], &iov
, 1, SPLICE_F_GIFT
);
1140 dprintf1("vmsplice() ret: %d\n", vmsplice_ret
);
1141 pkey_assert(vmsplice_ret
== -1);
1147 void test_kernel_gup_write_to_write_disabled_region(int *ptr
, u16 pkey
)
1149 int ignored
= 0xdada;
1151 int some_int
= __LINE__
;
1153 dprintf1("disabling write to PKEY[%02d], "
1154 "doing futex gunk in buffer\n", pkey
);
1156 pkey_write_deny(pkey
);
1157 futex_ret
= syscall(SYS_futex
, ptr
, FUTEX_WAIT
, some_int
-1, NULL
,
1159 if (DEBUG_LEVEL
> 0)
1161 dprintf1("futex() ret: %d\n", futex_ret
);
1164 /* Assumes that all pkeys other than 'pkey' are unallocated */
1165 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr
, u16 pkey
)
1170 /* Note: 0 is the default pkey, so don't mess with it */
1171 for (i
= 1; i
< NR_PKEYS
; i
++) {
1175 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i
);
1176 err
= sys_pkey_free(i
);
1179 err
= sys_pkey_free(i
);
1182 err
= sys_mprotect_pkey(ptr
, PAGE_SIZE
, PROT_READ
, i
);
1187 /* Assumes that all pkeys other than 'pkey' are unallocated */
1188 void test_pkey_syscalls_bad_args(int *ptr
, u16 pkey
)
1191 int bad_pkey
= NR_PKEYS
+99;
1193 /* pass a known-invalid pkey in: */
1194 err
= sys_mprotect_pkey(ptr
, PAGE_SIZE
, PROT_READ
, bad_pkey
);
1198 void become_child(void)
1203 pkey_assert(forkret
>= 0);
1204 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret
);
1213 /* Assumes that all pkeys other than 'pkey' are unallocated */
1214 void test_pkey_alloc_exhaust(int *ptr
, u16 pkey
)
1217 int allocated_pkeys
[NR_PKEYS
] = {0};
1218 int nr_allocated_pkeys
= 0;
1221 for (i
= 0; i
< NR_PKEYS
*3; i
++) {
1223 dprintf1("%s() alloc loop: %d\n", __func__
, i
);
1224 new_pkey
= alloc_pkey();
1225 dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1226 " shadow: 0x%016llx\n",
1227 __func__
, __LINE__
, err
, __read_pkey_reg(),
1229 read_pkey_reg(); /* for shadow checking */
1230 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__
, errno
, ENOSPC
);
1231 if ((new_pkey
== -1) && (errno
== ENOSPC
)) {
1232 dprintf2("%s() failed to allocate pkey after %d tries\n",
1233 __func__
, nr_allocated_pkeys
);
1236 * Ensure the number of successes never
1237 * exceeds the number of keys supported
1240 pkey_assert(nr_allocated_pkeys
< NR_PKEYS
);
1241 allocated_pkeys
[nr_allocated_pkeys
++] = new_pkey
;
1245 * Make sure that allocation state is properly
1246 * preserved across fork().
1248 if (i
== NR_PKEYS
*2)
1252 dprintf3("%s()::%d\n", __func__
, __LINE__
);
1256 * There are 16 pkeys supported in hardware. Three are
1257 * allocated by the time we get here:
1258 * 1. The default key (0)
1259 * 2. One possibly consumed by an execute-only mapping.
1260 * 3. One allocated by the test code and passed in via
1261 * 'pkey' to this function.
1262 * Ensure that we can allocate at least another 13 (16-3).
1265 * There are either 5, 28, 29 or 32 pkeys supported in
1266 * hardware depending on the page size (4K or 64K) and
1267 * platform (powernv or powervm). Four are allocated by
1268 * the time we get here. These include pkey-0, pkey-1,
1269 * exec-only pkey and the one allocated by the test code.
1270 * Ensure that we can allocate the remaining.
1272 pkey_assert(i
>= (NR_PKEYS
- get_arch_reserved_keys() - 1));
1274 for (i
= 0; i
< nr_allocated_pkeys
; i
++) {
1275 err
= sys_pkey_free(allocated_pkeys
[i
]);
1277 read_pkey_reg(); /* for shadow checking */
1282 * pkey 0 is special. It is allocated by default, so you do not
1283 * have to call pkey_alloc() to use it first. Make sure that it
1286 void test_mprotect_with_pkey_0(int *ptr
, u16 pkey
)
1291 assert(pkey_last_malloc_record
);
1292 size
= pkey_last_malloc_record
->size
;
1294 * This is a bit of a hack. But mprotect() requires
1295 * huge-page-aligned sizes when operating on hugetlbfs.
1296 * So, make sure that we use something that's a multiple
1297 * of a huge page when we can.
1299 if (size
>= HPAGE_SIZE
)
1301 prot
= pkey_last_malloc_record
->prot
;
1304 mprotect_pkey(ptr
, size
, prot
, 0);
1306 /* Make sure that we can set it back to the original pkey. */
1307 mprotect_pkey(ptr
, size
, prot
, pkey
);
1310 void test_ptrace_of_child(int *ptr
, u16 pkey
)
1312 __attribute__((__unused__
)) int peek_result
;
1318 * This is the "control" for our little expermient. Make sure
1319 * we can always access it when ptracing.
1321 int *plain_ptr_unaligned
= malloc(HPAGE_SIZE
);
1322 int *plain_ptr
= ALIGN_PTR_UP(plain_ptr_unaligned
, PAGE_SIZE
);
1325 * Fork a child which is an exact copy of this process, of course.
1326 * That means we can do all of our tests via ptrace() and then plain
1327 * memory access and ensure they work differently.
1329 child_pid
= fork_lazy_child();
1330 dprintf1("[%d] child pid: %d\n", getpid(), child_pid
);
1332 ret
= ptrace(PTRACE_ATTACH
, child_pid
, ignored
, ignored
);
1335 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret
, __LINE__
);
1336 pkey_assert(ret
!= -1);
1337 ret
= waitpid(child_pid
, &status
, WUNTRACED
);
1338 if ((ret
!= child_pid
) || !(WIFSTOPPED(status
))) {
1339 fprintf(stderr
, "weird waitpid result %ld stat %x\n",
1343 dprintf2("waitpid ret: %ld\n", ret
);
1344 dprintf2("waitpid status: %d\n", status
);
1346 pkey_access_deny(pkey
);
1347 pkey_write_deny(pkey
);
1349 /* Write access, untested for now:
1350 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1351 pkey_assert(ret != -1);
1352 dprintf1("poke at %p: %ld\n", peek_at, ret);
1356 * Try to access the pkey-protected "ptr" via ptrace:
1358 ret
= ptrace(PTRACE_PEEKDATA
, child_pid
, ptr
, ignored
);
1359 /* expect it to work, without an error: */
1360 pkey_assert(ret
!= -1);
1361 /* Now access from the current task, and expect an exception: */
1362 peek_result
= read_ptr(ptr
);
1363 expected_pkey_fault(pkey
);
1366 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1368 ret
= ptrace(PTRACE_PEEKDATA
, child_pid
, plain_ptr
, ignored
);
1369 /* expect it to work, without an error: */
1370 pkey_assert(ret
!= -1);
1371 /* Now access from the current task, and expect NO exception: */
1372 peek_result
= read_ptr(plain_ptr
);
1373 do_not_expect_pkey_fault("read plain pointer after ptrace");
1375 ret
= ptrace(PTRACE_DETACH
, child_pid
, ignored
, 0);
1376 pkey_assert(ret
!= -1);
1378 ret
= kill(child_pid
, SIGKILL
);
1379 pkey_assert(ret
!= -1);
1383 free(plain_ptr_unaligned
);
1386 void *get_pointer_to_instructions(void)
1390 p1
= ALIGN_PTR_UP(&lots_o_noops_around_write
, PAGE_SIZE
);
1391 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write
);
1392 /* lots_o_noops_around_write should be page-aligned already */
1393 assert(p1
== &lots_o_noops_around_write
);
1395 /* Point 'p1' at the *second* page of the function: */
1399 * Try to ensure we fault this in on next touch to ensure
1400 * we get an instruction fault as opposed to a data one
1402 madvise(p1
, PAGE_SIZE
, MADV_DONTNEED
);
1407 void test_executing_on_unreadable_memory(int *ptr
, u16 pkey
)
1414 p1
= get_pointer_to_instructions();
1415 lots_o_noops_around_write(&scratch
);
1416 ptr_contents
= read_ptr(p1
);
1417 dprintf2("ptr (%p) contents@%d: %x\n", p1
, __LINE__
, ptr_contents
);
1419 ret
= mprotect_pkey(p1
, PAGE_SIZE
, PROT_EXEC
, (u64
)pkey
);
1421 pkey_access_deny(pkey
);
1423 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1426 * Make sure this is an *instruction* fault
1428 madvise(p1
, PAGE_SIZE
, MADV_DONTNEED
);
1429 lots_o_noops_around_write(&scratch
);
1430 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1431 expect_fault_on_read_execonly_key(p1
, pkey
);
1434 void test_implicit_mprotect_exec_only_memory(int *ptr
, u16 pkey
)
1441 dprintf1("%s() start\n", __func__
);
1443 p1
= get_pointer_to_instructions();
1444 lots_o_noops_around_write(&scratch
);
1445 ptr_contents
= read_ptr(p1
);
1446 dprintf2("ptr (%p) contents@%d: %x\n", p1
, __LINE__
, ptr_contents
);
1448 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1449 ret
= mprotect(p1
, PAGE_SIZE
, PROT_EXEC
);
1452 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1454 /* Make sure this is an *instruction* fault */
1455 madvise(p1
, PAGE_SIZE
, MADV_DONTNEED
);
1456 lots_o_noops_around_write(&scratch
);
1457 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1458 expect_fault_on_read_execonly_key(p1
, UNKNOWN_PKEY
);
1461 * Put the memory back to non-PROT_EXEC. Should clear the
1462 * exec-only pkey off the VMA and allow it to be readable
1463 * again. Go to PROT_NONE first to check for a kernel bug
1464 * that did not clear the pkey when doing PROT_NONE.
1466 ret
= mprotect(p1
, PAGE_SIZE
, PROT_NONE
);
1469 ret
= mprotect(p1
, PAGE_SIZE
, PROT_READ
|PROT_EXEC
);
1471 ptr_contents
= read_ptr(p1
);
1472 do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1475 void test_mprotect_pkey_on_unsupported_cpu(int *ptr
, u16 pkey
)
1477 int size
= PAGE_SIZE
;
1480 if (cpu_has_pkeys()) {
1481 dprintf1("SKIP: %s: no CPU support\n", __func__
);
1485 sret
= syscall(SYS_mprotect_key
, ptr
, size
, PROT_READ
, pkey
);
1486 pkey_assert(sret
< 0);
1489 void (*pkey_tests
[])(int *ptr
, u16 pkey
) = {
1490 test_read_of_write_disabled_region
,
1491 test_read_of_access_disabled_region
,
1492 test_read_of_access_disabled_region_with_page_already_mapped
,
1493 test_write_of_write_disabled_region
,
1494 test_write_of_write_disabled_region_with_page_already_mapped
,
1495 test_write_of_access_disabled_region
,
1496 test_write_of_access_disabled_region_with_page_already_mapped
,
1497 test_kernel_write_of_access_disabled_region
,
1498 test_kernel_write_of_write_disabled_region
,
1499 test_kernel_gup_of_access_disabled_region
,
1500 test_kernel_gup_write_to_write_disabled_region
,
1501 test_executing_on_unreadable_memory
,
1502 test_implicit_mprotect_exec_only_memory
,
1503 test_mprotect_with_pkey_0
,
1504 test_ptrace_of_child
,
1505 test_pkey_syscalls_on_non_allocated_pkey
,
1506 test_pkey_syscalls_bad_args
,
1507 test_pkey_alloc_exhaust
,
1508 test_pkey_alloc_free_attach_pkey0
,
1511 void run_tests_once(void)
1514 int prot
= PROT_READ
|PROT_WRITE
;
1516 for (test_nr
= 0; test_nr
< ARRAY_SIZE(pkey_tests
); test_nr
++) {
1518 int orig_pkey_faults
= pkey_faults
;
1520 dprintf1("======================\n");
1521 dprintf1("test %d preparing...\n", test_nr
);
1524 pkey
= alloc_random_pkey();
1525 dprintf1("test %d starting with pkey: %d\n", test_nr
, pkey
);
1526 ptr
= malloc_pkey(PAGE_SIZE
, prot
, pkey
);
1527 dprintf1("test %d starting...\n", test_nr
);
1528 pkey_tests
[test_nr
](ptr
, pkey
);
1529 dprintf1("freeing test memory: %p\n", ptr
);
1530 free_pkey_malloc(ptr
);
1531 sys_pkey_free(pkey
);
1533 dprintf1("pkey_faults: %d\n", pkey_faults
);
1534 dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults
);
1539 printf("test %2d PASSED (iteration %d)\n", test_nr
, iteration_nr
);
1540 dprintf1("======================\n\n");
1545 void pkey_setup_shadow(void)
1547 shadow_pkey_reg
= __read_pkey_reg();
1552 int nr_iterations
= 22;
1553 int pkeys_supported
= is_pkeys_supported();
1557 printf("has pkeys: %d\n", pkeys_supported
);
1559 if (!pkeys_supported
) {
1560 int size
= PAGE_SIZE
;
1563 printf("running PKEY tests for unsupported CPU/OS\n");
1565 ptr
= mmap(NULL
, size
, PROT_NONE
, MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
1566 assert(ptr
!= (void *)-1);
1567 test_mprotect_pkey_on_unsupported_cpu(ptr
, 1);
1571 pkey_setup_shadow();
1572 printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1575 while (nr_iterations
-- > 0)
1578 printf("done (all tests OK)\n");